1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Duru IC, Lecomte A, Laine P, Shishido TK, Suppula J, Paulin L, Scheperjans F, Pereira PAB, Auvinen P. Comparison of phage and plasmid populations in the gut microbiota between Parkinson's disease patients and controls. Sci Rep 2025; 15:13723. [PMID: 40258842 DOI: 10.1038/s41598-025-96924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
The aging population worldwide is on the rise, leading to a higher number of Parkinson's disease (PD) cases each year. PD is presently the second most prevalent neurodegenerative disease, affecting an estimated 7-10 million individuals globally. This research aimed to identify mobile genetic elements in human fecal samples using a shotgun metagenomics approach. We identified over 44,000 plasmid contigs and compared plasmid populations between PD patients (n = 68) and controls (n = 68). Significant associations emerged between groups (control vs PD) based on plasmid alpha and beta diversity. Moreover, the gene populations present on plasmids displayed marked differences in alpha and beta diversity between PD patients and controls. We identified a considerable number of phage contigs that were differentially abundant in the two groups. We also developed a predictive machine learning model based on phage abundance data, achieving a mean Area Under the Curve (AUC) of 0.74 with a standard deviation of 0.105 and a mean F1 score of 0.68 with a standard deviation of 0.14 across cross-validation folds, indicating moderate discriminatory power. Additionally, when tested on external data, the model yielded an AUC of 0.74 and an F1 score of 0.8, further demonstrating the predictive potential of phage populations in Parkinson's disease. Further, we improved the continuity and identification of the protein coding regions of the phage contigs by implementing alternative genetic codes.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Alexandre Lecomte
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Joni Suppula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Pedro A B Pereira
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Toribio-Avedillo D, Ballesté E, García-Aljaro C, Stange C, Tiehm A, Sánchez-Cid C, Mulogo E, Nasser A, Santos R, Nemes K, Blanch AR. The reliability of CrAssphage in human fecal pollution detection: A cross-regional MST marker assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125399. [PMID: 40254002 DOI: 10.1016/j.jenvman.2025.125399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Microbial Source Tracking (MST) markers play a key role in identifying sources of fecal contamination, particularly human-associated pollution, which is critical for public health. This study investigates the distribution and reliability of three MST markers (crAssphage, HMBif, and HF183) across various environmental contexts in Europe, Asia, and Africa. Samples were obtained from wastewater treatment plants (WWTPs) and rivers across different catchment areas, including sampling during extreme weather conditions such as heavy rainfall and drought. The concentrations of these MST markers were measured and compared with traditional fecal indicators. The obtained results indicate that crAssphage showed consistently the highest prevalence and concentrations in all regions and sample types, demonstrating its robustness as a marker of human fecal contamination. Population density and climatic conditions significantly influenced marker levels, with the highest concentrations found in highly populated areas with moderate climates. The impact of extreme weather events was different for each condition: heavy rainfall resulted in elevated MST marker concentrations, likely due to sediment resuspension, while drought led to more inconsistent results. Strong correlations were observed among the three MST markers and between these markers and conventional fecal indicators. This study underscores the value of crAssphage as a reliable and effective tool for tracking human fecal pollution and highlights the influence of environmental and climatic factors on MST marker behavior.
Collapse
Affiliation(s)
- D Toribio-Avedillo
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - E Ballesté
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C García-Aljaro
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - C Sánchez-Cid
- Ecole Centrale de Lyon, Laboratoire Ampere, 36 Avenue Guy de Collongues, 69134, Ecully, France.
| | - E Mulogo
- Mbarara University of Science and Technology, Department of Community Health Kabale Road Plot 8-18, 04854, Mbarara, Uganda.
| | - A Nasser
- Ministry of Health, National Public Health Laboratory, Ben Zvi Rd 69, 61082, Tel Aviv, Israel.
| | - R Santos
- Universidade Lisboa, Instituto Superior Tecnico, Laboratorio Analises, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - K Nemes
- European Union Reference, Laboratory for Foodborne, Viruses, Swedish Food Agency, Biology Department, Dag Hammarskjölds Väg 56 A, 751 26, Uppsala, Sweden.
| | - A R Blanch
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Xiao Y, Yue X, Zhang X, Yang Y, Zhang Y, Sun L. The role of bacteriophage in inflammatory bowel disease and its therapeutic potential. Crit Rev Microbiol 2025:1-15. [PMID: 40219702 DOI: 10.1080/1040841x.2025.2492154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Inflammatory bowel disease (IBD) refers to a group of chronic inflammatory disorders impacting the gastrointestinal (GI) tract. It represents a significant public health challenge due to its rising global incidence and substantial impact on patients' quality of life. Emerging research suggests a pivotal role of the human microbiome in IBD pathogenesis. Bacteriophages, integral components of the human microbiome, are indicated to influence the disease onset, progression, and therapeutic strategies. Here, we review the effect of bacteriophages on the pathogenesis of IBD and, more specifically, on the gut bacteria, the systemic immunity, and the susceptibility genes. Additionally, we explore the potential therapeutic use of the bacteriophages to modify gut microbiota and improve the health outcomes of IBD patients. This review highlights the potential of therapeutic bacteriophages in regulating gut microbiota and modulating the immune response to improve health outcomes in IBD patients. Future studies on personalized bacteriophage therapy and its integration into clinical practice could advance treatment strategies for IBD.
Collapse
Affiliation(s)
- Yuyang Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xinyu Yue
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xupeng Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yifei Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yibo Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Lang Sun
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Microbiology, Xiangya School of the Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Park JW, Yun YE, Cho JA, Yoon SI, In SA, Park EJ, Kim MS. Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut. Nat Commun 2025; 16:3427. [PMID: 40210629 PMCID: PMC11986028 DOI: 10.1038/s41467-025-58856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 107 viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
Collapse
Affiliation(s)
- Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Eun Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-In Yoon
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea.
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Boulainine D, Benhamrouche A, Ballesté E, Mezaache-Aichour S, García-Aljaro C. Fate of antibiotic resistance genes under different wastewater treatments and environmental conditions in an Algerian watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126179. [PMID: 40180301 DOI: 10.1016/j.envpol.2025.126179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In recent decades, antibiotic resistance has become a major health threat. This study evaluates the efficiency of two wastewater treatment plants (WWTP), conventional activated sludge and advanced filtration-based Enviro-Septic, for removing antibiotic resistance genes (ARGs) and their prevalence in an Algerian watershed. Thirty-five wastewater and 122 river samples were collected. Sampling covered a 50 km transect, from a low-pollution site to a water reservoir, at six sites. The study analyzed different fecal indicators (E. coli (EC), spores of sulfite-reducing clostridia (SRC), somatic coliphages (SOMCPH)), CrAssphage (CrAssPH)), and three ARGs (blaTEM, tetW, and sul1). Mean concentrations in raw sewage from the conventional and Enviro-Septic WWTPs were ∼7.1 and 6.4 log10 (CFU/100 ml) for EC, 6.2 log10 (PFU or CFU)/100 ml for SOMCPH and SRC in both treatments, and ∼7.5 and 5.2 for CrAssPH, respectively. The conventional WWTP achieved reductions of ∼4 log10 for EC and SOMCPH, 3.5 log10 for CrAssPH, and 1 log10 for SRC. The Enviro-Septic system showed similar efficacy for EC and SRC but lower for SOMCPH (2.8 log10) and CrAssPH (2.5 log10). The mean concentrations (log10 GC/100 ml) of ARGs in raw sewage of the conventional and the Enviro-Septic WWTP were 8.6 and 7.3 for tetW, 9.4 and 8.1 for sul1, 8.4 and 6.3 for blaTEM, respectively. Both treatments achieved reductions of 2.9-3 log10 for all ARGs. All river samples tested positive for the three ARGs, with lower concentrations at less fecally polluted sites, showing a reduction of up to 4 log10. Strong correlations (p < 0.05) were observed between culturable indicators, CrAssPH, and ARGs (ρ 0.58-0.96), indicating a strong association between ARGs and human fecal contamination, although other environmental sources cannot be ruled out. This study provides insights into ARG dynamics and supports strategies to mitigate their spread, and protect public health.
