1
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dziulko AK, Allen H, Chuong EB. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140. Hum Mol Genet 2024; 33:1454-1464. [PMID: 38751339 PMCID: PMC11305685 DOI: 10.1093/hmg/ddae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 07/26/2024] Open
Abstract
Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.
Collapse
Affiliation(s)
- Adam K Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Holly Allen
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| |
Collapse
|
3
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
4
|
Quinten E, Sepúlveda-Yáñez JH, Koning MT, Eken JA, Pfeifer D, Nteleah V, De Groen RAL, Saravia DA, Knijnenburg J, Stuivenberg-Bleijswijk HE, Pantic M, Agathangelidis A, Keppler-Hafkemeyer A, Van Bergen CAM, Uribe-Paredes R, Stamatopoulos K, Vermaat JSP, Zirlik K, Navarrete MA, Jumaa H, Veelken H. Autonomous B-cell receptor signaling and genetic aberrations in chronic lymphocytic leukemia-phenotype monoclonal B lymphocytosis in siblings of patients with chronic lymphocytic leukemia. Haematologica 2024; 109:824-834. [PMID: 37439337 PMCID: PMC10905078 DOI: 10.3324/haematol.2022.282542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/μL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.
Collapse
Affiliation(s)
- Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Janneke A Eken
- Department of Hematology, Leiden University Medical Center, Leiden
| | - Dietmar Pfeifer
- Department of Medicine I, University Medical Center Freiburg, Freiburg
| | - Valeri Nteleah
- Department of Hematology, Leiden University Medical Center, Leiden
| | | | | | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, Leiden
| | | | - Milena Pantic
- Department of Medicine I, University Medical Center Freiburg, Freiburg
| | - Andreas Agathangelidis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | | | - Roberto Uribe-Paredes
- Department of Computer Engineering, Universidad de Magallanes, Punta Arenas, Chile; Centre for Biotechnology and Bioengineering, Santiago, Chile
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | | | - Katja Zirlik
- Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany; Tumor-und Brustzentrum Ostschweiz, Chur
| | | | | | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden.
| |
Collapse
|
5
|
Xu H, Chen C, Chen L, Pan S. Pan-cancer analysis identifies the IRF family as a biomarker for survival prognosis and immunotherapy. J Cell Mol Med 2024; 28:e18084. [PMID: 38130025 PMCID: PMC10844690 DOI: 10.1111/jcmm.18084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
IRF family genes have been shown to be crucial in tumorigenesis and tumour immunity. However, information about the role of IRF in the systematic assessment of pan-cancer and in predicting the efficacy of tumour therapy is still unknown. In this work, we performed a systematic analysis of IRF family genes in 33 tumour samples, including expression profiles, genomics and clinical characteristics. We then applied Single-Sample Gene-Set Enrichment Analysis (ssGSEA) to calculate IRF-scores and analysed the impact of IRF-scores on tumour progression, immune infiltration and treatment efficacy. Our results showed that genomic alterations, including SNPs, CNVs and DNA methylation, can lead to dysregulation of IRFs expression in tumours and participate in regulating multiple tumorigenesis. IRF-score expression differed significantly between 12 normal and tumour samples and the impact on tumour prognosis and immune infiltration depended on tumour type. IRF expression was correlated to drug sensitivity and to the expression of immune checkpoints and immune cell infiltration, suggesting that dysregulation of IRF family expression may be a critical factor affecting tumour drug response. Our study comprehensively characterizes the genomic and clinical profile of IRFs in pan-cancer and highlights their reliability and potential value as predictive markers of oncology drug efficacy. This may provide new ideas for future personalized oncology treatment.
Collapse
Affiliation(s)
- Hua‐Guo Xu
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Can Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Lin‐Yuan Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Shiyang Pan
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| |
Collapse
|
6
|
Kim EE, Jang CS, Kim H, Han B. PASTRY: achieving balanced power for detecting risk and protective minor alleles in meta-analysis of association studies with overlapping subjects. BMC Bioinformatics 2024; 25:24. [PMID: 38216869 PMCID: PMC10790263 DOI: 10.1186/s12859-023-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Meta-analysis is a statistical method that combines the results of multiple studies to increase statistical power. When multiple studies participating in a meta-analysis utilize the same public dataset as controls, the summary statistics from these studies become correlated. To solve this challenge, Lin and Sullivan proposed a method to provide an optimal test statistic adjusted for the correlation. This method quickly became the standard practice. However, we identified an unexpected power asymmetry phenomenon in this standard framework. This can lead to unbalanced power for detecting protective minor alleles and risk minor alleles. RESULTS We found that the power asymmetry of the current framework is mainly due to the errors in approximating the correlation term. We then developed a meta-analysis method based on an accurate correlation estimator, called PASTRY (A method to avoid Power ASymmeTRY). PASTRY outperformed the standard method on both simulated and real datasets in terms of the power symmetry. CONCLUSIONS Our findings suggest that PASTRY can help to alleviate the power asymmetry problem. PASTRY is available at https://github.com/hanlab-SNU/PASTRY .
Collapse
Affiliation(s)
- Emma E Kim
- Department of Chemistry, Seoul National University, Seoul, 03080, Korea
| | - Chloe Soohyun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hakin Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 03080, Korea
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Titcombe PJ, Silva Morales M, Zhang N, Mueller DL. BATF represses BIM to sustain tolerant T cells in the periphery. J Exp Med 2023; 220:e20230183. [PMID: 37862030 PMCID: PMC10588758 DOI: 10.1084/jem.20230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/13/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
T cells that encounter self-antigens after exiting the thymus avert autoimmunity through peripheral tolerance. Pathways for this include an unresponsive state known as anergy, clonal deletion, and T regulatory (Treg) cell induction. The transcription factor cues and kinetics that guide distinct peripheral tolerance outcomes remain unclear. Here, we found that anergic T cells are epigenetically primed for regulation by the non-classical AP-1 family member BATF. Tolerized BATF-deficient CD4+ T cells were resistant to anergy induction and instead underwent clonal deletion due to proapoptotic BIM (Bcl2l11) upregulation. During prolonged antigen exposure, BIM derepression resulted in fewer PD-1+ conventional T cells as well as loss of peripherally induced FOXP3+ Treg cells. Simultaneous Batf and Bcl2l11 knockdown meanwhile restored anergic T cell survival and Treg cell maintenance. The data identify the AP-1 nuclear factor BATF as a dominant driver of sustained T cell anergy and illustrate a mechanism for divergent peripheral tolerance fates.
Collapse
Affiliation(s)
- Philip J. Titcombe
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Na Zhang
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L. Mueller
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, ter Horst R, Macauda A, García-Martín P, Benavente Y, Landi S, Clay-Gilmour A, Niazi Y, Espinet B, Rodríguez-Sevilla JJ, Pérez EM, Maffei R, Blanco G, Giaccherini M, Cerhan JR, Marasca R, López-Nevot MÁ, Chen-Liang T, Thomsen H, Gámez I, Campa D, Moreno V, de Sanjosé S, Marcos-Gragera R, García-Álvarez M, Dierssen-Sotos T, Jerez A, Butrym A, Norman AD, Luppi M, Slager SL, Hemminki K, Li Y, Berndt SI, Casabonne D, Alcoceba M, Puiggros A, Netea MG, Försti A, Canzian F, Sainz J. Do GWAS-Identified Risk Variants for Chronic Lymphocytic Leukemia Influence Overall Patient Survival and Disease Progression? Int J Mol Sci 2023; 24:8005. [PMID: 37175717 PMCID: PMC10178669 DOI: 10.3390/ijms24098005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults worldwide. Although genome-wide association studies (GWAS) have uncovered the germline genetic component underlying CLL susceptibility, the potential use of GWAS-identified risk variants to predict disease progression and patient survival remains unexplored. Here, we evaluated whether 41 GWAS-identified risk variants for CLL could influence overall survival (OS) and disease progression, defined as time to first treatment (TTFT) in a cohort of 1039 CLL cases ascertained through the CRuCIAL consortium. Although this is the largest study assessing the effect of GWAS-identified susceptibility variants for CLL on OS, we only found a weak association of ten single nucleotide polymorphisms (SNPs) with OS (p < 0.05) that did not remain significant after correction for multiple testing. In line with these results, polygenic risk scores (PRSs) built with these SNPs in the CRuCIAL cohort showed a modest association with OS and a low capacity to predict patient survival, with an area under the receiver operating characteristic curve (AUROC) of 0.57. Similarly, seven SNPs were associated with TTFT (p < 0.05); however, these did not reach the multiple testing significance threshold, and the meta-analysis with previous published data did not confirm any of the associations. As expected, PRSs built with these SNPs showed reduced accuracy in prediction of disease progression (AUROC = 0.62). These results suggest that susceptibility variants for CLL do not impact overall survival and disease progression in CLL patients.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
| | - Rob ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria;
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (F.C.)
| | | | - Yolanda Benavente
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA;
| | - Yasmeen Niazi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (Y.N.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | | | - Eva María Pérez
- Hospital Campus de la Salud, PTS, 18016 Granada, Spain; (P.G.-M.); (E.M.P.)
| | - Rossana Maffei
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | - Gonzalo Blanco
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Matteo Giaccherini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - James R. Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (J.R.C.); (A.D.N.)
