1
|
Huang J, Zou X, Liu X, Ran H, Pang M, Zhao L, Wang P, Chen J, Chen M, Peng Y. Construction of a highly specific fluorescence "turn-on" probe for H 2S detection and imaging in drug-induced live cells, zebrafish and mice arthritis models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124928. [PMID: 39102780 DOI: 10.1016/j.saa.2024.124928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Quantitatively and selectively detecting the biomarker of hydrogen sulfide (H2S) in arthritis diseases is of great significance for the early diagnosis and treatment of arthritis. Modern medical studies show that H2S as a biomarker is involved in the development of inflammation. In this work, a new highly specific fluorescence "turn-on" probe JMD-H2S was tailored for H2S detection and imaging in drug-induced live cells, zebrafish and mice arthritis models, which utilized pyrazoline molecule as the fluorescence signal reporter group and 2,4-dinitrophenyl ether group (DNB) with strong intramolecular charge transfer (ICT) effect as the H2S recognition moiety and fluorescence quenching group. JMD-H2S showed a fast response time (<60 s), a large fluorescence response ratio (enhanced ∼20 folds) at I453/I0, excellent sensitivity toward H2S over other analytes, and an outstanding limit of detection (LOD) as low as 25.3 nM. In addition, JMD-H2S has been successfully applied for detecting and imaging H2S in drug-induced live cells, zebrafish, and mice arthritis models with satisfactory results, suggesting it can be used as a robust molecular tool for investigating the occurrence and development of H2S and arthritis.
Collapse
Affiliation(s)
- Jianji Huang
- The International Medical College of Chongqing Medical University, Chongqing 400016, China
| | - Xinrong Zou
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xinge Liu
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hongyan Ran
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Meiling Pang
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lulu Zhao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Meizi Chen
- Department of Respiratory Medicine, The First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
3
|
Mavroudis I, Petridis F, Petroaie AD, Ciobica A, Kamal FZ, Honceriu C, Iordache A, Ionescu C, Novac B, Novac O. Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines 2024; 12:1587. [PMID: 39062160 PMCID: PMC11274969 DOI: 10.3390/biomedicines12071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic has introduced new challenges in managing neurological conditions, particularly among athletes. This paper explores the intersection of post-COVID-19 neurological syndrome (PCNS/PASC) and post-concussion syndrome (PCS), focusing on their implications in sports medicine. Our analysis covers the symptomatology, pathophysiology, and management strategies for PCNS/PASC and PPCS, with special attention paid to the unique challenges faced by athletes recovering from these conditions, including the risk of symptom exacerbation and prolonged recovery. Key findings reveal that both PCNS/PASC and PPCS present with overlapping symptoms such as cognitive difficulties, exercise intolerance, and mental health issues, but differ in specific manifestations like anosmia and ageusia, unique to COVID-19. Pathophysiological analysis reveals similarities in blood-brain barrier disruption (BBB) but differences in the extent of immune activation. Management strategies emphasize a gradual increase in physical activity, close symptom monitoring, and psychological support, with a tailored approach for athletes. Specific interventions include progressive aerobic exercises, resistance training, and cognitive rehabilitation. Furthermore, our study highlights the importance of integrating neurology, psychiatry, physical therapy, and sports medicine to develop comprehensive care strategies. Our findings underscore the dual challenge of COVID-19 and concussion in athletes, necessitating a nuanced, interdisciplinary approach to effective management. Future research should focus on the long-term neurological effects of both conditions and optimizing treatment protocols to improve patient outcomes. This comprehensive understanding is crucial for advancing the management of athletes affected by these overlapping conditions and ensuring their safe return to sports.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Antoneta Dacia Petroaie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, Pãcurari Street 11, 700511 Iasi, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Techniques, Marrakesh 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat 26000, Morocco
| | - Cezar Honceriu
- Faculty of Physical Education, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania;
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Cătălina Ionescu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Clinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Bogdan Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Otilia Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| |
Collapse
|
4
|
Raina S, Hübner E, Samuel E, Nagel G, Fuchs H. DT-13 attenuates inflammation by inhibiting NLRP3-inflammasome related genes in RAW264.7 macrophages. Biochem Biophys Res Commun 2024; 708:149763. [PMID: 38503169 DOI: 10.1016/j.bbrc.2024.149763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1β) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.
Collapse
Affiliation(s)
- Shikha Raina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Emely Hübner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany; Hochschule Bonn-Rhein Sieg, 53359, Rheinbach, Germany; HAN University of Applied Sciences, Groenewoudseweg, 6524, Nijmegen, Netherlands
| | - Esther Samuel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Gregor Nagel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany.
| |
Collapse
|
5
|
Lasota A, Wasilewska A, Rybi-Szumińska A. Current Status of Protein Biomarkers in Urolithiasis-A Review of the Recent Literature. J Clin Med 2023; 12:7135. [PMID: 38002747 PMCID: PMC10671847 DOI: 10.3390/jcm12227135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Urolithiasis is an increasingly common clinical problem worldwide. The formation of stones is a combination of metabolic status, environmental factors, family history and many other aspects. It is important to find new ways to quickly detect and assess urolithiasis because it causes sudden, severe pain and often comes back. One way to do this is by exploring new biomarkers. Current advances in proteomic studies provide a great opportunity for breakthroughs in this field. This study focuses on protein biomarkers and their connection to kidney damage and inflammation during urolithiasis.
Collapse
Affiliation(s)
- Aleksandra Lasota
- Department of Pediatrics and Nephrology, Medical University of Bialystok, Waszyngtona 17, 15-297 Bialystok, Poland; (A.W.); (A.R.-S.)
| | | | | |
Collapse
|
6
|
Razmkhah F, Kim S, Lim S, Dania AJ, Choi J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. Int J Mol Sci 2023; 24:13382. [PMID: 37686186 PMCID: PMC10488294 DOI: 10.3390/ijms241713382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (F.R.); (S.K.); (S.L.); (A.-J.D.)
| |
Collapse
|
7
|
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O’Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O’Neal WK, Tesfaigzi Y, Schulz H, Bowler RP. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts. Ann Am Thorac Soc 2023; 20:1124-1135. [PMID: 37351609 PMCID: PMC10405603 DOI: 10.1513/annalsats.202210-857oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10; β = 0.0421, Q = 1.12 × 10-3; and β = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Collapse
Affiliation(s)
- Debby Ngo
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | - Claudia Flexeder
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Hong Dang
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claire Emson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Christian Gieger
- Institute of Epidemiology and
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Yongmei Liu
- Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Steven I. Rennard
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Prescott G. Woodruff
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Division of Preventive Medicine and
- Division of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thomas J. Wang
- Department of Medicine, UT (University of Texas) Southwestern Medical Center, Dallas, Texas
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - James G. Wilson
- Cardiovascular Research Institute
- Jackson Heart Study, Department of Medicine, and
| | - Robert E. Gerszten
- Cardiovascular Research Institute
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York
| | - David Couper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Holger Schulz
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
| | | |
Collapse
|
8
|
Nakagawa M, Izawa T, Kuwamura M, Yamate J. Analyses of damage-associated molecular patterns, particularly biglycan, in cisplatin-induced rat progressive renal fibrosis. J Toxicol Pathol 2023; 36:181-185. [PMID: 37577365 PMCID: PMC10412960 DOI: 10.1293/tox.2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 08/15/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) and their receptors (TLR-2 and -4) may play important roles in renal fibrosis, of which the pathogenesis is complicated. We used rat renal lesions induced by a single intraperitoneal injection of cisplatin at 6 mg/kg body weight; consisting of tissue damage of renal tubules on days 1 and 3, further damage and regeneration with inflammation mainly on days 5 and 7, and interstitial fibrosis on days 9, 12, 15, and 20. Microarray analyses on days 5 (the commencement of inflammation) and 9 (the commencement of interstitial fibrosis) showed that DAMPs increased by more than two-fold relative to control included common extra-cellular matrix (ECM) components such as laminin (Lamc2) and fibronectin, and heat shock protein family, as well as fibrinogen, although it was limited analysis; Lamc2, an element of basement membrane, may be regarded as an indicator for damaged renal tubules. In the real-time RT-PCR analyses, TLR-2 significantly increased transiently on day 1, whereas TLR-4 significantly increased on days 9 and 15, almost in agreement with the increased biglycan (a small leucine-rich proteoglycan as ubiquitous ECM component). As M1/M2 macrophages participated in renal lesions, such as inflammation and fibrosis, presumably, TLR-4, which may be expressed in immune cells, could play crucial roles in the formation of renal lesions in association with biglycan.