Collapse
Affiliation(s)
- Dalal Boulainine
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria; Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Aziz Benhamrouche
- Department of Earth Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain
| | - Samia Mezaache-Aichour
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain.
| |
Collapse
|
8
|
Wu Y, Cheng R, Lin H, Li L, Jia Y, Philips A, Zuo T, Zhang H. Gut virome and its implications in the pathogenesis and therapeutics of inflammatory bowel disease. BMC Med 2025; 23:183. [PMID: 40140901 PMCID: PMC11948845 DOI: 10.1186/s12916-025-04016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic, recurrent inflammatory intestinal disorders, primarily including Crohn's disease (CD) and Ulcerative colitis (UC). Numerous studies have elucidated the importance of the gut microbiome in IBD. Recently, numerous studies have focused on the gut virome, an intriguing and enigmatic aspect of the gut microbiome. Alterations in the composition of phages, eukaryotic viruses, and human endogenous retroviruses that occur in IBD suggest potential involvement of the gut virome in IBD. Nevertheless, the mechanisms by which it maintains intestinal homeostasis and interacts with diseases are only beginning to be understood. Here, we thoroughly reviewed the composition of the gut virome in both healthy individuals and IBD patients, emphasizing the key viruses implicated in the onset and progression of IBD. Furthermore, the complex connections between the gut virome and the intestinal barrier, immunity, and gut microbiome were dissected to advance the interpretation of IBD pathogenesis. The updated discussion of the evidence regarding the gut virome will advance our knowledge in gut virome and chronic gastrointestinal diseases. Targeting the gut virome is a promising avenue for IBD treatment in future.
Collapse
Affiliation(s)
- Yushan Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cheng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Lin
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongbin Jia
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Bacha LF, Oliveira MDAP, Landuci F, Vicente AC, Paz PH, Lima M, Hilário M, Campos LS, Thompson M, Chueke C, Tschoeke D, Ottoni A, Teixera LM, Cosenza C, de Souza W, de Rezende C, Thompson C, Thompson F. Antibiotic-resistance genes and metals increase in polluted tropical rivers of the Baia da Ilha Grande, Rio de Janeiro, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178778. [PMID: 39986042 DOI: 10.1016/j.scitotenv.2025.178778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Baia da Ilha Grande (BIG), Rio de Janeiro, Brazil, is one of the largest bays in the world. BIG is important because it serves as a route for the mining and oil industries and plays a vital role in mariculture activities. However, BIG has suffered significant impacts in recent years due to increased pollution and climate change, culminating in a local mariculture collapse. We examined the pollution levels of the bay. Biogeochemical, microbiological, and metagenomics analyses were conducted in ten rivers during the 2022 dry and rainy seasons. Combined data analyses showed that the bay's ten most significant rivers are polluted and classified into three decreasing levels of pollution groups (P1-P3). The P1 group (Centro, Japuíba, Jacuecanga) had the worst-case scenario for all pollution types, and the highest number of the nearby populations, nautical workshops and hospitals. Whereas the P2 (Jacarei, Perequeaçu and Taquari) and P3 (Frade, Bracuí, Mambucaba, São Roque) had relatively reduced pollution, as shown mainly by fecal bacteria. Metals, such as Al (>0.3 mg/L), Fe (>1.4 mg/L), Pb (>0.15 mg/L), and resistance genes (∼2 % metagenomic profile) were also more abundant in P1. High levels of metals and antibiotic resistance genes were a strong indication of pollution. The results from this study shed light on the health status of BIG rivers for further conservation programs and public policies to prevent rivers and marine biodiversity losses, and they serves as a warning on the urgent need to treat effluents in the region.
Collapse
Affiliation(s)
- Leonardo F Bacha
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo de A P Oliveira
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Landuci
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Pedro H Paz
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michele Lima
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcella Hilário
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucia S Campos
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mateus Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Caroline Chueke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Adacto Ottoni
- Departamento de Engenharia Sanitária E Do Meio Ambiente (DESMA), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Lúcia Martins Teixera
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Cosenza
- Lab Fuzzy, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Carlos de Rezende
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), State University of Northern of Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Cristiane Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2025; 23:192-205. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Godsil M, Ritz NL, Venkatesh S, Meeske AJ. Gut phages and their interactions with bacterial and mammalian hosts. J Bacteriol 2025; 207:e0042824. [PMID: 39846747 PMCID: PMC11844821 DOI: 10.1128/jb.00428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter." This community of gut-residing bacteriophages, called the gut "phageome," plays a central role in the gut microbiome through predation and transformation of native gut bacteria, and through interactions with their mammalian hosts. In this review, we will summarize what is known about the composition and origins of the gut phageome, as well as its role in microbiome homeostasis and host health. Furthermore, we will outline the interactions of gut phages with their bacterial and mammalian hosts, and plot a course for the mechanistic study of these systems.
Collapse
Affiliation(s)
- Marshall Godsil
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Alexander J. Meeske
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Liu C, Chen Z, Wang X, Deng Y, Tao L, Zhou X, Deng J. Response of Soil Phage Communities and Prokaryote-Phage Interactions to Long-Term Drought. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3054-3066. [PMID: 39919201 DOI: 10.1021/acs.est.4c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Soil moisture is a fundamental factor affecting terrestrial ecosystem functions. In this study, microscopic enumeration and joint metaviromic and metagenomic sequencing were employed together to investigate the impact of prolonged drought on soil phage communities and their interactions with prokaryotes in a subtropical evergreen forest. Our findings revealed a marked reduction in the abundances of prokaryotic and viral-like particles, by 73.1% and 75.2%, respectively, and significantly altered the structure of prokaryotic and phage communities under drought. Meanwhile, drought substantially increased the fraction of prokaryotic communities containing lysogenic phages by 163%, as well as the proportion of temperate phages. Nonetheless, drought likely amplified negative prokaryote-phage interactions given the nearly doubled proportion of negative links in the prokaryote-phage co-occurrence network, as well as the higher frequency and diversity of antiphage defense systems found in prokaryotic genomes. Under drought, soil phages exerted greater top-down control on typical soil k-strategists including Acidobacteria and Chloroflexi. Moreover, phage-encoded auxiliary metabolic genes may impact host metabolism in biosynthesis-related functions. Collectively, the findings of this study underscore the profound impact of drought on soil phages and prokaryote-phage interactions. These results also emphasize the importance of managing soil moisture levels during soil amendment and microbiome manipulation to account for the influence of soil phages.