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | | | - Tzu Chen-Liang
- Hematology Department, Morales Meseguer University Hospital, 30008 Murcia, Spain; (T.C.-L.); (I.G.)
| | | | - Irene Gámez
- Hematology Department, Morales Meseguer University Hospital, 30008 Murcia, Spain; (T.C.-L.); (I.G.)
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (M.G.); (D.C.)
| | - Víctor Moreno
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Cancer Prevention and Control Program, Unit of Biomarkers and Susceptibility, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Silvia de Sanjosé
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, Girona Biomedical Research Institute (IdiBGi), 17190 Girona, Spain
- Department of Nursing, Universitat de Girona, 17007 Girona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Girona, Spain
| | - María García-Álvarez
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.G.-Á.); (M.A.)
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Faculty of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Medical University of Wrocław, 50-556 Wrocław, Poland;
| | - Aaron D. Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (J.R.C.); (A.D.N.)
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (R.M.); (R.M.); (M.L.)
| | - Susan L. Slager
- Division of Computational Genomics, Mayo Clinic, Rochester, MN 85054, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Delphine Casabonne
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (Y.B.); (V.M.); (S.d.S.); (D.C.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
| | - Miguel Alcoceba
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.G.-Á.); (M.A.)
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (B.E.); (G.B.); (A.P.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (Y.N.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (F.C.)
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain; (R.M.-G.); (T.D.-S.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada (UGR), 18012 Granada, Spain
| |
Collapse
|
9
|
Kleinstern G, Slager SL. The inherited genetic contribution and polygenic risk score for risk of CLL and MBL: a narrative review. Leuk Lymphoma 2023; 64:788-798. [PMID: 36576061 PMCID: PMC10121840 DOI: 10.1080/10428194.2022.2157215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a neoplasm of B-cells in the blood and monoclonal B-cell lymphocytosis (MBL) is a precursor state to CLL. This narrative review provides an overview of the genetic studies that identified 43 common variants associated with risk of CLL among individuals of European ancestry. Emerging studies found that ∼50% of these variants are associated with MBL risk. Moreover, the polygenic risk score (PRS) calculated from these CLL variants has been shown to be a robust predictor for both CLL and MBL risk among European ancestry individuals but a weak predictor among African ancestry individuals. By summarizing these genetic studies, we conclude that additional studies are needed in other race/ethnic populations to identify race-specific susceptibility variants, that functional studies are needed to validate the biological mechanisms of the variants, and that the clinical utility of the PRS is limited until preventive strategies for CLL are developed.
Collapse
Affiliation(s)
- Geffen Kleinstern
- School of Public Health, University of Haifa, Haifa, Israel
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Lampson BL, Gupta A, Tyekucheva S, Mashima K, Petráčková A, Wang Z, Wojciechowska N, Shaughnessy CJ, Baker PO, Fernandes SM, Shupe S, Machado JH, Fardoun R, Kim AS, Brown JR. Rare Germline ATM Variants Influence the Development of Chronic Lymphocytic Leukemia. J Clin Oncol 2023; 41:1116-1128. [PMID: 36315919 PMCID: PMC9928739 DOI: 10.1200/jco.22.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Germline missense variants of unknown significance in cancer-related genes are increasingly being identified with the expanding use of next-generation sequencing. The ataxia telangiectasia-mutated (ATM) gene on chromosome 11 has more than 1,000 germline missense variants of unknown significance and is a tumor suppressor. We aimed to determine if rare germline ATM variants are more frequent in chronic lymphocytic leukemia (CLL) compared with other hematologic malignancies and if they influence the clinical characteristics of CLL. METHODS We identified 3,128 patients (including 825 patients with CLL) in our hematologic malignancy clinic who had received clinical-grade sequencing of the entire coding region of ATM. We ascertained the comparative frequencies of germline ATM variants in categories of hematologic neoplasms, and, in patients with CLL, we determined whether these variants affected CLL-associated characteristics such as somatic 11q deletion. RESULTS Rare germline ATM variants are present in 24% of patients with CLL, significantly greater than that in patients with other lymphoid malignancies (16% prevalence), myeloid disease (15%), or no hematologic neoplasm (14%). Patients with CLL with germline ATM variants are younger at diagnosis and twice as likely to have 11q deletion. The ATM variant p.L2307F is present in 3% of patients with CLL, is associated with a three-fold increase in rates of somatic 11q deletion, and is a hypomorph in cell-based assays. CONCLUSION Germline ATM variants cluster within CLL and affect the phenotype of CLL that develops, implying that some of these variants (such as ATM p.L2307F) have functional significance and should not be ignored. Further studies are needed to determine whether these variants affect the response to therapy or account for some of the inherited risk of CLL.
Collapse
Affiliation(s)
- Benjamin L. Lampson
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Aditi Gupta
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Kiyomi Mashima
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Anna Petráčková
- Department of Immunology, Palacký University, Olomouc, Czech Republic
| | - Zixu Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Natalia Wojciechowska
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Current Address: Wrocław Medical University, Wrocław, Poland
| | - Conner J. Shaughnessy
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter O. Baker
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Stacey M. Fernandes
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Samantha Shupe
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John-Hanson Machado
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rayan Fardoun
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Jennifer R. Brown
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
11
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
12
|
Maffei R, Fiorcari S, Atene CG, Martinelli S, Mesini N, Pilato F, Lagreca I, Barozzi P, Riva G, Nasillo V, Paolini A, Forghieri F, Potenza L, Trenti T, Tagliafico E, Luppi M, Marasca R. The dynamic functions of IRF4 in B cell malignancies. Clin Exp Med 2022:10.1007/s10238-022-00968-0. [PMID: 36495369 PMCID: PMC10390622 DOI: 10.1007/s10238-022-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
AbstractThe trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its “kinetic control”, allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.
Collapse
|
13
|
Berndt SI, Vijai J, Benavente Y, Camp NJ, Nieters A, Wang Z, Smedby KE, Kleinstern G, Hjalgrim H, Besson C, Skibola CF, Morton LM, Brooks-Wilson AR, Teras LR, Breeze C, Arias J, Adami HO, Albanes D, Anderson KC, Ansell SM, Bassig B, Becker N, Bhatti P, Birmann BM, Boffetta P, Bracci PM, Brennan P, Brown EE, Burdett L, Cannon-Albright LA, Chang ET, Chiu BCH, Chung CC, Clavel J, Cocco P, Colditz G, Conde L, Conti DV, Cox DG, Curtin K, Casabonne D, De Vivo I, Diepstra A, Diver WR, Dogan A, Edlund CK, Foretova L, Fraumeni JF, Gabbas A, Ghesquières H, Giles GG, Glaser S, Glenn M, Glimelius B, Gu J, Habermann TM, Haiman CA, Haioun C, Hofmann JN, Holford TR, Holly EA, Hutchinson A, Izhar A, Jackson RD, Jarrett RF, Kaaks R, Kane E, Kolonel LN, Kong Y, Kraft P, Kricker A, Lake A, Lan Q, Lawrence C, Li D, Liebow M, Link BK, Magnani C, Maynadie M, McKay J, Melbye M, Miligi L, Milne RL, Molina TJ, Monnereau A, Montalvan R, North KE, Novak AJ, Onel K, Purdue MP, Rand KA, Riboli E, Riby J, Roman E, Salles G, Sborov DW, Severson RK, Shanafelt TD, Smith MT, Smith A, Song KW, Song L, Southey MC, Spinelli JJ, Staines A, Stephens D, Sutherland HJ, Tkachuk K, Thompson CA, Tilly H, Tinker LF, Travis RC, Turner J, Vachon CM, Vajdic CM, Van Den Berg A, Van Den Berg DJ, Vermeulen RCH, Vineis P, Wang SS, Weiderpass E, Weiner GJ, Weinstein S, Doo NW, Ye Y, Yeager M, Yu K, Zeleniuch-Jacquotte A, Zhang Y, Zheng T, Ziv E, Sampson J, Chatterjee N, Offit K, Cozen W, Wu X, Cerhan JR, Chanock SJ, Slager SL, Rothman N. Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes. Leukemia 2022; 36:2835-2844. [PMID: 36273105 PMCID: PMC10337695 DOI: 10.1038/s41375-022-01711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10-8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10-9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10-8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
Collapse
Affiliation(s)
- Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA.
