1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 PMCID: PMC11759025 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Hazem SH, Saad KM, Samaha MM. Protective effects of BTK inhibition by acalabrutinib on cisplatin-induced renal and testicular injury in mice: Modulation of mTOR/AMPK, NLRP3/GSDMD-N, and apoptotic pathways. Int Immunopharmacol 2025; 149:114256. [PMID: 39938312 DOI: 10.1016/j.intimp.2025.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Cisplatin-induced nephrotoxicity and testicular injury pose significant challenges during chemotherapy. AIM The current study evaluates the efficacy of acalabrutinib (ACB), a Bruton's tyrosine kinase inhibitor, in mitigating cisplatin-induced damage in renal and testicular tissues in mice. METHODS Testicular and renal toxicity was induced by a single I.P. injection of cisplatin (25 mg/kg). Mice were randomized into four groups: Normal (treated with vehicle), Cis (cisplatin + vehicle), Cis + ACB (6 mg/kg), and Cis + ACB (12 mg/kg). ACB was administered orally for three consecutive days, starting at Day 0 (1 h before single I.P. injection of cisplatin) and continued for Day 1 and Day 2. RESULTS ACB treatment (6 mg/kg and 12 mg/kg) significantly improved renal function by reducing serum creatinine, BUN, and KIM-1 levels, while also attenuating inflammation and apoptosis, as evidenced by decreased NLRP3, CD68, and caspase-3 expression. Additionally, it mitigated molecular damage by downregulating mTOR, AMPK, and GSDMD-N. In testicular tissues, ACB preserved structure, restored spermatogenesis, and improved sperm viability and testosterone levels. The protective effects were associated with reduced inflammation, apoptosis, and pyroptosis, indicated by lower levels of cathepsin L, NLRP3, and GSDMD-N. CONCLUSIONS These findings suggest that ACB offers a promising therapeutic approach to reduce the adverse effects of cisplatin, potentially enhancing the overall efficacy and safety of chemotherapy regimens.
Collapse
Affiliation(s)
- Sara H Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| | - Karim M Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| | - Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
| |
Collapse
|
3
|
Leal VNC, Bork F, Mateo Tortola M, von Guilleaume JC, Greve CL, Bugl S, Danker B, Bittner ZA, Grimbacher B, Pontillo A, Weber ANR. Bruton's tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J Allergy Clin Immunol 2025; 155:569-582. [PMID: 39547282 DOI: 10.1016/j.jaci.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Inflammation is a double-edged state of immune activation that is required to resolve threats harmful to the host, but can also cause severe collateral damage. Polymorphonuclear neutrophils (PMNs), the primary leukocyte population in humans, mediate inflammation through the release of cytokines and neutrophil extracellular traps (NETs). Although the pathophysiological importance of NETs is unequivocal, the multiple molecular pathways driving NET release are not fully defined. Recently, NET release was linked to the NLRP3 inflammasome, which is regulated by Bruton's tyrosine kinase (BTK) in macrophages. OBJECTIVE As NLRP3 inflammasome regulation by BTK has not been studied in neutrophils, we explored a potential regulatory role of BTK in primary murine and human neutrophils and matched monocytes or macrophages from Btk-deficient versus wild-type mice, or from healthy donors versus BTK-deficient patients with X-linked agammaglobulinemia. METHODS Cytokine, myeloperoxidase, and matrix metalloproteinase-9 (MMP-9) release were quantified by ELISA, NET release, and inflammasome formation by immunofluorescence microscopy. RESULTS Surprisingly, in both mouse and human primary neutrophils, we observed a significant increase in NLRP3 inflammasome-dependent IL-1β and NETs when BTK was absent or inhibited, whereas IL-1β release was decreased in corresponding primary mouse macrophages or human PBMCs. This suggests a novel negative regulatory role of BTK in terms of neutrophil NLRP3 activation. IL-1β and NET release in both mouse and human primary neutrophils was strictly dependent on NLRP3, caspase-1 and, surprisingly, MMP-9. CONCLUSIONS This study highlights BTK and MMP-9 as novel and versatile inflammasome regulators and may have implications for the clinical use of BTK inhibitors.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | | | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bettina Danker
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Zsofia A Bittner
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bodo Grimbacher
- Klinik für Rheumatologie/Klinische Immunologie, Universitätsklinikum Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany; CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Morales AE, Dong Y, Brown T, Baid K, Kontopoulos DG, Gonzalez V, Huang Z, Ahmed AW, Bhuinya A, Hilgers L, Winkler S, Hughes G, Li X, Lu P, Yang Y, Kirilenko BM, Devanna P, Lama TM, Nissan Y, Pippel M, Dávalos LM, Vernes SC, Puechmaille SJ, Rossiter SJ, Yovel Y, Prescott JB, Kurth A, Ray DA, Lim BK, Myers E, Teeling EC, Banerjee A, Irving AT, Hiller M. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature 2025; 638:449-458. [PMID: 39880942 PMCID: PMC11821529 DOI: 10.1038/s41586-024-08471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2024] [Indexed: 01/31/2025]
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.
Collapse
Affiliation(s)
- Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Yue Dong
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dimitrios -Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Arkadeb Bhuinya
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Xiaomeng Li
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ping Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yixin Yang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tanya M Lama
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sebastien J Puechmaille
- Institut Universitaire de France, Paris, France
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joseph B Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron T Irving
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Infection, Immunity and Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
- Department of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
5
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
6
|
Zhai Z, Huang Z, Huang K, Zhong Y, You H, Tao E, Yang Y. The regulatory role of the Netrin-1/UNC5H3 pathway in neuronal pyroptosis after stroke. Int Immunopharmacol 2025; 146:113939. [PMID: 39740525 DOI: 10.1016/j.intimp.2024.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Currently, stroke is a disease with high disability and mortality risks and no effective treatment. The pathogenesis and molecular mechanisms of neuronal damage in stroke are highly complex. Pyroptosis participates in neuronal death after stroke. Thus, inhibiting pyroptosis could be a potential therapeutic method to improve the poor prognosis of stroke patients. However, the regulated mechanisms of pyroptosis remain unclear. Furthermore, although the role of Netrin-1 and its receptors in ischemic apoptosis is well-known, their specific functions in ischemia-induced pyroptosis are still unknown. The current study aimed to explore whether Netrin-1 and its receptor UNC5H3 could regulate pyroptosis after ischemic stroke. PC12 cells decreased Netrin-1 expression and increased UNC5H3 expression after OGD/R injury, subsequently leading to the dissociation of Netrin-1 from UNC5H3, accompanied by increased pyroptotic activity. UNC5H3 inhibition in the absence of Netrin-1 could inhibit OGD/R injury-induced cell pyroptosis. Furthermore, a decreased Netrin-1/UNC5H3 interaction could mitigate Netrin-1-elicited protective role against OGD/R injury. Additionally, Netrin-1 provided a neuroprotective effect against MCAO injury in vivo. Therefore, the Netrin-1/UNC5H3 pathway plays a regulatory role in neuronal pyroptosis after ischemic stroke, representing a novel therapeutic target and strategy for stroke therapy.
