1
|
Chernov AS, Telegin GB, Minakov AN, Kazakov VA, Rodionov MV, Palikov VA, Kudriaeva AA, Belogurov AA. Synthetic Amphipathic Helical Peptide L-37pA Ameliorates the Development of Acute Respiratory Distress Syndrome (ARDS) and ARDS-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2024; 25:8384. [PMID: 39125954 PMCID: PMC11312864 DOI: 10.3390/ijms25158384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey N. Minakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC) Named after A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Obninsk 249031, Russia;
| | - Viktor A. Palikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (G.B.T.); (A.N.M.); (V.A.K.); (V.A.P.); (A.A.K.); (A.A.B.J.)
- Department of Biological Chemistry, Russian University of Medicine of the Ministry of Health of the Russian Federation, Moscow 127473, Russia
| |
Collapse
|
2
|
Yaeger MJ, Shaikh SR, Gowdy KM. Making Mountains out of Mole Hills: The Role of CD36 in Oxidized Phospholipid-driven Lung Injury. Am J Respir Cell Mol Biol 2024; 70:3-4. [PMID: 37747355 PMCID: PMC10768831 DOI: 10.1165/rcmb.2023-0312ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
| | - Saame Raza Shaikh
- Gillings School of Global Public Health
- School of Medicine University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | | |
Collapse
|
3
|
Li W, Gonzalez KM, Chung J, Kim M, Lu J. Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 2022; 10:5459-5471. [PMID: 35980230 PMCID: PMC9529904 DOI: 10.1039/d2bm00660j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a chronic and metabolic-related disease that is a serious threat to human health. Currently available diagnostic and therapeutic measures for atherosclerosis lack adequate efficiency which requires promising alternative approaches. Nanotechnology-based nano-delivery systems allow for new perspectives for atherosclerosis therapy. Surface-modified nanoparticles could achieve highly effective therapeutic effects by binding to specific receptors that are abnormally overexpressed in atherosclerosis, with less adverse effects on non-target tissues. The main purpose of this review is to summarize the research progress and design ideas to target atherosclerosis using a variety of ligand-modified nanoparticle systems, discuss the shortcomings of current vector design, and look at future development directions. We hope that this review will provide novel research strategies for the design and development of nanotherapeutics targeting atherosclerosis.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| |
Collapse
|
4
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
5
|
Zhou M, Li R, Venkat P, Qian Y, Chopp M, Zacharek A, Landschoot-Ward J, Powell B, Jiang Q, Cui X. Post-Stroke Administration of L-4F Promotes Neurovascular and White Matter Remodeling in Type-2 Diabetic Stroke Mice. Front Neurol 2022; 13:863934. [PMID: 35572941 PMCID: PMC9100936 DOI: 10.3389/fneur.2022.863934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic stroke with worse post-stroke neurovascular and white matter (WM) prognosis than the non-diabetic population. In the central nervous system, the ATP-binding cassette transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in maintaining neurovascular stability and WM integrity. Our previous study shows that L-4F, an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective effects via alleviating neurovascular and WM impairments in the brain of db/db-T2DM stroke mice. To further investigate whether L-4F has neurorestorative benefits in the ischemic brain after stroke in T2DM and elucidate the underlying molecular mechanisms, we subjected middle-aged, brain-ABCA1 deficient (ABCA1-B/-B), and ABCA1-floxed (ABCA1fl/fl) T2DM control mice to distal middle cerebral artery occlusion. L-4F (16 mg/kg, subcutaneous) treatment was initiated 24 h after stroke and administered once daily for 21 days. Treatment of T2DM-stroke with L-4F improved neurological functional outcome, and decreased hemorrhage, mortality, and BBB leakage identified by decreased albumin infiltration and increased tight-junction and astrocyte end-feet densities, increased cerebral arteriole diameter and smooth muscle cell number, and increased WM density and oligodendrogenesis in the ischemic brain in both ABCA1-B/-B and ABCA1fl/fl T2DM-stroke mice compared with vehicle-control mice, respectively (p < 0.05, n = 9 or 21/group). The L-4F treatment reduced macrophage infiltration and neuroinflammation identified by decreases in ED-1, monocyte chemoattractant protein-1 (MCP-1), and toll-like receptor 4 (TLR4) expression, and increases in anti-inflammatory factor Insulin-like growth factor 1 (IGF-1) and its receptor IGF-1 receptor β (IGF-1Rβ) in the ischemic brain (p < 0.05, n = 6/group). These results suggest that post-stroke administration of L-4F may provide a restorative strategy for T2DM-stroke by promoting neurovascular and WM remodeling. Reducing neuroinflammation in the injured brain may contribute at least partially to the restorative effects of L-4F independent of the ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
6
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
7
|
Daskou M, Mu W, Sharma M, Vasilopoulos H, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathog 2022; 18:e1010160. [PMID: 34995311 PMCID: PMC8740974 DOI: 10.1371/journal.ppat.1010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hariclea Vasilopoulos
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rachel Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Athanasios Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shubhendu Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan M. Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Theodoros K, Sharma M, Anton P, Hugo C, Ellen O, Hultgren NW, Ritou E, Williams DS, Orian S S, Srinivasa T R. The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence 2021; 12:2214-2227. [PMID: 34494942 PMCID: PMC8437485 DOI: 10.1080/21505594.2021.1964329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.
Collapse
Affiliation(s)
- Kelesidis Theodoros
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Petcherski Anton
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cristelle Hugo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - O’Connor Ellen
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
| | - Nan W Hultgren
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Eleni Ritou
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shirihai Orian S
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Reddy Srinivasa T
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Su X, Ramírez-Escudero M, Sun F, van den Dikkenberg JB, van Steenbergen MJ, Pieters RJ, Janssen BJC, van Hasselt PM, Hennink WE, van Nostrum CF. Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Pharmaceutics 2021; 13:2022. [PMID: 34959304 PMCID: PMC8703698 DOI: 10.3390/pharmaceutics13122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.