Collapse
Affiliation(s)
- Minto Nakagawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| |
Collapse
|
9
|
Negri AL, Spivacow FR. Kidney stone matrix proteins: Role in stone formation. World J Nephrol 2023; 12:21-28. [PMID: 37035509 PMCID: PMC10075018 DOI: 10.5527/wjn.v12.i2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023] Open
Abstract
Stone formation is induced by an increased level of urine crystallization promoters and reduced levels of its inhibitors. Crystallization inhibitors include citrate, magnesium, zinc, and organic compounds such as glycosaminoglycans. In the urine, there are various proteins, such as uromodulin (Tamm-Horsfall protein), calgranulin, osteopontin, bikunin, and nephrocalcin, that are present in the stone matrix. The presence of several carboxyl groups in these macromolecules reduces calcium oxalate monohydrate crystal adhesion to the urinary epithelium and could potentially protect against lithiasis. Proteins are the most abundant component of kidney stone matrix, and their presence may reflect the process of stone formation. Many recent studies have explored the proteomics of urinary stones. Among the stone matrix proteins, the most frequently identified were uromodulin, S100 proteins (calgranulins A and B), osteopontin, and several other proteins typically engaged in inflammation and immune response. The normal level and structure of these macromolecules may constitute protection against calcium salt formation. Paradoxically, most of them may act as both promoters and inhibitors depending on circumstances. Many of these proteins have other functions in modulating oxidative stress, immune function, and inflammation that could also influence stone formation. Yet, the role of these kidney stone matrix proteins needs to be established through more studies comparing urinary stone proteomics between stone formers and non-stone formers.
Collapse
Affiliation(s)
- Armando Luis Negri
- Department of Physiology and Biophysics, Universidad del Salvador, Instituto de Investigaciones Metabólicas, Buenos Aires 1012, Argentina
| | | |
Collapse
|
10
|
Lee J, Kim H, Kim M, Yoon S, Lee S. Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19. Genes Genomics 2023; 45:337-346. [PMID: 36107397 PMCID: PMC9476394 DOI: 10.1007/s13258-022-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Alarmins S100A8 and S100A9 are recognized as hallmarks of severe COVID-19 and are primarily produced in myeloid cells, such as monocytes and neutrophils. As single-cell RNA-sequencing (scRNA-seq) data from patients with COVID-19 revealed the expression of S100A8/A9 in lymphoid cells in patients with severe COVID-19. OBJECTIVE We investigated the characteristics of lymphoid cells expressing S100A8/A9 in COVID-19 patients. METHODS Publicly available scRNA-seq data from patients with mild (N = 12) or severe (N = 7) COVID-19 were reanalyzed. The data were further divided into the following two groups based on the time of sample collection (from infection-onset): within 6 days (early phase) and after 6 days (late phase). Differential expression and gene set enrichment analyses were performed between S100A8/A9High and S100A8/A9Low lymphoid cells. Finally, cell-cell interaction analysis was performed to investigate the role of lymphoid cells expressing high levels of S100A8/A9 in COVID-19. RESULTS S100A8/A9 overexpression was observed in lymphoid cells, including B cells, T cells, and NK cells, in patients with severe COVID-19 (compared to patients with mild COVID-19). Cells exhibiting strong interferon/cytokine responses were found to be associated with the severity of COVID-19. Furthermore, differences in S100A8/A9-TLR4/RAGE interactions were confirmed between patients with severe and mild disease. CONCLUSIONS Lymphoid cells overexpressing S100A8/A9 contribute to the dysregulation of the innate immune response in patients with severe COVID-19, specifically during the early phase of infection. This study fosters a better understanding of the hyper-induction of pro-inflammatory cytokine expression and the generation of a cytokine storm in response to COVID-19 infection.
Collapse
Affiliation(s)
- Joongho Lee
- Department of Computer Science and Engineering, Graduate School, Dankook University, Yongin-si, Republic of Korea
| | - Hanbyeol Kim
- Department of Computer Science and Engineering, Graduate School, Dankook University, Yongin-si, Republic of Korea
| | - Minsoo Kim
- Department of Computer Science and Engineering, Graduate School, Dankook University, Yongin-si, Republic of Korea
| | - Seokhyun Yoon
- Department of Computer Science and Engineering, Graduate School, Dankook University, Yongin-si, Republic of Korea. .,Department of Electronics and Electrical Engineering, College of Engineering, Dankook University, Yongin-si, Republic of Korea.
| | - Sanghun Lee
- Department of Bioconvergence Engineering, Graduate School, Dankook University, Yongin-si, Republic of Korea.
| |
Collapse
|
11
|
Dumur S, Adrovic A, Barut K, Kasapcopur O, Kucur M. The role of S100A12 and Toll-like receptor 4 in assessment of disease activity in familial Mediterranean fever and juvenile idiopathic arthritis. Int J Rheum Dis 2023; 26:250-258. [PMID: 36302511 DOI: 10.1111/1756-185x.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Our aim was to investigate the possible relationship between the serum S100A12 and Toll-like receptor 4 (TLR4) levels, and the activity of familial Mediterranean fever (FMF) and juvenile idiopathic arthritis (JIA) in accordance with the routine biochemical parameters. Furthermore, the effectiveness of these 2 biomarkers in distinguishing FMF from JIA has been evaluated. METHOD Sixty-nine children with FMF, 68 children with JIA, and 35 healthy children were included in this study. S100A12 and TLR4 levels were measured by the sandwich enzyme-linked immunosorbent assay technique. RESULTS In the FMF patient group, serum S100A12 level was found to be significantly higher than in both the JIA and control groups (P = .000 and P = .000, respectively). Although S100A12 levels were higher in the attack period compared to the attack-free period, this increase was not statistically significant (P > .05). TLR4 levels were statistically significantly higher in the attack period compared to the attack-free period in children with FMF (P < .05). Although there was no relationship between S100A12 levels and disease activity, there is a clear correlation between S100A12 and the Auto-Inflammatory Disease Activity Index in attack-free FMF patients (r = 0.612 P = .000). CONCLUSION Serum S100A12 levels were not found to be a potentially valuable biomarker for assessing disease activity in either FMF or JIA. However, TLR4 levels were found to be a valuable biomarker for assessing disease activity in children with FMF. Further research which includes serial monitoring of S100A12 and TLR4 levels in a large cohort will provide detailed information about accuracy of these 2 potential biomarkers in both patients group.
