1
|
Xu C, Zhang J, Zhang J, Li D, Yan X, Gu Y, Zhong M, Gao H, Zhao Q, Qu X, Huang P, Zhang J. Near Infrared-Triggered Nitric Oxide-Release Nanovesicles with Mild-Photothermal Antibacterial and Immunomodulation for Healing MRSA-Infected Diabetic Wounds. Adv Healthc Mater 2024; 13:e2402297. [PMID: 39175376 DOI: 10.1002/adhm.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Bacterial infection-induced excessive inflammation is a major obstacle in diabetic wound healing. Nitric oxide (NO) exhibits significant antibacterial activity but is extremely deficient in diabetes. Hence, a near-infrared (NIR)-triggered NO release system is constructed through codelivery of polyarginine (PArg) and gold nanorods (Au) in an NIR-activatable methylene blue (MB) polypeptide-assembled nanovesicle (Au/PEL-PBA-MB/PArg). Upon NIR irradiation, the quenched MB in the nanovesicles is photoactivated to generate more reactive oxygen species (ROS) to oxidize PArg and release NO in an on-demand controlled manner. With the specific bacterial capture of phenylboronic acid (PBA), NO elevated membrane permeability and boosted bacterial vulnerability in the photothermal therapy (PTT) of the Au nanorods, which is displayed by superior mild PTT antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) at temperatures < 49.7 °C in vitro. Moreover, in vivo, the antibacterial nanovesicles greatly suppressed the burst of MRSA-induced excessive inflammation, NO relayed immunomodulated macrophage polarization from M1 to M2, and the excessive inflammatory phase is successfully transferred to the repair phase. In cooperation with angiogenesis by NO, tissue regeneration is accelerated in MRSA-infected diabetic wounds. Therefore, nanoplatform has considerable potential for accelerating the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Chang Xu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jiqing Zhang
- Department of Medical Ultrasound, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China
| | - Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qiang Zhao
- Key Laboratory of bioactive materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
2
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
4
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Wang C, Paiva TO, Speziale P, Dufrêne YF. Nanomechanics of CCN1-Mediated Staphylococcus aureus Phagocytosis. NANO LETTERS 2024; 24:8567-8574. [PMID: 38959438 DOI: 10.1021/acs.nanolett.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVβ3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVβ3 ternary complex. While CCN1 binds αVβ3 integrins with moderate force (∼60 pN), much higher binding strengths (up to ∼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVβ3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.
Collapse
Affiliation(s)
- Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Li T, Qian Y, Li H, Wang T, Jiang Q, Wang Y, Zhu Y, Li S, He X, Shi G, Su W, Lu Y, Chen Y. Cellular communication network factor 1 promotes retinal leakage in diabetic retinopathy via inducing neutrophil stasis and neutrophil extracellular traps extrusion. Cell Commun Signal 2024; 22:275. [PMID: 38755602 PMCID: PMC11097549 DOI: 10.1186/s12964-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yixia Qian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Jiang
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yuchan Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenru Su
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
McCallum S, Suresh KB, Islam T, Saustad AW, Shelest O, Patil A, Lee D, Kwon B, Yenokian I, Kawaguchi R, Beveridge CH, Manchandra P, Randolph CE, Meares GP, Dutta R, Plummer J, Knott SRV, Chopra G, Burda JE. Lesion-remote astrocytes govern microglia-mediated white matter repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585251. [PMID: 38558977 PMCID: PMC10979953 DOI: 10.1101/2024.03.15.585251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.
Collapse
|
9
|
Zhou X, Shen H, Wu S, Mu L, Yang H, Wu J. An amphibian-derived cathelicidin accelerates cutaneous wound healing through its main regulatory effect on phagocytes. Int Immunopharmacol 2024; 129:111595. [PMID: 38295541 DOI: 10.1016/j.intimp.2024.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Cathelicidins are an important family of antimicrobial peptides (AMPs) involved in the innate immunity in vertebrates. The mammalian cathelicidins have been well characterized, but the relationship between structure and function in amphibian cathelicidins is still not well understood. In this study, a novel 29-residue cathelicidin antimicrobial peptide (BugaCATH) was identified from the skin of Bufo gargarizans. Unlike other AMPs, BugaCATH does not display any direct antimicrobial effects in vitro. However, it effectively promotes full-thickness wound repair in mice. Following injury, BugaCATH initiates and expedites the inflammatory stage by recruiting neutrophils and macrophages to the wound site. BugaCATH not only regulates neutrophil phagocytic activity but also stimulates the generation of cytokines (TNF-α, IL-6, and IL-1β) and chemokines (CXCL1, CXCL2, CCL2, and CCL3) in macrophages and in mice. Furthermore, it promotes macrophage M2 polarization that facilitates the conversion from a pro-inflammatory macrophage-dominated wound environment to an anti-inflammatory one during the mid to late stages, which is crucial for reducing inflammation and effective wound repair. The MAPK (ERK, JNK, and p38) and NF-κB-NLRP3 signaling pathways are involved in the activity. Moreover, BugaCATH directly enhances the migration of keratinocytes and vascular endothelial cells without affecting their proliferation. Notably, BugaCATH significantly improves the proliferation of keratinocytes and endothelial cells in the presence of macrophages. The current study revealed that in addition to proliferation of keratinocytes and endothelial cells, BugaCATH possesses the ability to modulate inflammatory processes during skin injury through its regulatory effect on phagocytes. The combination of these capabilities makes BugaCATH a potent candidate for skin wound therapy.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxin Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
11
|
Lin S, Tang J, Li X, Wu G, Lin YF, Li YF. Mendelian randomization provides evidence for a causal effect of serum insulin-like growth factor family concentration on risk of atrial fibrillation. World J Clin Cases 2023; 11:8475-8485. [PMID: 38188205 PMCID: PMC10768518 DOI: 10.12998/wjcc.v11.i36.8475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is one of the most common persistent arrhythmias among adult cardiovascular diseases. It is important to identify potential risk factors for AF. Members of the insulin-like growth factor (IGF) family exert a variety of effects on various cell types in the context of the pathogenesis of cardiovascular diseases, and previous population-based studies indicate associations between IGF family members and AF. However, the causal effects of IGF family members in AF have not been evaluated. AIM In the current study two-sample Mendelian Randomization (MR) was used to assess genetic relationships between IGF family members and AF. METHODS MR was performed based on genome-wide association study (GWAS) datasets, and concentration levels of 14 IGF family members were retrieved. An initial MR analysis was conducted to identify single nucleotide polymorphisms potentially associated with IGF serum concentrations. A GWAS meta-analysis including 60620 AF cases and 970216 control participants of European ancestry was then conducted to identify AF causal effects. Two-sample MR packages were used to perform MR analysis in R. MR-Egger, weighted median (WM), and inverse variance weighted (IVW) methods were used. RESULTS In two-sample MR assessments there were lower levels of circulating IGF binding protein 3 in both WM [odds ratio (OR) 0.964, 95% confidence interval (CI) 0.940-0.960, P = 0.006] and IVW (OR 0.968, 95%CI: 0.947-0.987, P = 0.001) analyses. Higher serum levels of IGF2 receptor were associated with AF (OR 1.045, 95%CI: 1.016-1.076, P = 0.039). In reverse MR analysis conducted to investigate casual effects, elevated levels of circulating CYR61 were associated with AF (OR 1.060, 95%CI: 1.005-1.119, P = 0.031). CONCLUSION The results of the present study provide novel insights into the pathogenesis of AF, and the implications of serum IGF family member concentrations when assessing the risk of AF. The study generated evidence on the potential roles of developmental pathological effects in the pathogenesis of AF. Further observational and experimental studies are critically needed.