Collapse
Affiliation(s)
- Xiangjie Su
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mercedes Ramírez-Escudero
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Joep B. van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mies J. van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Bert J. C. Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Peter M. van Hasselt
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| |
Collapse
|
10
|
Xia Y, Cheng M, Hu Y, Li M, Shen L, Ji X, Cui X, Liu X, Wang W, Gao H. Combined transcriptomic and lipidomic analysis of D-4F ameliorating bleomycin-induced pulmonary fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1424. [PMID: 34733976 PMCID: PMC8506780 DOI: 10.21037/atm-21-3777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease that leads to respiratory failure, and for which there is no effective treatment. Apolipoprotein A-1 (ApoA-1) has been reported to ameliorate the bleomycin (BLM)-induced IPF model. Methods To examine the function of D-4F, an ApoA-1 mimetic polypeptide, in IPF, we used an in-vivo BLM-induced model. We assigned mice into the following 3 groups: the Blank Group (BLK Group), the Bleomycin Treatment Group (Model Group), and the D-4F Interference Group (Inter Group). The BLM-induced fibrosis was examined by hematoxylin and eosin, Masson’s trichrome (M-T) staining and immunohistochemical staining. An untargeted lipidomic and transcriptomic analysis were used to examine the function of D-4F. Results There were 35 differentially altered lipids (DALs) in the BLK, Model and Inter Groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that glycerophospholipid metabolism was the most highly enriched of the 35 DALs. There were 99 differentially expressed genes (DEGs) in the BLK, Model and Inter Groups. The enriched KEGG pathway analysis showed that the mitogen-activated protein kinase (MAPK) pathway was 1 of the top 10 pathways. The results of the untargeted lipidomic and transcriptomic analysis showed that phospholipase A2 group 4c (Pla2g4c) was a crucial gene in both the MAPK pathway and glycerophospholipid metabolism. Pla2g4c was increased in the Model Group but decreased in the Inter Group. Conclusions It may be that D-4F prevented the BLM-induced pulmonary fibrosis model by inhibiting the expression of pla2g4c. Our findings suggest that D-4F may be a potential treatment of IPF.
Collapse
Affiliation(s)
- Yong Xia
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Yanyan Hu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Man Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Lin Shen
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Xiang Ji
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Xiaopei Cui
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Xiangju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Weiling Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| |
Collapse
|
11
|
Daskou M, Sharma M, Mu W, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Papesh J, Meriwether D, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics favorably impact cyclooxygenase 2 and bioactive lipids that may contribute to cardiometabolic syndrome in chronic treated HIV. Metabolism 2021; 124:154888. [PMID: 34509494 PMCID: PMC8802211 DOI: 10.1016/j.metabol.2021.154888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigated whether apolipoprotein A-I (apoA-I) mimetic peptides 4F and 6F can be a novel therapeutic strategy to reduce blood and gut bioactive lipids, proinflammatory effects of endotoxin (LPS) and aberrant activation of cyclooxygenase 2 (COX-2) as instigators of increased risk for cardiometabolic disease in chronic treated HIV. METHODS We used two humanized murine models of chronic treated HIV infection (n = 109 mice) and gut explants from HIV infected (n = 10) persons to determine whether Tg6F and 4F attenuate in vivo and ex vivo increased blood and gut bioactive lipids (measured by mass spectrometry) and intestinal protein levels of COX-2 (measured by immunoassays) in chronic treated HIV. RESULTS In these models of HIV, when compared to HIV-1 infected mice on antiretroviral therapy (ART) alone, oral Tg6F in combination with ART attenuated increases in plasma and gut bioactive lipids (and particularly COX lipids) and intestinal COX-2. 4F and Tg6F also reduced ex vivo production of COX-2 protein and associated secretion of bioactive lipids in gut explants from HIV-1 infected persons treated with LPS. CONCLUSION ApoA-I mimetics favorably impact the proinflammatory effects of LPS, COX-2 and production of bioactive lipids that collectively drive gut and systemic inflammation in chronic treated HIV. Given prior experimental evidence that the proinflammatory effects of LPS, COX-2 and gut dysfunction contribute to cardiometabolic syndrome in chronic HIV, apoA-I mimetic peptides may be a novel therapy to treat cardiometabolic syndrome in chronic HIV.
Collapse
Affiliation(s)
- M Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - W Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - E Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - V Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - P Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - V Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J Papesh
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - D Meriwether
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S G Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - S T Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA, USA
| | - T Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
13
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|
14
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
15
|
Song X, Shi Y, You J, Wang Z, Xie L, Zhang C, Xiong J. D-4F, an apolipoprotein A-I mimetic, suppresses IL-4 induced macrophage alternative activation and pro-fibrotic TGF-β1 expression. PHARMACEUTICAL BIOLOGY 2019; 57:470-476. [PMID: 31335245 PMCID: PMC6691790 DOI: 10.1080/13880209.2019.1640747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Context: We reported that D-4F, an apolipoprotein A-I (Apo A-I) mimetic polypeptide with 18 d-amino acids, suppressed IL-4 induced macrophage alternative activation and TGF-β1 expression in phorbol 12-myristate 13-acetate (PMA) treated human acute monocytic leukemia cells (THP-1). Objective: Macrophage alternative activation, TGF-β1 and epithelial-mesenchymal transition (EMT) are intensively involved in pulmonary fibrosis. Recent studies demonstrated that Apo A-I resolved established pulmonary fibrotic nodules, and D-4F inhibited TGF-β1 induced EMT in alveolar cells. Therefore, this study evaluated the effects of D-4F on IL-4 induced macrophage alternative activation and TGF-β1 expression. Materials and methods: THP-1 cells were simulated with PMA (100 ng/mL) for 48 h and treated with medium control, IL-4 (20 ng/mL) alone, or IL-4 (20 ng/mL) in the presence of D-4F (1, 5, and 10 μg/mL) for 24 and 48 h. Flow cytometry, RT-PCR and ELISA evaluations were performed to investigate the subsequent effects of D-4F. Results: Compared to stimulation with IL-4 alone, 1, 5, and 10 μg/mL of D-4F reduced alternative activation by 45.38%, 59.98%, and 60.10%, increased TNF-α mRNA levels by 8%, 11%, and 16% and decreased TGF-β1 mRNA levels by 21%, 37%, and 39%, respectively (all p ≤ 0.05). In addition, TNF-α protein levels increased from 388 pg/mL (IL-4 alone) to 429, 475, and 487 pg/mL (1, 5, and 10 μg/mL D-4F), while TGF-β1 protein levels dropped from 27.01 pg/mL (IL-4 alone) to 19.15, 12.27, and 10.47 pg/mL (1, 5, and 10 μg/mL D-4F). Conclusion: D-4F suppressed IL-4 induced macrophage alternative activation and pro-fibrotic TGF-β1 expression.
