1
|
Ji C, Ge W, Zhu C, Shen F, Yu Y, Pang G, Li Q, Zhu M, Ma Z, Zhu X, Fu Y, Gong L, Wang T, Du L, Jin G, Zhu M. Family history and genetic risk score combined to guide cancer risk stratification: A prospective cohort study. Int J Cancer 2025; 156:505-517. [PMID: 39291673 DOI: 10.1002/ijc.35187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Family history (FH) of cancer and polygenic risk scores (PRS) are pivotal for cancer risk assessment, yet their combined impact remains unclear. Participants in the UK Biobank (UKB) were recruited between 2006 and 2010, with complete follow-up data updated until February 2020 for Scotland and January 2021 for England and Wales. Using UKB data (N = 442,399), we constructed PRS and incidence-weighted overall cancer PRS (CPRS). FH was assessed through self-reported standardized questions. Among 202,801 men (34.6% with FH) and 239,598 women (42.0% with FH), Cox regression was used to examine the associations between FH, PRS, and cancer risk. We found a significant dose-response relationship between FH of cancer and corresponding cancer risk (Ptrend < .05), with over 10 significant pairs of cross-cancer effects of FH. FH and PRS are positively correlated and independent. Joint effects of FH of cancer (multiple cancers) and PRS (CPRS) on corresponding cancer risk were observed: for instance, compared with participants with no FH of cancer and low PRS, men with FH of cancer and high PRS had the highest risk of colorectal cancer (hazard ratio [HR]: 3.69, 95% confidence interval [CI]: 3.01-4.52). Additive interactions were observed in prostate and overall cancer risk for men and breast cancer for women, with the most significant result being a relative excess risk of interaction (RERI) of 2.98, accounting for ~34% of the prostate cancer risk. In conclusion, FH and PRS collectively contribute to cancer risk, supporting their combined application in personalized risk assessment and early intervention strategies.
Collapse
Affiliation(s)
- Chen Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Wenjing Ge
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Chen Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Fang Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yuhui Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Guanlian Pang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Qiao Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Mingxuan Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yating Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Lingbin Du
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Yang GE, Kim MH, Jeong MS, Lee SY, Choi YH, Nam JK, Kim TN, Leem SH. Association between PDCD6-VNTR polymorphism and urinary cancer susceptibility. Genes Genomics 2024; 46:1281-1291. [PMID: 38850471 DOI: 10.1007/s13258-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Programmed cell death 6 (PDCD6) is known to be involved in apoptosis and tumorigenesis. Given the reported association with urinary cancer susceptibility through SNP analysis, we further analyzed the entire genomic structure of PDCD6. METHODS Three VNTR regions (MS1-MS3) were identified through the analysis of the genomic structure of PDCD6. To investigate the association between these VNTR regions and urinary cancer susceptibility, genomic DNA was extracted from 413 cancer-free male controls, 267 bladder cancer patients, and 331 prostate cancer patients. Polymerase chain reaction (PCR) was performed to analyze the PDCD6-MS regions. Statistical analysis was performed to determine the association between specific genotypes and cancer risk. In addition, the effect of specific VNTRs on PDCD6 expression was also confirmed using a reporter vector. RESULTS Among the three VNTR regions, MS1 and MS2 exhibited monomorphism, while the MS3 region represented polymorphism, with its transmission to subsequent generations through meiosis substantiating its utility as a DNA typing marker. In a case-control study, the presence of rare alleles within PDCD6-MS3 exhibited significant associations with both bladder cancer (OR = 2.37, 95% CI: 1.33-4.95, P = 0.019) and prostate cancer (OR = 2.11, 95% CI: 1.03-4.36, P = 0.038). Furthermore, through luciferase assays, we validated the impact of the MS3 region on modulating PDCD6 expression. CONCLUSIONS This study suggests that the PDCD6-MS3 region could serve as a prognostic marker for urinary cancers, specifically bladder cancer and prostate cancer. Moreover, the subdued influence exerted by PDCD6-MS3 on the expression of PDCD6 offers another insight concerning the progression of urinary cancer.
Collapse
Affiliation(s)
- Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea
| | - Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Korea
| | - Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Korea
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-Eui University, Busan, 47227, Korea
| | - Jong-Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 50612, Korea
| | - Tae Nam Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute and Pusan National University Hospital, Busan, 49241, Korea.
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Korea.