Collapse
Affiliation(s)
- Sha Lin
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Tang
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Gang Wu
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi-Fei Lin
- Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi-Fei Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
12
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
13
|
Jiang T, Tang XY, Mao Y, Zhou YQ, Wang JJ, Li RM, Xie XR, Zhang HM, Fang B, Ouyang NJ, Tang GH. Matrix mechanics regulate the polarization state of bone marrow-derived neutrophils through the JAK1/STAT3 signaling pathway. Acta Biomater 2023; 168:159-173. [PMID: 37467837 DOI: 10.1016/j.actbio.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Matrix mechanics regulate essential cell behaviors through mechanotransduction, and as one of its most important elements, substrate stiffness was reported to regulate cell functions such as viability, communication, migration, and differentiation. Neutrophils (Neus) predominate the early inflammatory response and initiate regeneration. The activation of Neus can be regulated by physical cues; however, the functional alterations of Neus by substrate stiffness remain unknown, which is critical in determining the outcomes of engineered tissue mimics. Herein, a three-dimensional (3D) culture system made of hydrogels was developed to explore the effects of varying stiffnesses (1.5, 2.6, and 5.7 kPa) on the states of Neus. Neus showed better cell integrity and viability in the 3D system. Moreover, it was shown that the stiffer matrix tended to induce Neus toward an anti-inflammatory phenotype (N2) with less adhesion molecule expression, less reactive oxygen species (ROS) production, and more anti-inflammatory cytokine secretion. Additionally, the aortic ring assay indicated that Neus cultured in a stiffer matrix significantly increased vascular sprouting. RNA sequencing showed that a stiffer matrix could significantly activate JAK1/STAT3 signaling in Neus and the inhibition of JAK1 ablated the stiffness-dependent increase in the expression of CD182 (an N2 marker). Taken together, these results demonstrate that a stiffer matrix promotes Neus to shift to the N2 phenotype, which was regulated by JAK1/STAT3 pathway. This study lays the groundwork for further research on fabricating engineered tissue mimics, which may provide more treatment options for ischemic diseases and bone defects. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yu-Qi Zhou
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jia-Jia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Ru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Hong-Ming Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
14
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
16
|
Liu X, Liu H, Deng Y. Efferocytosis: An Emerging Therapeutic Strategy for Type 2 Diabetes Mellitus and Diabetes Complications. J Inflamm Res 2023; 16:2801-2815. [PMID: 37440994 PMCID: PMC10335275 DOI: 10.2147/jir.s418334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that chronic, low-grade inflammation is a significant contributor to the fundamental pathogenesis of type 2 diabetes mellitus (T2DM). Efferocytosis, an effective way to eliminate apoptotic cells (ACs), plays a critical role in inflammation resolution. Massive accumulation of ACs and the proliferation of persistent inflammation caused by defective efferocytosis have been proven to be closely associated with pancreatic islet β cell destruction, adipose tissue inflammation, skeletal muscle dysfunction, and liver metabolism abnormalities, which together are considered the most fundamental pathological mechanism underlying T2DM. Therefore, here we outline the association between the molecular mechanisms of efferocytosis in glucose homeostasis, T2DM, and its complications, and we analyzed the present constraints and potential future prospects for therapeutic targets in T2DM and its complications.