Collapse
Affiliation(s)
- Cong Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Zhijie Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xinlei Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijun Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Linfang Tao
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xuhui Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
- Institute of Eco-Chongming, Shanghai 200241, China
| |
Collapse
|
13
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178661. [PMID: 39893813 DOI: 10.1016/j.scitotenv.2025.178661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Plasmid pBI143, abundant in the human gut, is a promising human-specific fecal marker. However, studies on its optimal concentration methods, seasonal variations, and potential as a normalization parameter for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remain limited. Among the three concentration methods compared, polyethylene glycol (PEG) precipitation and centrifugation demonstrated comparable efficiencies (9.3 ± 0.6 and 9.2 ± 0.6 log10 copies/L, respectively; n = 8 each), outperforming membrane filtration (8.0 ± 0.6 log10 copies/L; n = 8). PEG precipitation was further applied to quantify pBI143, together with other human-specific fecal markers (crAssphage and pepper mild mottle virus (PMMoV)), in 52 wastewater samples collected weekly over a one year from a wastewater treatment plant in Yamanashi Prefecture, Japan, by quantitative polymerase chain reaction. The higher pBI143 concentrations (9.6 ± 0.5 log10 copies/L) compared to PMMoV (8.2 ± 0.2 log10 copies/L) and crAssphage (8.0 ± 0.2 log10 copies/L) highlighted its potential as a robust marker for human fecal contamination. Unlike PMMoV and crAssphage that remained stable across seasons, pBI143 showed seasonal fluctuations, especially during summer and autumn, suggesting its greater sensitivity to environmental conditions. The study evaluated the suitability of pBI143, crAssphage, and PMMoV for normalizing SARS-CoV-2 concentrations in wastewater; however, non-normalized SARS-CoV-2 concentrations showed the highest correlation with COVID-19 cases (ρ = 0.74), whereas normalization reduced this correlation (PMMoV-normalized, ρ = 0.72; crAssphage-normalized, ρ = 0.70; and pBI143-normalized, ρ = 0.50), likely due to differences in the persistence and structural properties of the markers, indicating that these markers are less effective for SARS-CoV-2 normalization. This study underscores the promising utility of pBI143 in wastewater surveillance but highlights the need for further research across diverse regions to validate its applicability.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
14
|
Liu X, Han Z, Ma W, Cui W, Zhen D, Jiang S, Zhang J. Effects of Lactiplantibacillus plantarum HNU082 intervention on fungi and bacteriophages in different intestinal segments of mice. BMC Microbiol 2025; 25:69. [PMID: 39922998 PMCID: PMC11806771 DOI: 10.1186/s12866-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Gut fungi and bacteriophages, as members of the gut microbiota, can affect the interactions between gut bacteria and the host, participate in host metabolism, and are associated with various diseases. Probiotics substantially influence gut fungi and bacteriophages, modulating their composition through both direct and indirect mechanisms, thereby influencing host health. Current research primarily focuses on the effects of probiotics on the intestinal bacterial community. However, the alterations in the compositions of gut fungi and bacteriophages following probiotic intervention are not yet fully understood. Therefore, this study used Lactiplantibacillus plantarum HNU082 (Lp082) as the research subject and aimed to investigate the changes of the gut fungi and bacteriophages in the small intestine and the large intestine after the gavage of Lp082. RESULTS After probiotics entered the gut, the changes of the gut fungi and bacteriophages caused by the probiotics were more pronounced in the small intestine compared to the large intestine. The relative abundance of pathogenic fungi, such as Candida albicans, decreased in the small intestine. Furthermore, a strong positive correlation between the relative abundance of bacteriophages and their host bacteria in the gut was observed. The relative abundance of both Clostridia class bacteria and their bacteriophages increased. CONCLUSIONS In summary, the effects of probiotics on gut fungi and bacteriophages differed between the small intestine and the large intestine. This study contributed to a better understanding of the impact of probiotics on gut fungi and bacteriophages and provided data support for the association and dynamic changes between gut bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Xinlei Liu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Wenyao Ma
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Weipeng Cui
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Dongyu Zhen
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
15
|
Gulyaeva A, Liu L, Garmaeva S, Kruk M, Weersma RK, Harmsen HJM, Zhernakova A. Identification and characterization of Faecalibacterium prophages rich in diversity-generating retroelements. Microbiol Spectr 2025; 13:e0106624. [PMID: 39745426 PMCID: PMC11792537 DOI: 10.1128/spectrum.01066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria. Here, we developed a bioinformatic approach to prophage identification that builds on prophage genomic properties, existing prophage-detecting software, and publicly available virome sequencing data. We applied our approach to 22 strains of bacteria belonging to the genus Faecalibacterium, resulting in identification of 15 candidate prophages, and validated the approach by demonstrating the activity of five prophages from four of the strains. The genomes of three active phages were identical or similar to those of known phages, while the other two active phages were not represented in the Viral RefSeq database. Four of the active phages possessed a diversity-generating retroelement (DGR), and one retroelement had two variable regions. DGRs of two phages were active at the time of the induction experiments, as evidenced by nucleotide variation in sequencing reads. We also predicted that the host range of two active phages may include multiple bacterial species. Finally, we noted that four phages were less prevalent in the metagenomes of inflammatory bowel disease patients compared to a general population cohort, a difference mainly explained by differences in the abundance of the host bacteria. Our study highlights the utility of prophage identification and induction for unraveling phage molecular mechanisms and ecological interactions.IMPORTANCEWhile hundreds of thousands of phage genomes have been discovered in metagenomics studies, only a few of these phages have been characterized experimentally. Here, we explore phage characterization through bioinformatic identification of prophages in genomes of cultured bacteria, followed by prophage induction. Using this approach, we detect the activity of five prophages in four strains of commensal gut bacteria Faecalibacterium. We further note that four of the prophages possess diversity-generating retroelements implicated in rapid mutation of phage genome loci associated with phage-host and phage-environment interactions and analyze the intricate patterns of retroelement activity. Our study highlights the potential of prophage characterization for elucidating complex molecular mechanisms employed by the phages.
Collapse
Affiliation(s)
- Anastasia Gulyaeva
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanzhima Garmaeva
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Marloes Kruk
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K. Weersma
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Ansaldi M, le Marrec C. [Bacterial viruses in the Anthropocene era: friends or enemies of their hosts ?]. Med Sci (Paris) 2025; 41:160-165. [PMID: 40028954 DOI: 10.1051/medsci/2025014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacterial viruses, or bacteriophages, are the most abundant viruses on Earth, and their hosts are the most widespread living organisms in the biosphere. They are found in a free state, as virions, but are also very abundant in bacterial genomes, as prophages. Bacteriophages are present in all biotopes colonized by bacteria, such as water, soils, extreme environments, human, animal, and plant microbiomes, where they contribute to genetic exchanges. Therefore, all factors affecting these environments have a major impact on the dynamics of bacterial populations and their viruses.