Collapse
Affiliation(s)
- Xuejiao Song
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu, China
| | - Ying Shi
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu, China
| | - Jia You
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu, China
| | - Zhengshu Wang
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu, China
| | - Linshen Xie
- Research Center for Occupational Respiratory Diseases, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chaoxiong Zhang
- Research Center for Occupational Respiratory Diseases, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2019; 372:193-204. [PMID: 31776208 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
17
|
Wang R, Zhang C, Li J, Huang J, Opoku-Damoah Y, Sun B, Zhou J, Di L, Ding Y. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics. Biomaterials 2019; 221:119413. [DOI: 10.1016/j.biomaterials.2019.119413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/03/2023]
|
18
|
Wang X, Li R, Zacharek A, Landschoot-Ward J, Chopp M, Chen J, Cui X. ApoA-I Mimetic Peptide Reduces Vascular and White Matter Damage After Stroke in Type-2 Diabetic Mice. Front Neurosci 2019; 13:1127. [PMID: 31708728 PMCID: PMC6823666 DOI: 10.3389/fnins.2019.01127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetes leads to an elevated risk of stroke and worse functional outcome compared to the general population. We investigate whether L-4F, an economical ApoA-I mimetic peptide, reduces neurovascular and white-matter damage in db/db type-2 diabetic (T2DM) stroke mice. L-4F (16 mg/kg, subcutaneously administered initially 2 h after stroke and subsequently daily for 4 days) reduced hemorrhagic transformation, decreased infarct-volume and mortality, and treated mice exhibited increased cerebral arteriole diameter and smooth muscle cell number, decreased blood-brain barrier leakage and white-matter damage in the ischemic brain as well as improved neurological functional outcome after stroke compared with vehicle-control T2DM mice (p < 0.05, n = 11/group). Moreover, administration of L-4F mitigated macrophage infiltration, and reduced the level of proinflammatory mediators tumor necrosis factor alpha (TNFα), high-mobility group box-1 (HMGB-1)/advanced glycation end-product receptor (RAGE) and plasminogen activator inhibitor-1 (PAI-1) in the ischemic brain in T2DM mice (p < 0.05, n = 6/group). In vitro, L-4F treatment did not increase capillary-like tube formation in mouse-brain endothelial cells, but increased primary artery explant cell migration derived from C57BL/6-aorta 1 day after middle cerebral artery occlusion (MCAo), and enhanced neurite-outgrowth after 2 h of oxygen-glucose deprivation and axonal-outgrowth in primary cortical neurons derived from the C57BL/6-embryos subjected to high-glucose condition. This study suggests that early treatment with L-4F provides a potential strategy to reduce neuroinflammation and vascular and white-matter damage in the T2DM stroke population.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
19
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
20
|
Rudolf M, Curcio CA, Schlötzer-Schrehardt U, Sefat AMM, Tura A, Aherrahrou Z, Brinkmann M, Grisanti S, Miura Y, Ranjbar M. Apolipoprotein A-I Mimetic Peptide L-4F Removes Bruch's Membrane Lipids in Aged Nonhuman Primates. ACTA ACUST UNITED AC 2019; 60:461-472. [DOI: 10.1167/iovs.18-25786] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Martin Rudolf
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Armin Mir Mohi Sefat
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Max Brinkmann
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Laboratory for Angiogenesis & Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| | | | - Yoko Miura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Translational AMD Research Group Lübeck, University of Lübeck, Lübeck, Germany
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
- Laboratory for Angiogenesis & Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
22
|
Tsujita M, Wolska A, Gutmann DAP, Remaley AT. Reconstituted Discoidal High-Density Lipoproteins: Bioinspired Nanodiscs with Many Unexpected Applications. Curr Atheroscler Rep 2018; 20:59. [PMID: 30397748 DOI: 10.1007/s11883-018-0759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Summarize the initial discovery of discoidal high-density lipoprotein (HDL) in human plasma and review more recent innovations that span the use of reconstituted nanodisc HDL for membrane protein characterization to its use as a drug carrier and a novel therapeutic agent for cardiovascular disease. RECENT FINDINGS Using a wide variety of biophysical techniques, the structure and composition of endogenous discoidal HDL have now largely been solved. This has led to the development of new methods for the in vitro reconstitution of nanodisc HDL, which have proven to have a wide variety of biomedical applications. Nanodisc HDL has been used as a platform for mimicking the plasma membrane for the reconstitution and investigation of the structures of several plasma membrane proteins, such as cytochrome P450s and ABC transporters. Nanodisc HDL has also been designed as drug carriers to transport amphipathic, as well as hydrophobic small molecules, and has potential therapeutic applications for several diseases. Finally, nanodisc HDL itself like native discoidal HDL can mediate cholesterol efflux from cells and are currently being tested in late-stage clinical trials for cardiovascular disease. The discovery of the characterization of native discoidal HDL has inspired a new field of synthetic nanodisc HDL, which has offered a growing number of unanticipated biomedical applications.