Collapse
Affiliation(s)
- Xun Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hua Liu
- Southern Theater General Hospital of the Chinese People’s Liberation Army, Guangzhou, Guangdong, 510010, People’s Republic of China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
17
|
Liu Y, Cui L, Wang X, Miao W, Ju Y, Chen T, Xu H, Gu N, Yang F. In Situ Nitric Oxide Gas Nanogenerator Reprograms Glioma Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300679. [PMID: 37085663 PMCID: PMC10288280 DOI: 10.1002/advs.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Universal chemotherapy in glioblastoma patients causes chemoresistance and further limits immune cells by creating an immunosuppressive tumor microenvironment that are difficult to solve by single-drug therapeutic approaches. Here, this work designs hybrid drug-loaded nanoliposomes by co-loading the chemotherapeutic drug temozolomide (TMZ) and nitric oxide (NO) prodrug JS-K with sphingosine-1-phosphate molecules (S1P) on the surface. The S1P-S1P receptors axis endows nanoliposomes with rapid targeting and lysosomal escaping capability. Then, fine-tuned TMZ release and NO gas production following JS-K release in glioma microenvironment decrease chemoresistance and increase tumor immunogenicity through inhibiting the cellular autophagy as well as inducing mitochondrial dysfunction. RNA sequencing analysis demonstrates that the NO gas generation reprograms glioma microenvironment immune and inflammation-related pathways. The positive immune response in turn effectively activates the enhanced efficacy of chemotherapy. NO gas generated nanoliposomes thus have attractive paradigm-shifting applications in the treatment of "cold" tumors across a range of immunosuppressive indications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Lin Cui
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Xiao Wang
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiling Miao
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yongxu Ju
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Tiandong Chen
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Huiting Xu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Ning Gu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Fang Yang
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| |
Collapse
|
18
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
20
|
Tun X, Wang EJ, Gao Z, Lundberg K, Xu R, Hu D. Integrin β3-Mediated Cell Senescence Associates with Gut Inflammation and Intestinal Degeneration in Models of Alzheimer's Disease. Int J Mol Sci 2023; 24:5697. [PMID: 36982771 PMCID: PMC10052535 DOI: 10.3390/ijms24065697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes that ultimately lead to dementia. Currently, 50 million people worldwide suffer from dementia related to AD, and the pathogenesis underlying AD pathology and cognitive decline is unknown. While AD is primarily a neurological disease of the brain, individuals with AD often experience intestinal disorders, and gut abnormalities have been implicated as a major risk factor in the development of AD and relevant dementia. However, the mechanisms that mediate gut injury and contribute to the vicious cycle between gut abnormalities and brain injury in AD remain unknown. In the present study, a bioinformatics analysis was performed on the proteomics data of variously aged AD mouse colon tissues. We found that levels of integrin β3 and β-galactosidase (β-gal), two markers of cellular senescence, increased with age in the colonic tissue of mice with AD. The advanced artificial intelligence (AI)-based prediction of AD risk also demonstrated the association between integrin β3 and β-gal and AD phenotypes. Moreover, we showed that elevated integrin β3 levels were accompanied by senescence phenotypes and immune cell accumulation in AD mouse colonic tissue. Further, integrin β3 genetic downregulation abolished upregulated senescence markers and inflammatory responses in colonic epithelial cells in conditions associated with AD. We provide a new understanding of the molecular actions underpinning inflammatory responses during AD and suggest integrin β3 may function as novel target mediating gut abnormalities in this disease.
Collapse
Affiliation(s)
- Xin Tun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Evan J. Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Beachwood High School, Beachwood, OH 44122, USA
| | - Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen Lundberg
- Proteomics Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Yang D, Tan YM, Zhang Y, Song JK, Luo Y, Luo Y, Fei XY, Ru Y, Li B, Jiang JS, Kuai L. Sheng-ji Hua-yu ointment ameliorates cutaneous wound healing in diabetes via up-regulating CCN1. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115954. [PMID: 36435409 DOI: 10.1016/j.jep.2022.115954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcers (DUs) are one of the most severe complications of diabetes, and efficacious therapeutic means are currently lacking. Sheng-ji Hua-yu (SJHY) ointment is a classical Chinese traditional prescription that can significantly attenuate DU defects, but the specific mechanism remains to be fully elucidated. AIM OF THE STUDY In order to verify the underlying mechanism of SJHY ointment in accelerating the closure of DUs. MATERIALS AND METHODS Modular pharmacology and molecular docking were utilized to predict the therapeutic targets of SJHY ointment against DUs. Male db/db diabetic mice and HaCaT cell models induced by methylglyoxal were used to validate the findings. RESULTS CCN1 was proven to be the core target of SJHY ointment involved in DUs treatment. CCN1 up-regulated by SJHY treatment (0.5 g/cm2/day) at the mRNA and protein levels was detected on Day9 after wounding. With CCN1 knockdown, accelerated cell proliferation, migration, and anti-inflammatory effect of SJHY treatment (10 mg/L) were reversed. CONCLUSIONS SJHY ointment ameliorates cutaneous wound healing by up-regulating CCN1.
Collapse
Affiliation(s)
- Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi-Mei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Professional Technical Service Platform for Clinical Evaluation of Skin Health Related Products, Shanghai Science and Technology Commission, Shanghai, 200443, China; NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai, 200443, China; Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
22
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways. Biomed Pharmacother 2023; 157:114052. [PMID: 36462313 DOI: 10.1016/j.biopha.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge in the field of diabetic wound healing is to confirm the body's intrinsic mechanism that could sense the immune system damage promptly and protect the wound from non-healing. Accumulating literature indicates that macrophage, a contributor to prolonged inflammation occurring at the wound site, might play such a role in hindering wound healing. Likewise, other immune cell dysfunctions, such as persistent neutrophils and T cell infection, may also lead to persistent oxidative stress and inflammatory reaction during diabetic wound healing. In this article, we discuss recent advances in the immune cellular components in wounds under the diabetic milieu, and the role of key signaling mechanisms that compromise the function of immune cells leading to persistent wound non-healing.
Collapse
Affiliation(s)
- Siyuan Lin
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
24
|
Cheng N, Kim KH, Lau LF. Analysis of CCN Functions in Liver Regeneration After Partial Hepatectomy. Methods Mol Biol 2023; 2582:209-221. [PMID: 36370352 DOI: 10.1007/978-1-0716-2744-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The remarkable regenerative capability of the liver has long been appreciated. Upon significant loss of liver tissue, the remnant liver can grow rapidly to restore the original liver mass through a combination of hepatocyte proliferation and hypertrophy to maintain homeostasis. Experimentally, 2/3 partial hepatectomy in mice has been used extensively as a model to dissect the molecular mechanism of liver regeneration and the genetic networks involved. Herein, we describe the protocols for partial hepatectomy and analyses of pertinent CCN protein functions.