Collapse
Affiliation(s)
- Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Claire le Marrec
- INRAE, université de Bordeaux, UMR 1366 oenologie, Bordeaux INP ISVV, Bordeaux, France
| |
Collapse
|
17
|
Liu S, Lioe TS, Sun L, Adriaenssens EM, McCarthy AJ, Sekar R. Validation of crAssphage microbial source tracking markers and comparison with Bacteroidales markers for detection and quantification of faecal contaminations in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125403. [PMID: 39608743 DOI: 10.1016/j.envpol.2024.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human-specific faecal contamination has been affecting surface water and is a threat to both the environment and public health due to its potential co-occurrence with pathogens. Extended studies were conducted to detect and quantify faecal contamination using microbial source tracking (MST) markers targeting bacteria and viruses. The prototypical crAssphage, a presumed Bacteroides-infecting phage discovered in 2014, showed superior specificity to human faeces and high abundance in untreated sewage water. This study evaluated the applicability of crAssphage markers, CPQ_056 and CPQ_064, as MST tools for detecting domestic sewage contamination in surface water in China. Validation tests based on domestic sewage and animal faecal samples demonstrated high sensitivity/specificity of 100%/96.7% for CPQ_056 and 100%/100% for CPQ_064 within the scope of this study, surpassing the performance of traditional Bacteroidales markers such as HF183 (100%/80.4% against sewage). MST markers targeting different hosts and validated in the Taihu watershed (CPQ_056, CPQ_064, BacUni, HF183 TaqMan, Pig-2-Bac, and GFD) were quantified in water samples collected from the inflow rivers of Taihu Lake in summer and winter 2020. The results showed the dominance of sewage/wastewater as the source of contamination in all faecal pollution. Spatial analysis revealed higher contamination levels in northwest rivers, which were those most impacted by human activities. There was also a diluting pattern downstream of some rivers. Correlations with water quality parameters indicated the co-occurrence of nutrient-related pollution and faecal contamination, particularly in areas with industrial, low-density residential, green space, and municipal service land uses. The findings established the efficacy of crAssphage markers in enhancing precision and accuracy in monitoring faecal contamination, offering valuable tools for policymakers and environmental managers.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Trillion Surya Lioe
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, 2333, CC Leiden, the Netherlands
| | - Li Sun
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | | | - Alan J McCarthy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Raju Sekar
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
18
|
Djoulissa LJ, Tandukar S, Schmitz BW, Innes GK, Gerba CP, Pepper IL, Sherchan SP. Abundance and possibilities of crAssphage and PMMoV as a viral indicator in raw sewage in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178101. [PMID: 39826211 DOI: 10.1016/j.scitotenv.2024.178101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Given their abundance in human fecal samples, crAssphage and Pepper Mild Mottle Virus (PMMoV) are proposed as indicators for human enteric viruses. This study measured crAssphage and PMMoV in raw sewage samples (n = 24) between June 2014 and May 2015 from two wastewater treatment facilities in southern Arizona, USA. Both crAssphage and PMMoV were detected in nearly 100% of samples. The greatest incidence of crAssphage typically occurred during late-winter to spring seasons, as concentrations reached 8.63 and 8.38 log10 copies/L in May and February. Meanwhile, PMMoV was significantly (p < 0.05) higher during the fall season, with concentrations at 8.69 and 9.12 log10 copies/L in September and October. Among the two tested indicators, a positive correlation (p < 0.05) was observed between PMMoV and tested human enteric viruses (norovirus genogroups I, II, adenovirus, and Aichi virus). Due to abundance, presence, and correlation with other viruses, PMMoV may be used as an appropriate indicator for human enteric viruses.
Collapse
Affiliation(s)
- Louis-Jean Djoulissa
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Sarmila Tandukar
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Bradley W Schmitz
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, United States of America
| | - Gabriel K Innes
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, United States of America
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Department of Environmental Science, University of Arizona, Tucson, AZ, United States of America
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Organization for Public Health and Environment Management, Lalitpur, Nepal; Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Center of Research Excellence in Wastewater based Epidemiology, Morgan State, Baltimore, MD, United States of America.
| |
Collapse
|
19
|
Cheng X, Yang J, Wang Z, Zhou K, An X, Xu ZZ, Lu H. Modulating intestinal viruses: A potential avenue for improving metabolic diseases with unresolved challenges. Life Sci 2025; 361:123309. [PMID: 39674267 DOI: 10.1016/j.lfs.2024.123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The gut microbiome affects the occurrence and development of metabolic diseases, with a significant amount of research focused on intestinal bacteria. As an important part of the gut microbiome, gut viruses were studied recently, particularly through fecal virome transplantation (FVT), revealing manipulating the gut virus could reverse overweight and glucose intolerance in mice. And human cohort studies found gut virome changed significantly in patients with metabolic disease. By summarizing those studies, we compared the research and analytical methods, as well as the similarities and differences in their results, and analyzed the reasons for these discrepancies. FVT provided potential value to improve metabolic diseases, but the mechanisms involved and the effect of FVT on humans should be investigated further. The potential methods of regulating intestinal virome composition and the possible mechanisms of intestinal virome changes affecting metabolic diseases were also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Jie Yang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhijie Wang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Kefan Zhou
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Xuejiao An
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Hui Lu
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China.