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
3
|
Fernando A, Liyanage C, Srinivasan S, Panchadsaram J, Rothnagel JA, Clements J, Batra J. Iroquois homeobox 4 (IRX4) derived micropeptide promotes prostate cancer progression and chemoresistance through Wnt signalling dysregulation. COMMUNICATIONS MEDICINE 2024; 4:224. [PMID: 39487222 PMCID: PMC11530646 DOI: 10.1038/s43856-024-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a commonly diagnosed cancer. Genome-wide association studies have implicated Iroquois homeobox 4 (IRX4) in PCa susceptibility, yet its functional roles remain unclear. We discovered a 78-amino acid micropeptide (miPEP, IRX4_PEP1), encoded from the alternative start site within the IRX4 gene. The miPEPs, encoded through short open reading frames (sORFs) have emerged as regulators of diverse biological processes. However, the significance of miPEPs in prostate tumorigenesis and therapy response remains unexplored to date. Here, we demonstrated the unique role of IRX4_PEP1 in PCa. METHODS The role of IRX4_PEP1 was evaluated in PCa in vitro via functional assays and comprehensive pathway analysis. The interacting partners of IRX4_PEP1 were identified using an immunoprecipitation assay, and the impact of IRX4_PEP1 on PCa stem cells was assessed through a stem cell enrichment assay. Additionally, the expression of IRX4_PEP1 was evaluated in PCa patient samples for its potential diagnostic and prognostic significance. RESULTS Here we show IRX4_PEP1 promotes PCa cell proliferation, migration, and invasion by interacting with heterogeneous nuclear ribonucleoprotein K (HNRPK). Notably, IRX4_PEP1 dysregulates Wnt signalling by interacting with Catenin beta 1 (β catenin; CTNB1), elevating PCa stemness markers, and fostering docetaxel resistance. Clinically, IRX4_PEP1 expression is elevated in PCa tissues and correlates positively with disease aggressiveness. CTNNB1, HNRNPK levels, and ssGSEA enrichment score of WNT/CTNB1 signalling correlate positively with IRX4_PEP1 in PCa tissues. CONCLUSIONS These findings highlight IRX4_PEP1 role in PCa stemness and chemoresistance, suggesting it as a therapeutic target and potential diagnostic marker.
Collapse
Affiliation(s)
- Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joseph A Rothnagel
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia Campus, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Chang YH, Head ST, Harrison T, Yu Y, Huff CD, Pasaniuc B, Lindström S, Bhattacharya A. Isoform-level analyses of 6 cancers uncover extensive genetic risk mechanisms undetected at the gene-level. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24316388. [PMID: 39574839 PMCID: PMC11581093 DOI: 10.1101/2024.10.29.24316388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Integrating genome-wide association study (GWAS) and transcriptomic datasets can help identify potential mediators for germline genetic risk of cancer. However, traditional methods have been largely unsuccessful because of an overreliance on total gene expression. These approaches overlook alternative splicing, which can produce multiple isoforms from the same gene, each with potentially different effects on cancer risk. Here, we integrate genetic and multi-tissue isoform-level gene expression data from the Genotype Tissue-Expression Project (GTEx, N = 108-574) with publicly available European-ancestry GWAS summary statistics (all N > 20,000 cases) to identify both isoform- and gene-level risk associations with six cancers (breast, endometrial, colorectal, lung, ovarian, prostate) and six related cancer subtype classifications (N = 12 total). Compared to traditional methods leveraging total gene expression, directly modeling isoform expression through transcriptome-wide association studies (isoTWAS) substantially increases discovery of transcriptomic mechanisms underlying genetic associations. Using the same RNA-seq datasets, isoTWAS identified 164% more significant unique gene associations compared to TWAS (6,163 and 2,336, respectively), with isoTWAS-prioritized genes enriched 4-fold for evolutionarily-constrained genes (P = 6.1 × 10 -13 ). isoTWAS tags transcriptomic associations at 52% more independent GWAS loci compared to TWAS across the six cancers. Additionally, isoform expression mediates an estimated 63% greater proportion of cancer risk SNP heritability compared to gene expression when evaluating cis-genetic influence on isoform expression. We highlight several notable isoTWAS associations that demonstrate GWAS colocalization at the isoform level but not at the gene level, including, CLPTM1L (lung cancer), LAMC1 (colorectal), and BABAM1 (breast). These results underscore the critical importance of modeling isoform-level expression to maximize discovery of genetic risk mechanisms for cancers.