Collapse
Affiliation(s)
- Zhihao Zhai
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Department of Physiology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Zuoyu Huang
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Kaixun Huang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Department of Neurology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Yuanqiang Zhong
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Hengxing You
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China
| | - Enxiang Tao
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China; Department of Neurology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Yunfeng Yang
- Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China.
| |
Collapse
|
7
|
Zhang W, Zhang L, Fu S, Yan R, Zhang X, Song J, Lu Y. Roles of NLRC4 inflammasome in neurological disorders: Mechanisms, implications, and therapeutic potential. Pharmacol Ther 2025; 267:108803. [PMID: 39855275 DOI: 10.1016/j.pharmthera.2025.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/01/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 4 (NLRC4) inflammasome, a vital component of the innate immune system, is known for defending against bacterial infections. However, recent insights have revealed its significant impact on neurological disorders. This comprehensive review discussed the mechanisms underlying the activation and regulation of the NLRC4 inflammasome, highlighting the complexity of its response to cellular stress and damage signals. The biological functions of NLRC4 were explored, particularly its influence on cytokine production and the induction of pyroptosis, a form of inflammatory cell death. This review further emphasized the role of the NLRC4 inflammasome in brain injuries and neurodegenerative disorders. In the realm of brain injuries such as stroke and traumatic brain injury, as well as in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, the NLRC4 inflammasome played a pivotal role in modulating neuroinflammatory responses, which was crucial for understanding the progression and potential therapeutic targeting of these conditions. The emerging role of NLRC4 in psychiatric disorders and its potential impact on glioma progression were also examined. Additionally, this review presented a thorough summary of the latest research on inhibitors that impeded the assembly and activation of the NLRC4 inflammasome, pointing to new therapeutic possibilities in neurological disorders. In conclusion, by integrating current knowledge on the activation and regulation of NLRC4 with its biological functions and clinical implications, this article underscored the importance of NLRC4 inflammasome in neurological pathologies, which opened new possibilities for the treatment of challenging neurological conditions.
Collapse
Affiliation(s)
- Wen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shuo Fu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Spector L, Subramanian N. Revealing the dance of NLRP3: spatiotemporal patterns in inflammasome activation. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00053. [PMID: 39816134 PMCID: PMC11731036 DOI: 10.1097/in9.0000000000000053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025]
Abstract
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential. Studies have implicated several organelles, including mitochondria, lysosomes, the endoplasmic reticulum (ER), the Golgi apparatus, endosomes, and the centrosome, in NLRP3 localization and inflammasome assembly. However, reports of conflict and many factors regulating interactions between NLRP3 and subcellular organelles remain unknown. This review synthesizes the current understanding of NLRP3 spatiotemporal dynamics, focusing on recent literature that elucidates the roles of subcellular localization and organelle stress in NLRP3 signaling and its crosstalk with other innate immune pathways converging at these organelles.
Collapse
Affiliation(s)
- Lauren Spector
- Institute for Systems Biology, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Naeha Subramanian
- Institute for Systems Biology, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Chen D, Plott T, Wiest M, Van Trump W, Komalo B, Nguyen D, Marsh C, Heinrich J, Fuller CJ, Nicolaisen L, Cambronero E, Nguyen A, Elabd C, Rubbo F, DeVay Jacobson R. A combined AI and cell biology approach surfaces targets and mechanistically distinct Inflammasome inhibitors. iScience 2024; 27:111404. [PMID: 39687021 PMCID: PMC11648265 DOI: 10.1016/j.isci.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammasomes are protein complexes that mediate innate immune responses whose dysregulation has been linked to a spectrum of acute and chronic human conditions, which dictates therapeutic development that is aligned with disease variability. We designed a scalable, physiologic high-content imaging assay in human PBMCs that we analyzed using a combination of machine-learning and cell biology methods. This resulted in a set of biologically interpretable readouts that can resolve a spectrum of cellular states associated with inflammasome activation and inhibition. These methods were applied to a phenotypic screen that surfaced mechanistically distinct inflammasome inhibitors from an annotated 12,000 compound library. A set of over 100 inhibitors, including an array of Raf-pathway inhibitors, were validated in downstream functional assays. This approach demonstrates how complementary machine learning-based methods can be used to generate profiles of cellular states associated with different stages of complex biological pathways and yield compound and target discovery.
Collapse
Affiliation(s)
- Daniel Chen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Tempest Plott
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Michael Wiest
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Will Van Trump
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Ben Komalo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Dat Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Charlie Marsh
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Jarred Heinrich
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Colin J. Fuller
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Lauren Nicolaisen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Elisa Cambronero
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - An Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Christian Elabd
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Francesco Rubbo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | | |
Collapse
|
10
|
Chen RM, Emming S, Cinnamon R, Cameron JP, Schroder K, Kobe B, Robertson AAB. The design, synthesis, and biological evaluation of 5,6,7,8-tetrahydropteridines as anti-inflammatory compounds. Org Biomol Chem 2024; 23:174-182. [PMID: 39526339 DOI: 10.1039/d4ob01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The NLRP3 inflammasome is implicated in the pathogenesis of a wide array of inflammatory diseases including cancer, type II diabetes, atherosclerosis, gout, and neurodegenerative disease. Research has shown that Bruton's tyrosine kinase (BTK) is a critical regulator of the NLRP3 inflammasome and that the pharmacological inhibition of BTK using the FDA-approved inhibitor ibrutinib diminishes NLRP3-dependent inflammatory response. Herein, we describe our pursuit towards novel anti-inflammatory compounds using a scaffold-hopping approach. In our drug discovery efforts, we identified 5,6,7,8-tetrahydropteridines as underutilized scaffolds in medicinal chemistry. We report the synthesis of 5,6,7,8-tetrahydropteridines with potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Rachel M Chen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| | - Roseanna Cinnamon
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
| | - Jacob P Cameron
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
11
|
Ding Q, Zhou Y, Feng Y, Sun L, Zhang T. Bruton's tyrosine kinase: A promising target for treating systemic lupus erythematosus. Int Immunopharmacol 2024; 142:113040. [PMID: 39216117 DOI: 10.1016/j.intimp.2024.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder involving multiple organs and systems. There is growing evidence that autoreactive B cells occupy a central role in the occurrence and progression of SLE due to their ability to generate pathogenic autoantibodies. Small molecule inhibitors targeting Bruton's tyrosine kinase (BTK), a crucial intracellular kinase regulating B cell development and function, emerge as a new strategy to treat SLE in recent years and are superior to biologic agents depleting B cells in many aspects. Supportive data obtained from lupus-prone mice preliminarily demonstrated the promising therapeutic potential of BTK inhibition. However, these BTK inhibitors, including elsubrutinib, evobrutinib, etc., mostly face with unsatisfactory efficacy and certain safety issues during clinical use, driving the quest for new-generation inhibitors with improved potency and higher selectivity. This paper elaborates the importance of BTK involvement in SLE pathogenesis, reviews the clinical research progress of BTK inhibitors for SLE and discusses limitations and challenges the drugs met in development, in order to contribute to a deeper understanding of disease mechanism and provide a reference for new-generation BTK inhibitor research.