Collapse
Affiliation(s)
- Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Gutiérrez-Vidal R, Delgado-Coello B, Méndez-Acevedo KM, Calixto-Tlacomulco S, Damián-Zamacona S, Mas-Oliva J. Therapeutic Intranasal Vaccine HB-ATV-8 Prevents Atherogenesis and Non-alcoholic Fatty Liver Disease in a Pig Model of Atherosclerosis. Arch Med Res 2018; 49:456-470. [DOI: 10.1016/j.arcmed.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
|
24
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
25
|
Ning R, Venkat P, Chopp M, Zacharek A, Yan T, Cui X, Seyfried D, Chen J. D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget 2017; 8:95481-95494. [PMID: 29221142 PMCID: PMC5707036 DOI: 10.18632/oncotarget.20751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 01/28/2023] Open
Abstract
D-4F is an apolipoprotein-A1 mimetic peptide that promotes anti-inflammatory effects. MicroRNA-124 is the most abundant brain-specific microRNA and has anti-inflammatory effects. In this study, we investigated the therapeutic efficacy and mechanisms of D-4F treatment of stroke in type one diabetes mellitus (T1DM) rats. Male Wistar rats were induced with T1DM, subjected to embolic middle cerebral artery occlusion and treated with PBS or D-4F (1 mg/kg i.p.) at 2, 24 and 48 hours after stroke (n=8/group). A battery of function tests, brain blood barrier (BBB) integrity, white matter changes and microRNA expression were evaluated in vivo and in vitro. D-4F treatment in T1DM-stroke rats significantly improves functional outcome, decreases BBB leakage, increases tight junction protein expression, decreases white matter damage and inflammatory factor expression, while increasing anti-inflammatory M2 macrophage polarization in the ischemic brain. D-4F significantly increases microRNA-124a expression, and decreases matrix metalloproteinase-9, tumor necrosis factor-α and toll-like receptor-4 gene expression in the ischemic brain, and in primary cortical neuronal and microglial cultures. Inhibition of microRNA-124 in cultured primary cortical neurons and microglia attenuates D-4F induced anti-inflammatory effects and M2 macrophage polarization. D-4F treatment of T1DM-stroke increases microRNA-124 expression, promotes anti-inflammatory effects and M2 macrophage polarization, which may contribute to D-4F-induced improvement in neurological function, and BBB and white matter integrity.
Collapse
Affiliation(s)
- Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, First Hospital Harbin, Harbin, China
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Tao Yan
- Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Don Seyfried
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
26
|
Rudolf M, Mir Mohi Sefat A, Miura Y, Tura A, Raasch W, Ranjbar M, Grisanti S, Aherrahrou Z, Wagner A, Messinger JD, Garber DW, Anantharamaiah GM, Curcio CA. ApoA-I Mimetic Peptide 4F Reduces Age-Related Lipid Deposition in Murine Bruch's Membrane and Causes Its Structural Remodeling. Curr Eye Res 2017; 43:135-146. [PMID: 28972410 DOI: 10.1080/02713683.2017.1370118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Accumulation of lipoprotein-derived lipids including esterified and unesterified cholesterol in Bruch's membrane of human eyes is a major age-related change involved in initiating and sustaining soft drusen in age-related macular degeneration (AMD). The apolipoprotein (apo) A-I mimetic peptide 4F is a small anti-inflammatory and anti-atherogenic agent, and potent modifier of plasma membranes. We evaluated the effect of intravitreally-injected 4F on murine Bruch's membrane. METHODS We tested single intravitreal injections of 4F doses (0.6 µg, 1.2 µg, 2.4 µg, and placebo scrambled peptide) in ApoEnull mice ≥10 months of age. After 30 days, mice were euthanized. Eyes were processed for either direct immunofluorescence detection of esterified cholesterol (EC) in Bruch's membrane whole mounts via a perfringolysin O-based marker linked to green fluorescent protein or by transmission electron microscopic visualization of Bruch's membrane integrity. Fluorescein isothiocyanate-conjugated 4F was traced after injection. RESULTS All injected eyes showed a dose-dependent reduction of Bruch's membrane EC with a concomitant ultrastructural improvement compared to placebo treated eyes. At a 2.4 µg dose of 4F, EC was reduced on average by ~60% and Bruch's membrane returned to a regular pentalaminar structure and thickness. Tracer studies confirmed that injected 4F reached intraocular targets. CONCLUSION We demonstrated a highly effective pharmacological reduction of EC and restoration of Bruch's membrane ultrastructure. The apoA-I mimetic peptide 4F is a novel way to treat a critical AMD disease process and thus represents a new candidate for treating the underlying cause of AMD.
Collapse
Affiliation(s)
- Martin Rudolf
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | | | - Yoko Miura
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Aysegül Tura
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Walter Raasch
- b Department of Experimental and Clinical Pharmacology and Toxicology , University of Lübeck , Lübeck , Germany
| | - Mahdy Ranjbar
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany.,c Laboratory for Angiogenesis & Ocular Cell Transplantation , University of Lübeck , Lübeck , Germany
| | | | - Zouhair Aherrahrou
- d Institute of Integrative and Experimental Genomics , University of Lübeck , Lübeck , Germany
| | - Anna Wagner
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Jeffrey D Messinger
- e Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - David W Garber
- f Atherosclerosis Research Unit , University of Alabama at Birmingham , Birmingham , AL , USA
| | - G M Anantharamaiah
- f Atherosclerosis Research Unit , University of Alabama at Birmingham , Birmingham , AL , USA.,g Department of Medicine, Biochemistry and Molecular Genetics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Christine A Curcio
- e Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
27
|
Mohamad H, Rosmiati, Muhammad TST, Andriani Y, Bakar K, Ismail N, Saidin J, Latip J, Musa N, Parenrengi A. Potential Secondary Metabolites from Marine Sponge Aaptos aaptosfor Atherosclerosis and Vibriosis Treatments. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Natural products play a crucial role in drug discovery. In the last decade, the advent of marine natural product research has produced a remarkable number of compounds, particularly those isolated from marine sponges, with a broad range of activities for the treatment of human and animal diseases. In this study, five known alkaloids namely aaptamine (1), 9-demethylaaptamine (2), 4- N-methylaaptamine (3), 9-methoxyaaptamine (4), 9-demethyloxyaaptamine (5), an uncommon amide in sponge, 4-hydroxybenzamide (6) and 3 β,5α-cholesterol (7) were isolated from the butanol extract of Aaptos aaptos (Schmidt, 1864) by bioactivity-guided isolation. Their structures were determined based on a detailed analysis of their 1D and 2D spectroscopic NMR and EIMS spectral data as well as comparison with literature data. Cytotoxic activity and anti-atherosclerotic property of the compounds were determined based on their ability to increase the transcriptional activity of SRB1 promoter and PPRE in human liver HepG2 cell line. The results showed that compounds 4 and 7 exhibited cytotoxic effects and compounds 1–4 and 7 increased the transcriptional activity of SRB1 promoter and PPRE. This suggests that compounds isolated from A. aaptos may have potential as anti-cancer agents and to reduce the progression of atherosclerosis. In addition, the compounds 1–4 displayed antibacterial activity against shrimp pathogenic bacteria, Vibrio harveyi and Vibrio sp. This suggests that the compounds have potential as vibriosis treatment.