Collapse
Affiliation(s)
- Seyma Dumur
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Amra Adrovic
- Department of Pediatric Rheumatology, Koc University Hospital, Istanbul, Turkey
| | - Kenan Barut
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozgur Kasapcopur
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mine Kucur
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
12
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
13
|
Alfonso AB, Pomerleau V, Nicolás VR, Raisch J, Jurkovic CM, Boisvert FM, Perreault N. Comprehensive Profiling of Early Neoplastic Gastric Microenvironment Modifications and Biodynamics in Impaired BMP-Signaling FoxL1 +-Telocytes. Biomedicines 2022; 11:biomedicines11010019. [PMID: 36672527 PMCID: PMC9856000 DOI: 10.3390/biomedicines11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
FoxL1+telocytes (TCFoxL1+) are novel gastrointestinal subepithelial cells that form a communication axis between the mesenchyme and epithelium. TCFoxL1+ are strategically positioned to be key contributors to the microenvironment through production and secretion of growth factors and extracellular matrix (ECM) proteins. In recent years, the alteration of the bone morphogenetic protein (BMP) signaling in TCFoxL1+ was demonstrated to trigger a toxic microenvironment with ECM remodeling that leads to the development of pre-neoplastic gastric lesions. However, a comprehensive analysis of variations in the ECM composition and its associated proteins in gastric neoplasia linked to TCFoxL1+ dysregulation has never been performed. This study provides a better understanding of how TCFoxL1+ defective BMP signaling participates in the gastric pre-neoplastic microenvironment. Using a proteomic approach, we determined the changes in the complete matrisome of BmpR1a△FoxL1+ and control mice, both in total antrum as well as in isolated mesenchyme-enriched antrum fractions. Comparative proteomic analysis revealed that the deconstruction of the gastric antrum led to a more comprehensive analysis of the ECM fraction of gastric tissues microenvironment. These results show that TCFoxL1+ are key members of the mesenchymal cell population and actively participate in the establishment of the matrisomic fraction of the microenvironment, thus influencing epithelial cell behavior.
Collapse
|
14
|
Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022; 28:517-530. [PMID: 36250359 PMCID: PMC9577567 DOI: 10.5056/jnm22100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Jurewicz E, Filipek A. Ca2+- binding proteins of the S100 family in preeclampsia. Placenta 2022; 127:43-51. [DOI: 10.1016/j.placenta.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
|
16
|
Contini C, Serrao S, Manconi B, Olianas A, Iavarone F, Bizzarro A, Masullo C, Castagnola M, Messana I, Diaz G, Cabras T. Salivary Proteomics Reveals Significant Changes in Relation to Alzheimer's Disease and Aging. J Alzheimers Dis 2022; 89:605-622. [PMID: 35912740 DOI: 10.3233/jad-220246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aging is a risk factor for several pathologies as Alzheimer's disease (AD). Great interest exists, therefore, in discovering diagnostic biomarkers and indicators discriminating biological aging and health status. To this aim, omic investigations of biological matrices, as saliva, whose sampling is easy and non-invasive, offer great potential. OBJECTIVE Investigate the salivary proteome through a statistical comparison of the proteomic data by several approaches to highlight quali-/quantitative variations associated specifically either to aging or to AD occurrence, and, thus, able to classify the subjects. METHODS Salivary proteomic data of healthy controls under-70 (adults) and over-70 (elderly) years old, and over-70 AD patients, obtained by liquid chromatography/mass spectrometry, were analyzed by multiple Mann-Whitney test, Kendall correlation, and Random-Forest (RF) analysis. RESULTS Almost all the investigated proteins/peptides significantly decreased in relation to aging in elderly subjects, with or without AD, in comparison with adults. AD subjects exhibited the highest levels of α-defensins, thymosin β4, cystatin B, S100A8 and A9. Correlation tests also highlighted age/disease associated differences. RF analysis individuated quali-/quantitative variations in 20 components, as oxidized S100A8 and S100A9, α-defensin 3, P-B peptide, able to classify with great accuracy the subjects into the three groups. CONCLUSION The findings demonstrated a strong change of the salivary protein profile in relation to the aging. Potential biomarkers candidates of AD were individuated in peptides/proteins involved in antimicrobial defense, innate immune system, inflammation, and in oxidative stress. RF analysis revealed the feasibility of the salivary proteome to discriminate groups of subjects based on age and health status.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy.,Policlinico Universitario "A. Gemelli" Foundation -IRCCS, Rome, Italy
| | | | - Carlo Masullo
- Department of Neuroscience, Section Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Castagnola
- Proteomics laboratory, European Centre for Research on the Brain, "Santa Lucia" Foundation -IRCCS, Rome, Italy
| | - Irene Messana
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Rome, Italy
| | - Giacomo Diaz
- Department of Biomedical Sciences University of Cagliari Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Singh P, Ali SA. Multifunctional Role of S100 Protein Family in the Immune System: An Update. Cells 2022; 11:cells11152274. [PMID: 35892571 PMCID: PMC9332480 DOI: 10.3390/cells11152274] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis). S100 isoforms that have previously been shown to play important roles in the immune system as alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and metal scavengers during an innate immune response. Currently, during the pandemic, it was found that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further, S100 family protein members were proposed to be used as a prognostic marker for COVID-19 infection identification using a nasal swab. In the present review, we compiled the vast majority of recent studies that focused on the multifunctionality of S100 proteins in the complex immune system and its associated activities. Furthermore, we shed light on the numerous molecular approaches and signaling cascades regulated by S100 proteins during immune response. In addition, we discussed the involvement of S100 protein members in abnormal defense systems during the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +91-8708591790
| |
Collapse
|
18
|
Physiological responses and adaptations to high methane production in Japanese Black cattle. Sci Rep 2022; 12:11154. [PMID: 35778422 PMCID: PMC9249741 DOI: 10.1038/s41598-022-15146-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, using enteric methane emissions, we investigated the metabolic characteristics of Japanese Black cattle. Their methane emissions were measured at early (age 13 months), middle (20 months), and late fattening phases (28 months). Cattle with the highest and lowest methane emissions were selected based on the residual methane emission values, and their liver transcriptome, blood metabolites, hormones, and rumen fermentation characteristics were analyzed. Blood β-hydroxybutyric acid and insulin levels were high, whereas blood amino acid levels were low in cattle with high methane emissions. Further, propionate and butyrate levels differed depending on the enteric methane emissions. Hepatic genes, such as SERPINI2, SLC7A5, ATP6, and RRAD, which were related to amino acid transport and glucose metabolism, were upregulated or downregulated during the late fattening phase. The above mentioned metabolites and liver transcriptomes could be used to evaluate enteric methanogenesis in Japanese Black cattle.
Collapse
|
19
|
Austermann J, Roth J, Barczyk-Kahlert K. The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells 2022; 11:cells11121979. [PMID: 35741108 PMCID: PMC9222172 DOI: 10.3390/cells11121979] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Monocytes and macrophages are central players of the innate immune response and play a pivotal role in the regulation of inflammation. Thereby, they actively participate in all phases of the immune response, from initiating inflammation and triggering the adaptive immune response, through to the clearance of cell debris and resolution of inflammation. In this review, we described the mechanisms of monocyte and macrophage adaptation to rapidly changing microenvironmental conditions and discussed different forms of macrophage polarization depending on the environmental cues or pathophysiological condition. Therefore, special focus was placed on the tight regulation of the pro- and anti-inflammatory immune response, and the diverse functions of S100A8/S100A9 proteins and the scavenger receptor CD163 were highlighted, respectively. We paid special attention to the function of pro- and anti-inflammatory macrophages under pathological conditions.