Collapse
Affiliation(s)
- Qiaoyi Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Niskala A, Heijman J, Dobrev D, Jespersen T, Saljic A. Targeting the NLRP3 inflammasome signalling for the management of atrial fibrillation. Br J Pharmacol 2024; 181:4939-4957. [PMID: 38877789 DOI: 10.1111/bph.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 06/16/2024] Open
Abstract
Inflammatory signalling via the nod-like receptor (NLR) family pyrin domain-containing protein-3 (NLRP3) inflammasome has recently been implicated in the pathophysiology of atrial fibrillation (AF). However, the precise role of the NLRP3 inflammasome in various cardiac cell types is poorly understood. Targeting components or products of the inflammasome and preventing their proinflammatory consequences may constitute novel therapeutic treatment strategies for AF. In this review, we summarise the current understanding of the role of the inflammasome in AF pathogenesis. We first review the NLRP3 inflammasome pathway and inflammatory signalling in cardiomyocytes, (myo)fibroblasts and immune cells, such as neutrophils, macrophages and monocytes. Because numerous compounds targeting NLRP3 signalling are currently in preclinical development, or undergoing clinical evaluation for other indications than AF, we subsequently review known therapeutics, such as colchicine and canakinumab, targeting the NLRP3 inflammasome and evaluate their potential for treating AF.
Collapse
Affiliation(s)
- Alisha Niskala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Zhang W, Wu CC, Ge MM, Yuan XM, Han SY, Zhao FT, Zhang XY, Gao F, Tian YK, Zhang GX, Tian XB. The PGC-1α/ERRα/ULK1 pathway contributes to Perioperative neurocognitive disorders by inducing mitochondrial dysfunction and activating NLRP3 inflammasome in aged mice. Neuropharmacology 2024; 260:110119. [PMID: 39197819 DOI: 10.1016/j.neuropharm.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cui-Cui Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yuan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng-Tian Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yu Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang-Xiong Zhang
- Department of Anesthesiology, Hubei Province Corps Hospital of The Chinese Armed Police Force (CAPF), Wuhan, China.
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024; 61:10792-10804. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
15
|
Ming Y, Zhao P, Zhang H, Zhang Z, Huang Z, Zhang L, Sun Y, Li X. Complement Molecule C3a Exacerbates Early Brain Injury After Subarachnoid Hemorrhage by Inducing Neuroinflammation Through the C3aR-ERK-P2X7-NLRP3 Inflammasome Signaling Axis. Inflammation 2024:10.1007/s10753-024-02155-7. [PMID: 39528767 DOI: 10.1007/s10753-024-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.
Collapse
Affiliation(s)
- Yuanyuan Ming
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Hongwei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Ziyuan Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Zhengqian Huang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Le Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China.
| | - Xiangdong Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
16
|
Langlois J, Lange S, Ebeling M, Macnair W, Schmucki R, Li C, DeGeer J, Sudharshan TJJ, Yong VW, Shen YA, Harp C, Collin L, Keaney J. Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways. J Neuroinflammation 2024; 21:276. [PMID: 39465429 PMCID: PMC11514909 DOI: 10.1186/s12974-024-03267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia. METHODS Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids. RESULTS We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis. CONCLUSIONS Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.
Collapse
Affiliation(s)
- Julie Langlois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simona Lange
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Will Macnair
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cenxiao Li
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Jonathan DeGeer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tania J J Sudharshan
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Yun-An Shen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | | | - Ludovic Collin
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - James Keaney
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
17
|
Yuan X, Xia Y, Jiang P, Chen J, Wang C. Neuroinflammation Targeting Pyroptosis: Molecular Mechanisms and Therapeutic Perspectives in Stroke. Mol Neurobiol 2024; 61:7448-7465. [PMID: 38383921 DOI: 10.1007/s12035-024-04050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Pyroptosis is a recently identified type of pro-inflammatory programmed cell death (PCD) mediated by inflammasomes and nucleotide oligomerization domain-like receptors (NLs) and dependent on members of the caspase family. Pyroptosis has been widely reported to participate in the occurrence and progression of various inflammatory diseases, including stroke, a frequently lethal disease with high prevalence and many complications. To date, there have been no effectively therapeutic strategies and methods for treating stroke. Pyroptosis is thought to be closely related to the occurrence and development of stroke. Understanding inflammatory responses induced by the activation of pyroptosis would be hopeful to provide feasible approaches and strategies. Targeting on molecules in the upstream or downstream of pyroptosis pathway has shown promise in the treatment of stroke. The present review summarizes current research on the characteristics of pyroptosis, the function and pathological phenomena of pyroptosis in stroke, the molecule mechanisms related to inflammatory pathways, and the drugs and other molecules that can affect outcomes after stroke. These findings may help identify possible targets or new strategies for the diagnosis and treatment of stroke.
Collapse
Affiliation(s)
- Xiwen Yuan
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Yiwen Xia
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272011, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
| |
Collapse
|
18
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Braatz C, Komes MP, Ravichandran KA, de Fragas MG, Griep A, Schwartz S, McManus RM, Heneka MT. NLRP3-directed antisense oligonucleotides reduce microglial immunoactivities in vitro. J Neurochem 2024; 168:3467-3481. [PMID: 36799439 DOI: 10.1111/jnc.15778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-β (Aβ) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1β when microglia were either activated by LPS and nigericin or LPS and Aβ. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aβ-induced release of mature IL-1β. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1β in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.