Collapse
Affiliation(s)
- Habsah Mohamad
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Rosmiati
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
- Research Institute for Coastal Aquaculture (RICA) Jl. Makmur Dg. Sitakka No. 129 Maros 90512. Indonesia
| | | | - Yosie Andriani
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Kamariah Bakar
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Jasnizat Saidin
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
- School of Marine & Environmental Sciences, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor Darul Ehsan, Malaysia
| | - Najiah Musa
- School of Fisheries Sciences and Aquaculture, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Andi Parenrengi
- Research Institute for Coastal Aquaculture (RICA) Jl. Makmur Dg. Sitakka No. 129 Maros 90512. Indonesia
| |
Collapse
|
28
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
You J, Wang J, Xie L, Zhu C, Xiong J. D-4F, an apolipoprotein A-I mimetic, inhibits TGF-β1 induced epithelial-mesenchymal transition in human alveolar epithelial cell. ACTA ACUST UNITED AC 2016; 68:533-541. [PMID: 27495007 DOI: 10.1016/j.etp.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/15/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidences support that transforming growth factor β1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) participates in the pathogenesis of pulmonary fibrosis and asthmatic airway remodeling. Recent studies demonstrated that apolipoprotein A-I (Apo A-I) is the only known substance that can resolve established pulmonary fibrotic nodules, and Apo A-I mimetic D-4F (a synthetic polypeptide consisting of 18 amino acids) plays an inhibitory role in murine asthmatic model. However, cellular mechanisms for such therapeutic effects of Apo A-I and D-4F remain to be elucidated. This study evaluated the effects of D-4F on TGF-β1 induced EMT in human type II alveolar epithelial cell line A549. A549 cells treated with 10ng/ml of TGF-β1 manifested distinct EMT, including fibroblastic morphological changes, down-regulation of epithelial marker E-cadherin and up-regulation of mesenchymal marker vimentin. These EMT related changes were all inhibited by D-4F in a concentration dependent manner. Transcriptional investigation demonstrated clearly that D-4F dose-dependently compensated for the reduced E-cadherin mRNA level and the increased vimentin mRNA level in TGF-β1 treated A549 cells. Translational analysis revealed that D-4F significantly reversed the TGF-β1 induced changes of E-cadherin and vimentin levels. These results suggested that D-4F inhibits TGF-β1 induced EMT in human alveolar epithelial cell. Given the functional similarities between D-4F and Apo A-I, it is speculated that D-4F and Apo A-I are able to exert possible anti-fibrotic and anti-asthmatic effects via inhibiting alveolar EMT, and D-4F may possess beneficial clinical potential for patients suffering from pulmonary fibrosis and asthma.
Collapse
Affiliation(s)
- Jia You
- Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, 610041, China; Research Center for Occupational Respiratory Diseases, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Jintao Wang
- Department of Environmental and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Linshen Xie
- No. 4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengwen Zhu
- Department of Environmental and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Jingyuan Xiong
- Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, 610041, China; Research Center for Occupational Respiratory Diseases, West China School of Public Health, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Bocharov AV, Wu T, Baranova IN, Birukova AA, Sviridov D, Vishnyakova TG, Remaley AT, Eggerman TL, Patterson AP, Birukov KG. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:611-9. [PMID: 27316682 DOI: 10.4049/jimmunol.1401028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.
Collapse
Affiliation(s)
- Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, Bethesda, MD 20892;
| | - Tinghuai Wu
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Anna A Birukova
- Lung Injury Center, The University of Chicago, Chicago, IL 60637
| | - Denis Sviridov
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
31
|
Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM, Shechter I, Fogelman AM, Reddy ST. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 2016; 57:1175-93. [PMID: 27199144 DOI: 10.1194/jlr.m067025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/28/2023] Open
Abstract
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol.
Collapse
Affiliation(s)
- David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA
| | - Alan Wagner
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Izumi Kaji
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin J Williams
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Spencer Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Carmen Volpe
- Division of Laboratory Animal Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven J Bensinger
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ishaiahu Shechter
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Abstract
Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented.
Collapse
Affiliation(s)
- Eun Ji Chung
- University of Southern California, Los Angeles 90089-1111, CA, USA
| |
Collapse
|
33
|
Cui X, Chopp M, Zacharek A, Cui C, Yan T, Ning R, Chen J. D-4F Decreases White Matter Damage After Stroke in Mice. Stroke 2015; 47:214-20. [PMID: 26604250 DOI: 10.1161/strokeaha.115.011046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Stroke-induced neuroinflammation and white matter damage are associated with neurological deficits. Whether D-4F, an apolipoprotein A-I mimetic peptide, treatment of stroke decreases neuroinflammation and white matter damage and improves functional outcome has not been investigated. METHODS Adult male C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (MCAo) and were orally administered saline as a vehicle control and different doses of D-4F (2, 4, 8, 16, or 32 mg/kg) starting at 2 h after MCAo and daily until euthanized at 7 days after MCAo. D-4F treatment did not alter the blood levels of high-density lipoprotein, total cholesterol, triglyceride, blood-brain barrier leakage, and infarction volume compared with control group. RESULTS D-4F (16 mg/kg) treatment of stroke significantly improved functional outcome, increased the white matter density and the number of oligodendrocyte progenitor cells in the ischemic boundary zone of the ipsilateral striatum, and increased myelin basic protein, insulin-like growth factor-1 (IGF1), but decreased inflammatory factor Toll-like receptor-4 and tumor necrosis factor-α expression in the ischemic brain 7 days after MCAo (P<0.05, n=11/group). The neurite/axonal outgrowth in primary cultured neurons was significantly increased when treated with D-4F (100 ng/mL) and IGF1 (100 ng/mL) compared with the nontreatment control. Inhibition of IGF1 significantly attenuated D-4F or IGF1 treatment-induced axonal outgrowth. D-4F-treatment did not increase oligodendrocyte-progenitor cell proliferation but decreased oligodendrocyte-progenitor cell death. CONCLUSIONS D-4F treatment initiated 2 h after MCAo decreases neuroinflammation and white matter damage and improves functional outcome after stroke. D-4F-induced increase in IGF1 may contribute to D-4F-induced neurite/axonal outgrowth after stroke.