Collapse
|
20
|
Keskitalo PL, Kangas SM, Sard S, Pokka T, Glumoff V, Kulmala P, Vähäsalo P. Myeloid-related protein 8/14 in plasma and serum in patients with new-onset juvenile idiopathic arthritis in real-world setting in a single center. Pediatr Rheumatol Online J 2022; 20:42. [PMID: 35710418 PMCID: PMC9204870 DOI: 10.1186/s12969-022-00701-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the usefulness of myeloid-related protein 8/14 (MRP8/14) in the prediction of disease course in a real-world setting for patients with new-onset juvenile idiopathic arthritis (JIA), to identify the relationship between MRP8/14 and disease activity using the physician's global assessment of disease activity (PGA), and determine whether the MRP8/14 levels measured in serum and plasma are equally useful. METHODS In this prospective follow-up study, 87 new-onset non-systemic JIA patients were studied. Blood and synovial fluid samples were collected prior to any antirheumatic medication use. MRP8/14 was measured from serum (S-MRP8/14), plasma (P-MRP8/14), and synovial fluid samples using ELISA. RESULTS The baseline MRP8/14 blood levels were significantly higher in patients using synthetic antirheumatic drugs than in patients with no systemic medications at 1 year after diagnosis in serum (mean 298 vs. 198 ng/ml, P < 0.001) and in plasma (mean 291 vs. 137 ng/ml, P = 0.001). MRP8/14 levels at the time of JIA diagnosis were higher in patients who started methotrexate during 1.5-year follow-up compared to those who achieved long-lasting inactive disease status without systemic medications (serum: mean 298 vs. 219 ng/ml, P = 0.006 and plasma: 296 vs. 141 ng/ml, P = 0.001). P-MRP8/14 was the most effective predictive variable for disease activity (by PGA) in linear multivariate regression model (combined to ESR, CRP, leukocytes, and neutrophils), whereas S-MRP8/14 was not significant. CONCLUSION Blood MRP8/14 levels at baseline seem to predict disease course in new-onset JIA patients. P-MRP8/14 might be better than S-MRP8/14 when assessing disease activity at the time of JIA diagnosis.
Collapse
Affiliation(s)
- Paula L. Keskitalo
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Department of Pediatrics, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Salla M. Kangas
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sirja Sard
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Department of Pediatrics, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tytti Pokka
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Virpi Glumoff
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Petri Kulmala
- grid.10858.340000 0001 0941 4873PEDEGO Research Unit, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Department of Pediatrics, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Paula Vähäsalo
- PEDEGO Research Unit, University of Oulu, Oulu, Finland. .,Department of Pediatrics, Oulu University Hospital, Kajaanintie 50, 90220, Oulu, Finland. .,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
21
|
Bonora BM, Palano MT, Testa G, Fadini GP, Sangalli E, Madotto F, Persico G, Casciaro F, Vono R, Colpani O, Scavello F, Cappellari R, Abete P, Orlando P, Carnelli F, Berardi AG, De Servi S, Raucci A, Giorgio M, Madeddu P, Spinetti G. Hematopoietic progenitor cell liabilities and alarmins S100A8/A9-related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults. Aging Cell 2022; 21:e13545. [PMID: 35166014 PMCID: PMC8920446 DOI: 10.1111/acel.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Gianluca Testa
- Department of Medicine and Health Sciences “Vincenzo Tiberio” University of Molise Campobasso Italy
| | | | | | | | | | | | | | | | - Francesco Scavello
- Unit of Experimental Cardio‐Oncology and Cardiovascular Aging Centro Cardiologico Monzino‐IRCCS Milan Italy
| | | | - Pasquale Abete
- Department of Translational Medical Sciences University of Naples Federico II Naples Italy
| | | | | | | | | | - Angela Raucci
- Unit of Experimental Cardio‐Oncology and Cardiovascular Aging Centro Cardiologico Monzino‐IRCCS Milan Italy
| | - Marco Giorgio
- European Institute of Oncology (IEO) Milan Italy
- Department of Biomedical Sciences University of Padova Padua Italy
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine Bristol Medical School: Translational Health Sciences University of Bristol Bristol UK
| | | |
Collapse
|
22
|
Bizjak DA, Treff G, Zügel M, Schumann U, Winkert K, Schneider M, Abendroth D, Steinacker JM. Differences in Immune Response During Competition and Preparation Phase in Elite Rowers. Front Physiol 2022; 12:803863. [PMID: 34975545 PMCID: PMC8718927 DOI: 10.3389/fphys.2021.803863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Metabolic stress is high during training and competition of Olympic rowers, but there is a lack of biomedical markers allowing to quantify training load on the molecular level. We aimed to identify such markers applying a complex approach involving inflammatory and immunologic variables. Methods: Eleven international elite male rowers (age 22.7 ± 2.4 yrs.; VO2max 71 ± 5 ml·min-1·kg-1) of the German National Rowing team were monitored at competition phase (COMP) vs. preparation phase (PREP), representing high vs. low load. Perceived stress and recovery were assessed by a Recovery Stress Questionnaire for Athletes (RESTQ-76 Sport). Immune cell activation (dendritic cell (DC)/macrophage/monocytes/T-cells) was evaluated via fluorescent activated cell sorting. Cytokines, High-Mobility Group Protein B1 (HMGB1), cell-free DNA (cfDNA), creatine kinase (CK), uric acid (UA), and kynurenine (KYN) were measured in venous blood. Results: Rowers experienced more general stress and less recovery during COMP, but sports-related stress and recovery did not differ from PREP. During COMP, DC/macrophage/monocyte and T-regulatory cells (Treg-cell) increased (p = 0.001 and 0.010). HMGB1 and cfDNA increased in most athletes during COMP (p = 0.001 and 0.048), while CK, UA, and KYN remained unaltered (p = 0.053, 0.304, and 0.211). Pro-inflammatory cytokines IL-1β (p = 0.002), TNF-α (p < 0.001), and the chemokine IL-8 (p = 0.001) were elevated during COMP, while anti-inflammatory Il-10 was lower (p = 0.002). Conclusion: COMP resulted in an increase in biomarkers reflecting tissue damage, with plausible evidence of immune cell activation that appeared to be compensated by anti-inflammatory mechanisms, such as Treg-cell proliferation. We suggest an anti-inflammatory and immunological matrix approach to optimize training load quantification in elite athletes.