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexandra Nieters
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | | | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Caroline Besson
- Centre Hospitalier de Versailles, Le Chesnay, France
- Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, Villejuif, France
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Angela R Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Joshua Arias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen M Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Parveen Bhatti
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, 11794, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, 41026, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Elizabeth E Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Lisa A Cannon-Albright
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Ellen T Chang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
| | - Brian C H Chiu
- Department of Public Health Sciences University of Chicago, Chicago, IL, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Jacqueline Clavel
- CRESS, UMR1153, INSERM, Villejuif, France
- Université de Paris-Cité, Villejuif, France
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Science, Health Services Research & Primary Care, University of Manchester, Manchester, United Kingdom
| | - Graham Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David V Conti
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David G Cox
- INSERM U1052, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Karen Curtin
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Delphine Casabonne
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Ahmet Dogan
- Departments of Laboratory Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Edlund
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Attilio Gabbas
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari, Italy
| | - Hervé Ghesquières
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphoma Immuno-Biology, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Sally Glaser
- Cancer Prevention Institute of California, Fremont, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Martha Glenn
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Christopher A Haiman
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Corinne Haioun
- Lymphoid Malignancies Unit, Henri Mondor Hospital and University Paris Est, Créteil, France
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Theodore R Holford
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Aalin Izhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ruth F Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rudolph Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, United Kingdom
| | - Laurence N Kolonel
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yinfei Kong
- Information Systems and Decision Sciences, California State University, Fullerton, Fullerton, CA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne Kricker
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Annette Lake
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | | | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Liebow
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Corrado Magnani
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marc Maynadie
- INSERM U1231, EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Jebsen Center for Genetic epidemiology, NTNU, Trondheim, Norway
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Florence, Italy
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Thierry J Molina
- Department of Pathology, APHP, Necker and Robert Debré, Université Paris Cité, Institut Imagine, INSERM U1163, Paris, France
| | - Alain Monnereau
- CRESS, UMR1153, INSERM, Villejuif, France
- Registre des hémopathies malignes de la Gironde, Institut Bergonié, Bordeaux, Cedex, France
| | | | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne J Novak
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kenan Onel
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, NY, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kristin A Rand
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas W Sborov
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tait D Shanafelt
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Alexandra Smith
- Department of Health Sciences, University of York, York, United Kingdom
| | - Kevin W Song
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lei Song
- Center for Cancer Research, National Cancer Institute, Frederick, MA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, VC, 3010, Australia
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Staines
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Deborah Stephens
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Heather J Sutherland
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlyn Tkachuk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hervé Tilly
- Centre Henri Becquerel, Université de Rouen, Rouen, France
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Jenny Turner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, NSW, Australia
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Claire M Vajdic
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anke Van Den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Human Genetics Foundation, Turin, Italy
| | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Concord, NSW, Australia
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, Institute of Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wendy Cozen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| |
Collapse
|
14
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
15
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
16
|
Role of Polygenic Risk Score in Cancer Precision Medicine of Non-European Populations: A Systematic Review. Curr Oncol 2022; 29:5517-5530. [PMID: 36005174 PMCID: PMC9406904 DOI: 10.3390/curroncol29080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new screening methods and diagnostic tests for traits, common diseases, and cancer is linked to the advent of precision genomic medicine, in which health care is individually adjusted based on a person’s lifestyle, environmental influences, and genetic variants. Based on genome-wide association study (GWAS) analysis, rapid and continuing progress in the discovery of relevant single nucleotide polymorphisms (SNPs) for traits or complex diseases has increased interest in the potential application of genetic risk models for routine health practice. The polygenic risk score (PRS) estimates an individual’s genetic risk of a trait or disease, calculated by employing a weighted sum of allele counts combined with non-genetic variables. However, 98.38% of PRS records held in public databases relate to the European population. Therefore, PRSs for multiethnic populations are urgently needed. We performed a systematic review to discuss the role of polygenic risk scores in advancing precision medicine for different cancer types in multiethnic non-European populations.
Collapse
|
17
|
Fan Y, Murgia M, Linder MI, Mizoguchi Y, Wang C, Łyszkiewicz M, Ziȩtara N, Liu Y, Frenz S, Sciuccati G, Partida-Gaytan A, Alizadeh Z, Rezaei N, Rehling P, Dennerlein S, Mann M, Klein C. HAX1-dependent control of mitochondrial proteostasis governs neutrophil granulocyte differentiation. J Clin Invest 2022; 132:153153. [PMID: 35499078 PMCID: PMC9057593 DOI: 10.1172/jci153153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/10/2022] [Indexed: 01/18/2023] Open
Abstract
The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1–/– cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.
Collapse
Affiliation(s)
- Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Monika I. Linder
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Cong Wang
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Natalia Ziȩtara
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Stephanie Frenz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Gabriela Sciuccati
- Hematology and Oncology Department, Hospital de Pediatria “Prof. Dr. J.P. Garrahan,” Buenos Aires, Argentina
| | - Armando Partida-Gaytan
- Unidad de Investigación en Inmunodeficiencias Primarias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells,” University of Goettingen, Goettingen, Germany
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| |
Collapse
|
18
|
Reduced IRF4 expression promotes lytic phenotype in Type 2 EBV-infected B cells. PLoS Pathog 2022; 18:e1010453. [PMID: 35472072 PMCID: PMC9041801 DOI: 10.1371/journal.ppat.1010453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.
Collapse
|
19
|
Polygenic risk score and risk of monoclonal B-cell lymphocytosis in caucasians and risk of chronic lymphocytic leukemia (CLL) in African Americans. Leukemia 2022; 36:119-125. [PMID: 34285341 PMCID: PMC8727288 DOI: 10.1038/s41375-021-01344-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Monoclonal B-cell lymphocytosis (MBL) is a precursor to CLL. Other than age, sex, and CLL family-history, little is known about factors associated with MBL risk. A polygenic-risk-score (PRS) of 41 CLL-susceptibility variants has been found to be associated with CLL risk among individuals of European-ancestry(EA). Here, we evaluate these variants, the PRS, and environmental factors for MBL risk. We also evaluate these variants and the CLL-PRS among African-American (AA) and EA-CLL cases and controls. Our study included 560 EA MBLs, 869 CLLs (696 EA/173 AA), and 2866 controls (2631 EA/235 AA). We used logistic regression, adjusting for age and sex, to estimate odds ratios (OR) and 95% confidence intervals within each race. We found significant associations with MBL risk among 21 of 41 variants and with the CLL-PRS (OR = 1.86, P = 1.9 × 10-29, c-statistic = 0.72). Little evidence of any association between MBL risk and environmental factors was observed. We observed significant associations of the CLL-PRS with EA-CLL risk (OR = 2.53, P = 4.0 × 10-63, c-statistic = 0.77) and AA-CLL risk (OR = 1.76, P = 5.1 × 10-5, c-statistic = 0.62). Inherited genetic factors and not environmental are associated with MBL risk. In particular, the CLL-PRS is a strong predictor for both risk of MBL and EA-CLL, but less so for AA-CLL supporting the need for further work in this population.