Collapse
Affiliation(s)
- Charlotte Braatz
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
| | - Max P Komes
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
| | - Kishore Aravind Ravichandran
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matheus Garcia de Fragas
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angelika Griep
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Róisín M McManus
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Institute for Innate Immunity, University of Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
20
|
Steinmaurer A, Riedl C, König T, Testa G, Köck U, Bauer J, Lassmann H, Höftberger R, Berger T, Wimmer I, Hametner S. The relation between BTK expression and iron accumulation of myeloid cells in multiple sclerosis. Brain Pathol 2024; 34:e13240. [PMID: 38254312 PMCID: PMC11328345 DOI: 10.1111/bpa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Riedl
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Schmidlechner L, Nagel I, Vater I, Cascorbi I, Kaehler M. BTK acts as a modulator of the response to imatinib in chronic myeloid leukemia. Oncol Lett 2024; 28:424. [PMID: 39021736 PMCID: PMC11253089 DOI: 10.3892/ol.2024.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
The use of tyrosine kinase inhibitors, such as imatinib, against the chronic myeloid leukemia (CML)-causing kinase BCR::ABL1 has become the model for successful targeted therapy. Nevertheless, drug resistance remains a clinical problem. Analysis of genome-wide expression and genetic aberrations of an in vitro imatinib-resistant CML cell line revealed downregulation of Bruton's tyrosine kinase (BTK), predominantly associated with B cell malignancies, and a novel BTK kinase domain variant in imatinib resistance. This raised the question of the role of BTK in imatinib-resistant CML. In the present study, BTK downregulation and the presence of the BTK variant c.1699_1700delinsAG p.(Glu567Arg) were confirmed in imatinib resistance in vitro. Similarly, BTK inhibition or small interfering RNA-mediated BTK knockdown reduced imatinib susceptibility by 84 and 71%, respectively. BTK overexpression was detrimental to CML cells, as proliferation was significantly reduced by 20.5% under imatinib treatment. In addition, BTK rescue in imatinib-resistant cells restored imatinib sensitivity. The presence of the BTK p.(Glu567Arg) variant increased cell numbers (57%) and proliferation (37%) under imatinib exposure. These data demonstrate that BTK is important for the development of imatinib resistance in CML: Its presence increased drug response, while its absence promotes imatinib resistance. Moreover, the BTK p.(Glu567Arg) variant abrogates imatinib sensitivity. These findings demonstrate a context-dependent role for BTK as an oncogene in B cell malignancies, but as a tumor suppressor in other neoplasms.
Collapse
Affiliation(s)
- Lena Schmidlechner
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Inga Vater
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
22
|
Wang H, Zhao R, Peng L, Yu A, Wang Y. A Dual-Function CD47-Targeting Nano-Drug Delivery System Used to Regulate Immune and Anti-Inflammatory Activities in the Treatment of Atherosclerosis. Adv Healthc Mater 2024; 13:e2400752. [PMID: 38794825 DOI: 10.1002/adhm.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Atherosclerosis is a primary contributor to cardiovascular disease. Current studies have highlighted the association between the immune system, particularly immune cells, and atherosclerosis, although treatment options and clinical trials remain scarce. Immunotherapy for cardiovascular disease is still in its infancy. Bruton's tyrosine kinase (BTK), widely expressed in various immune cells, represents a promising therapeutic target for atherosclerosis by modulating the anti-inflammatory function of immune cells. This study introduces a polydopamine-based nanocarrier system to deliver the BTK inhibitor, ibrutinib, to atherosclerotic plaques with an active targeting property via an anti-CD47 antibody. Leveraging polydopamine's pH-sensitive reversible disassembly, the system offers responsive, controlled release within the pathologic microenvironment. This allows precise and efficient ibrutinib delivery, concurrently inhibiting the activation of the NF-κB pathway in B cells and the NLRP3 inflammasome in macrophages within the plaques. This treatment also modulates both the immune cell microenvironment and inflammatory conditions in atherosclerotic lesions, thereby conveying promising therapeutic effects for atherosclerosis in vivo. This strategy also provides a novel option for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ao Yu
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
23
|
Chan DY, Barra NG, Fang H, Rodrigues E-Lacerda R, Schertzer JD. Bruton's tyrosine kinase (BTK) inhibitors alter blood glucose and insulin in obese mice but reduce inflammation independent of BTK. Am J Physiol Endocrinol Metab 2024; 327:E271-E278. [PMID: 39017678 DOI: 10.1152/ajpendo.00205.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Obesity is associated with metabolic inflammation, which can contribute to insulin resistance, higher blood glucose, and higher insulin indicative of prediabetes progression. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a metabolic danger sensor implicated in metabolic inflammation. Many features of metabolic disease can activate the NLRP3 inflammasome; however, it is not yet clear which upstream triggers to target, and there are no clinically approved NLRP3 inflammasome inhibitors for metabolic disease. Bruton's tyrosine kinase (BTK) mediates activation of the NLRP3 inflammasome. Ibrutinib is the most-studied pharmacological inhibitor of BTK, and it can improve blood glucose control in obese mice. However, inhibitors of tyrosine kinases are permissive, and it is unknown if BTK inhibitors require BTK to alter endocrine control of metabolism or metabolic inflammation. We tested whether ibrutinib and acalabrutinib, a new generation BTK inhibitor with higher selectivity, require BTK to inhibit the NLRP3 inflammasome, metabolic inflammation, and blood glucose in obese mice. Chronic ibrutinib administration lowered fasting blood glucose and improved glycemia, whereas acalabrutinib increased fasting insulin levels and increased markers of insulin resistance in high-fat diet-fed CBA/J mice with intact Btk. These metabolic effects of BTK inhibitors were absent in CBA/CaHN-Btkxid/J mice with mutant Btk. However, ibrutinib and acalabrutinib reduced NF-κB activity, proinflammatory gene expression, and NLRP3 inflammasome activation in macrophages with and without functional BTK. These data highlight that the BTK inhibitors can have divergent effects on metabolism and separate effects on metabolic inflammation that can occur independently of actions on BTK.NEW & NOTEWORTHY Bruton's tyrosine kinase (BTK) is involved in immune function. It was thought that BTK inhibitors improve characteristics of obesity-related metabolic disease by lowering metabolic inflammation. However, tyrosine kinase inhibitors are permissive, and it was not known if different BTK inhibitors alter host metabolism or immunity through actions on BTK. We found that two BTK inhibitors had divergent effects on blood glucose and insulin via BTK, but inhibition of metabolic inflammation occurred independently of BTK in obese mice.