| |
Collapse
|
20
|
Feng Y, Lu X, Zhao J, Li H, Xu J, Li Z, Wang M, Peng Y, Tian T, Yuan G, Zhang Y, Liu J, Zhang M, Zhu La ALT, Qu G, Mu Y, Guo W, Wu Y, Zhang Y, Wang D, Hu Y, Kan B. Regional antimicrobial resistance gene flow among the One Health sectors in China. MICROBIOME 2025; 13:3. [PMID: 39763003 PMCID: PMC11705761 DOI: 10.1186/s40168-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance. RESULTS In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples. A total of 40 ARG types and 743 ARG subtypes were identified, with a predominance of multidrug resistance genes. Compared with microbes from human fecal samples, those from food and environmental samples showed a significantly higher load of ARGs. We revealed that dietary habits and occupational exposure significantly affect ARG abundance. Pseudomonadota, particularly Enterobacteriaceae, were identified as the main ARG carriers shaping the resistome. The resistome in food samples was found more affected by mobile genetic elements (MGEs), whereas in environmental samples, it was more associated with the microbial composition. We evidenced that horizontal gene transfer (HGT) mediated by plasmids and phages, together with strain transmission, particularly those associated with the Enterobacteriaceae members, drive regional ARG flow. Lifestyle, dietary habits, and occupational exposure are all correlated with ARG dissemination and flies and food are important potential sources of ARGs to humans. The widespread mobile carbapenemase gene, OXA-347, carried by non-Enterobacteriaceae bacteria in the human gut microbiota, requires particular attention. Finally, we showed that machine learning models based on microbiome profiles were effective in predicting the presence of carbapenem-resistant strains, suggesting a valuable approach for AMR surveillance. CONCLUSIONS Our study provides a full picture of regional ARG transmission among the One Health sectors in a county-level city in China, which facilitates a better understanding of the complex routes of ARG transmission and highlights new points of focus for AMR surveillance and control. Video Abstract.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Jiayong Zhao
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Hongmin Li
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mengyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yao Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tian Tian
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Gailing Yuan
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Yuan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiaqi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Geruo Qu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yujiao Mu
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Wanshen Guo
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Yuyu Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Dexiang Wang
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Ribeiro AVC, Mannarino CF, Dos Santos Leal T, de Oliveira CS, Bianco K, Clementino MM, Novo SPC, Prado T, de Castro EDSG, Lermontov A, Fumian TM, Miagostovich MP. Environmental Dissemination of SARS-CoV-2: An Analysis Employing Crassphage and Next-Generation Sequencing Protocols. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:13. [PMID: 39776004 DOI: 10.1007/s12560-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively. Viruses were detected and quantified by (RT-)qPCR applying TaqMan® system protocols. SARS-CoV-2 RNA signals were detected in 92.5% (37/40) of the wastewater samples and in 31.25% (10/32) of the stream water samples, but not in seawater samples. CrAssphage was detected in 100% of the wastewater samples, 93.75% (30/32) of the stream samples, and in 2/4 of the seawater samples. CrAssphage detection and high concentrations in stream surface waters (median 8.95 log10 gc/L) revealed diffuse contamination by domestic wastewater in a region with high sanitary coverage. The correlations detected between SARS-CoV-2 data and the moving averages of clinical cases per capita over the sampling period were moderate to strong when applying a 13-day offset, regardless of normalization by crAssphage data or not. Sequencing of the receptor-binding domain of the spike protein confirmed the detection of SARS-CoV-2, but did not characterize the circulating variant. On the other hand, the whole genome sequencing protocol identified circulation of the Gamma variant, corroborating the sampling period clinical data.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Stricto Sensu Graduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Thiago Dos Santos Leal
- Niterói City Hall/Secretariat for Environment, Water Resources and Sustainability, Niterói, 24020-206, Brazil
| | - Carla Santos de Oliveira
- Laboratory of Arbovirus and Hemorrhagic Virus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Shênia Patricia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - André Lermontov
- Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
22
|
Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025; 13:100. [PMID: 39858868 PMCID: PMC11767365 DOI: 10.3390/microorganisms13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phage therapy, which involves the use of bacteriophages (phages) to combat bacterial infections, is emerging as a promising approach to address the escalating threat posed by multidrug-resistant (MDR) bacteria. This brief review examines the historical background and recent advancements in phage research, focusing on their genomics, interactions with host bacteria, and progress in medical and biotechnological applications. Additionally, we expose key aspects of the mechanisms of action, and therapeutic uses of phage considerations in treating MDR bacterial infections are discussed, particularly in the context of infections related to virus-bacteria interactions.
Collapse
Affiliation(s)
- Nallelyt Segundo-Arizmendi
- Laboratorio de Microbiología y Parasitología, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Dafne Arellano-Maciel
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Efren Hernández-Baltazar
- Laboratorio 1 de Tecnología Farmacéutica, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
23
|
Shete O, Ghosh TS. Normal Gut Microbiomes in Diverse Populations: Clinical Implications. Annu Rev Med 2025; 76:95-114. [PMID: 39556491 DOI: 10.1146/annurev-med-051223-031809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The human microbiome is a sensor and modulator of physiology and homeostasis. Remarkable tractability underpins the promise of therapeutic manipulation of the microbiome. However, the definition of a normal or healthy microbiome has been elusive. This is in part due to the underrepresentation of minority groups and major global regions in microbiome studies to date. We review studies of the microbiome in different populations and highlight a commonality among health-associated microbiome signatures along with major drivers of variation. We also provide an overview of microbiome-associated therapeutic interventions for some widespread, widely studied diseases. We discuss sources of bias and the challenges associated with defining population-specific microbiome reference bases. We propose a roadmap for defining normal microbiome references that can be used for population-customized microbiome therapeutics and diagnostics.
Collapse
Affiliation(s)
- Omprakash Shete
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| |
Collapse
|
24
|
Gómez-Gómez C, Ramos-Barbero MD, Sala-Comorera L, Morales-Cortes S, Vique G, García-Aljaro C, Muniesa M. Persistence of crAssBcn phages in conditions of natural inactivation and disinfection process and their potential role as human source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177450. [PMID: 39536863 DOI: 10.1016/j.scitotenv.2024.177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Due to their abundance in the human gut, human specificity, and global distribution, some crAss-like phages, including the original p-crAssphage, have been proposed as indicators of human fecal pollution suitable for microbial source tracking (MST). The prevalence of crAss-like phages in water, and consequently their usefulness as MST indicators, is determined by their ability to survive various inactivation and disinfection processes. Recently, we isolated new crAss-like phages (named crAssBcn phages) capable of infecting Bacteroides intestinalis and exhibiting a wide geographical distribution. Here, we assessed the infectivity and DNA integrity of three crAssBcn phages (ΦCrAssBcn6, 10, and 15) and ΦCrAss001, the first crAss-like phage isolated, at different pHs and temperatures, after UV and chlorine treatments, and under natural conditions. Their bacterial host, B. intestinalis and a siphovirus Bacteroides-infecting phage GA17-A were used as controls. Infectious crAssBcn phages remained stable for a month at 4, 22, and 37 °C, and at pH 7, but inactivated when exposed to pH 3. Infective crAssBcn phages decreased by 5 log10 after treatment with 10 ppm of chlorine for 1 min and after UV treatment at a fluence of 5.94 mJ/cm2. However, heat treatment at 60 and 70 °C resulted in only a moderate decrease (<1 log10 and almost 3 log10 units of reduction, respectively). Experiments under natural conditions in outdoor mesocosms revealed that inactivation rates for crAssBcn phages, as for the other microorganisms, were higher in summer (up to 6 log10) than in winter (<4 log10), suggesting a higher incidence of inactivation factors, such as sunlight and temperature, in the warmer months. B. intestinalis was significantly more prone to inactivation than phages in most conditions except for the irradiation treatment. In contrast, crAssBcn phage DNA remained stable, with minimal reduction under most of the tested conditions, except in the summer mesocosm and UV assays.
Collapse
Affiliation(s)
- Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maria Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Gloria Vique
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
25
|
Liu C, Xing B, Li Z, Li J, Xiao M. A roadmap of isolating and investigating bacteriophage infecting human gut anaerobes. Essays Biochem 2024; 68:593-605. [PMID: 39611592 DOI: 10.1042/ebc20240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Bacteriophages, viruses that infect bacteria, play a crucial role in manipulating the gut microbiome, with implications for human health and disease. Despite the vast amount of data available on the human gut virome, the number of cultured phages that infect human gut bacteria-particularly obligate anaerobes-remains strikingly limited. Here, we summarize the resources and basic characteristics of phages that infect the human gut obligate anaerobe. We review various methods for isolating these phages and suggest a strategy for their isolation. Additionally, we outline their impact on the field of viral biology, their interactions with bacteria and humans, and their potential for disease intervention. Finally, we discuss the value and prospects of research on these phages, providing a comprehensive 'Roadmap' that sheds light on the 'dark matter' of phages that infect human gut obligate anaerobes.