Collapse
Affiliation(s)
- Daniel Alexander Bizjak
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Gunnar Treff
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Martina Zügel
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Uwe Schumann
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Kay Winkert
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Marion Schneider
- Department of Anaesthesiology, Division of Experimental Anaesthesiology, University Hospital Ulm, Ulm, Germany
| | | | - Jürgen Michael Steinacker
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
23
|
Deng Z, Ren Y, Park MS, Kim HKW. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone 2022; 154:116215. [PMID: 34571205 PMCID: PMC8671337 DOI: 10.1016/j.bone.2021.116215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
In Legg-Calvé-Perthes disease (LCPD), a loss of blood supply to the juvenile femoral head leads to extensive cell death and release of damage-associated molecular patterns (DAMPs). Over time chronic inflammatory repair process is observed with impaired bone regeneration. Increased fibrous tissue and adipose tissue are seen in the marrow space with decreased osteogenesis in a piglet model of LCPD, suggesting inhibition of osteoblastic differentiation and stimulation of fibroblastic and adipogenic differentiation of mesenchymal stem cell (MSC) during the healing process. Little is known about the DAMPs present in the necrotic femoral head and their effects on MSC differentiation. The purpose of this study was to characterize the DAMPs present in the femoral head following ischemic osteonecrosis and to determine their effects on MSC differentiation. Necrotic femoral heads were flushed with saline at 48 h, 2 weeks and 4 weeks following the induction of ischemic osteonecrosis in piglets to obtain necrotic bone fluid (NBF). Western blot analysis of the NBF revealed the presence of prototypic DAMP, high mobility group box 1 (HMGB1), and other previously described DAMPs: biglycan, 4-hydroxynonenal (4-HNE), and receptor activator of NF-κB ligand (RANKL). ELISA of the NBF revealed increasing levels of inflammatory cytokines IL1β, IL6 and TNFα with the temporal progression of osteonecrosis. To determine the effects of NBF on MSC differentiation, we cultured primary porcine MSCs with NBF obtained by in vivo necrotic bone flushing method. NBF inhibited osteoblastic differentiation of MSCs with significantly decreased OSX expression (p = 0.008) and Von Kossa/Alizarin Red staining for mineralization. NBF also significantly increased the expression of proliferation markers Ki67 (p = 0.03) and PCNA (p < 0.0001), and fibrogenic markers Vimentin (p = 0.02) and Fibronectin (p = 0.04). Additionally, NBF treated MSC cells showed significantly elevated RANKL/OPG secretion ratio (p = 0.003) and increased expression of inflammatory cytokines IL1β (p = 0.006) and IL6 (p < 0.0001). To specifically assess the role of DAMPs in promoting the fibrogenesis, we treated porcine fibroblasts with artificial NBF produced by bone freeze-thaw method. We found increased fibroblastic cell proliferation in an NBF dose-dependent manner. Lastly, we studied the effect of HMGB1, a prototypic DAMP, and found that HMGB1 partially contributes to MSC proliferation and fibrogenesis. In summary, our findings show that DAMPs and the inflammatory cytokines present in the necrotic femoral head inhibit osteogenesis and promote fibrogenesis of MSCs, potentially contributing to impaired bone regeneration following ischemic osteonecrosis as observed in LCPD.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Sung Park
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Motomura K, Romero R, Plazyo O, Garcia-Flores V, Gershater M, Galaz J, Miller D, Gomez-Lopez N. The alarmin S100A12 causes sterile inflammation of the human chorioamniotic membranes as well as preterm birth and neonatal mortality in mice†. Biol Reprod 2021; 105:1494-1509. [PMID: 34632484 PMCID: PMC8689293 DOI: 10.1093/biolre/ioab188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Sterile inflammation is triggered by danger signals, or alarmins, released upon cellular stress or necrosis. Sterile inflammation occurring in the amniotic cavity (i.e. sterile intra-amniotic inflammation) is frequently observed in women with spontaneous preterm labor resulting in preterm birth, the leading cause of neonatal morbidity and mortality worldwide; this condition is associated with increased amniotic fluid concentrations of alarmins. However, the mechanisms whereby alarmins induce sterile intra-amniotic inflammation are still under investigation. Herein, we investigated the mechanisms whereby the alarmin S100A12 induces inflammation of the human chorioamniotic membranes in vitro and used a mouse model to establish a causal link between this alarmin and adverse perinatal outcomes. We report that S100A12 initiates sterile inflammation in the chorioamniotic membranes by upregulating the expression of inflammatory mediators such as pro-inflammatory cytokines and pattern recognition receptors. Importantly, S100A12 induced the priming and activation of inflammasomes, resulting in caspase-1 cleavage and the subsequent release of mature IL-1β by the chorioamniotic membranes. This alarmin also caused the activation of the chorioamniotic membranes by promoting MMP-2 activity and collagen degradation. Lastly, the ultrasound-guided intra-amniotic injection of S100A12 at specific concentrations observed in the majority of women with sterile intra-amniotic inflammation induced preterm birth (rates: 17% at 200 ng/sac; 25% at 300 ng/sac; 25% at 400 ng/sac) and neonatal mortality (rates: 22% at 200 ng/sac; 44% at 300 ng/sac; 31% at 400 ng/sac), thus demonstrating a causal link between this alarmin and adverse perinatal outcomes. Collectively, our findings shed light on the inflammatory responses driven by alarmins in the chorioamniotic membranes, providing insight into the immune mechanisms leading to preterm birth in women with sterile intra-amniotic inflammation.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
26
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Dokoshi T, Seidman JS, Cavagnero KJ, Li F, Liggins MC, Taylor BC, Olvera J, Knight R, Chang JT, Salzman NH, Gallo RL. Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. J Clin Invest 2021; 131:147614. [PMID: 34720087 DOI: 10.1172/jci147614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rob Knight
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | - Nita H Salzman
- Departments of Pediatrics, Microbiology, and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
28
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
30
|
Bohaud C, Contreras-Lopez R, De La Cruz J, Terraza-Aguirre C, Wei M, Djouad F, Jorgensen C. Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis. Front Cell Dev Biol 2021; 9:718938. [PMID: 34604219 PMCID: PMC8485936 DOI: 10.3389/fcell.2021.718938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, France
| |
Collapse
|
31
|
Agier J, Brzezińska-Błaszczyk E, Różalska S, Wiktorska M, Kozłowska E, Żelechowska P. Mast cell phenotypic plasticity and their activity under the influence of cathelicidin-related antimicrobial peptide (CRAMP) and IL-33 alarmins. Cell Immunol 2021; 369:104424. [PMID: 34469845 DOI: 10.1016/j.cellimm.2021.104424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Invading pathogens are contained/eliminated by orchestrated actions of different humoral components of the innate immune response. One of them is endogenous molecules called alarmins, which contribute to diverse processes from danger sense until the infection extinction. Considering the participation of mast cells (MCs) in many aspects of the body's defense and, on the other hand, the importance of alarmins as molecules that signal damage/danger, in this study, we evaluated the effect of alarmins on MC phenotype and activity. We found that cathelicidin CRAMP and cytokine IL-33 significantly affect the appearance of Dectin-1, Dectin-2, RIG-I, and NOD1 receptors in mature MCs and modulate their inflammatory response. We established that chosen alarmins might stimulate MCs to release pro-inflammatory and immunoregulatory mediators and induce a migratory response. In conclusion, our data highlight that alarmins CRAMP and IL-33 might strongly influence MC features and activity, mainly by strengthening their role in the inflammatory mechanisms and controlling the activity of cells participating in antimicrobial processes.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Paulina Żelechowska
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Zhang X, Ong C, Su G, Liu J, Xu D. Characterization and engineering of S100A12-heparan sulfate interactions. Glycobiology 2021; 30:463-473. [PMID: 31942981 DOI: 10.1093/glycob/cwz111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022] Open
Abstract
S100A12, an EF-hand calcium-binding protein, can be secreted by a variety of cell types and plays proinflammatory roles in a number of pathological conditions. Although S100A12 has been shown to interact with heparan sulfate (HS), the molecular detail of the interaction remains unclear. Here we investigate the structural basis of S100A12-HS interaction and how the interaction is regulated by the availability of divalent cations and the oligomeric states of S100A12. We discovered that S100A12-HS interaction requires calcium, while zinc can further enhance binding by inducing S100A12 hexamerization. In contrast, the apo form and zinc-induced tetramer form were unable to bind HS. Guided by the crystal structures of S100A12, we have identified the HS-binding site of S100A12 by site-directed mutagenesis. Characterization of the HS-binding site of S100A12 allowed us to convert the non-HS-binding apo and tetramer forms of S100A12 into a high affinity HS-binding variant by engineering a single-point mutation. Using a HS oligosaccharide microarray, we demonstrated that the N43K mutant displayed markedly enhanced selectivity toward longer HS oligosaccharides compared to the WT S100A12, likely due to the expanded dimension of the reengineered HS-binding site in the mutant. This unexpected finding strongly suggests that HS-binding sites of proteins might be amenable for engineering.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| | - Chihyean Ong
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| | - Guowei Su
- Division of Chemical biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jian Liu
- Division of Chemical biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ding Xu
- Department of Oral Biology, The University at Buffalo, Buffalo, New York, 14214, USA
| |
Collapse
|
33
|
Bessone F, Hernández N, Tanno M, Roma MG. Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics. Semin Liver Dis 2021; 41:331-348. [PMID: 34130334 DOI: 10.1055/s-0041-1729972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nelia Hernández
- Clínica de Gastroenterología, Hospital de Clínicas y Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mario Tanno
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
34
|
Wan J, Zhang G, Li X, Qiu X, Ouyang J, Dai J, Min S. Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Front Physiol 2021; 12:663978. [PMID: 34276395 PMCID: PMC8283010 DOI: 10.3389/fphys.2021.663978] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cells must alter their expression profiles and morphological characteristics but also reshape the extracellular matrix (ECM) to fulfill their functions throughout their lifespan. Matrix metalloproteinase 3 (MMP-3) is a member of the matrix metalloproteinase (MMP) family, which can degrade multiple ECM components. MMP-3 can activate multiple pro-MMPs and thus initiates the MMP-mediated degradation reactions. In this review, we summarized the function of MMP-3 and discussed its effects on biological activities. From this point of view, we emphasized the positive and negative roles of MMP-3 in the pathogenesis of disease and cell differentiation, highlighting that MMP-3 is especially closely involved in the occurrence and development of osteoarthritis. Then, we discussed some pathways that were shown to regulate MMP-3. By writing this review, we hope to provide new topics of interest for researchers and attract more researchers to investigate MMP-3.