Collapse
Affiliation(s)
- Naiyuan Cheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | | | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
26
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
27
|
Kim K, Cheng N, Lau LF. Cellular communication network factor 1-stimulated liver macrophage efferocytosis drives hepatic stellate cell activation and liver fibrosis. Hepatol Commun 2022; 6:2798-2811. [PMID: 35929736 PMCID: PMC9512468 DOI: 10.1002/hep4.2057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 11/06/2022] Open
Abstract
Following inflammatory injury in the liver, neutrophils quickly infiltrate the injured tissue to defend against microbes and initiate the repair process; these neutrophils are short lived and rapidly undergo apoptosis. Hepatic stellate cells (HSCs) are the principal precursor cells that transdifferentiate into myofibroblast-like cells, which produce a large amount of extracellular matrix that promotes repair but can also lead to fibrosis if the injury becomes chronic. The matricellular protein cellular communication network factor 1 (CCN1) acts as a bridging molecule by binding phosphatidylserine in apoptotic cells and integrin αv β3 in phagocytes, thereby triggering efferocytosis or phagocytic clearance of the apoptotic cells. Here, we show that CCN1 induces liver macrophage efferocytosis of apoptotic neutrophils in carbon tetrachloride (CCl4 )-induced liver injury, leading to the production of activated transforming growth factor (TGF)-β1, which in turn induces HSC transdifferentiation into myofibroblast-like cells that promote fibrosis development. Consequently, knock-in mice expressing a single amino acid substitution in CCN1 rendering it unable to bind αv β3 or induce efferocytosis are impaired in neutrophil clearance, production of activated TGF-β1, and HSC transdifferentiation, resulting in greatly diminished liver fibrosis following exposure to CCl4 . Conclusion: These results reveal the crucial role of CCN1 in stimulating liver macrophage clearance of apoptotic neutrophils, a process that drives HSC transdifferentiation into myofibroblastic cells and underlies fibrogenesis in chronic liver injury.
Collapse
Affiliation(s)
- Ki‐Hyun Kim
- Department of Biochemistry and Molecular GeneticsUniversity of Illinois at Chicago, College of MedicineChicagoIllinoisUSA
| | - Naiyuan Cheng
- Department of Biochemistry and Molecular GeneticsUniversity of Illinois at Chicago, College of MedicineChicagoIllinoisUSA
| | - Lester F. Lau
- Department of Biochemistry and Molecular GeneticsUniversity of Illinois at Chicago, College of MedicineChicagoIllinoisUSA
| |
Collapse
|
28
|
Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, Wang A, Dixit VD. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 2022; 55:1609-1626.e7. [PMID: 35963236 PMCID: PMC9474643 DOI: 10.1016/j.immuni.2022.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Maxim Artyomov
- Section of Immunology, Washington School of Medicine, St Louis, MO 63110, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery. Biomaterials 2022; 288:121698. [PMID: 36038422 DOI: 10.1016/j.biomaterials.2022.121698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Diabetic ulcers (DUs), a devastating complication of diabetes, are intractable for limited effective interventions in clinic. Based on the clinical samples and bioinformatic analysis, we found lower level of CCN1 in DU individuals. Considering the accelerated proliferation effect in keratinocytes, we propose the therapeutic role of CCN1 supplementation in DU microenvironment. To address the challenge of rapid degradation of CCN1 in protease-rich diabetic healing condition, we fabricated a nanoformulation of CCN1 (CCN1-NP), which protected CCN1 from degradation and significantly raised CCN1 intracellular delivery efficiency to 6.2-fold. The results showed that the intracellular CCN1 exhibited a greater anti-inflammatory and proliferative/migratory activities once the extracellular signal of CCN1 was blocked in vitro. The nanoformulation unveils a new mechanism that CCN1 delivered into cells interacted with Eukaryotic translation initiation factor 3 subunit A (EIF3A) to downregulate autophagy-related 7 (ATG7). Furthermore, topical application of CCN1-NP had profound curative effects on delayed wound healing in diabetes both in vitro and in vivo. Our results illustrate a novel mechanism of intracellular EIF3A/CCN1/ATG7 axis triggered by nanoformulation and the therapeutic potential of CCN1-NP for DU management.
Collapse
|
30
|
Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine. Acta Biomater 2022; 151:106-117. [PMID: 35970482 DOI: 10.1016/j.actbio.2022.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM)-mimicking biomaterials are considered effective tissue-engineered scaffolds for regenerative medicine because of their biocompatibility, biodegradability, and bioactivity. ECM-mimicking biomaterials preserve natural microstructures and matrix-related bioactive components and undergo continuous matrix remodeling upon transplantation. The interaction between host immune cells and transplanted ECM-mimicking biomaterials has attracted considerable attention in recent years. Transplantation of biomaterials may initiate injuries and early pro-inflammation reactions characterized by infiltration of neutrophils and M1 macrophages. Pro-inflammation reactions may lead to degradation of the transplanted biomaterial and drive the matrix into a fetal-like state. ECM degradation leads to the release of matrix-related bioactive components that act as signals for cell migration, proliferation, and differentiation. In late stages, pro-inflammatory cells fade away, and anti-inflammatory cells emerge, which involves macrophage polarization to the M2 phenotype and leukocyte activation to T helper 2 (Th2) cells. These anti-inflammatory cells interact with each other to facilitate matrix deposition and tissue reconstruction. Deposited ECM molecules serve as vital components of the mature tissue and influence tissue homeostasis. However, dysregulation of matrix remodeling results in several pathological conditions, such as aggressive inflammation, difficult healing, and non-functional fibrosis. In this review, we summarize the characteristics of inflammatory responses in matrix remodeling after transplantation of ECM-mimicking biomaterials. Additionally, we discuss the intrinsic linkages between matrix remodeling and tissue regeneration. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM)-mimicking biomaterials are effectively used as scaffolds in tissue engineering and regenerative medicine. However, dysregulation of matrix remodeling can cause various pathological conditions. Here, the review describes the characteristics of inflammatory responses in matrix remodeling after transplantation of ECM-mimicking biomaterials. Additionally, we discuss the intrinsic linkages between matrix remodeling and tissue regeneration. We believe that understanding host immune responses to matrix remodeling of transplanted biomaterials is important for directing effective tissue regeneration of ECM-mimicking biomaterials. Considering the close relationship between immune response and matrix remodeling results, we highlight the need for studies of the effects of clinical characteristics on matrix remodeling of transplanted biomaterials.