Collapse
Affiliation(s)
- Darryl Y Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
25
|
O'Keefe ME, Dubyak GR, Abbott DW. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 2024; 300:107386. [PMID: 38763335 PMCID: PMC11245928 DOI: 10.1016/j.jbc.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization. Dysregulation of inflammasome activation is associated with a number of inflammatory diseases, and evidence is emerging that aberrant modification of inflammasome components contributes to this dysregulation. This review provides insight into PTMs within the NLRP3 inflammasome pathway and their functional consequences on the signaling cascade and highlights outstanding questions that remain regarding the complex web of signals at play.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Guo XB, Deng X, Wang J, Qi Y, Zhao W, Guan S. HAX-1 interferes in assembly of NLRP3-ASC to block microglial pyroptosis in cerebral I/R injury. Cell Death Discov 2024; 10:264. [PMID: 38811533 PMCID: PMC11136987 DOI: 10.1038/s41420-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Acute cerebral ischemia has a high rate of disability and death. Although timely recanalization therapy may rescue the ischemic brain tissue, cerebral ischemia-reperfusion injury has been shown to limit the therapeutic effects of vascular recanalization. Protein HAX-1 has been reported as a pro-survival protein that plays an important role in various disorders, particularly in association with the nervous system. However, the effects and mechanisms of HAX-1 in cerebral IR injury have yet to be elucidated. So, we aimed to investigate the effect of HAX-1 on microglial pyroptosis and explore its potential neuroprotective effects in ischemia-reperfusion injury. Our results show that the expression of HAX-1 decreased after cerebral IR injury, accompanied by an increase in pyroptosis pathway activation. In addition, HAX-1 could inhibit microglial pyroptosis both in vivo and in vitro and reduce the release of inflammatory mediators. The above neuroprotective effects might be partially mediated by inhibiting of interaction of NLRP3 and ASC through competitive binding, followed by the attenuation of NLRP3 inflammasome formation. In conclusion, Our findings support that HAX-1 exhibits a protective role in cerebral I/R injury, and further study on HAX-1 expression regulation will contribute to cerebral infarction therapy.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Jingjing Wang
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Yuruo Qi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China.
| | - Sheng Guan
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China.
| |
Collapse
|
27
|
Li Y, Deng H, Zhang H, Yang L, Wang S, Wang H, Zhu J, Li X, Chen X, Lin Y, Li R, Wang G, Li K. Transforming growth factor-β1 protects mechanically injured cortical murine neurons by reducing trauma-induced autophagy and apoptosis. Front Cell Neurosci 2024; 18:1381279. [PMID: 38863498 PMCID: PMC11165077 DOI: 10.3389/fncel.2024.1381279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Transforming growth factor β1 (TGF-β1) has a neuroprotective function in traumatic brain injury (TBI) through its anti-inflammatory and immunomodulatory properties. However, the precise mechanisms underlying the neuroprotective actions of TGF-β1 on the cortex require further investigation. In this study, we were aimed to investigate the regulatory function of TGF-β1 on neuronal autophagy and apoptosis using an in vitro primary cortical neuron trauma-injury model. LDH activity was assayed to measure cell viability, and intracellular [Ca2+] was measured using Fluo-4-AM in an in vitro primary cortical neuron trauma-injury model. RNA-sequencing (RNAseq), immunofluorescent staining, transmission electron microscopy (TEM), western blot and CTSD activity detection were employed. We observed significant enrichment of DEGs related to autophagy, apoptosis, and the lysosome pathway in trauma-injured cortical neurons. TEM confirmed the presence of autophagosomes as well as autophagolysosomes. Western blot revealed upregulation of autophagy-related protein light chain 3 (LC3-II/LC3-I), sequestosome 1 (SQSTM1/p62), along with apoptosis-related protein cleaved-caspase 3 in trauma-injured primary cortical neurons. Furthermore, trauma-injured cortical neurons showed an upregulation of lysosomal marker protein (LAMP1) and lysosomal enzyme mature cathepsin D (mCTSD), but a decrease in the activity of CTSD enzyme. These results indicated that apoptosis was up-regulated in trauma- injured cortical neurons at 24 h, accompanied by lysosomal dysfunction and impaired autophagic flux. Notably, TGF-β1 significantly reversed these changes. Our results suggested that TGF-β1 exerted neuroprotective effects on trauma- injured cortical neurons by reducing lysosomal dysfunction, decreasing the accumulation of autophagosomes and autophagolysosomes, and enhancing autophagic flux.
Collapse
Affiliation(s)
- Yanlei Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Huixiong Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hengyao Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Yang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - Shenmiao Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Haoyang Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiacheng Zhu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoning Li
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yinhong Lin
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Gefei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
28
|
Wang XW, Fu H, Zhang YM. HIF-1α facilitates glioma proliferation and invasion by activating pyroptosis signaling axis. Chin Neurosurg J 2024; 10:14. [PMID: 38734702 PMCID: PMC11088077 DOI: 10.1186/s41016-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND HIF-1α is thought to be a novel regulator which contributes to carcinogenesis. However, the mechanism underlying the effect of HIF-1α in gliomas remains largely unknown. METHODS In the research, we demonstrate that HIF-lα mRNA and protein levels are elevated in glioma cells. The colony formation assays, transwell assays, and wound-healing assays showed that overexpression of HIF-1α promoted proliferation and invasion of glioma cells. RESULTS Overexpression of HIF-lα also increased the expression of inflammatory factors related to pyrolysis (TNF-α, IL-10, and IL-1β) and protein related to pyrolysis signal pathway (NLRP3, ASC, caspase-1, GSDMD, and GSDME). CONCLUSIONS Therefore, we speculate that HIF-1α promotes the proliferation and invasion of glial cells by regulating pyrolysis pathway. These results might provide a novel strategy and target for treatment of glioma.