Collapse
|
20
|
Alshahrani A, Skarratt KK, Robledo KP, Hassanvand M, Tang B, Fuller SJ. Differential Levels of mRNAs in Normal B Lymphocytes, Monoclonal B Lymphocytosis and Chronic Lymphocytic Leukemia Cells from the Same Family Identify Susceptibility Genes. Oncol Ther 2021; 9:621-634. [PMID: 34622420 PMCID: PMC8593151 DOI: 10.1007/s40487-021-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION People with a family history of chronic lymphocytic leukemia (F-CLL) have an increased risk of monoclonal B lymphocytosis (F-MBL), which is found in up to 18% of first-degree relatives of patients compared to 5% of the total population. This may indicate that the presence of an F-MBL in the relative of a F-CLL patient is due to genetic susceptibility. In this study, we hypothesized that progressive changes in gene expression result in malignant transformation of B lymphocytes to F-MBL, and subsequent alterations in gene expression occur before overt F-CLL develops. The aim of this study of affected and unaffected individuals from a family with multiple CLL cases was to compare mRNA expression levels in control B-lymphocytes, pre-malignant F-MBL and malignant F-CLL cells. METHODS To identify inherited changes in gene expression, a high-resolution DNA microarray was used to identify differentially abundant mRNAs in age-matched cases of F-MBL (n = 4), F-CLL (n = 2) and unaffected family relatives (F-Controls, n = 3) within one family. These were then compared to non-kindred controls (NK-Controls, n = 3) and sporadic CLL (S-CLL) cases (n = 6). RESULTS Seven differentially abundant mRNAs were identified against similar genetic backgrounds of the family: GRASP and AC016745.3 were decreased in F-MBL and further decreased in F-CLL compared to F-Controls, whereas C11orf80 and METTL8 were progressively increased. PARP3 was increased in F-MBL compared to F-Controls but was decreased in F-CLL compared to F-MBL. Compared to F-Controls, levels of ROR1 and LEF1 were similarly increased in F-MBL and F-CLL. For six of the genes, there were no differences in mRNA levels between S-CLL and F-CLL; however PARP3 was higher in S-CLL. CONCLUSION These results are consistent with the hypothesis that changes in expression of specific genes contribute to transformation from normal lymphocytes to MBL and CLL.
Collapse
Affiliation(s)
- Abdullah Alshahrani
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, 2750, Australia
- College of Applied Medical Sciences, King Khalid University, Guraiger, Abha, 62529, Kingdom of Saudi Arabia
| | - Kristen K Skarratt
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, 2750, Australia
| | - Kristy P Robledo
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Maryam Hassanvand
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, 2750, Australia
| | - Benjamin Tang
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, 2750, Australia
| | - Stephen J Fuller
- Department of Medicine, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, 2750, Australia.
| |
Collapse
|
21
|
Racial and ethnic survival disparities in patients with haematological malignancies in the USA: time to stop ignoring the numbers. THE LANCET HAEMATOLOGY 2021; 8:e947-e954. [DOI: 10.1016/s2352-3026(21)00303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
|
22
|
Molecular interactions of IRF4 in B cell development and malignancies. Biophys Rev 2021; 13:1219-1227. [DOI: 10.1007/s12551-021-00825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
|
23
|
Lotz-Havla AS, Woidy M, Guder P, Schmiesing J, Erdmann R, Waterham HR, Muntau AC, Gersting SW. Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency. Front Genet 2021; 12:726174. [PMID: 34804114 PMCID: PMC8600046 DOI: 10.3389/fgene.2021.726174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes share metabolic pathways with other organelles and peroxisomes are embedded into key cellular processes. However, the specific function of many peroxisomal proteins remains unclear and restricted knowledge of the peroxisomal protein interaction network limits a precise mapping of this network into the cellular metabolism. Inborn peroxisomal disorders are autosomal or X-linked recessive diseases that affect peroxisomal biogenesis (PBD) and/or peroxisomal metabolism. Pathogenic variants in the PEX26 gene lead to peroxisomal disorders of the full Zellweger spectrum continuum. To investigate the phenotypic complexity of PEX26 deficiency, we performed a combined organelle protein interaction screen and network medicine approach and 1) analyzed whether PEX26 establishes interactions with other peroxisomal proteins, 2) deciphered the PEX26 interaction network, 3) determined how PEX26 is involved in further processes of peroxisomal biogenesis and metabolism, and 4) showed how variant-specific disruption of protein-protein interactions (edgetic perturbations) may contribute to phenotypic variability in PEX26 deficient patients. The discovery of 14 novel protein-protein interactions for PEX26 revealed a hub position of PEX26 inside the peroxisomal interactome. Analysis of edgetic perturbations of PEX26 variants revealed a strong correlation between the number of affected protein-protein interactions and the molecular phenotype of matrix protein import. The role of PEX26 in peroxisomal biogenesis was expanded encompassing matrix protein import, division and proliferation, and membrane assembly. Moreover, the PEX26 interaction network intersects with cellular lipid metabolism at different steps. The results of this study expand the knowledge about the function of PEX26 and refine genotype-phenotype correlations, which may contribute to our understanding of the underlying disease mechanism of PEX26 deficiency.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Schmiesing
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Erdmann
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Kolijn PM, Muggen AF, Ljungström V, Agathangelidis A, Wolvers-Tettero ILM, Beverloo HB, Pál K, Hengeveld PJ, Darzentas N, Hendriks RW, van Dongen JJM, Rosenquist R, Langerak AW. Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:740083. [PMID: 34513715 PMCID: PMC8427434 DOI: 10.3389/fonc.2021.740083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are thought to include chronic (antigenic) activation of mature B cells through the B cell receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations. Here we describe three families in which two or more siblings were affected by CLL. We investigated whether there are immunogenetic similarities in the leukemia-specific immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the siblings in each family. Furthermore, we performed array analysis to study if similarities in CLL-associated chromosomal aberrations are present within each family and screened for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-mutated) was observed. Intriguingly, the third family with four affected siblings was characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-specific rearrangements in two siblings could be assigned to either stereotyped subset #2 or the immunogenetically related subset #169, both of which belong to the broader IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were encountered in all three families. Furthermore, the CLL clones carried somatic mutations previously associated with IGHV mutational status, cytogenetic aberrations and stereotyped subsets, respectively. From these findings, we conclude that similarities in immunogenetic characteristics in familial CLL, in combination with genetic aberrations acquired, point towards shared underlying mechanisms behind CLL development within each family.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Alice F Muggen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.,Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ingrid L M Wolvers-Tettero
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Karol Pál
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Paul J Hengeveld
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Nikos Darzentas
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
25
|
Benatti S, Atene CG, Fiorcari S, Mesini N, Martinelli S, Zucchini P, Bacchelli F, Maccaferri M, Debbia G, Potenza L, Rossi D, Vallisa D, Trentin L, Gaidano G, Luppi M, Marasca R, Maffei R. IRF4 L116R mutation promotes proliferation of chronic lymphocytic leukemia B cells inducing MYC. Hematol Oncol 2021; 39:707-711. [PMID: 34431535 DOI: 10.1002/hon.2915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stefania Benatti
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Giacinto Atene
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Mesini
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Martinelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Zucchini
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Bacchelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Department of Oncology and Hematology, Hematology Division, Azienda Ospedaliero-Universitaria of Modena-Policlinico, Modena, Italy
| | - Giulia Debbia
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Daniele Vallisa
- Division of Hematology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology, Department of Medicine, University of Padua, Padua, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Mario Luppi
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Department of Oncology and Hematology, Hematology Division, Azienda Ospedaliero-Universitaria of Modena-Policlinico, Modena, Italy
| |
Collapse
|
26
|
Wang J, Clay-Gilmour AI, Karaesmen E, Rizvi A, Zhu Q, Yan L, Preus L, Liu S, Wang Y, Griffiths E, Stram DO, Pooler L, Sheng X, Haiman C, Van Den Berg D, Webb A, Brock G, Spellman S, Pasquini M, McCarthy P, Allan J, Stölzel F, Onel K, Hahn T, Sucheston-Campbell LE. Genome-Wide Association Analyses Identify Variants in IRF4 Associated With Acute Myeloid Leukemia and Myelodysplastic Syndrome Susceptibility. Front Genet 2021; 12:554948. [PMID: 34220922 PMCID: PMC8248805 DOI: 10.3389/fgene.2021.554948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The role of common genetic variation in susceptibility to acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS), a group of rare clonal hematologic disorders characterized by dysplastic hematopoiesis and high mortality, remains unclear. We performed AML and MDS genome-wide association studies (GWAS) in the DISCOVeRY-BMT cohorts (2,309 cases and 2,814 controls). Association analysis based on subsets (ASSET) was used to conduct a summary statistics SNP-based analysis of MDS and AML subtypes. For each AML and MDS case and control we used PrediXcan to estimate the component of gene expression determined by their genetic profile and correlate this imputed gene expression level with risk of developing disease in a transcriptome-wide association study (TWAS). ASSET identified an increased risk for de novo AML and MDS (OR = 1.38, 95% CI, 1.26-1.51, Pmeta = 2.8 × 10-12) in patients carrying the T allele at s12203592 in Interferon Regulatory Factor 4 (IRF4), a transcription factor which regulates myeloid and lymphoid hematopoietic differentiation. Our TWAS analyses showed increased IRF4 gene expression is associated with increased risk of de novo AML and MDS (OR = 3.90, 95% CI, 2.36-6.44, Pmeta = 1.0 × 10-7). The identification of IRF4 by both GWAS and TWAS contributes valuable insight on the role of genetic variation in AML and MDS susceptibility.