Collapse
|
31
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
32
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
33
|
Evaluation of Wound Healing Activity (Excision Wound Model) of Ointment Prepared from Infusion Extract of Polyherbal Tea Bag Formulation in Diabetes-Induced Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1372199. [PMID: 35707477 PMCID: PMC9192309 DOI: 10.1155/2022/1372199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In the present investigation, Ichnocarpus frutescens, Ficus dalhousiae, Crateva magna, Alpinia galanga, and Swertia chirata plants were selected to formulate polyherbal tea bag. The infusion obtained from these polyherbal tea bags was used to formulate 5% and 10% ointment formulation to perform its wound healing activity. The excision wound model was used to assess the wound healing activity in diabetic as well nondiabetic rats. The mean percentage closure of wound area was calculated on the 3rd, 6th, 9th, 12th, 15th, 18th, and finally 21st day. The wound healing activity of formulation was found to be significantly compared with that of the reference standard and untreated groups. The percentages of closure of excision wound area on the 21st day in diabetic animals treated with ointment formulations (F1 and F2) were found to be 93.91 ± 1.65% and 99.12 ± 5.21% respectively, whereas the chloramphenicol sodium drug solution was found to be 99.81 ± 3.16%. The percentages of closure of excision wound area in nondiabetic animals treated with ointment formulations (F1 and F2) were found to be 96.81 ± 2.04% and 98.13 ± 1.14%, respectively, whereas the chloramphenicol sodium drug solution was found to be 99.15 ± 1.41% at 21st day. Therefore, from the above results, we have concluded that this polyherbal ointment can be used clinically for the treatment of diabetic and nondiabetic wounds.
Collapse
|
34
|
Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 2022; 7:158207. [PMID: 35708907 PMCID: PMC9431681 DOI: 10.1172/jci.insight.158207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts, such as wound healing. We have found that hepatic stellate cells (HSCs) underwent senescence within 2 days after 2/3 partial hepatectomy (PHx) in young (2–3 months old) mice, and the elimination of these senescent cells by using the senolytic drug ABT263 or by using a genetic mouse model impaired liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype, which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces Yes-associated protein (YAP) activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restored liver regeneration in mice with senescent cell elimination, and the combination of both fully restored liver weight recovery. Furthermore, the matricellular protein central communication network factor 1 (CCN1, previously called CYR61) was rapidly elevated in response to PHx and induced HSC senescence. Knockin mice expressing a mutant CCN1 unable to bind integrin α6β1 were deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.
Collapse
Affiliation(s)
- Naiyuan Cheng
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ki-Hyun Kim
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Lester F Lau
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| |
Collapse
|
35
|
Won JH, Choi JS, Jun JI. CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation. Nat Commun 2022; 13:3117. [PMID: 35660741 PMCID: PMC9166801 DOI: 10.1038/s41467-022-30851-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αvβ3/αvβ5. Mice that delete Ccn1 in Lgr5 + ISCs or express mutant CCN1 unable to bind integrins αvβ3/αvβ5 exhibited exuberant ISC expansion and enhanced differentiation into secretory cells at the expense of absorptive enterocytes in the small intestine, leading to nutrient malabsorption. Analysis of crypt organoids revealed that through integrins αvβ3/αvβ5, CCN1 induces NF-κB-dependent Jag1 expression to regulate Notch activation for differentiation and promotes Src-mediated YAP activation and Dkk1 expression to control Wnt signaling for proliferation. Moreover, CCN1 and YAP amplify the activities of each other in a regulatory loop. These findings establish CCN1 as a niche factor in the intestinal crypts, providing insights into how matrix signaling exerts overarching control of ISC homeostasis. Intestinal stem cells contribute to homeostasis through a balance between self-renewal and differentiation. Here the authors show that CCN1 is an intestinal stem cell niche factor that activates integrin αvβ3/αvβ5 signaling to regulate proliferation and differentiation through distinct downstream pathways.
Collapse
Affiliation(s)
- Jong Hoon Won
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Jacob S Choi
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.,Department of Medicine, Northwestern University, 676 North St. Clair street Arkes Suite 2330, Chicago, IL, 60611, USA
| | - Joon-Il Jun
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.
| |
Collapse
|
36
|
Jiang R, Tang J, Zhang X, He Y, Yu Z, Chen S, Xia J, Lin J, Ou Q. CCN1 Promotes Inflammation by Inducing IL-6 Production via α6β1/PI3K/Akt/NF-κB Pathway in Autoimmune Hepatitis. Front Immunol 2022; 13:810671. [PMID: 35547732 PMCID: PMC9084230 DOI: 10.3389/fimmu.2022.810671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease with unknown etiology. CCN1, an extracellular matrix-associated protein, is associated with carcinoma, inflammation, liver fibrosis, and even autoimmune diseases. However, the role that CCN1 plays in AIH has remained undetermined. In this study, expression of CCN1 in liver was detected by real-time PCR, western blot and immunohistochemistry (IHC). CCN1 level in serum was detected by ELISA. Diagnostic value of CCN1 was determined by receiver operating characteristic (ROC) curve analysis. CCN1 conditional knockout (CCN1fl/flCre+) mice were generated by mating CCN1fl/fl C57BL/6J and CAG-Cre-ERT C57BL/6J mice. Autoimmune hepatitis mice model was induced by concanavalin A (ConA). IKKα/β, IκBα, NF-κB p65 and Akt phosphorylation were determined by western blot. NF-κB p65 nuclear translocation was examined by immunofluorescence. Here, we found that CCN1 was over-expressed in hepatocytes of AIH patients. CCN1 level also increased in serum of AIH patients compared to healthy controls (HC). ROC curve analysis results showed that serum CCN1 was able to distinguish AIH patients from HD. In ConA induced hepatitis mice model, CCN1 conditional knockout (CCN1fl/flCre+) attenuated inflammation by reducing ALT/AST level and IL-6 expression. In vitro, CCN1 treatment dramatically induced IL-6 production in LO2 cells. Moreover, the production of IL-6 was attenuated by CCN1 knockdown. Furthermore, we showed that CCN1 could activate IL-6 production via the PI3K/Akt/NF-κB signaling pathway by binding to α6β1 receptor. In summary, our results reveal a novel role of CCN1 in promoting inflammation by upregulation of IL-6 production in AIH. Our study also suggests that targeting of CCN1 may represent a novel strategy in AIH treatment.