Collapse
Affiliation(s)
- Yung-Han Chang
- Quantitative Sciences Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - S. Taylor Head
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tabitha Harrison
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Pasaniuc
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Lindström
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Rolles B, Tometten M, Meyer R, Kirschner M, Beier F, Brümmendorf TH. Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:292-309. [PMID: 39371255 PMCID: PMC11452174 DOI: 10.1159/000540109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Telomeres are the end-capping structures of all eukaryotic chromosomes thereby protecting the genome from damage and degradation. During the aging process, telomeres shorten continuously with each cell division until critically short telomeres prevent further proliferation whereby cells undergo terminal differentiation, senescence, or apoptosis. Premature aging due to critically short telomere length (TL) can also result from pathogenic germline variants in the telomerase complex or related genes that typically counteract replicative telomere shortening in germline and certain somatic cell populations, e.g., hematopoetic stem cells. Inherited diseases that result in altered telomere maintenance are summarized under the term telomere biology disorder (TBD). Summary Since TL both reflects but more importantly restricts the replicative capacity of various human tissues, a sufficient telomere reserve is particularly important in cells with high proliferative activity (e.g., hematopoiesis, immune cells, intestinal cells, liver, lung, and skin). Consequently, altered telomere maintenance as observed in TBDs typically results in premature replicative cellular exhaustion in the respective organ systems eventually leading to life-threatening complications such as bone marrow failure (BMF), pulmonary fibrosis, and liver cirrhosis. Key Messages The recognition of a potential congenital origin in approximately 10% of adult patients with clinical BMF is of utmost importance for the proper diagnosis, appropriate patient and family counseling, to prevent the use of inefficient treatment and to avoid therapy-related toxicities including appropriate donor selection when patients have to undergo stem cell transplantation from related donors. This review summarizes the current state of knowledge about TBDs with particular focus on the clinical manifestation patterns in children (termed early onset TBD) compared to adults (late-onset TBD) including typical treatment- and disease course-related complications as well as their prognosis and adequate therapy. Thereby, it aims to raise awareness for a disease group that is currently still highly underdiagnosed particularly when it first manifests itself in adulthood.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
6
|
Wu X, Li W, Chen Y. Association of rs401681 (C > T) and rs402710 (C > T) polymorphisms in the CLPTM1L region with risk of lung cancer: a systematic review and meta-analysis. Sci Rep 2024; 14:22603. [PMID: 39349641 PMCID: PMC11442442 DOI: 10.1038/s41598-024-73254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Although many genome-wide association studies (GWAS) have confirmed the negative associations between rs401681[T] / rs402710[T] in the Cleft lip and cleft palate transmembrane protein 1 (CLPTM1L) region and lung cancer (LC) susceptibility in Caucasian and Asian populations, some other studies haven't found these negative associations. The purpose of this study is to clarify the associations between them and LC, as well as the differences in these associations between patients of different ethnicities (Caucasians and Asians), LC subtypes and smoking status. Relevant literatures published before July 7, 2023 in PubMed, EMbase, Web of Science, MEDLINE were searched through the Internet. Statistical analysis of data was performed in Revman 5.3, including drawing forest plots, funnel plots and so on. Sensitivity and publication bias were performed in Stata 14.0. TSA software was performed for the trial sequential analysis (TSA) tests to assess the stability of the results. Registration number: CRD42023407890. A total of 41 literatures (containing 44 studies: 16 studies in Caucasians and 28 studies in Asians) were included in this meta-analysis, including 126476 LC patients and 191648 healthy controls. The results showed that the T allele variants of rs401681 and rs402710 were negatively associated with the risk of LC (rs401681[T]: [OR] = 0.87, 95% CI [0.86, 0.88]; rs402710[T]: [OR] = 0.88, 95% CI [0.86, 0.89]), and the negative associations were stronger in Caucasians than in Asians (Subgroup differences: I2 > 50%). In LC subtypes, the rs401681[T] was negatively associated with the risk of Non-small-cell lung carcinoma (NSCLC), Lung adenocarcinoma (LUAD) and Lung squamous cell carcinoma (LUSC) (P < 0.05), and these negative associations were stronger in Caucasians than in Asians (Subgroup differences: I2 > 50%). The