Collapse
Affiliation(s)
- Cong Liu
- BGI Research, Shenzhen 518083, China
| | - Bo Xing
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Li
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- BGI Research, Belgrade 11000, Serbia
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | | |
Collapse
|
26
|
Bhatt P, Li Y, Xagoraraki I. Genomic mapping of wastewater bacteriophage may predict potential bacterial pathogens infecting the community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176834. [PMID: 39396796 DOI: 10.1016/j.scitotenv.2024.176834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Most existing wastewater surveillance studies that focus on viruses have identified a large fraction of bacteriophages. Identifying bacteria by considering bacteriophage-host interactions is a novel method for detecting bacterial pathogens circulating in a community, using wastewater surveillance. This study aims to identify human-related bacterial pathogens in municipal wastewater collected in metro Detroit, using high-throughput sequencing and bioinformatics. Untreated municipal wastewater samples were collected on August 11, 2020, and bacteriophages were concentrated using the VIRus ADsorption-ELution (VIRADEL) method. Bacteriophage-related contigs in samples ranged from 15.53 % to 18.91 %, with 2477 classified and 8853 unclassified contigs. Most identified bacteriophages were from Caudoviricetes and Malgrandaviricetes classes belonging to 19 families. Hosts of bacteriophages were predicted with the PhaBOX (CHERRY) tool. The results indicated that out of the 2477 classified phages, 2373 were associated with known bacterial hosts. Also, out of 8853 unclassified bacteriophages, 8421 were associated with known bacterial hosts, and the remaining 432 were with unknown bacterial hosts. Among all bacteriophage-associated hosts, 399 were identified as pathogenic bacteria at the species level. Approximately, 85 % of the identified pathogenic bacteria are reported to be associated with human diseases. Genome quality assessments showed that 15 bacteriophages had nearly complete genomes, which were further analyzed to understand bacteriophage-bacteria interactions in wastewater. Identified hosts of these complete-genome phages included human pathogens such as Salmonella enterica, Bacillus cereus, Achromobacter xylosoxidans, and Escherichia coli. The S. enterica bacteriophage (k141_1005294) genomic map was annotated, and responsible open reading frames (ORFs) were characterized to illustrate bacteriophage behavior during infection of pathogenic bacteria in untreated wastewater. To the best of our knowledge, this is the first attempt to characterize human bacterial pathogens in wastewater through bacteriophage-pathogen interactions. Novel bioinformatic approaches enhance pathogen detection and improve the understanding of community wastewater microbiomes.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
28
|
Kim DW, Woo DU, Kim UI, Kang YJ, Koo OK. Development of a novel crAss-like phage detection method with a broad spectrum for microbial source tracking. WATER RESEARCH 2024; 266:122330. [PMID: 39216125 DOI: 10.1016/j.watres.2024.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
CrAssphage has been recognized as the most abundant and human-specific bacteriophage in the human gut. Consequently, crAssphage has been used as a microbial source tracking (MST) marker to monitor human fecal contamination. Many crAss-like phages (CLPs) have been recently discovered, expanding the classification into the new order Crassvirales. This study aims to assess CLP prevalence in South Korea and develop a detection system for MST applications. Thirteen CLPs were identified in six human fecal samples and categorized into seven genera via metagenomic analysis. The major head protein (MHP) displayed increased sequence similarity within each genus. Eight PCR primer candidates, designed from MHP sequences, were evaluated in animal and human feces. CLPs were absent in animal feces except for those from raccoons, which hosted genera VI, VIIa, and VIIb. CLPs were detected in 91.52% (54/59) of humans, with genus VI (38 out of 59) showing the highest prevalence, nearly double that of p-crAssphage in genus I (22 out of 59). This study highlights genus VI as a potent MST marker, broadening the detection range for CLPs. Human-specific and selectively targeted MST markers can significantly impact hygiene regulations, lowering public health costs through their application in screening liver, sewage, wastewater, and various environmental samples.
Collapse
Affiliation(s)
- Dong Woo Kim
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong U Woo
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Ui In Kim
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea; Division of Life Science Department, Gyeongsang National University, Jinju, Republic of Korea; Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, Republic of Korea.
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024; 187:6521-6536.e18. [PMID: 39481381 PMCID: PMC11949080 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
30
|
Monteiro S, Pimenta R, Nunes F, Cunha MV, Santos R. Detection of dengue virus and chikungunya virus in wastewater in Portugal: an exploratory surveillance study. THE LANCET. MICROBE 2024; 5:100911. [PMID: 39278232 DOI: 10.1016/s2666-5247(24)00150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND The global distribution and prevalence of arboviral diseases have increased in recent years, driven by factors such as climate change, biodiversity loss, globalisation, and urbanisation. These diseases are often underestimated due to uneven surveillance and unreported asymptomatic cases. Current surveillance relies on vector and clinical surveillance. In this study, we aimed to explore wastewater-based surveillance (WBS) as an additional tool for dengue virus (DENV) and chikungunya virus (CHIKV) tracking. METHODS In this exploratory surveillance study, WBS was done at eleven wastewater treatment plants in three regions in Portugal (North, Lisboa and Vale do Tejo, and south). Using quantitative RT-PCR, we quantified in raw wastewater the RNA concentrations of DENV and CHIKV (non-structural viral protein 1 [nsP1] and envelope protein [E1] genes) once every 2 weeks for a period of 11 months, between May 16, 2022, and April 19, 2023. Results were normalised with crAssphage (concentration of target viral RNA divided by the concentration of crAssphage DNA) and provided as median normalised viral load. Prevalence (proportion of positive samples) and viral quantities were summarised for the total sampling period, by calendar month, and by seasons. FINDINGS 273 samples were collected from 11 wastewater treatment plants situated across the North (n=75 samples), Lisboa and Vale do Tejo (n=98), and south (n=100) regions of Portugal. DENV was detected in 68 (25%) of 273 samples, with a median viral load of 1·1 × 10-4 (IQR 3·2 × 10-5 to 8·0 × 10-4). CHIKV was detected in 30 (11%) of 273 samples, with median viral loads of 3·1 × 10-4 (1·6 × 10-4 to 6·4 × 10-4; nsP1 gene) and 7·8 × 10-4 (4·2 × 10-4 to 2·0 × 10-³; E1 gene). The pattern of occurrence of CHIKV was similar between regions whereas slight differences were found for DENV. When combining results for the three studied regions, DENV prevalence and viral load had two seasonal peaks (summer and winter) and CHIKV prevalence and viral load had a single peak during March and April of 2023. INTERPRETATION This study highlights the potential of WBS as a potent tool for gauging the epidemiological landscape of DENV and CHIKV in Portugal, where autochthonous cases have not yet been detected. WBS could serve as an additional element to conventional surveillance approaches, especially in areas where real-time clinical surveillance data are scarce or delayed. FUNDING EU Emergency Support Instrument and Fundação para a Ciencia e Tecnologia.