Collapse
Affiliation(s)
- Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuehao Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Tu C, Lu H, Zhou T, Zhang W, Deng L, Cao W, Yang Z, Wang Z, Wu X, Ding J, Xu F, Gao C. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022; 286:121597. [DOI: 10.1016/j.biomaterials.2022.121597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
|
38
|
Geng R, Lin Y, Ji M, Chang Q, Li Z, Xu L, Zhang W, Lu J. MFG-E8 promotes tendon-bone healing by regualting macrophage efferocytosis and M2 polarization after anterior cruciate ligament reconstruction. J Orthop Translat 2022; 34:11-21. [PMID: 35615640 PMCID: PMC9109120 DOI: 10.1016/j.jot.2022.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
|
39
|
Chen J, Cao Z, Cannon J, Fan Y, Baker JR, Wang SH. Effective Treatment of Skin Wounds Co-Infected with Multidrug-Resistant Bacteria with a Novel Nanoemulsion. Microbiol Spectr 2022; 10:e0250621. [PMID: 35412373 PMCID: PMC9045288 DOI: 10.1128/spectrum.02506-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Wound infections with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are particularly difficult to treat and present a great challenge to clinicians. Nanoemulsions (NE) are novel oil-in-water emulsions formulated from soybean oil, water, solvent, and surfactants such as benzalkonium chloride (BZK). An optimal ratio of those components produces nanometer-sized particles with the positive-charged surfactant at their oil-water interface. We sought to investigate antimicrobial NE as a novel treatment to address wounds co-infected by MRSA and VRE. Swine split-thickness skin wounds were first infected with MRSA and/or VRE, then treated with the nanoemulsion formulation (X-1735) or placebo controls. Bacterial viability after treatment were determined by nutrient agar plates for total, MRSA-specific, and VRE-specific loads. In addition, inflammation indexes were scored by histopathology. When VRE infected wounds were treated with X-1735, they contained 103 lower VRE CFU counts across a 2-week period compared with placebo. Once co-infected MRSA and VRE split-thickness wounds were successfully established, topical treatment of co-infected wounds with X-1735 resulted in a reduction of bacteria by 2 to 3 logs (compared with placebo) at 3- and 14-day postinfection time points. Importantly, X-1735 was effective in significantly alleviating multilevel inflammation in the treated wounds. X-1735 is a new antimicrobial that is safe to apply to open wounds and effectively kills MRSA and VRE. It appears to also reduce inflammation in these co-infected wounds. The data suggest that this approach offers promise as an antimicrobial for open wounds with MRSA and VRE co-infection. IMPORTANCE Infections, specifically polymicrobial, can cause serious consequences when it comes to wound treatment. Prolonged treatment with antibiotics can lead to an increased risk of bacterial resistance; co-infections can complicate treatment options even further. Our research proposes a novel nanoemulsion treatment for two of the most common antibiotic resistant bacteria: methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant enterococci (VRE). This optimized topical treatment formulation not only significantly reduces inflammation and infection in MRSA or VRE infected wounds, but also in MRSA and VRE co-infected wounds as well. The work aims to provide an alternative treatment approach for multidrug-resistant organisms and decrease dependence on systemic treatments.
Collapse
Affiliation(s)
- Jesse Chen
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengyi Cao
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayme Cannon
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongyi Fan
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - James R. Baker
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Su He Wang
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Wang Y, Zhang W, Xu Y, Wu D, Gao Z, Zhou J, Qian H, He B, Wang G. Extracellular HMGB1 Impairs Macrophage-Mediated Efferocytosis by Suppressing the Rab43-Controlled Cell Surface Transport of CD91. Front Immunol 2022; 13:767630. [PMID: 35392093 PMCID: PMC8980266 DOI: 10.3389/fimmu.2022.767630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein can impair phagocyte function by suppressing the macrophage-mediated clearance of apoptotic cells (ACs), thereby delaying inflammation resolution in the lungs and allowing the progression of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the precise mechanism underlying this HMGB1-mediated inhibition of efferocytosis remains unknown. The aim of this study was to determine the effect of HMGB1 on macrophage-mediated efferocytosis. We discovered that HMGB1 prevented efferocytosis by bone marrow-derived macrophages (BMDMs) and suppressed the expression of Ras-related GTP-binding protein 43 (Rab43), a member of the Ras-associated binding (Rab) family. The downregulation of Rab43 expression resulted in impaired clearance of apoptotic thymocytes by BMDMs. Subsequent analysis of HMGB1-treated and Rab43-deficient BMDMs revealed the inhibited transport of cluster of differentiation 91 (CD91), a phagocyte recognition receptor, from the cytoplasm to the cell surface. Notably, Rab43 directly interacted with CD91 to mediate its intercellular trafficking. Furthermore, Rab43 knockout delayed the inflammation resolution and aggravated the lung tissue damage in mice with ALI. Therefore, our results provide evidence that HMGB1 impairs macrophage-mediated efferocytosis and delays inflammation resolution by suppressing the Rab43-regulated anterograde transport of CD91, suggesting that the restoration of Rab43 levels is a promising strategy for attenuating ALI and ARDS in humans.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zhang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jianchun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Binfeng He
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
42
|
Zhou C, Zou Y, Zhang Y, Teng S, Ye K. Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. Int J Mol Sci 2022; 23:ijms23052739. [PMID: 35269881 PMCID: PMC8911323 DOI: 10.3390/ijms23052739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
CCN1 is well studied in terms of its functions in injury repair, cell adhesion survival and apoptosis, bacterial clearance and mediation of inflammation-related pathways, such as the TLR2/4 pathways. However, the role of CCN1 protein and its interaction with TLR2/4 pathways in intestinal epithelial cells was not elucidated after Listeria monocytogenes infection. The results of this study confirm that L. monocytogenes infection induced intestinal inflammation and increased the protein expression of CCN1, TLR2, TLR4 and p38, which followed a similar tendency in the expression of genes related to the TLR2/4 pathways. In addition, organoids infected by L. monocytogenes showed a significant increase in the expression of CCN1 and the activation of TLR2/4 pathways. Furthermore, pre-treatment with CCN1 protein to organoids infected by L. monocytogenes could increase the related genes of TLR2/4 pathways and up-regulate the expression of TNF, and increase the count of pathogens in organoids, which indicates that the interaction between the CCN1 protein and TLR2/4 signaling pathways in intestinal epithelial cells occurred after L. monocytogenes infection. This study will provide a novel insight of the role of CCN1 protein after L. monocytogenes infection in the intestine.