Collapse
Affiliation(s)
- Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Alyssa I. Clay-Gilmour
- Department of Epidemiology, Mayo Clinic, Rochester, MN, United States
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Ezgi Karaesmen
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Abbas Rizvi
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Leah Preus
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yiwen Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Griffiths
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Daniel O. Stram
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Loreall Pooler
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Van Den Berg
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy Webb
- Department on Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Guy Brock
- Department on Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Marcelo Pasquini
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Philip McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - James Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Kenan Onel
- Department of Pediatrics, Mount Sinai Medical Center, Miami Beach, NY, United States
| | - Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Waller RG, Klein RJ, Vijai J, McKay JD, Clay-Gilmour A, Wei X, Madsen MJ, Sborov DW, Curtin K, Slager SL, Offit K, Vachon CM, Lipkin SM, Dumontet C, Camp NJ. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum Mol Genet 2021; 30:1142-1153. [PMID: 33751038 PMCID: PMC8188404 DOI: 10.1093/hmg/ddab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Collapse
MESH Headings
- Acyl-CoA Oxidase/genetics
- Butyrophilins/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Interferon Regulatory Factors/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Multiple Myeloma/genetics
- Multiple Myeloma/pathology
- Polymorphism, Single Nucleotide/genetics
- Risk Factors
- T-Box Domain Proteins/genetics
- Tetraspanins/genetics
- Transmembrane Activator and CAML Interactor Protein/genetics
- Exome Sequencing
Collapse
Affiliation(s)
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute for Data Science and Genomic Technology, New York, NY 10029-5674, USA
| | - Joseph Vijai
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - James D McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Alyssa Clay-Gilmour
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomu Wei
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas W Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Curtin
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Susan L Slager
- Department of Health Sciences, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Celine M Vachon
- Department of Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles Dumontet
- INSERM 1052, CNRS 5286, University of Lyon, 69361 Lyon Cedex 07, France
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
IRF4 modulates the response to BCR activation in chronic lymphocytic leukemia regulating IKAROS and SYK. Leukemia 2021; 35:1330-1343. [PMID: 33623139 DOI: 10.1038/s41375-021-01178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcriptional regulator of immune system development and function. Here, we investigated the role of IRF4 in controlling responsiveness to B-cell receptor (BCR) stimulation in chronic lymphocytic leukemia (CLL). We modulated IRF4 levels by transfecting CLL cells with an IRF4 vector or by silencing using small-interfering RNAs. Higher IRF4 levels attenuated BCR signaling by reducing AKT and ERK phosphorylation and calcium release. Conversely, IRF4 reduction improved the strength of the intracellular cascade activated by BCR engagement. Our results also indicated that IRF4 negatively regulates the expression of the spleen tyrosine kinase SYK, a crucial protein for propagation of BCR signaling, and the zinc finger DNA-binding protein IKAROS. We modulated IKAROS protein levels both by genetic manipulation and pharmacologically by treating CLL cells with lenalidomide and avadomide (IMIDs). IKAROS promoted BCR signaling by reducing the expression of inositol 5-phosphatase SHIP1. Lastly, IMIDs induced IRF4 expression, while down-regulating IKAROS and interfered with survival advantage mediated by BCR triggering, also in combination with ibrutinib. Overall, our findings elucidate the mechanism by which IRF4 tunes BCR signaling in CLL cells. Low IRF4 levels allow an efficient transmission of BCR signal throughout the accumulation of SYK and IKAROS.
Collapse
|
29
|
Slager SL, Lanasa MC, Marti GE, Achenbach SJ, Camp NJ, Abbasi F, Kay NE, Vachon CM, Cerhan JR, Johnston JB, Call TG, Rabe KG, Kleinstern G, Boddicker NJ, Norman AD, Parikh SA, Leis JF, Banerji V, Brander DM, Glenn M, Ferrajoli A, Curtin K, Braggio E, Shanafelt TD, McMaster ML, Weinberg JB, Hanson CA, Caporaso NE. Natural history of monoclonal B-cell lymphocytosis among relatives in CLL families. Blood 2021; 137:2046-2056. [PMID: 33512457 PMCID: PMC8057266 DOI: 10.1182/blood.2020006322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/14/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic lymphocytic lymphoma (CLL) has one of the highest familial risks among cancers. Monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, has a higher prevalence (13%-18%) in families with 2 or more members with CLL compared with the general population (5%-12%). Although, the rate of progression to CLL for high-count MBLs (clonal B-cell count ≥500/µL) is ∼1% to 5%/y, no low-count MBLs have been reported to progress to date. We report the incidence and natural history of MBL in relatives from CLL families. In 310 CLL families, we screened 1045 relatives for MBL using highly sensitive flow cytometry and prospectively followed 449 of them. MBL incidence was directly age- and sex-adjusted to the 2010 US population. CLL cumulative incidence was estimated using Kaplan-Meier survival curves. At baseline, the prevalence of MBL was 22% (235/1045 relatives). After a median follow-up of 8.1 years among 449 relatives, 12 individuals progressed to CLL with a 5-year cumulative incidence of 1.8%. When considering just the 139 relatives with low-count MBL, the 5-year cumulative incidence increased to 5.7%. Finally, 264 had no MBL at baseline, of whom 60 individuals subsequently developed MBL (2 high-count and 58 low-count MBLs) with an age- and sex-adjusted incidence of 3.5% after a median of 6 years of follow-up. In a screening cohort of relatives from CLL families, we reported progression from normal-count to low-count MBL to high-count MBL to CLL, demonstrating that low-count MBL precedes progression to CLL. We estimated a 1.1% annual rate of progression from low-count MBL, which is in excess of that in the general population.
Collapse
Affiliation(s)
- Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Mark C Lanasa
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
| | - Gerald E Marti
- Lymphoid Malignancies Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sara J Achenbach
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Nicola J Camp
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Fatima Abbasi
- Center for Biologics Research and Evaluation, Food and Drug Administration, Silver Springs, MD
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - James B Johnston
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Kari G Rabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | - Aaron D Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jose F Leis
- Department of Hematology and Oncology, Mayo Clinic, Phoenix, AZ
| | - Versha Banerji
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Brander
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
| | - Martha Glenn
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Alessandra Ferrajoli
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Karen Curtin
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Esteban Braggio
- Department of Hematology and Oncology, Mayo Clinic, Phoenix, AZ
| | - Tait D Shanafelt
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - J Brice Weinberg
- Department of Medicine, Duke University, Duke Cancer Institute, Durham, NC
- Department of Immunology, Duke University Medical Center, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC; and
| | - Curtis A Hanson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Bencomo-Alvarez AE, Rubio AJ, Gonzalez MA, Eiring AM. Blood cancer health disparities in the United States Hispanic population. Cold Spring Harb Mol Case Stud 2021; 7:a005967. [PMID: 33593728 PMCID: PMC8040735 DOI: 10.1101/mcs.a005967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a challenging, multifaceted disease that involves a combination of biological and nonbiological factors. Aside from COVID-19, cancer is the second leading cause of death in the United States and the first among Hispanic Americans. The Hispanic population is the largest minority group in the United States, which is rapidly growing in size. Unfortunately, U.S. Hispanics and other minority groups experience many different health disparities, resulting in poor survival outcomes and a reduced quality of life. Factors such as genomic mutations, lower socioeconomic status, lack of education, reduced access to health care, comorbidities, and environmental factors all contribute to these health-care inequalities. In the context of blood cancer health disparities, Hispanic patients are often diagnosed at a younger age and have worse outcomes compared with non-Hispanic individuals. In this commentary, we highlight the existing knowledge about cancer health disparities in the Hispanic population, with a focus on chronic and acute leukemia. In our experience at the U.S./Mexican border, analysis of several different blood cancers demonstrated that younger Hispanic patients with acute lymphoid or myeloid leukemia have higher incidence rates and worse prognoses. A combined approach, involving improved health-care access and better knowledge of the underlying factors, will allow for more timely diagnoses and the development of intervention strategies aimed at reducing or eliminating the disparities.