Collapse
Affiliation(s)
- Xu Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Chengcheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Tao Yan
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Ruizhuo Ning
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (X.C., M.C., A.Z., C.C., T.Y., R.N., J.C.); and Department of Physics, Oakland University, Rochester, MI (M.C.).
| |
Collapse
|
34
|
Lashine ESM, Haikal AF, Kul MEA, Nasrallah LA, Naglah AM. Synthesis and Biological Evaluation of the Anti-Inflammatory Activity for some Novel Oxpholipin-11D Analogues. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.705.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene 2015; 35:2496-505. [PMID: 26279300 DOI: 10.1038/onc.2015.307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 12/27/2022]
Abstract
In both humans with long-standing ulcerative colitis and mouse models of colitis-associated carcinogenesis (CAC), tumors develop predominantly in the distal part of the large intestine but the biological basis of this intriguing pathology remains unknown. Herein we report intrinsic differences in gene expression between proximal and distal colon in the mouse, which are augmented during dextran sodium sulfate (DSS)/azoxymethane (AOM)-induced CAC. Functional enrichment of differentially expressed genes identified discrete biological pathways operating in proximal vs distal intestine and revealed a cluster of genes involved in lipid metabolism to be associated with the disease-resistant proximal colon. Guided by this finding, we have further interrogated the expression and function of one of these genes, apolipoprotein A-I (ApoA-I), a major component of high-density lipoprotein. We show that ApoA-I is expressed at higher levels in the proximal compared with the distal part of the colon and its ablation in mice results in exaggerated DSS-induced colitis and disruption of epithelial architecture in larger areas of the large intestine. Conversely, treatment with an ApoA-I mimetic peptide ameliorated the phenotypic, histopathological and inflammatory manifestations of the disease. Genetic interference with ApoA-I levels in vivo impacted on the number, size and distribution of AOM/DSS-induced colon tumors. Mechanistically, ApoA-I was found to modulate signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB activation in response to the bacterial product lipopolysaccharide with concomitant impairment in the production of the pathogenic cytokine interleukin-6. Collectively, these data demonstrate a novel protective role for ApoA-I in colitis and CAC and unravel an unprecedented link between lipid metabolic processes and intestinal pathologies.
Collapse
|
36
|
Nguyen SD, Javanainen M, Rissanen S, Zhao H, Huusko J, Kivelä AM, Ylä-Herttuala S, Navab M, Fogelman AM, Vattulainen I, Kovanen PT, Öörni K. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. J Lipid Res 2015; 56:1206-21. [PMID: 25861792 DOI: 10.1194/jlr.m059485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 12/23/2022] Open
Abstract
Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.
Collapse
Affiliation(s)
- Su Duy Nguyen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Sami Rissanen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annukka M Kivelä
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Maranhão RC, Tavares ER. Advances in non-invasive drug delivery for atherosclerotic heart disease. Expert Opin Drug Deliv 2015; 12:1135-47. [DOI: 10.1517/17425247.2015.999663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
|
39
|
von Eckardstein A. Implications of torcetrapib failure for the future of HDL therapy: is HDL-cholesterol the right target? Expert Rev Cardiovasc Ther 2014; 8:345-58. [DOI: 10.1586/erc.10.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Elshourbagy NA, Meyers HV, Abdel-Meguid SS. Cholesterol: the good, the bad, and the ugly - therapeutic targets for the treatment of dyslipidemia. Med Princ Pract 2013; 23:99-111. [PMID: 24334831 PMCID: PMC5586853 DOI: 10.1159/000356856] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/27/2013] [Indexed: 01/06/2023] Open
Abstract
Maintaining cholesterol and triglyceride (TG) levels within healthy limits is critical for decreasing the risk of heart disease. Dyslipidemia refers to the abnormal levels of lipids in the blood, including low high-density lipoprotein cholesterol (HDL-C), also known as good cholesterol, high low-density lipoprotein cholesterol (LDL-C), also known as bad cholesterol, and/or high TG levels that contribute to the development and progression of atherosclerosis. In this article we reviewed some of the current therapeutic targets for the treatment of dyslipidemia, with a primary focus on endothelial lipase and lecithin cholesterol acyl transferase for raising HDL-C, and the proprotein convertase subtilisin-like kexin type 9 (PCSK9), microsomal triglyceride transfer protein, and the messenger RNA of apolipoprotein B for lowering LDL-C. In addition, we reviewed the role of apolipoprotein AI (apoAI) in raising HDL-C, where we discuss three apoAI-based drugs under development. These are its mutated dimer (apoAI-Milano), a complex with phospholipids, and a mimetic peptide. Atherosclerosis, mainly because of dyslipidemia, is a leading cause of cardiovascular disease. Regarding the title of this article, the 'good' refers to HDL-C, the 'bad' refers to LDL-C, and the 'ugly' refers to atherosclerosis.