Collapse
Affiliation(s)
- Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Raquel Pimenta
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Nunes
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes and CHANGE Institute for Global Change and Sustainability, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
31
|
King A. Hidden players: the bacteria-killing viruses of the gut microbiome. Nature 2024:10.1038/d41586-024-03532-w. [PMID: 39482427 DOI: 10.1038/d41586-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
|
32
|
Piedade GJ, Schön ME, Lood C, Fofanov MV, Wesdorp EM, Biggs TEG, Wu L, Bolhuis H, Fischer MG, Yutin N, Dutilh BE, Brussaard CPD. Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape. Nat Commun 2024; 15:9192. [PMID: 39448562 PMCID: PMC11502894 DOI: 10.1038/s41467-024-53317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world's most sensitive and rapidly changing ecosystem.
Collapse
Affiliation(s)
- Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Max E Schön
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Cédric Lood
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Mikhail V Fofanov
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Ella M Wesdorp
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Tristan E G Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Lingyi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Coclet C, Camargo AP, Roux S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 2024; 9:e0088824. [PMID: 39352141 PMCID: PMC11498083 DOI: 10.1128/msystems.00888-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
While numerous computational frameworks and workflows are available for recovering prokaryote and eukaryote genomes from metagenome data, only a limited number of pipelines are designed specifically for viromics analysis. With many viromics tools developed in the last few years alone, it can be challenging for scientists with limited bioinformatics experience to easily recover, evaluate quality, annotate genes, dereplicate, assign taxonomy, and calculate relative abundance and coverage of viral genomes using state-of-the-art methods and standards. Here, we describe Modular Viromics Pipeline (MVP) v.1.0, a user-friendly pipeline written in Python and providing a simple framework to perform standard viromics analyses. MVP combines multiple tools to enable viral genome identification, characterization of genome quality, filtering, clustering, taxonomic and functional annotation, genome binning, and comprehensive summaries of results that can be used for downstream ecological analyses. Overall, MVP provides a standardized and reproducible pipeline for both extensive and robust characterization of viruses from large-scale sequencing data including metagenomes, metatranscriptomes, viromes, and isolate genomes. As a typical use case, we show how the entire MVP pipeline can be applied to a set of 20 metagenomes from wetland sediments using only 10 modules executed via command lines, leading to the identification of 11,656 viral contigs and 8,145 viral operational taxonomic units (vOTUs) displaying a clear beta-diversity pattern. Further, acting as a dynamic wrapper, MVP is designed to continuously incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field of viromics. MVP is available at https://gitlab.com/ccoclet/mvp and as versioned packages in PyPi and Conda.IMPORTANCEThe significance of our work lies in the development of Modular Viromics Pipeline (MVP), an integrated and user-friendly pipeline tailored exclusively for viromics analyses. MVP stands out due to its modular design, which ensures easy installation, execution, and integration of new tools and databases. By combining state-of-the-art tools such as geNomad and CheckV, MVP provides high-quality viral genome recovery and taxonomy and host assignment, and functional annotation, addressing the limitations of existing pipelines. MVP's ability to handle diverse sample types, including environmental, human microbiome, and plant-associated samples, makes it a versatile tool for the broader microbiome research community. By standardizing the analysis process and providing easily interpretable results, MVP enables researchers to perform comprehensive studies of viral communities, significantly advancing our understanding of viral ecology and its impact on various ecosystems.
Collapse
Affiliation(s)
- Clément Coclet
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| | - Antonio Pedro Camargo
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| | - Simon Roux
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| |
Collapse
|
34
|
Morales-Cortés S, Sala-Comorera L, Gómez-Gómez C, Muniesa M, García-Aljaro C. CrAss-like phages are suitable indicators of antibiotic resistance genes found in abundance in fecally polluted samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124713. [PMID: 39134166 DOI: 10.1016/j.envpol.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.
Collapse
Affiliation(s)
- Sara Morales-Cortés
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
35
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
36
|
Siopi M, Skliros D, Paranos P, Koumasi N, Flemetakis E, Pournaras S, Meletiadis J. Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Rev 2024; 37:e0004424. [PMID: 39072666 PMCID: PMC11391690 DOI: 10.1128/cmr.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Koumasi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Chung HC, Friedberg I, Bromberg Y. Assembling bacterial puzzles: piecing together functions into microbial pathways. NAR Genom Bioinform 2024; 6:lqae109. [PMID: 39184378 PMCID: PMC11344244 DOI: 10.1093/nargab/lqae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Functional metagenomics enables the study of unexplored bacterial diversity, gene families, and pathways essential to microbial communities. However, discovering biological insights with these data is impeded by the scarcity of quality annotations. Here, we use a co-occurrence-based analysis of predicted microbial protein functions to uncover pathways in genomic and metagenomic biological systems. Our approach, based on phylogenetic profiles, improves the identification of functional relationships, or participation in the same biochemical pathway, between enzymes over a comparable homology-based approach. We optimized the design of our profiles to identify potential pathways using minimal data, clustered functionally related enzyme pairs into multi-enzymatic pathways, and evaluated our predictions against reference pathways in the KEGG database. We then demonstrated a novel extension of this approach to predict inter-bacterial protein interactions amongst members of a marine microbiome. Most significantly, we show our method predicts emergent biochemical pathways between known and unknown functions. Thus, our work establishes a basis for identifying the potential functional capacities of the entire metagenome, capturing previously unknown and abstract functions into discrete putative pathways.
Collapse
Affiliation(s)
- Henri C Chung
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 , USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yana Bromberg
- Department of Computer Science, Emory University, Atlanta, GA 30307, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
39
|
Armenise E, Rustage S, Jackson KJ, Watts G, Hart A. Adjusting for dilution in wastewater using biomarkers: A practical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121596. [PMID: 38991335 DOI: 10.1016/j.jenvman.2024.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
We developed a biomarker-based approach to quantify in-sewer dilution by measuring wastewater quality parameters (ammoniacal-N, orthophosphate, crAssphage). This approach can enhance the environmental management of wastewater treatment works (WWTW) by optimising their operation and providing cost-effective information on the health and behaviour of populations and their interactions with the environment through wastewater-based epidemiology (WBE). Our method relies on site specific baselines calculated for each biomarker. These baselines reflect the sewer conditions without the influence of rainfall-derived inflow and infiltration (RDII). Ammoniacal-N was the best candidate to use as proxy for dilution. We demonstrated that the dilution calculated using biomarkers correlates well with the dilution indicated by measured flow. In some instances, the biomarkers showed much higher dilution than measured flows. These differences were attributed to the loss of flow volume at wastewater treatment works due to the activation of combined sewer overflows (CSOs) and/or storm tanks. Using flow measured directly at the WWTW could therefore result in underestimation of target analyte loads.
Collapse
Affiliation(s)
- E Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK.
| | - S Rustage
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - K J Jackson
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - G Watts
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - A Hart
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| |
Collapse
|
40
|
Mogotsi MT, Ogunbayo AE, Bester PA, O'Neill HG, Nyaga MM. Longitudinal analysis of the enteric virome in paediatric subjects from the Free State Province, South Africa, reveals early gut colonisation and temporal dynamics. Virus Res 2024; 346:199403. [PMID: 38776984 PMCID: PMC11169482 DOI: 10.1016/j.virusres.2024.199403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.