Collapse
Affiliation(s)
- Alfonso E Bencomo-Alvarez
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Andres J Rubio
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Anna M Eiring
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
31
|
Pasqualucci L, Klein U. Mouse Models in the Study of Mature B-Cell Malignancies. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034827. [PMID: 32398289 DOI: 10.1101/cshperspect.a034827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past two decades, genomic analyses of several B-cell lymphoma entities have identified a large number of genes that are recurrently mutated, suggesting that their aberrant function promotes lymphomagenesis. For many of those genes, the specific role in normal B-cell development is unknown; moreover, whether and how their deregulated activity contributes to lymphoma initiation and/or maintenance is often difficult to determine. Genetically engineered mouse models that faithfully mimic lymphoma-associated genetic alterations represent valuable tools for elucidating the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, as well as for the preclinical testing of novel therapeutic principles in an intact microenvironment. Here we summarize what has been learned about the mechanisms of oncogenic transformation from accurately modeling the most common and well-characterized genetic alterations identified in mature B-cell malignancies. This information is expected to guide the design of improved molecular diagnostics and mechanism-based therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
32
|
Besson C, Moore A, Wu W, Vajdic CM, de Sanjose S, Camp NJ, Smedby KE, Shanafelt TD, Morton LM, Brewer JD, Zablotska L, Engels EA, Cerhan JR, Slager SL, Han J, Berndt SI. Common genetic polymorphisms contribute to the association between chronic lymphocytic leukaemia and non-melanoma skin cancer. Int J Epidemiol 2021; 50:1325-1334. [PMID: 33748835 DOI: 10.1093/ije/dyab042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Epidemiological studies have demonstrated a positive association between chronic lymphocytic leukaemia (CLL) and non-melanoma skin cancer (NMSC). We hypothesized that shared genetic risk factors between CLL and NMSC could contribute to the association observed between these diseases. METHODS We examined the association between (i) established NMSC susceptibility loci and CLL risk in a meta-analysis including 3100 CLL cases and 7667 controls and (ii) established CLL loci and NMSC risk in a study of 4242 basal cell carcinoma (BCC) cases, 825 squamous cell carcinoma (SCC) cases and 12802 controls. Polygenic risk scores (PRS) for CLL, BCC and SCC were constructed using established loci. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Higher CLL-PRS was associated with increased BCC risk (OR4th-quartile-vs-1st-quartile = 1.13, 95% CI: 1.02-1.24, Ptrend = 0.009), even after removing the shared 6p25.3 locus. No association was observed with BCC-PRS and CLL risk (Ptrend = 0.68). These findings support a contributory role for CLL in BCC risk, but not for BCC in CLL risk. Increased CLL risk was observed with higher SCC-PRS (OR4th-quartile-vs-1st-quartile = 1.22, 95% CI: 1.08-1.38, Ptrend = 1.36 × 10-5), which was driven by shared genetic susceptibility at the 6p25.3 locus. CONCLUSION These findings highlight the role of pleiotropy regarding the pathogenesis of CLL and NMSC and shows that a single pleiotropic locus, 6p25.3, drives the observed association between genetic susceptibility to SCC and increased CLL risk. The study also provides evidence that genetic susceptibility for CLL increases BCC risk.
Collapse
Affiliation(s)
- Caroline Besson
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay; Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, 94805, Villejuif, France
| | - Amy Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tait D Shanafelt
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jerry D Brewer
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Lydia Zablotska
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James R Cerhan
- Service d'hématologie et Oncologie, Centre Hospitalier de Versailles, Le Chesnay; Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, 94805, Villejuif, France
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
33
|
Sundararaj S, Seneviratne S, Williams SJ, Enders A, Casarotto MG. Structural determinants of the IRF4/DNA homodimeric complex. Nucleic Acids Res 2021; 49:2255-2265. [PMID: 33533913 PMCID: PMC7913761 DOI: 10.1093/nar/gkaa1287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 11/15/2022] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a key transcription factor (TF) in the regulation of immune cells, including B and T cells. It acts by binding DNA as both a homodimer and, in conjunction with other TFs, as a heterodimer. The choice of homo and heterodimeric/ DNA interactions is a critical aspect in the control of the transcriptional program and cell fate outcome. To characterize the nature of this interaction in the homodimeric complex, we have determined the crystal structure of the IRF4/ISRE homodimeric complex. We show that the complex formation is aided by a substantial DNA deformation with co-operative binding achieved exclusively through protein–DNA contact. This markedly contrasts with the heterodimeric form where DNA bound IRF4 is shown to physically interact with PU.1 TF to engage EICE1. We also show that the hotspot residues (Arg98, Cys99 and Asn102) contact both consensus and non-consensus sequences with the L1 loop exhibiting marked flexibility. Additionally, we identified that IRF4L116R, a mutant associated with chronic lymphocytic leukemia, binds more robustly to DNA thereby providing a rationale for the observed gain of function. Together, we demonstrate key structural differences between IRF4 homo and heterodimeric complexes, thereby providing molecular insights into IRF4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Srinivasan Sundararaj
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia
| | - Sandali Seneviratne
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia
| | - Simon J Williams
- Research School of Biology, Australian National University, Canberra 2600, Australia
| | - Anselm Enders
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia.,Center for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia
| |
Collapse
|
34
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
35
|
Lin WY, Fordham SE, Sunter N, Elstob C, Rahman T, Willmore E, Shepherd C, Strathdee G, Mainou-Fowler T, Piddock R, Mearns H, Barrow T, Houlston RS, Marr H, Wallis J, Summerfield G, Marshall S, Pettitt A, Pepper C, Fegan C, Forconi F, Dyer MJS, Jayne S, Sellors A, Schuh A, Robbe P, Oscier D, Bailey J, Rais S, Bentley A, Cawkwell L, Evans P, Hillmen P, Pratt G, Allsup DJ, Allan JM. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat Commun 2021; 12:665. [PMID: 33510140 PMCID: PMC7843618 DOI: 10.1038/s41467-020-20822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47-2.15; P = 2.71 × 10-9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55-2.55; P = 5.08 × 10-8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Shepherd
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tryfonia Mainou-Fowler
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Mearns
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Jonathan Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | - Christopher Fegan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, UK
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - April Sellors
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | | | | | - James Bailey
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Syed Rais
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Alison Bentley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | | | - Paul Evans
- Haematological Malignancy Diagnostic Service Laboratory, St James' Institute of Oncology, Leeds, UK
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Guy Pratt
- University of Birmingham, Birmingham, UK
| | - David J Allsup
- Hull University Teaching Hospital NHS Trust, Hull, UK.
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Chong AHW, Mitchell RE, Hemani G, Davey Smith G, Yolken RH, Richmond RC, Paternoster L. Genetic Analyses of Common Infections in the Avon Longitudinal Study of Parents and Children Cohort. Front Immunol 2021; 12:727457. [PMID: 34804013 PMCID: PMC8599591 DOI: 10.3389/fimmu.2021.727457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The burden of infections on an individual and public health is profound. Many observational studies have shown a link between infections and the pathogenesis of disease; however a greater understanding of the role of host genetics is essential. Children from the longitudinal birth cohort, the Avon Longitudinal Study of Parents and Children, had 14 antibodies measured in plasma at age 7: Alpha-casein protein, beta-casein protein, cytomegalovirus, Epstein-Barr virus, feline herpes virus, Helicobacter pylori, herpes simplex virus 1, influenza virus subtype H1N1, influenza virus subtype H3N2, measles virus, Saccharomyces cerevisiae, Theiler's virus, Toxoplasma gondii, and SAG1 protein domain, a surface antigen of Toxoplasma gondii measured for greater precision. We performed genome-wide association analyses of antibody levels against these 14 infections (N = 357 - 5010) and identified three genome-wide signals (P < 5×10-8), two associated with measles virus antibodies and one with Toxoplasma gondii antibodies. In an association analysis focused on the human leukocyte antigen (HLA) region of the genome, we further detected 15 HLA alleles at a two-digit resolution and 23 HLA alleles at a four-digit resolution associated with five antibodies, with eight HLA alleles associated with Epstein-Barr virus antibodies showing strong evidence of replication in UK Biobank. We discuss how our findings from antibody levels complement other studies using self-reported phenotypes in understanding the architecture of host genetics related to infections.