Collapse
Affiliation(s)
- Jiangtao Wan
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guowei Zhang
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Li
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianshuai Qiu
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaoxiong Min
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Fujita Y, Yago T, Matsumoto H, Asano T, Matsuoka N, Temmoku J, Sato S, Yashiro-Furuya M, Suzuki E, Watanabe H, Kawakami A, Migita K. Cold-inducible RNA-binding protein (CIRP) potentiates uric acid-induced IL-1β production. Arthritis Res Ther 2021; 23:128. [PMID: 33902703 PMCID: PMC8074240 DOI: 10.1186/s13075-021-02508-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Gout is an autoinflammatory disease driven by interleukin-1 (IL-1) induction in response to uric acid crystals. IL-1β production is dependent on inflammasome activation, which requires a priming signal, followed by an activating signal. The cold-inducible RNA-binding protein (CIRP) has been recently identified as a damage-associated molecular pattern (DAMP). In this study, we evaluated the roles of CIRP in monosodium urate (MSU)-mediated IL-1β secretion using human neutrophils. Methods Human neutrophils were stimulated by MSU in the presence or absence of CIRP priming to determine NLRP3 inflammasome activation and subsequent caspase-1 activation and IL-1β production. Cellular supernatants were analyzed by enzyme-linked immunosorbent assay (ELISA) to determine the presence of IL-1β or caspase-1 (p20). The cellular supernatants and lysates were also analyzed by immunoblotting using anti-cleaved IL-1β or anti-cleaved caspase-1 antibodies. Results Neither CIRP nor MSU stimulation alone induced sufficient IL-1β secretion from neutrophils. However, MSU stimulation induced IL-1β secretion from CIRP-primed neutrophils in a dose-dependent manner. This MSU-induced IL-1β secretion from CIRP-primed neutrophils was accompanied by the induction of cleaved IL-1β (p17), which was inhibited by the pretreatment of MCC950, a specific inhibitor for NLRP3. Furthermore, cleaved caspase-1 was induced in the cellular lysates of CIRP/MSU-treated neutrophils. Additionally, CIRP stimulation induced the protein expression of pro-IL-1β in neutrophils. Conclusions Our data indicate that CIRP, an endogenous stress molecule, triggers uric acid-induced mature IL-1β induction as a priming stimulus for NLRP3 inflammasome in human neutrophils. We propose that CIRP acts as an important proinflammatory stimulant that primes and activates inflammasome and pro-IL-1β processing in response to uric acid in innate immune cells.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Toru Yago
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Makiko Yashiro-Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta-Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, 963-8558, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
36
|
Paul RS, Almokayad I, Collins A, Raj D, Jagadeesan M. Donor-derived Cell-free DNA: Advancing a Novel Assay to New Heights in Renal Transplantation. Transplant Direct 2021; 7:e664. [PMID: 33564715 PMCID: PMC7862009 DOI: 10.1097/txd.0000000000001098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite advances in transplant immunosuppression, long-term renal allograft outcomes remain suboptimal because of the occurrence of rejection, recurrent disease, and interstitial fibrosis with tubular atrophy. This is largely due to limitations in our understanding of allogeneic processes coupled with inadequate surveillance strategies. The concept of donor-derived cell-free DNA as a signal of allograft stress has therefore rapidly been adopted as a noninvasive monitoring tool. Refining it for effective clinical use, however, remains an ongoing effort. Furthermore, its potential to unravel new insights in alloimmunity through novel molecular techniques is yet to be realized. This review herein summarizes current knowledge and active endeavors to optimize cell-free DNA-based diagnostic techniques for clinical use in kidney transplantation. In addition, the integration of DNA methylation and microRNA may unveil new epigenetic signatures of allograft health and is also explored in this report. Directing research initiatives toward these aspirations will not only improve diagnostic precision but may foster new paradigms in transplant immunobiology.
Collapse
Affiliation(s)
- Rohan S. Paul
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ismail Almokayad
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ashte Collins
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Dominic Raj
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | | |
Collapse
|
37
|
Andreev D, Liu M, Weidner D, Kachler K, Faas M, Grüneboom A, Schlötzer-Schrehardt U, Muñoz LE, Steffen U, Grötsch B, Killy B, Krönke G, Luebke AM, Niemeier A, Wehrhan F, Lang R, Schett G, Bozec A. Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest 2021; 130:4811-4830. [PMID: 32773408 DOI: 10.1172/jci134214] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Although the control of bone-resorbing osteoclasts through osteocyte-derived RANKL is well defined, little is known about the regulation of osteoclasts by osteocyte death. Indeed, several skeletal diseases, such as bone fracture, osteonecrosis, and inflammation are characterized by excessive osteocyte death. Herein we show that osteoclasts sense damage-associated molecular patterns (DAMPs) released by necrotic osteocytes via macrophage-inducible C-type lectin (Mincle), which induced their differentiation and triggered bone loss. Osteoclasts showed robust Mincle expression upon exposure to necrotic osteocytes in vitro and in vivo. RNA sequencing and metabolic analyses demonstrated that Mincle activation triggers osteoclastogenesis via ITAM-based calcium signaling pathways, skewing osteoclast metabolism toward oxidative phosphorylation. Deletion of Mincle in vivo effectively blocked the activation of osteoclasts after induction of osteocyte death, improved fracture repair, and attenuated inflammation-mediated bone loss. Furthermore, in patients with osteonecrosis, Mincle was highly expressed at skeletal sites of osteocyte death and correlated with strong osteoclastic activity. Taken together, these data point to what we believe is a novel DAMP-mediated process that allows osteoclast activation and bone loss in the context of osteocyte death.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Mengdan Liu
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Daniela Weidner
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Maria Faas
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Anika Grüneboom
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | | | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Bettina Grötsch
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Barbara Killy
- Institute of Clinical Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | | | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology.,Deutsches Zentrum für Immuntherapie (DZI), and
| |
Collapse
|
38
|