Collapse
Affiliation(s)
- Xin-Wei Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China
| | - Hao Fu
- Department of General Medicine, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Ya-Min Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China.
| |
Collapse
|
29
|
De Bondt M, Renders J, Struyf S, Hellings N. Inhibitors of Bruton's tyrosine kinase as emerging therapeutic strategy in autoimmune diseases. Autoimmun Rev 2024; 23:103532. [PMID: 38521213 DOI: 10.1016/j.autrev.2024.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor signal transducer, initially identified as an essential signaling molecule for B cells, with genetic mutations resulting in a disorder characterized by disturbed B cell and antibody development. Subsequent research revealed the critical role of BTK in the functionality of monocytes, macrophages and neutrophils. Various immune cells, among which B cells and neutrophils, rely on BTK activity for diverse signaling pathways downstream of multiple receptors, which makes this kinase an ideal target to treat hematological malignancies and autoimmune diseases. First-generation BTK inhibitors are already on the market to treat hematological disorders. It has been demonstrated that B cells and myeloid cells play a significant role in the pathogenesis of different autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome. Consequently, second-generation BTK inhibitors are currently being developed to treat these disorders. Despite the acknowledged involvement of BTK in various cell types, the focus on B cells often overshadows its impact on innate immune cells. Among these cell types, neutrophils are often underestimated in the pathogenesis of autoimmune diseases. In this narrative review, the function of BTK in different immune cell subsets is discussed, after which an overview is provided of different upcoming BTK inhibitors tested for treatment of autoimmune diseases. Special attention is paid to BTK inhibition and its effect on neutrophil biology.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven; Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium
| | - Janne Renders
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium.
| |
Collapse
|
30
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
31
|
Chaffey LE, Roberti A, Bowman A, O'Brien CJ, Som L, Purvis GS, Greaves DR. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur J Pharmacol 2024; 969:176437. [PMID: 38417608 DOI: 10.1016/j.ejphar.2024.176437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Laura E Chaffey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Amelia Bowman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Conan Jo O'Brien
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Liliana Som
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - Gareth Sd Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
32
|
Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 2024; 21:219-237. [PMID: 37923829 PMCID: PMC11550901 DOI: 10.1038/s41569-023-00946-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Feng L, Li Y, Lin M, Xie D, Luo Y, Zhang Y, He Z, Gong Q, Zhun ZY, Gao J. Trilobatin attenuates cerebral ischaemia/reperfusion-induced blood-brain barrier dysfunction by targeting matrix metalloproteinase 9: The legend of a food additive. Br J Pharmacol 2024; 181:1005-1027. [PMID: 37723895 DOI: 10.1111/bph.16239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier (BBB) breakdown is one of the crucial pathological changes of cerebral ischaemia-reperfusion (I/R) injury. Trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effects against cerebral I/R injury as demonstrated in our previous study. This study was designed to investigate the effect of TLB on BBB disruption after cerebral I/R injury. EXPERIMENTAL APPROACH Rats with focal cerebral ischaemia caused by transient middle cerebral artery occlusion were studied along with brain microvascular endothelial cells and human astrocytes to mimic BBB injury caused by oxygen and glucose deprivation/reoxygenation (OGD/R). KEY RESULTS The results showed that TLB effectively maintained BBB integrity and inhibited neuronal loss following cerebral I/R challenge. Furthermore, TLB increased tight junction proteins including ZO-1, Occludin and Claudin 5, and decreased the levels of apolipoprotein E (APOE) 4, cyclophilin A (CypA) and phosphorylated nuclear factor kappa B (NF-κB), thereby reducing proinflammatory cytokines. TLB also decreased the Bax/Bcl-2 ratio and cleaved-caspase 3 levels along with a reduced number of apoptotic neurons. Molecular docking and transcriptomics predicted MMP9 as a prominent gene evoked by TLB treatment. The protective effects of TLB on cerebral I/R-induced BBB breakdown was largely abolished by overexpression of MMP9, and the beneficial effects of TLB on OGD/R-induced loss of BBB integrity in human brain microvascular endothelial cells and astrocyte co-cultures was markedly reinforced by knockdown of MMP9. CONCLUSIONS AND IMPLICATIONS Our findings reveal a novel property of TLB: preventing BBB disruption following cerebral I/R via targeting MMP9 and inhibiting APOE4/CypA/NF-κB axis.
Collapse
Affiliation(s)
- Linying Feng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yeli Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dianyou Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yunmei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu Yi Zhun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianmei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Luo J, Luo Y, Chen J, Gao Y, Tan J, Yang Y, Yang C, Jiang N, Luo Y. Intestinal metabolite UroB alleviates cerebral ischemia/reperfusion injury by promoting competition between TRIM65 and TXNIP for binding to NLRP3 inflammasome in response to neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167056. [PMID: 38360072 DOI: 10.1016/j.bbadis.2024.167056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Tan
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongkang Yang
- Department of Clinical Medicine, Clinical Medical College of Chengdu University, Chengdu, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
37
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
38
|
Wenfei Z, Xiang T, Chen C, Yang T, Yun T, Zhibiao C, Ge Z. Isoliquiritigenin attenuates neuroinflammation after subarachnoid hemorrhage through inhibition of NF-κB-mediated NLRP3 inflammasome activation. Chem Biol Drug Des 2024; 103:e14436. [PMID: 38395608 DOI: 10.1111/cbdd.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024]
Abstract
Neuroinflammation contributes to neurological dysfunction in the patients who suffer from subarachnoid hemorrhage (SAH). Isoliquiritigenin (ISL) is a bioactive component extracted from Genus Glycyrrhiza. This work is to investigate whether ISL ameliorates neuroinflammation after SAH. In this study, intravascular perforation of male Sprague-Dawley rats was used to establish a SAH model. ISL was administered by intraperitoneal injection 6 h after SAH in rats. The mortality, SAH grade, neurological score, brain water content, and blood-brain barrier (BBB) permeability were examined at 24 h after the treatment. Expressions of tumor necrosis factor-α, interleukin-6, Iba-1, and MPO were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the expression levels of NF-κB p65 and NLRP3, ASC, caspase-1, IL-1β, and IL-18 were analyzed by western blot. The experimental data suggested that ISL treatment could ameliorate neurological impairment, attenuate brain edema, and ameliorate BBB injury after SAH in rats. ISL treatment repressed the expression of proinflammatory cytokines TNF-α and IL-6, and meanwhile inhibited the expression of Iba-1 and MPO. ISL also repressed NF-κB p65 expression as well as the transport from the cytoplasm to the nucleus. In addition, ISL significantly suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3), ASC, caspase-1, IL-1β, and IL-18. These findings suggest that ISL inactivates NLRP3 pathway by inhibiting NF-κB p65 translocation, thereby repressing the neuroinflammation after SAH, and it is a potential drug for the treatment of SAH.