Collapse
Affiliation(s)
- Amanda H W Chong
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Tracking the Genetic Susceptibility Background of B-Cell Non-Hodgkin's Lymphomas from Genome-Wide Association Studies. Int J Mol Sci 2020; 22:ijms22010122. [PMID: 33374413 PMCID: PMC7795678 DOI: 10.3390/ijms22010122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
B-cell non-Hodgkin’s lymphoma (NHL) risk associations had been mainly attributed to family history of the disease, inflammation, and immune components including human leukocyte antigen (HLA) genetic variations. Nevertheless, a broad range of genome-wide association studies (GWAS) have shed light into the identification of several genetic variants presumptively associated with B-cell NHL etiologies, survival or shared genetic risk with other diseases. The present review aims to overview HLA structure and diversity and summarize the evidence of genetic variations, by GWAS, on five NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma FL, chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and primary central nervous system lymphoma PCNSL). Evidence indicates that the HLA zygosity status in B-cell NHL might promote immune escape and that genome-wide significance variants can give biological insight but also potential therapeutic markers such as WEE1 in DLBCL. However, additional studies are needed, especially for non-DLBCL, to replicate the associations found to date.
Collapse
|
38
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
39
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Mangaonkar AA, Patnaik MM. Hereditary Predisposition to Hematopoietic Neoplasms: When Bloodline Matters for Blood Cancers. Mayo Clin Proc 2020; 95:1482-1498. [PMID: 32571604 DOI: 10.1016/j.mayocp.2019.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
With the advent of precision genomics, hereditary predisposition to hematopoietic neoplasms- collectively known as hereditary predisposition syndromes (HPS)-are being increasingly recognized in clinical practice. Familial clustering was first observed in patients with leukemia, which led to the identification of several germline variants, such as RUNX1, CEBPA, GATA2, ANKRD26, DDX41, and ETV6, among others, now established as HPS, with tendency to develop myeloid neoplasms. However, evidence for hereditary predisposition is also apparent in lymphoid and plasma--cell neoplasms, with recent discoveries of germline variants in genes such as IKZF1, SH2B3, PAX5 (familial acute lymphoblastic leukemia), and KDM1A/LSD1 (familial multiple myeloma). Specific inherited bone marrow failure syndromes-such as GATA2 haploinsufficiency syndromes, short telomere syndromes, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, severe congenital neutropenia, and familial thrombocytopenias-also have an increased predisposition to develop myeloid neoplasms, whereas inherited immune deficiency syndromes, such as ataxia-telangiectasia, Bloom syndrome, Wiskott Aldrich syndrome, and Bruton agammaglobulinemia, are associated with an increased risk for lymphoid neoplasms. Timely recognition of HPS is critical to ensure safe choice of donors and/or conditioning-regimen intensity for allogeneic hematopoietic stem-cell transplantation and to enable direction of appropriate genomics-driven personalized therapies. The purpose of this review is to provide a comprehensive overview of HPS and serve as a useful reference for clinicians to recognize relevant signs and symptoms among patients to enable timely screening and referrals to pursue germline assessment. In addition, we also discuss our institutional approach toward identification of HPS and offer a stepwise diagnostic and management algorithm.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
41
|
He L, Kulminski AM. Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models. Genetics 2020; 215:41-58. [PMID: 32132097 PMCID: PMC7198273 DOI: 10.1534/genetics.119.302940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer's disease (AD) with a Late-Onset Alzheimer's Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE ε4 variant with strong statistical power (P = 1e-101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e-9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits.
Collapse
Affiliation(s)
- Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| |
Collapse
|
42
|
B-cell-specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood 2020; 134:1717-1729. [PMID: 31537531 DOI: 10.1182/blood.2019000973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.
Collapse
|
43
|
Hu Y, Chen W, Wang J. Mutations In Thirty Hotspot Genes In Newly Diagnosed Chinese Multiple Myeloma Patients. Onco Targets Ther 2019; 12:9999-10010. [PMID: 31819496 PMCID: PMC6877412 DOI: 10.2147/ott.s216289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Objective In recent years, whole-genome sequencing and whole-exon sequencing have revealed the spectrum of gene mutations in multiple myeloma (MM). Gene mutations may play an important role in the pathogenesis, progression, and prognosis of this disease. On the basis of these studies, we established a box of mutations in 30 hotspot genes and analyzed the characteristics in newly diagnosed MM patients in China. Methods Bone marrow samples were collected. Mononuclear cells were isolated and plasma cells were separated using CD138 magnetic beads. Gene mutations were detected by PCR and Sanger sequencing. Fluorescence in situ hybridization (FISH) was used to analyze 1q21, 17p13.1, 14q32/16q23, 14q32/4p16, and 14q32/11q13.3. In the first part of this study, characterization of 30 genes and FISH analysis were performed in 40 patients. For economic reasons, in the second part of this study, 12 of 30 genes were characterized in another 46 patients. Results In the 40 patients of the first part of this study, single nucleotide polymorphisms (SNPs) were detected in 7 genes (CRBN, ATM, FAT4, FAM46C, RB1, NR3C1, and SPEN), while 16 genes were mutated (ATM, CUL4B, IRF4, CCND1, KRAS, DIS3, CRBN, TP53, FAT4, NR3C1, VCAN, RB1, SP140, NRAS, EGR1, and BRAF). Overall, 83 mutations of 30 genes were identified, including 54 intronic mutations, 18 missense mutations, 6 synonymous mutations, 3 5'/3'-UTR mutations, and 2 deletions mutations. Cytogenetic abnormalities were also screened in the 40 patients assayed, with 50% of the patients having 1q21+, 12.5% having 17p-, 15% having t(4;14), and 17.5% having t(11;14). DIS3 was mutated in 4/40, three of which involved t(4;14) or t(11;14). TP53 was mutated in two non-17p- patients, one of whom survived only 7 months, while the other survived 13 months. Three genes (ATM, CUL4B, and IRF4) with a high mutation rate were analyzed for an association with survival. There was no statistically significant difference in 2-year PFS (progress free survival) and 2-year OS (overall survival) between patients with or without ATM or CUL4B mutation (P>0.05). This finding was also obtained for IFR4 mutation, but patients with IFR4 mutation did show trends for longer PFS and OS. Conclusion SNPs and other types of gene mutations are common in newly diagnosed Chinese multiple myeloma patients. The genes most commonly featuring SNPs are CRBN, ATM, FAT4, and FAM46C, while the genes most commonly featuring other mutation types are ATM, CUL4B, and IRF4. There were differences in the profiles of genes affected by SNPs and by other mutation types. Intronic mutations were the most common mutation type. Gene mutations may differ among patients with different cytogenetic abnormalities. Genetic mutations may be associated with prognosis.
Collapse
Affiliation(s)
- Ying Hu
- Department of Hematology, Aerospace Center Hospital, Beijing 100049, People's Republic of China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingbo Wang
- Department of Hematology, Aerospace Center Hospital, Beijing 100049, People's Republic of China
| |
Collapse
|
44
|
Li Y, Mao M, Liu H, Wang X, Kou Z, Nie Y, Wang Y, Wang Z, Huang Q, Lang T, Gu Z, An L, Zhang X, Fu L. miR-34a and miR-29b as indicators for prognosis of treatment-free survival of chronic lymphocytic leukemia patients in Chinese Uygur and Han populations. Mol Cell Probes 2019; 47:101436. [DOI: 10.1016/j.mcp.2019.101436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
45
|
Speedy HE, Beekman R, Chapaprieta V, Orlando G, Law PJ, Martín-García D, Gutiérrez-Abril J, Catovsky D, Beà S, Clot G, Puiggròs M, Torrents D, Puente XS, Allan JM, López-Otín C, Campo E, Houlston RS, Martín-Subero JI. Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nat Commun 2019; 10:3615. [PMID: 31399598 PMCID: PMC6689100 DOI: 10.1038/s41467-019-11582-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Genome-wide association studies have provided evidence for inherited genetic predisposition to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are significantly enriched for active chromatin in CLL with evidence of being CLL-specific or differentially regulated in normal B-cell development. We then use in situ promoter capture Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci. Candidate target genes are enriched for pathways related to B-cell development such as MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable functional basis of CLL risk. By integrating genetic and epigenetic information our analysis reveals novel insights into the relationship between inherited predisposition and the regulatory chromatin landscape of CLL.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Base Sequence
- Chromatin/metabolism
- DNA Methylation
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Epigenomics
- Gene Expression Regulation, Leukemic
- Genetic Predisposition to Disease/genetics
- Genome-Wide Association Study
- Genotype
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- Helen E Speedy
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SW7 3RP, UK
| | - Renée Beekman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Vicente Chapaprieta
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Giulia Orlando
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SW7 3RP, UK
| | - David Martín-García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Jesús Gutiérrez-Abril
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Daniel Catovsky
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SW7 3RP, UK
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Montserrat Puiggròs
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
| | - David Torrents
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - James M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carlos López-Otín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
- Hematopathology Section, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SW7 3RP, UK.