Kamiya N, Kim HKW. Elevation of Proinflammatory Cytokine HMGB1 in the Synovial Fluid of Patients With Legg-Calvé-Perthes Disease and Correlation With IL-6. JBMR Plus 2021; 5:e10429. [PMID: 33615102 PMCID: PMC7872337 DOI: 10.1002/jbm4.10429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/16/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Legg-Calvé-Perthes disease (LCPD) is a childhood ischemic osteonecrosis (ON) of the femoral head associated with the elevation of proinflammatory cytokine interleukin-6 (IL-6) in the synovial fluid. Currently, there is no effective medical therapy for patients with LCPD. In animal models of ischemic ON, articular chondrocytes produce IL-6 in response to ischemic ON induction and IL-6 receptor blockade improves bone healing. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released from dying cells. In addition, extracellular HMGB1 protein is a well-known proinflammatory cytokine elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. The purpose of this study was to investigate IL-6-related proinflammatory cytokines, including HMGB1, in the synovial fluid of patients with LCPD. Our working hypothesis was that HMGB1, produced by articular chondrocytes following ischemic ON, plays an important role in IL-6 upregulation. Here, HMGB1 protein levels were significantly higher in the synovial fluid of patients with LCPD by threefold compared with controls (p < 0.05), and were highly correlated with IL-6 levels (Pearson correlation coefficient 0.94, p < 0.001, R 2 = 0.87). In the mouse model of ischemic ON, both HMGB1 gene expression and protein levels were elevated in the articular cartilage. In vitro studies revealed a significant elevation of HMGB1 and IL-6 proteins in the supernatants of human chondrocytes exposed to hypoxic and oxidative stresses. Overexpressed HMGB1 protein in the supernatants of chondrocytes synergistically increased IL-6 protein. Silencing HMGB1 RNA in human chondrocytes significantly repressed inteleukin-1β (IL-1β) gene expression, but not IL-6. Further, both IL-1β and tumor necrosis factor-α (TNF-α) protein levels in the synovial fluid of patients with LCPD were significantly correlated with IL-6 protein levels. Taken together, these results suggest that proinflammatory cytokines, HMGB1, tumor necrosis factor-α (TNF-α), and IL-1β, are significantly involved with IL-6 in the pathogenesis of LCPD. This study is clinically relevant because the availability of multiple therapeutic targets may improve the development of therapeutic strategy for LCPD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in HipScottish Rite for ChildrenDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Faculty of Budo and Sport StudiesTenri UniversityNaraJapan
| | - Harry KW Kim
- Center for Excellence in HipScottish Rite for ChildrenDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
39
|
Xing T, Luo D, Zhao X, Xu X, Li J, Zhang L, Gao F. Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:279-286. [PMID: 32623748 DOI: 10.1002/jsfa.10641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Wooden breast (WB) myopathy in broiler chickens is a growing challenge for the poultry industry. Previous multi-omic data have implied that the pathogenesis of WB is associated with the activation of immune system and inflammatory response. However, the intricate mechanisms are not fully understood. This study was therefore conducted to systematically investigate the morphology, expression of cytokines as well as the underlying signaling pathways regulating the inflammatory response in pectoralis major (PM) muscle of WB myopathic broilers. RESULTS wHistopathological changes, increased plasma creatine kinase and lactate dehydrogenase activities, elevated myeloperoxidase activity and overproduction of nitric oxide in muscle indicated the enhancement of muscle damage and inflammation in WB broilers. The messenger RNA (mRNA) expressions of inflammatory cytokines were dysregulated in PM muscle and contents of interleukin (IL)-1β, IL-8 and tumor necrosis factor-α were increased in serum of WB myopathic broilers, indicating this myopathy was associated with immune disorder and systemic inflammation response. Additionally, toll-like receptor (TLR) levels were upregulated, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway was activated and the mRNA expression levels of downstream inflammatory mediators were enhanced in PM muscle of WB myopathy affected birds. CONCLUSION The results indicated an immune disorder and a systemic inflammation response in WB myopathic broilers, which might be related to a synergetic effect of TLRs and NF-κB pathway. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dan Luo
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xue Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
40
|
Datta A, Chakraborty U, Kumar S, Chandra A. Immunopathogenesis of spondyloarthropathies – Concept of major histocompatibility locus-I-opathy. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_295_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
42
|
Alder KD, Lee I, Munger AM, Kwon HK, Morris MT, Cahill SV, Back J, Yu KE, Lee FY. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 2020; 141:115568. [PMID: 32745687 DOI: 10.1016/j.bone.2020.115568] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Bone and joint infections are devastating afflictions. Although medical interventions and advents have improved their care, bone and joint infections still portend dismal outcomes. Indeed, bone and joint infections are associated with extremely high mortality and morbidity rates and, generally, occur secondary to the aggressive pathogen Staphylococcus aureus. The consequences of bone and joint infections are further compounded by the fact that although they are aggressively treated, they frequently recur and result in massive bone and articular cartilage loss. Here, we review the literature and chronicle the fact that the fundamental cellular components of the musculoskeletal system can be internally infected with Staphylococcus aureus, which explains the ready recurrence of bone and joint infections even after extensive administration of antibiotic therapy and debridement and offer potential treatment solutions for further study. Moreover, we review the ramifications of intracellular infection and expound that the massive bone and articular cartilage loss is caused by the sustained proinflammatory state induced by infection and offer potential combination therapies for further study to protect bone and cartilage.
Collapse
Affiliation(s)
- Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Kristin E Yu
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| |
Collapse
|
43
|
Abstract
After a concussion, a series of complex, overlapping, and disruptive events occur within the brain, leading to symptoms and behavioral dysfunction. These events include ionic shifts, damaged neuronal architecture, higher concentrations of inflammatory chemicals, increased excitatory neurotransmitter release, and cerebral blood flow disruptions, leading to a neuronal crisis. This review summarizes the translational aspects of the pathophysiologic cascade of postconcussion events, focusing on the role of excitatory neurotransmitters and ionic fluxes, and their role in neuronal disruption. We review the relationship between physiologic disruption and behavioral alterations, and proposed treatments aimed to restore the balance of disrupted processes.
Collapse
Affiliation(s)
- David R Howell
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Julia Southard
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Psychology and Neuroscience, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| |
Collapse
|
44
|
Reed JC, Preston-Hurlburt P, Philbrick W, Betancur G, Korah M, Lucas C, Herold KC. The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. PLoS One 2020; 15:e0236921. [PMID: 32986722 PMCID: PMC7521722 DOI: 10.1371/journal.pone.0236921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is expressed in T cells after activation with antigen and is constitutively expressed in T cells from patients at-risk for and with type 1 diabetes mellitus (T1D). RAGE expression was associated with an activated T cell phenotype, leading us to examine whether RAGE is involved in T cell signaling. In primary CD4+ and CD8+ T cells from patients with T1D or healthy control subjects, RAGE- cells showed reduced phosphorylation of Erk. To study T cell receptor signaling in RAGE+ or–T cells, we compared signaling in RAGE+/+ Jurkat cells, Jurkat cells with RAGE eliminated by CRISPR/Cas9, or silenced with siRNA. In RAGE KO Jurkat cells, there was reduced phosphorylation of Zap70, Erk and MEK, but not Lck or CD3ξ. RAGE KO cells produced less IL-2 when activated with anti-CD3 +/- anti-CD28. Stimulation with PMA restored signaling and (with ionomycin) IL-2 production. Silencing RAGE with siRNA also decreased signaling. Our studies show that RAGE expression in human T cells is associated with an activated signaling cascade. These findings suggest a link between inflammatory products that are found in patients with diabetes, other autoimmune diseases, and inflammation that may enhance T cell reactivity.