Collapse
Affiliation(s)
- Zhang Wenfei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, China
| | - Tao Yang
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Yun
- Department of Stomatology, Wuhan Central Hospital, Wuhan, China
| | - Chen Zhibiao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ge
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Zhang L, Li G, Li Y. TRIM59 suppresses the brain ischaemia/reperfusion injury and pyroptosis of microglial through mediating the ubiquitination of NLRP3. Sci Rep 2024; 14:2511. [PMID: 38291200 PMCID: PMC10828378 DOI: 10.1038/s41598-024-52914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Cerebral ischaemia/reperfusion (I/R) injury induces irreversible brain injury and causes functional impairment. Ubiquitination plays a crucial role in protein degradation, but its role in cerebral I/R injury remains unclear. Differentially expressed genes in stroke were identified by analysing the microarray dataset GSE119121. Cerebral I/R was simulated in vitro by treating human microglial HMC3 cells with oxygen-glucose deprivation/reperfusion (OGD/R). Cell viability was tested by Cell Counting Kit 8 (CCK-8) assays, and pyroptosis was examined by flow cytometry. Lactate dehydrogenase (LDH) and inflammatory cytokine secretion were measured by LDH cytotoxicity assays and enzyme-linked immunosorbent assay (ELISA), respectively. The cerebral I/R animal model was established by middle cerebral artery occlusion (MCAO) surgery in rats. Bioinformatic analysis indicated that tripartite motif-containing protein 59 (TRIM59) is downregulated in stroke, which was verified in cerebral I/R models. The upregulation of TRIM59 promoted viability and inhibited pyroptosis in OGD/R-treated microglia and alleviated cerebral I/R injury in vivo. TRIM59 attenuated NOD-like receptor family pyrin domain containing 3 (NLRP3) protein expression through ubiquitination, thus degrading NLRP3 and alleviating OGD/R-induced injury. TRIM59 relieves cerebral I/R injury in vivo and in vivo. Mechanistically, TRIM59 directly interacts with NLRP3 and inhibits NLRP3 through ubiquitination. Targeting the TRIM59/NLRP3 signalling axis may be an effective therapeutic strategy for cerebral I/R.
Collapse
Affiliation(s)
- Liangtian Zhang
- Department of Emergency Medicine, Chun'an First People's Hospital, Hangzhou City, Zhejiang Province, China
| | - Gang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Li
- Department of Special Inspection, Hangzhou TCM Hospital, Affiliated to Zhejiang Chinese Medical University, No. 453, Tiyuchang Road, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
40
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
41
|
Tsitos S, Danek A, Straube A. Susac syndrome in a patient with migraine shortly after COVID-19 booster vaccination: more than a temporal relation? J Neurol 2024; 271:71-74. [PMID: 37943298 PMCID: PMC10769936 DOI: 10.1007/s00415-023-12088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Stergios Tsitos
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
| | - Adrian Danek
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| |
Collapse
|
42
|
Han J, Jia D, Yao H, Xu C, Huan Z, Jin H, Ge X. GRP78 improves the therapeutic effect of mesenchymal stem cells on hemorrhagic shock-induced liver injury: Involvement of the NF-кB and HO-1/Nrf-2 pathways. FASEB J 2024; 38:e23334. [PMID: 38050647 DOI: 10.1096/fj.202301456rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.
Collapse
Affiliation(s)
- Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
- Orthopedic Institution of Wuxi City, Wuxi, People's Republic of China
| |
Collapse
|
43
|
Carnero E, Irigoyen-Bañegil C, Gutiérrez I, Extramiana L, Sabater AL, Moreno-Montañes J. Comparison of Transcriptomic Analysis of the Conjunctiva in Glaucoma-Treated Eyes with Dry Eyes and Healthy Controls. Biomolecules 2023; 14:30. [PMID: 38254630 PMCID: PMC10813521 DOI: 10.3390/biom14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ocular surface disease (OSD) associated with topical glaucoma drugs is a common issue impacting treatment adherence. We aimed to identify conjunctival transcriptomic changes in glaucoma and dry eye patients, comparing them to healthy controls. Bulbar conjunctival specimens were collected via impression cytology from 33 patients treated for glaucoma, 9 patients with dry eye, and 14 healthy controls. RNA extraction and bulk RNA sequencing were performed, followed by bioinformatics analysis to detect gene dysregulation. Ingenuity pathways analysis (IPA) identified pathways and biological processes associated with these transcriptomic changes. Sequencing analysis revealed 200 modified genes in glaucoma patients compared to healthy individuals, 233 differentially expressed genes in dry eye patients versus controls, and 650 genes in treated versus dry eye samples. In glaucoma patients, 79% of altered pathways were related to host defense, while dry eye patients showed a 39% involvement of host response, 15% in cellular proliferation and integrity, and 16% of mitochondrial dysfunction. These findings were validated through qRT-PCR. Glaucoma patients showed an intensified conjunctival immune response as a potential cause of OSD, whereas in dry eye patients, in addition to the immune response, other mechanisms such as mitochondrial dysfunction or reduced cellular proliferation were observed.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Ophthalmology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Navarra, Spain; (E.C.); (I.G.); (J.M.-M.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain;
| | - Cristina Irigoyen-Bañegil
- Department of Ophthalmology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Navarra, Spain; (E.C.); (I.G.); (J.M.-M.)
| | - Itziar Gutiérrez
- Department of Ophthalmology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Navarra, Spain; (E.C.); (I.G.); (J.M.-M.)