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
46
|
Zhong C, Cozen W, Bolanos R, Song J, Wang SS. The role of HLA variation in lymphoma aetiology and survival. J Intern Med 2019; 286:154-180. [PMID: 31155783 DOI: 10.1111/joim.12911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiologic and laboratory evidence has consistently supported a strong inflammatory and immune component for lymphoma aetiology. These studies have consistently implicated variation in the immune gene, human leucocyte antigen (HLA), to be associated with lymphoma risk. In this review, we summarize the historical and recent evidence of HLA in both lymphoma aetiology and survival. The recent momentum in uncovering HLA associations has been propelled by the conduct of genome-wide association studies (GWAS), which has permitted the evaluation of imputed HLA alleles in much larger sample sizes than historically feasible with allelotyping studies. Based on the culmination of smaller HLA typing studies and larger GWAS, we now recognize several HLA associations with Hodgkin (HL) and non-Hodgkin lymphomas (NHLs) and their subtypes. Although other genetic variants have also been implicated with lymphoma risk, it is notable that HLA associations have been reported in every NHL and HL subtype evaluated to date. Both HLA class I and class II alleles have been linked with NHL and HL risk. It is notable that the associations identified are largely specific to each lymphoma subtype. However, pleiotropic HLA associations have also been observed. For example, rs10484561, which is in linkage disequilibrium with HLA-DRB1*01:01˜DQA1*01:01˜DQB1*05:01, has been implicated in increased FL and DLBCL risk. Opposing HLA associations across subtypes have also been reported, such as for HLA-A*01:01 which is associated with increased risk of EBV-positive cHL but decreased risk of EBV-negative cHL and chronic lymphocytic leukaemia/small cell lymphoma. Due to extensive linkage disequilibrium and allele/haplotypic variation across race/ethnicities, identification of causal alleles/haplotypes remains challenging. Follow-up functional studies are needed to identify the specific immunological pathways responsible in the multifactorial aetiology of HL and NHL. Correlative studies linking HLA alleles with known molecular subtypes and HLA expression in the tumours are also needed. Finally, additional association studies investigating HLA diversity and lymphoma survival are also required to replicate initial associations reported to date.
Collapse
Affiliation(s)
- C Zhong
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - W Cozen
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - R Bolanos
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - J Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - S S Wang
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| |
Collapse
|
47
|
Huang SJ, Chan J, Bruyère H, Allan LL, Gerrie AS, Toze CL. Chronic lymphocytic leukemia patients with HLA-B27 referred for allogeneic hematopoietic stem cell transplantation do not have worse outcomes: Results of a population-based case series analysis in British Columbia, Canada. Leuk Res 2019; 84:106193. [PMID: 31325731 DOI: 10.1016/j.leukres.2019.106193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/22/2022]
Abstract
Human leukocyte antigen B27 (HLA-B27), associated with spondyloarthritis, was suggested to be protective against chronic lymphocytic leukemia (CLL). It is hypothesized that HLA-B27 patients may have worse outcome in part related to their other comorbidities. OBJECTIVES We sought to compare the clinical characteristics and outcomes of CLL and small lymphocytic lymphoma (SLL) patients referred for allogeneic hematopoietic stem cell transplantation (allo-HSCT) based on their HLA-B27 status. METHODS This retrospective population-based case series analyzed CLL/SLL patients who were HLA-typed for potential allo-HSCT in British Columbia, Canada. RESULTS of 279 CLL/SLL patients referred for potential allo-HSCT, 34 patients were HLA-B27 positive. For HLA-B27 patients, median age at CLL diagnosis was 53.5 years (range, 27-67) and 71% were male. Seven patients had 11q deletion and nine patients had 17p deletion detected prior to first CLL therapy or at relapse. Eleven HLA-B27 patients received allo-HSCT. Two patients developed acute myeloid leukemia. One patient with ankylosing spondylitis had Richter's transformation prior to any CLL therapy. Spondyloarthritis-related disorders were diagnosed in 12 HLA-B27 patients but there was no temporal correlation with development of CLL. Overall survival (OS) and treatment-free survival (TFS) were not significantly different between HLA-B27 patients with or without spondyloarthritis-related disorders. There were no significant differences in clinical characteristics at CLL diagnosis or OS/TFS between HLA-B27 positive and negative patients referred for allo-HSCT. CONCLUSIONS HLA-B27 positivity does not appear to influence outcome for CLL/SLL patients referred for allo-HSCT. Further studies are needed to evaluate the clinical significance of HLA-B27 in a general CLL population.
Collapse
Affiliation(s)
- Steven J Huang
- Division of Hematology and Leukemia/BMT Program of British Columbia, Vancouver General Hospital, University of British Columbia, Canada
| | - Jonathan Chan
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helene Bruyère
- Division of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Vancouver General Hospital, University of British Columbia, Canada
| | - Lenka L Allan
- Division of Pathology and Laboratory Medicine, Immunology Laboratory, Vancouver General Hospital, University of British Columbia, Canada
| | - Alina S Gerrie
- Division of Hematology and Leukemia/BMT Program of British Columbia, Vancouver General Hospital, University of British Columbia, Canada; British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cynthia L Toze
- Division of Hematology and Leukemia/BMT Program of British Columbia, Vancouver General Hospital, University of British Columbia, Canada; British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Genetic predisposition to chronic lymphocytic leukemia. Hemasphere 2019; 3:HemaSphere-2019-0015. [PMID: 35309829 PMCID: PMC8925689 DOI: 10.1097/hs9.0000000000000194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/23/2019] [Indexed: 11/26/2022] Open
|
49
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
50
|
Hu Y, Chen W, Wang J. Progress in the identification of gene mutations involved in multiple myeloma. Onco Targets Ther 2019; 12:4075-4080. [PMID: 31213829 PMCID: PMC6538831 DOI: 10.2147/ott.s205922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing studies have been used to determine a spectrum of multiple myeloma (MM) mutations. Mutation of certain genes, including KRAS, NRAS, TP53, FAM46C, DIS3 and BRAF, have a high recurrence rate and may play important roles in the pathogenesis, progression and prognosis of MM. Mutations in DIS3, which encodes a highly conserved RNA exonuclease, lead to loss of function. The expression of FAM46C is highly correlated with the expression of ribosomal protein, but the exact function of FAM46C mutation is unclear. There are mutants of IRF4, which is considered an MM survival factor. Mutations in the gene coding for the DNA damage-binding protein (DDB1) may affect interactions with CUL4A, which is part of the cereblon (CRBN) ubiquitin ligase complex. IRF4is part of the complex, which binds to DNA. These findings might explain the resistance to immunomodulatory. TP53 deletion or mutation is often present in B-cell malignancies and is associated with low response rates. Myeloma pathogenic mutations in ATM have been found in adult lymphatic tumors. XBP1 and PSMB5 mutations may be related to bortezomib resistance. Multiple gene mutations (KRAS, NRAS and BRAF) involved in the same pathway were found a single patient. Identification of driver gene mutations has brought great hope to the field of individualized, targeted medicine for MM.
Collapse
Affiliation(s)
- Ying Hu
- Department of Hematology, Aerospace Central Hospital of Peking University, Beijing, People's Republic of China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingbo Wang
- Department of Hematology, Aerospace Central Hospital of Peking University, Beijing, People's Republic of China
| |
Collapse
|