Collapse
Affiliation(s)
- James C. Reed
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Paula Preston-Hurlburt
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - William Philbrick
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, United States of America
| | - Gabriel Betancur
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Korah
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Carrie Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Kevan C. Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abbasifard M, Kamiab Z, Noori M, Khorramdelazad H. The S100 proteins expression in newly diagnosed systemic lupus erythematosus patients: Can they be potential diagnostic biomarkers? GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Weinhage T, Wirth T, Schütz P, Becker P, Lueken A, Skryabin BV, Wittkowski H, Foell D. The Receptor for Advanced Glycation Endproducts (RAGE) Contributes to Severe Inflammatory Liver Injury in Mice. Front Immunol 2020; 11:1157. [PMID: 32670276 PMCID: PMC7326105 DOI: 10.3389/fimmu.2020.01157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The receptor for advanced glycation end products (RAGE) is a multiligand receptor involved in a number of processes and disorders. While it is known that RAGE-signaling can contribute to toxic liver damage and fibrosis, its role in acute inflammatory liver injury and septic multiorgan failure is yet undefined. We examined RAGE in lipopolysaccharide (LPS) induced acute liver injury of D-galN sensitized mice as a classical model for tumor necrosis factor alpha (TNF-α) dependent inflammatory organ damage. Methods: Mice (Rage–/– and C57BL/6) were intraperitoneally injected with D-galN (300 mg/kg) and LPS (10 μg/kg). Animals were monitored clinically, and cytokines, damage associated molecular pattern molecules (DAMPs) as well as liver enzymes were determined in serum. Liver histology, hepatic cytokines as well as RAGE mRNA expression were analyzed. Cellular activation and functionality were evaluated by flow cytometry both in bone marrow- and liver-derived cells. Results: Genetic deficiency of RAGE significantly reduced the mortality of mice exposed to LPS/D-galN. Hepatocyte damage markers were reduced in Rage–/– mice, and liver histopathology was less severe. Rage–/– mice produced less pro-inflammatory cytokines and DAMPs in serum and liver. While immune cell functions appeared normal, TNF-α production by hepatocytes was reduced in Rage–/– mice. Conclusions: We found that RAGE deletion attenuated the expression of pro-inflammatory cytokines and DAMPs in hepatocytes without affecting cellular immune functions in the LPS/D-galN model of murine liver injury. Our data highlight the importance of tissue-specific RAGE-signaling also in acute inflammatory liver stress contributing to sepsis and multiorgan failure.
Collapse
Affiliation(s)
- Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Paula Schütz
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Philipp Becker
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Aloys Lueken
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Boris V Skryabin
- Core Facility of Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Tsujimoto H, Horiguchi H, Takahata R, Ono S, Yaguchi Y, Nomura S, Ito N, Harada M, Nagata H, Ishibashi Y, Kouzu K, Tsuchiya S, Itazaki Y, Fujishima S, Kishi Y, Ueno H. Impact of perioperative high mobility group box chromosomal protein 1 expression on long-term outcomes in patients with esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2020; 35:788-794. [PMID: 31498489 DOI: 10.1111/jgh.14854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM High mobility group box chromosomal protein-1 (HMGB-1) is a potential late mediator of sepsis and a possible risk factor for postoperative pulmonary complications after esophagectomy. This study aimed to determine the relationship between HMGB-1 and clinicopathological factors and long-term prognosis after esophagectomy for esophageal cancer. METHODS We measured perioperative serum HMGB-1 levels using ELISA and HMGB-1 protein by immunohistochemistry expression in resected specimens. RESULTS Postoperative serum HMGB-1 levels were significantly higher than preoperative levels. Preoperative serum HMGB-1 levels were significantly higher in patients with more intraoperative bleeding, longer intensive care unit stays, and postoperative pneumonia. Postoperative serum HMGB-1 levels were significantly higher in older patients and those with longer operation time and more intraoperative bleeding. There were significant differences in long-term outcomes according to postoperative but not preoperative serum HMGB-1 levels. Multivariate analysis demonstrated that advanced pathological stage, postoperative pulmonary complications, and higher postoperative serum HMGB-1 levels were independently associated with relapse-free survival and overall survival. Preoperative serum HMGB-1 levels were significantly higher in patients with high HMGB-1 expression than those with low HMGB-1 expression by immunohistochemistry, whereas such statistical differences were not observed in postoperative serum HMGB-1. There were no differences in relapse-free survival and overall survival according to HMGB-1 expression by immunohistochemistry. Serum HMGB-1 levels were significantly increased after esophagectomy for esophageal cancer. CONCLUSION Elevated postoperative serum HMGB-1, which was associated not only with poor long-term but also short-term outcomes such as postoperative complications, might serve as a potential marker for prognosis in esophageal cancer.
Collapse
Affiliation(s)
- Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroyuki Horiguchi
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Risa Takahata
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Ono
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Yoshihisa Yaguchi
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Shinsuke Nomura
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Nozomi Ito
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Harada
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiromi Nagata
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Yusuke Ishibashi
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Keita Kouzu
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Tsuchiya
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Yujiro Itazaki
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | | | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
48
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Abstract
The pathogenic potential of Listeria monocytogenes relies on the production of an arsenal of virulence determinants that have been extensively characterized, including surface and secreted proteins of the internalin family. We have previously shown that the Listeria secreted internalin InlC interacts with IκB kinase α to interfere with the host immune response (E. Gouin, M. Adib-Conquy, D. Balestrino, M.-A. Nahori, et al., Proc Natl Acad Sci USA, 107:17333–17338, 2010, https://doi.org/10.1073/pnas.1007765107). In the present work, we report that InlC is monoubiquitinated on K224 upon infection of cells and provide evidence that ubiquitinated InlC interacts with and stabilizes the alarmin S100A9, which is a critical regulator of the immune response and inflammatory processes. Additionally, we show that ubiquitination of InlC causes an increase in reactive oxygen species production by neutrophils in mice and restricts Listeria infection. These findings are the first to identify a posttranscriptional modification of an internalin contributing to host defense. Listeria monocytogenes is a pathogenic bacterium causing potentially fatal foodborne infections in humans and animals. While the mechanisms used by Listeria to manipulate its host have been thoroughly characterized, how the host controls bacterial virulence factors remains to be extensively deciphered. Here, we found that the secreted Listeria virulence protein InlC is monoubiquitinated by the host cell machinery on K224, restricting infection. We show that the ubiquitinated form of InlC interacts with the intracellular alarmin S100A9, resulting in its stabilization and in increased reactive oxygen species production by neutrophils in infected mice. Collectively, our results suggest that posttranslational modification of InlC exacerbates the host response upon Listeria infection.
Collapse
|
50
|
Lee B, Song YS, Rhodes C, Goh TS, Roh JS, Jeong H, Park J, Lee HN, Lee SG, Kim S, Kim M, Lee SI, Sohn DH, Robinson WH. Protein phosphatase magnesium-dependent 1A induces inflammation in rheumatoid arthritis. Biochem Biophys Res Commun 2019; 522:731-735. [PMID: 31791585 DOI: 10.1016/j.bbrc.2019.11.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a highly inflammatory autoimmune disease. Although proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-6, play a key role in the pathogenesis of RA, the causes of chronic inflammation are not fully understood. Here, we report that protein phosphatase magnesium-dependent 1A (PPM1A) levels were increased in RA synovial fluid compared with osteoarthritis (OA) synovial fluid and positively correlated with TNF levels. In addition, PPM1A expression was increased in synovial tissue from RA patients and joint tissue from a mouse model of arthritis. Finally, extracellular PPM1A induced inflammation by stimulating macrophages to produce TNF through toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88) signaling pathway. Our findings suggest that extracellular PPM1A may contribute to the pathogenesis of RA by functioning as a damage-associated molecular pattern (DAMP) to induce inflammation.
Collapse
Affiliation(s)
- Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - You Seon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Radiology, Pusan National University Hospital, Busan, Republic of Korea
| | - Christopher Rhodes
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Tae Sik Goh
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Orthopaedic Surgery, Pusan National University Hospital, Busan, Republic of Korea
| | - Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jisu Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Han-Na Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Soohyun Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|