Collapse
|
43
|
Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022; 63:108-118. [PMID: 35039221 PMCID: PMC8741331 DOI: 10.1016/j.cytogfr.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the “cytokine storm” which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Collapse
|
44
|
Zhang Y, Wang Y, Ding J, Liu P. Efferocytosis in multisystem diseases (Review). Mol Med Rep 2022; 25:13. [PMID: 34779503 PMCID: PMC8600411 DOI: 10.3892/mmr.2021.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
45
|
Bi X, Zhou L, Liu Y, Gu J, Mi QS. MicroRNA-146a Deficiency Delays Wound Healing in Normal and Diabetic Mice. Adv Wound Care (New Rochelle) 2022; 11:19-27. [PMID: 33554730 PMCID: PMC9831247 DOI: 10.1089/wound.2020.1165] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: MiRNAs are important regulators of inflammation and wound healing. However, the mechanisms through which miRNAs regulate wound healing under normal and diabetic conditions are poorly understood. We aimed to determine the effects of miR-146a on the pathogenesis of wound healing in normal and streptozotocin (STZ)-induced diabetic mice. Approach: Wild-type (WT) and miR-146a knockout (KO) mice were induced to develop diabetes with STZ. Next, skin and corneal wounds were produced and measured. Percent wound closure and histology were evaluated. Inflammation at wound sites was analyzed using flow cytometry, reverse-transcription PCR, and western blot. Results: Healing of wounded skin was significantly delayed in miR-146a KO compared with WT mice. However, corneal epithelial wound healing did not differ significantly in the mice with normal blood glucose, whereas corneal and skin wound healing was significantly delayed in KO mice with diabetes. Neutrophil infiltration increased in skin wounds of KO compared with normal mice. The potential mechanisms were associated with dysregulated interleukin 1β, tumor necrosis factor alpha (TNF-α), IRAK1 (interleukin-1 receptor-associated kinase 1), TRAF6 (TNF receptor-associated factor 6), and nuclear factor kappa B (NF-κB) signaling induced by miR-146a KO. Innovation: Skin wound healing was delayed in miR-146a KO mice and enhanced inflammatory responses were mediated by the NF-κB signaling pathway. Conclusions: Deficiency in miR-146a delayed skin wound healing by enhancing inflammatory responses in normal and diabetic mice. Therefore, miR-146a may be a potential target for modulation to accelerate skin wound healing.
Collapse
Affiliation(s)
- Xinling Bi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Yanfang Liu
- Wound Care Center of Outpatient Department, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China.,Correspondence: Jun Gu, Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA .
| |
Collapse
|
46
|
Fang L, Chen L, Song M, He J, Zhang L, Li C, Wang Q, Yang W, Sun W, Leng Y, Shi H, Wang S, Gao X, Wang H. Naoxintong accelerates diabetic wound healing by attenuating inflammatory response. PHARMACEUTICAL BIOLOGY 2021; 59:252-261. [PMID: 33684026 PMCID: PMC7946048 DOI: 10.1080/13880209.2021.1877735] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 06/04/2023]
Abstract
CONTEXT Naoxintong (NXT), a prescribed traditional Chinese medicine, widely used in cerebrovascular and cardiovascular diseases, could be effective in diabetic wounds. OBJECTIVE This study evaluates the wound healing activity of NXT by employing an excisional wound splinting model. MATERIALS AND METHODS NXT was dissolved in saline and given daily by gavage. Wounds were induced at the dorsum of non-diabetic (db/+) and diabetic (db/db) mice and treated with saline or 700 mg/kg/d NXT for 16 days. Wound closure was measured every four days. Extracellular matrix (ECM) remodelling, collagen deposition, leukocyte infiltration and expression of Col-3, CK14, CXCL1, CXCL2, MPO, Ly6G, CD68, CCR7, CD206, p-JAK1, p-STAT3 and p-STAT6 was analysed. RESULTS NXT significantly accelerated rate of wound closure increased from 70% to 84%, accompanied by up-regulation of collagen deposition and ECM at days 16 post-injury. Moreover, NXT alleviated neutrophil infiltration, accompanied by down-regulation of CXCL1 and CXCL2 mRNA expression. In addition, NXT markedly augmented neutrophil efferocytosis. In diabetic wounds, the levels of M1 marker gene (CCR7) increased, while M2 marker gene (CD206) decreased, demonstrating a pro-inflammatory shift. Application of NXT increased M2 macrophage phenotype in db/db mice. Mechanistically, NXT treatment increased expression level of p-STAT3 and p-STAT6 at days 3 post-injury, indicating NXT mediated macrophages towards M2 phenotype and alleviated inflammation in diabetic wounds by activation of STAT3 and STAT6. CONCLUSIONS Our study provides evidence that NXT accelerates diabetic wound healing by attenuating inflammatory response, which provides an important basis for use of NXT in the treatment of chronic diabetic wound healing.