Collapse
|
41
|
High-density lipoprotein in uremic patients: metabolism, impairment, and therapy. Int Urol Nephrol 2013; 46:27-39. [PMID: 23443874 DOI: 10.1007/s11255-012-0366-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Several studies have shown that HDL has altered antioxidant and anti-inflammatory effects in chronic uremia, either by the reduction in its antioxidant enzymes or by the impairment of their activity. Systemic oxidative stress, which is highly prevalent in chronic kidney disease (CKD) patients, has been shown to decrease antioxidant and anti-inflammatory effects of HDL and even transform it into a pro-oxidant and pro-inflammatory agent. For this reason, we believe that the propensity for accelerated cardiovascular disease in CKD is facilitated by a few key features of this disease, namely, oxidative stress, inflammation, hypertension, and disorders of lipid metabolism. In a nutshell, oxidative stress and inflammation enhance atherosclerosis leading to increased cardiovascular mortality and morbidity in this population. In this detailed review, we highlight the current knowledge on HDL dysfunction and impairment in chronic kidney disease as well as the available therapy.
Collapse
|
42
|
Sun N, Funke SA, Willbold D. A survey of peptides with effective therapeutic potential in Alzheimer's disease rodent models or in human clinical studies. Mini Rev Med Chem 2012; 12:388-98. [PMID: 22303971 PMCID: PMC3426789 DOI: 10.2174/138955712800493942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia. Today, only palliative therapies are available. The pathological hallmarks of AD are the presence of neurofibrillary tangles and amyloid plaques, mainly composed of the amyloid-β peptide (Aβ), in the brains of the patients. Several lines of evidence suggest that the increased production and/or decreased cleavage of Aβ and subsequent accumulation of Aβ oligomers and aggregates play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. A wide range of Aβ binding peptides were investigated to date for therapeutic purposes. Only very few were shown to be effective in rodent AD models or in clinical studies. Here, we review those peptides and discuss their possible mechanisms of action.
Collapse
Affiliation(s)
- N Sun
- ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|
43
|
White CR, Smythies LE, Crossman DK, Palgunachari MN, Anantharamaiah GM, Datta G. Regulation of pattern recognition receptors by the apolipoprotein A-I mimetic peptide 4F. Arterioscler Thromb Vasc Biol 2012; 32:2631-9. [PMID: 22982462 DOI: 10.1161/atvbaha.112.300167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The apolipoprotein A-I (apoA-I) mimetic peptide 4F favors the differentiation of human monocytes to an anti-inflammatory phenotype and attenuates lipopolysaccharide (LPS)-induced inflammatory responses. We investigated the effects of LPS on the Toll-like receptor (TLR) signaling pathway in 4F-differentiated monocyte-derived macrophages. METHODS AND RESULTS Monocyte-derived macrophages were pretreated with 4F or vehicle for 7 days. 4F downregulated cell-surface TLRs (4, 5, and 6) as determined by flow cytometry. 4F attenuated the LPS-dependent upregulation of genes encoding TLR1, 2, and 6 and genes of the MyD88-dependent (CD14, MyD88, TRAF6, interleukin-1 receptor-associated kinase 4, and inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta) and MyD88-independent (interferon regulatory factor 3, TANK-binding kinase 1, and Toll-interleukin 1 receptor domain-containing adaptor-inducing interferon-β) pathways as determined by microarray analysis and quantitative reverse transcriptase polymerase chain reaction. Functional analyses of monocyte-derived macrophages showed that 4F reduced LPS-dependent TLR4 recycling, phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, activation and translocation of nuclear factor-κB and inhibited the secretion of tumor necrosis factor-α and interleukin-6 induced by LPS or lipoteichoic acid. These changes were associated with depletion of cellular cholesterol and caveolin, components of membrane lipid rafts. CONCLUSIONS These data suggest that disruption of rafts by 4F alters the assembly of TLR-ligand complexes in cell membranes and inhibits proinflammatory gene expression in monocyte-derived macrophages, thus attenuating the responsiveness of macrophages to LPS.
Collapse
Affiliation(s)
- C Roger White
- University of Alabama at Birmingham, Department of Medicine, Boshell Diabetes Bldg, Room 650, 1808 7th Ave S Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
44
|
Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep 2012; 14:1-10. [PMID: 22102062 DOI: 10.1007/s11883-011-0219-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review captures the existence, cause, and treatment challenges of residual cardiovascular risk (CVR) after aggressive low-density lipoprotein cholesterol (LDL-C) reduction. Scientific evidence implicates low high-density lipoprotein cholesterol (HDL-C) and high triglycerides (TG) in the CVR observed after LDL-C lowering. However, the Action to Control Cardiovascular Risk in Diabetes (ACCORD) lipid trial with fenofibrate, the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) study with torcetrapib, and the recently terminated Atherothrombosis Intervention in Metabolic Syndrome with Low HDL Cholesterol/High Triglyceride and Impact on Global Health Outcomes (AIM-HIGH) study with niacin, do not clearly attribute risk reduction value to HDL-C/TG modulation. The optimum approach to long-term lipid-modifying therapies for CVR reduction remains uncertain. Consequently, absolute risk modulation via lifestyle changes remains the centerpiece of a strategy addressing the physiologic drivers of CVR associated with HDL-C/TG, especially in the context of diabetes/metabolic syndrome.
Collapse
|
45
|
Gao F, Chattopadhyay A, Navab M, Grijalva V, Su F, Fogelman AM, Reddy ST, Farias-Eisner R. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model. J Pharmacol Exp Ther 2012; 342:255-62. [PMID: 22537771 DOI: 10.1124/jpet.112.191544] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Our previous results demonstrated that the apolipoprotein A-I (apoA-I) mimetic peptides L-4F and L-5F inhibit vascular endothelial growth factor production and tumor angiogenesis. The present study was designed to test whether apoA-I mimetic peptides inhibit the expression and activity of hypoxia-inducible factor-1α (HIF-1α), which plays a critical role in the production of angiogenic factors and angiogenesis. Immunohistochemistry staining was used to examine the expression of HIF-1α in tumor tissues. Immunoblotting, real-time polymerase chain reaction, immunofluorescence, and luciferase activity assays were used to determine the expression and activity of HIF-1α in human ovarian cancer cell lines. Immunohistochemistry staining demonstrated that L-4F treatment dramatically decreased HIF-1α expression in mouse ovarian tumor tissues. L-4F inhibited the expression and activity of HIF-1α induced by low oxygen concentration, cobalt chloride (CoCl(2), a hypoxia-mimic compound), lysophosphatidic acid, and insulin in two human ovarian cancer cell lines, OV2008 and CAOV-3. L-4F had no effect on the insulin-induced phosphorylation of Akt, but inhibited the activation of extracellular signal-regulated kinase and p70s6 kinase, leading to the inhibition of HIF-1α synthesis. Pretreatment with L-4F dramatically accelerated the proteasome-dependent protein degradation of HIF-1α in both insulin- and CoCl(2)-treated cells. The inhibitory effect of L-4F on HIF-1α expression is in part mediated by the reactive oxygen species-scavenging effect of L-4F. ApoA-I mimetic peptides inhibit the expression and activity of HIF-1α in both in vivo and in vitro models, suggesting the inhibition of HIF-1α may be a critical mechanism responsible for the suppression of tumor progression by apoA-I mimetic peptides.