| | - Leire Extramiana
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain;
| | - Alfonso L. Sabater
- Department of Ophthalmology, Ocular Surface Center, Bascom Palmer Eye Institute, Miami, FL 33136, USA;
| | - Javier Moreno-Montañes
- Department of Ophthalmology, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Navarra, Spain; (E.C.); (I.G.); (J.M.-M.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain;
| |
Collapse
|
44
|
Pruenster M, Immler R, Roth J, Kuchler T, Bromberger T, Napoli M, Nussbaumer K, Rohwedder I, Wackerbarth LM, Piantoni C, Hennis K, Fink D, Kallabis S, Schroll T, Masgrau-Alsina S, Budke A, Liu W, Vestweber D, Wahl-Schott C, Roth J, Meissner F, Moser M, Vogl T, Hornung V, Broz P, Sperandio M. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat Immunol 2023; 24:2021-2031. [PMID: 37903858 PMCID: PMC10681899 DOI: 10.1038/s41590-023-01656-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Collapse
Affiliation(s)
- Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tim Kuchler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Nussbaumer
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chiara Piantoni
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Konstantin Hennis
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Fink
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agnes Budke
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wang Liu
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Münster, Münster, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
45
|
Liu C, Yao K, Tian Q, Guo Y, Wang G, He P, Wang J, Wang J, Zhang Z, Li M. CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-κB pathway. Redox Biol 2023; 68:102960. [PMID: 37979447 PMCID: PMC10694315 DOI: 10.1016/j.redox.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is critical for homeostasis of the adaptive and innate immune system in some CNS diseases. Bruton's tyrosine kinase (BTK) is an essential kinase that regulates inflammation in immune cells through multiple signaling pathways. This study aims to explore the effect of CXCR4 and BTK on neuroinflammation in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Our results showed that the expression of CXCR4 and p-BTK increased significantly at 24 h after SAH in vivo and in vitro. Ibrutinib improved neurological impairment, BBB disruption, cerebral edema, lipid peroxidation, neuroinflammation and neuronal death at 24 h after SAH. Inhibition of BTK phosphorylation promoted the in vitro transition of hemin-treated proinflammatory microglia to the anti-inflammatory state, inhibited the p-P65 expression and microglial pyroptosis. NLRP3 deficiency can significantly reduce pyroptosis in SAH mice. Moreover, CXCR4 inhibition can suppress NLRP3-mediated pyroptosis, NF-κB activation and NOX2 expression in vitro, and ibrutinib can abolish CXCR4-aggravated BBB damage and pyroptosis in EBI after SAH. The levels of CXCR4 in CSF of SAH patients is significantly increased, and it is positively correlated with GSDMD and IL-1β levels, and have a moderate diagnostic value for outcome at 6-month follow-up. Our findings revealed the effect of CXCR4 and P-BTK on NLRP3-mediated pyroptosis and lipid peroxidation after SAH in vivo and in vitro, and the potential diagnostic role of CXCR4 in CSF of SAH patients. Inhibition of CXCR4-BTK axis can significantly attenuate NLRP3-mediated pyroptosis and lipid peroxidation by regulating NF-κB activation in EBI after SAH.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Kun Yao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, PR China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
46
|
Wu DM, Liu JP, Liu J, Ge WH, Wu SZ, Zeng CJ, Liang J, Liu K, Lin Q, Hong XW, Sun YE, Lu J. Immune pathway activation in neurons triggers neural damage after stroke. Cell Rep 2023; 42:113368. [PMID: 37917581 DOI: 10.1016/j.celrep.2023.113368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Ischemic brain injury is a severe medical condition with high incidences in elderly people without effective treatment for the resulting neural damages. Using a unilateral mouse stroke model, we analyze single-cell transcriptomes of ipsilateral and contralateral cortical penumbra regions to objectively reveal molecular events with single-cell resolution at 4 h and 1, 3, and 7 days post-injury. Here, we report that neurons are among the first cells that sense the lack of blood supplies by elevated expression of CCAAT/enhancer-binding protein β (C/EBPβ). To our surprise, the canonical inflammatory cytokine gene targets for C/EBPβ, including interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), are subsequently induced also in neuronal cells. Neuronal-specific silencing of C/EBPβ or IL-1β and TNF-α substantially alleviates downstream inflammatory injury responses and is profoundly neural protective. Taken together, our findings reveal a neuronal inflammatory mechanism underlying early pathological triggers of ischemic brain injury.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Ji-Ping Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jie Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Clinical Medicine Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei-Hong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Su-Zhen Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Chi-Jia Zeng
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, China
| | - KeJian Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Quan Lin
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Wu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Institute of Fudan University in Ningbo, Zhejiang 315336, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jun Lu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China.
| |
Collapse
|
47
|
Bornancin F, Dekker C. A phospho-harmonic orchestra plays the NLRP3 score. Front Immunol 2023; 14:1281607. [PMID: 38022631 PMCID: PMC10654991 DOI: 10.3389/fimmu.2023.1281607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
NLRP3 is a prototypical sensor protein connecting cellular stress to pro-inflammatory signaling. A complex array of regulatory steps is required to switch NLRP3 from an inactive state into a primed entity that is poised to assemble an inflammasome. Accumulating evidence suggests that post-translational mechanisms are critical. In particular, phosphorylation/dephosphorylation and ubiquitylation/deubiquitylation reactions have been reported to regulate NLRP3. Taken individually, several post-translational modifications appear to be essential. However, it remains difficult to understand how they may be coordinated, whether there is a unique sequence of regulatory steps accounting for the functional maturation of NLRP3, or whether the sequence is subject to variations depending on cell type, the stimulus, and other parameters such as the cellular context. This review will focus on the regulation of the NLRP3 inflammasome by phosphorylation and dephosphorylation, and on kinases and phosphatases that have been reported to modulate NLRP3 activity. The aim is to try to integrate the current understanding and highlight potential gaps for further studies.
Collapse
Affiliation(s)
| | - Carien Dekker
- Discovery Sciences Department, Novartis Biomedical Research, Basel, Switzerland
| |
Collapse
|
48
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Zheng Y, Zhu T, Chen B, Fang Y, Wu Y, Feng X, Pang M, Wang H, Zhu J, Lin Z. Diallyl disulfide attenuates pyroptosis via NLRP3/Caspase-1/IL-1β signaling pathway to exert a protective effect on hypoxic-ischemic brain damage in neonatal rats. Int Immunopharmacol 2023; 124:111030. [PMID: 37844463 DOI: 10.1016/j.intimp.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain disease caused by hypoxia in neonates. It is one of the leading causes of neonatal death in the perinatal period, as well as disability beyond the neonatal period. Due to the lack of a unified and comprehensive treatment strategy for HIE, research into its pathogenesis is essential. Diallyl disulfide (DADS) is an allicin extract, with detoxifying, antibacterial, and cardiovascular disease protective effects. This study aimed to determine whether DADS can alleviate HIE induced brain damage in rats and oxygen-glucose deprivation (OGD)-induced pyroptosis in PC12 cells, as well as whether it can inhibit pyroptosis via the NLRP3/Caspase-1/IL-1β signaling pathway. In vivo, DADS significantly reduced the cerebral infarction volume, alleviated inflammatory reaction, reduced astrocyte activation, promoted tissue structure recovery, improved pyroptosis caused by HIE and improved the prognosis following HI injury. In vitro findings indicated that DADS increased cell activity, decreased LDH activity and reduced the expression of pyroptosis-related proteins, including IL-1β, IL-18, and certain inflammatory factors in PC12 cells caused by OGD. Mechanistically, DADS inhibited pyroptosis and protected against HIE via the NLRP3/Caspase-1/IL-1β pathway. The specific inhibitor of caspase-1, VX-765, inhibited caspase-1 activation, and IL-1β expression was determined. Additionally, the overexpression of NLRP3 reversed the protective effect of allicin against OGD-induced pyroptosis. In conclusion, these findings demonstrated that DADS inhibits the NLRP3/Caspase-1/IL-1β signaling pathway and decreases HI brain damage.
Collapse
Affiliation(s)
- Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Tingyu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Binwen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yiqing Wu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Xiaoli Feng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Mengdan Pang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Hongzeng Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
50
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|