Collapse
Affiliation(s)
- Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juan He
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
47
|
Tissue distribution and transcriptional regulation of CCN5 in the heart after myocardial infarction. J Cell Commun Signal 2021; 16:377-395. [PMID: 34854055 PMCID: PMC9411331 DOI: 10.1007/s12079-021-00659-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
CCN5 is a divergent member of the cellular communication network factor (CCN) family in that it lacks the carboxyl terminal cystine knot domain common to the other CCN family members. CCN5 has been reported to antagonize the profibrotic actions of CCN2 and to inhibit myocardial collagen deposition and fibrosis in chronic pressure overload of the heart. However, what mechanisms that regulate CCN5 activity in the heart remain unknown. Recombinant, replication defective adenovirus encoding firefly luciferase under control of the human CCN5 promoter was prepared and used to investigate what mechanisms regulate CCN5 transcription in relevant cells. Tissue distribution of CCN5 in hearts from healthy mice and from mice subjected to myocardial infarction was investigated. Contrary to the profibrotic immediate early gene CCN2, we find that CCN5 is induced in the late proliferation and maturation phases of scar healing. CCN5 was identified principally in endothelial cells, fibroblasts, smooth muscle cells, and macrophages. Our data show that CCN5 gene transcription and protein levels are induced by catecholamines via β2-adrenergic receptors. Myocardial induction of CCN5 was further confirmed in isoproterenol-infused mice. We also find that CCN5 transcription is repressed by TNF-α, an inflammatory mediator highly elevated in early phases of wound healing following myocardial infarction. In conclusion, CCN5 predominates in endothelial cells, fibroblasts, and macrophages of the differentiating scar tissue and its transcription is conversely regulated by β2-adrenergic agonists and TNF-α.
Collapse
|
48
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
49
|
Klingenberg R, Aghlmandi S, Räber L, Akhmedov A, Gencer B, Carballo D, Nanchen D, Bucher HC, Rodondi N, Mach F, Windecker S, Landmesser U, von Eckardstein A, Hamm CW, Lüscher TF, Matter CM. Cysteine-Rich Angiogenic Inducer 61 Improves Prognostic Accuracy of GRACE (Global Registry of Acute Coronary Events) 2.0 Risk Score in Patients With Acute Coronary Syndromes. J Am Heart Assoc 2021; 10:e020488. [PMID: 34622666 PMCID: PMC8751861 DOI: 10.1161/jaha.120.020488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background It remains unclear whether the novel biomarker cysteine‐rich angiogenic inducer 61 (CCN1) adds incremental prognostic value to the GRACE 2.0 (Global Registry of Acute Coronary Events) risk score and biomarkers high‐sensitivity Troponin T, hsCRP (high‐sensitivity C‐reactive protein), and NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) in patients with acute coronary syndromes. Methods and Results Patients referred for coronary angiography with a primary diagnosis of acute coronary syndromes were enrolled in the Special Program University Medicine – Acute Coronary Syndromes and Inflammation cohort. The primary/secondary end points were 30‐day/1‐year all‐cause mortality and the composite of all‐cause mortality or myocardial infarction as used in the GRACE risk score. Associations between biomarkers and outcome were assessed using log‐transformed biomarker values and the GRACE risk score (versions 1.0 and 2.0). The incremental value of CCN1 beyond a reference model was assessed using Harrell’s C‐statistics calculated from a Cox proportional‐hazard model. The P value of the C‐statistics was derived from a likelihood ratio test. Among 2168 patients recruited, 1732 could be analyzed. CCN1 was the strongest single predictor of all‐cause mortality at 30 days (hazard ratio [HR], 1.77 [1.31, 2.40]) and 1 year (HR, 1.81 [1.47, 2.22]). Adding CCN1 alone to the GRACE 2.0 risk score improved C‐statistics for prognostic accuracy of all‐cause mortality at 30 days (0.87–0.88) and 1 year (0.81–0.82) and when combined with high‐sensitivity Troponin T, hsCRP, NT‐proBNP for 30 days (0.87–0.91), and for 1‐year follow‐up (0.81–0.84). CCN1 also increased the prognostic value for the composite of all‐cause mortality or myocardial infarction. Conclusions CCN1 predicts adverse outcomes in patients with acute coronary syndromes adding incremental information to the GRACE risk score, suggesting distinct underlying molecular mechanisms. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT01000701.
Collapse
Affiliation(s)
- Roland Klingenberg
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Department of Cardiology Kerckhoff Heart and Thorax Center Kerckhoff-Klinik Campus of the Justus Liebig University of Giessen Bad Nauheim Germany.,DZHK (German Center for Cardiovascular Research) partner site Rhine-Main Bad Nauheim Germany
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselUniversity of Basel Basel Switzerland
| | - Lorenz Räber
- Department of Cardiology Cardiovascular Center University Hospital Bern Bern Switzerland
| | | | - Baris Gencer
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - David Carballo
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - David Nanchen
- Department of Ambulatory Care and Community Medicine University of Lausanne Lausanne Switzerland
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselUniversity of Basel Basel Switzerland
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM) University of Bern Bern Switzerland.,Department of General Internal Medicine University Hospital Bern Bern Switzerland
| | - François Mach
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - Stephan Windecker
- Department of Cardiology Cardiovascular Center University Hospital Bern Bern Switzerland
| | - Ulf Landmesser
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Department of Cardiology Charité Campus Benjamin-Franklin Berlin Germany
| | | | - Christian W Hamm
- Department of Cardiology Kerckhoff Heart and Thorax Center Kerckhoff-Klinik Campus of the Justus Liebig University of Giessen Bad Nauheim Germany.,DZHK (German Center for Cardiovascular Research) partner site Rhine-Main Bad Nauheim Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology University of Zurich Zurich Switzerland.,Heart Division Imperial College National Heart and Lung Institute and Royal Brompton and Harefield Hospitals London United Kingdom
| | - Christian M Matter
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Zurich Switzerland
| |
Collapse
|
50
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|