Collapse
Affiliation(s)
- Feng Gao
- Department of Obstetrics/Gynecology, University of California, 650 Charles E. Young Drive South, CHS 24-127, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedja D, Paolocci N, L'abbate A, Abraham NG. Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J Cell Biochem 2011; 112:2616-26. [PMID: 21598304 DOI: 10.1002/jcb.23188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes is a major health problem associated with adverse cardiovascular outcomes. The apolipoprotein A-I mimetic peptide L-4F is a putative anti-diabetic drug, has antioxidant and anti-inflammatory proprieties and improves endothelial function. In obese mice L-4F increases adiponectin levels, improving insulin sensitivity, and reducing visceral adiposity. We hypothesized that the pleiotropic actions of L-4F can prevent heart and coronary dysfunction in a mouse model of genetically induced Type II diabetes. We treated db/db mice with either L-4F or vehicle for 8 weeks. Trans-thoracic echocardiography was performed; thereafter, isolated hearts were subjected to ischemia/reperfusion (IR). Glucose, insulin, adiponectin, and pro-inflammatory cytokines (IL-1β, TNF-α, MCP-1) were measured in plasma and HO-1, pAMPK, peNOS, iNOS, adiponectin, and superoxide in cardiac tissue. In db/db mice L-4F decreased accumulation of subcutaneous and total fat, and increased insulin sensitivity and adiponectin levels while lowering inflammatory cytokines (P < 0.05). L-4F normalized in vivo left ventricular (LV) function of db/db mice, increasing (P < 0.05) fractional shortening and decreasing (P < 0.05) LV dimensions. In I/R experiments, L-4F prevented coronary microvascular resistance from increasing and LV function from deteriorating in the db/db mice. These changes were associated with increased cardiac expression of HO-1, pAMPK, peNOS, and adiponectin and decreased levels of superoxide and iNOS (P < 0.01). In the present study we showed that L-4F prevented myocardial and coronary functional abnormalities in db/db mice. These effects were associated with stimulation of HO-1 resulting in increased levels of anti-inflammatory, anti-oxidative, and vasodilatatory action through a mechanism involving increased levels of adiponectin, pAMPK, and peNOS.
Collapse
Affiliation(s)
- C Vecoli
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghosh S. Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization. Expert Rev Cardiovasc Ther 2011; 9:329-40. [PMID: 21438812 DOI: 10.1586/erc.11.16] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherogenic dyslipidemia, including low HDL levels, is the major contributor of residual risk of cardiovascular disease that remains even after aggressive statin therapy to reduce LDL-cholesterol. Currently, distinction is not made between HDL-cholesterol and HDL, which is a lipoprotein consisting of several proteins and a core containing cholesteryl esters (CEs). The importance of assessing HDL functionality, specifically its role in facilitating cholesterol efflux from foam cells, is relevant to atherogenesis. Since HDLs can only remove unesterified cholesterol from macrophages while cholesterol is stored as CEs within foam cells, intracellular CE hydrolysis by CE hydrolase is vital. Reduction in macrophage lipid burden not only attenuates atherosclerosis but also reduces inflammation and linked pathologies such as Type 2 diabetes and chronic kidney disease. Targeting reduction in macrophage CE levels and focusing on enhancing cholesterol flux from peripheral tissues to liver for final elimination is proposed.
Collapse
Affiliation(s)
- Shobha Ghosh
- Department of Internal Medicine, Division of Pulmonary and Critical Care, VCU Medical Center, Richmond, VA 23298-0050, USA.
| |
Collapse
|
49
|
Abstract
Hand-arm vibration syndrome (HAVS) is a debilitating sequela of neurological and vascular injuries caused by prolonged occupational exposure to hand-transmitted vibration. Our previous study demonstrated that short-term exposure to vibration can induce vasoconstriction and endothelial cell damage in the ventral artery of the rat's tail. The present study investigated whether pretreatment with D-4F, an apolipoprotein A-1 mimetic with known anti-oxidant and vasodilatory properties, prevents vibration-induced vasoconstriction, endothelial cell injury, and protein nitration. Rats were injected intraperitoneally with 3 mg/kg D-4F at 1 h before vibration of the tails for 4 h/day at 60 Hz, 49 m/s(2) r.m.s. acceleration for either 1 or 3 days. Vibration-induced endothelial cell damage was examined by light microscopy and nitrotyrosine immunoreactivity (a marker for free radical production). One and 3-day vibration produced vasoconstriction and increased nitrotyrosine. Preemptive treatment with D-4F prevented these negative changes. These findings suggest that D-4F may be useful in the prevention of HAVS.
Collapse
|
50
|
Yao X, Dai C, Fredriksson K, Dagur PK, McCoy JP, Qu X, Yu ZX, Keeran KJ, Zywicke GJ, Amar MJA, Remaley AT, Levine SJ. 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. THE JOURNAL OF IMMUNOLOGY 2010; 186:576-83. [PMID: 21115733 DOI: 10.4049/jimmunol.1001534] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.
Collapse
Affiliation(s)
- Xianglan Yao
- Pulmonary and Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|