Collapse
Affiliation(s)
- Milton Tshidiso Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Ayodeji Emmanuel Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Phillip Armand Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hester Gertruida O'Neill
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
41
|
de Jonge PA, van den Born BJH, Zwinderman AH, Nieuwdorp M, Dutilh BE, Herrema H. Phylogeny and disease associations of a widespread and ancient intestinal bacteriophage lineage. Nat Commun 2024; 15:6346. [PMID: 39068184 PMCID: PMC11283538 DOI: 10.1038/s41467-024-50777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Viruses are core components of the human microbiome, impacting health through interactions with gut bacteria and the immune system. Most human microbiome viruses are bacteriophages, which exclusively infect bacteria. Until recently, most gut virome studies focused on low taxonomic resolution (e.g., viral operational taxonomic units), hampering population-level analyses. We previously identified an expansive and widespread bacteriophage lineage in inhabitants of Amsterdam, the Netherlands. Here, we study their biodiversity and evolution in various human populations. Based on a phylogeny using sequences from six viral genome databases, we propose the Candidatus order Heliusvirales. We identify heliusviruses in 82% of 5441 individuals across 39 studies, and in nine metagenomes from humans that lived in Europe and North America between 1000 and 5000 years ago. We show that a large lineage started to diversify when Homo sapiens first appeared some 300,000 years ago. Ancient peoples and modern hunter-gatherers have distinct Ca. Heliusvirales populations with lower richness than modern urbanized people. Urbanized people suffering from type 1 and type 2 diabetes, as well as inflammatory bowel disease, have higher Ca. Heliusvirales richness than healthy controls. We thus conclude that these ancient core members of the human gut virome have thrived with increasingly westernized lifestyles.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology; Biostatistics and Bioinformatics; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics; Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity; Faculty of Biological Sciences; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hilde Herrema
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
42
|
Mallawaarachchi V, Wickramarachchi A, Xue H, Papudeshi B, Grigson SR, Bouras G, Prahl RE, Kaphle A, Verich A, Talamantes-Becerra B, Dinsdale EA, Edwards RA. Solving genomic puzzles: computational methods for metagenomic binning. Brief Bioinform 2024; 25:bbae372. [PMID: 39082646 PMCID: PMC11289683 DOI: 10.1093/bib/bbae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Metagenomics involves the study of genetic material obtained directly from communities of microorganisms living in natural environments. The field of metagenomics has provided valuable insights into the structure, diversity and ecology of microbial communities. Once an environmental sample is sequenced and processed, metagenomic binning clusters the sequences into bins representing different taxonomic groups such as species, genera, or higher levels. Several computational tools have been developed to automate the process of metagenomic binning. These tools have enabled the recovery of novel draft genomes of microorganisms allowing us to study their behaviors and functions within microbial communities. This review classifies and analyzes different approaches of metagenomic binning and different refinement, visualization, and evaluation techniques used by these methods. Furthermore, the review highlights the current challenges and areas of improvement present within the field of research.
Collapse
Affiliation(s)
- Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Anuradha Wickramarachchi
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Hansheng Xue
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- The Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5011, Australia
| | - Rosa E Prahl
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Anubhav Kaphle
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Andrey Verich
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
- The Kirby Institute, The University of New South Wales, Randwick, Sydney, NSW 2052, Australia
| | - Berenice Talamantes-Becerra
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
43
|
Dong Y, Chen WH, Zhao XM. VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes. Genome Biol 2024; 25:177. [PMID: 38965579 PMCID: PMC11229495 DOI: 10.1186/s13059-024-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Identifying viruses from metagenomes is a common step to explore the virus composition in the human gut. Here, we introduce VirRep, a hybrid language representation learning framework, for identifying viruses from human gut metagenomes. VirRep combines a context-aware encoder and an evolution-aware encoder to improve sequence representation by incorporating k-mer patterns and sequence homologies. Benchmarking on both simulated and real datasets with varying viral proportions demonstrates that VirRep outperforms state-of-the-art methods. When applied to fecal metagenomes from a colorectal cancer cohort, VirRep identifies 39 high-quality viral species associated with the disease, many of which cannot be detected by existing methods.
Collapse
Affiliation(s)
- Yanqi Dong
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Ribeiro AVC, Mannarino CF, Novo SPC, Prado T, Lermontov A, de Paula BB, Fumian TM, Miagostovich MP. Assessment of crAssphage as a biological variable for SARS-CoV-2 data normalization in wastewater surveillance. J Appl Microbiol 2024; 135:lxae177. [PMID: 39013607 DOI: 10.1093/jambio/lxae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
AIMS This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Shênia Patrícia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - André Lermontov
- Chemical and Biochemical Process Technology, School of Chemistry/Federal University of Rio de Janeiro - EQ/UFRJ, Rio de Janeiro 21941-909, Brazil
| | - Bruna Barbosa de Paula
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
45
|
Parra B, Lutz VT, Brøndsted L, Carmona JL, Palomo A, Nesme J, Van Hung Le V, Smets BF, Dechesne A. Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages. MICROBIAL ECOLOGY 2024; 87:85. [PMID: 38935220 PMCID: PMC11211187 DOI: 10.1007/s00248-024-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.
Collapse
Affiliation(s)
- Boris Parra
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javiera L Carmona
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vuong Van Hung Le
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
46
|
Conradie T, Caparros-Martin JA, Egan S, Kicic A, Koks S, Stick SM, Agudelo-Romero P. Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories. Viruses 2024; 16:953. [PMID: 38932245 PMCID: PMC11209621 DOI: 10.3390/v16060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.
Collapse
Affiliation(s)
- Talya Conradie
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | | | - Siobhon Egan
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Future Institute, Murdoch University, Perth, WA 6150, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
- School of Population Health, Curtin University, Perth, WA 6102, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Stephen M. Stick
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- European Virus Bioinformatics Centre, Friedrich-Schiller-Universitat Jena, 07737 Jena, Germany
| |
Collapse
|
47
|
Miyani B, Li Y, Guzman HP, Briceno RK, Vieyra S, Hinojosa R, Xagoraraki I. Bioinformatics-based screening tool identifies a wide variety of human and zoonotic viruses in Trujillo-Peru wastewater. One Health 2024; 18:100756. [PMID: 38798735 PMCID: PMC11127556 DOI: 10.1016/j.onehlt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.
Collapse
Affiliation(s)
- Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ruben Kenny Briceno
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Sabrina Vieyra
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Rene Hinojosa
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
48
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
49
|
Dantas CWD, Martins DT, Nogueira WG, Alegria OVC, Ramos RTJ. Tools and methodology to in silico phage discovery in freshwater environments. Front Microbiol 2024; 15:1390726. [PMID: 38881659 PMCID: PMC11176557 DOI: 10.3389/fmicb.2024.1390726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Carlos Willian Dias Dantas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - David Tavares Martins
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Wylerson Guimarães Nogueira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Oscar Victor Cardenas Alegria
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
50
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|