rs402710[T] was negatively associated with the risk of NSCLC, LUAD and LUSC (P < 0.05), and these negative associations in Caucasians were the same as in Asians (Subgroup differences: I2 < 50%). The rs401681[T] was negatively associated with the risk of LC in both smokers and non-smokers (P < 0.05), and the negative association for smokers equals to that of non-smokers (Subgroup differences: P = 0.25, I2 = 24.2%). In LC subtypes, the rs401681[T] was negatively associated with the risks of NSCLC and LUAD in both Caucasian smokers and Asian non-smokers (P < 0.05). The rs402710[T] was negatively associated with the risk of LC in both smokers and non-smokers (P < 0.05), and there was no difference in the strength of this negative risk association between them in Caucasians (Subgroup differences: I2 = 0%). In Asians, this negative association was found to be predominantly among smokers ([OR] = 0.80, 95%CI [0.65, 0.99]). In LC subtypes, the rs402710[T]was negatively associated with the risk of NSCLC in non-smokers, and this negative association was found to be predominantly among non-smokers in Asians ([OR] = 0.75, 95%CI [0.60, 0.94]). The T allele variants of rs401681 and rs402710 are both negatively associated with the risk of developing LC, NSCLC (LUAD, LUSC) in the Caucasian and Asian populations, and the negative associations with the risk of LC are higher in Caucasians. Smoking is an important risk factor for inducing the rs401681 and rs402710 variants and causes LC development in both populations. Other factors like non-smoking are mainly responsible for inducing the development of NSCLC in Asians, and is concentrated in LUAD among Asian non-smoking women.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
7
|
Wu X, Li W, Chen Y. Differences in the risk association of TERT-CLPTM1L rs4975616 (A>G) with lung cancer between Caucasian and Asian populations: A meta-analysis. PLoS One 2024; 19:e0309747. [PMID: 39255319 PMCID: PMC11386447 DOI: 10.1371/journal.pone.0309747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Although the G allele variant of TERT-CLPTM1L rs4975616 has been confirmed to be negatively associated to the risk of lung cancer (LC), some other studies haven't found this negative association. The purpose of this study is to clarify the association of the rs4975616 with the risk of developing LC and the differences of this association among patients with different ethnicities (Caucasians and Asians), different subtypes of LC, and different smoking status. METHODS Relevant literatures published before July 20, 2023 in PubMed, EMbase, Web of Science, MEDLINE databases were searched through the Internet. Statistical analysis of data was performed in Revman5.3, including drawing forest plots, funnel plots and so on. Sensitivity and publication bias were performed in Stata 14.0. The stability of the results was assessed using Test Sequence Analysis (TSA) software. Registration number: CRD42024568348. RESULTS The G allele variant of rs4975616 was negatively associated with the risk of LC ([OR] = 0.86, 95%CI [0.84, 0.88]), and that this negative association was present in both Caucasians ([OR] = 0.85, 95%CI [0.83, 0.87]) and Asians ([OR] = 0.91, 95%CI [0.86, 0.95]), and the strength of the negative association was higher in Caucasians than in Asians (subgroup differences: P = 0.02, I2 = 80.3%). Across LC subtypes, rs4975616[G] was negatively associated with the risk of NSCLC (LUAD, LUSC) in both Caucasians and Asians (P<0.05) and the strength of the association with NSCLC (LUAD) was higher in Caucasians than in Asians (Subgroup differences: I2>50%). In Caucasians, rs4975616[G] was negatively associated with the risk of LC in both smokers and non-smokers (P<0.05), and the strength of the association did not differ between smokers and non-smokers (Subgroup differences: P = 0.18, I2 = 45.0%). In Asians, rs4975616[G] was mainly negatively associated with the risk of LC in smokers (P<0.05) but not in non-smokers ([OR] = 0.97, 95%CI [0.78, 1.20]). Comparisons between the two populations showed that the strength of this negative association was higher in Caucasian non-smokers than in Asian non-smokers (Subgroup differences: P = 0.04, I2 = 75.3%), whereas the strength of this negative association was the same for Caucasian smokers as for Asian smokers (Subgroup differences: P = 0.42, I2 = 0%). Among the different LC subtypes, rs4975616[G] was negatively associated with the risk of NSCLC (LUAD) incidence in both Asian smokers and Caucasian non-smokers (P<0.05), whereas it was not associated with the risk of NSCLC development in Asian non-smokers (P>0.05). Comparisons between the two populations showed that the strength of the association was higher in Caucasian non-smokers than in Asian non-smokers (Subgroup differences: I2>50%). CONCLUSION The G allele variant of rs4975616 is negatively associated with the risk of LC and NSCLC (LUAD, LUSC). Compared with Asians, Caucasians are more likely to have a higher risk of LC and NSCLC (LUAD) due to the rs4975616 variant. In Caucasians, smoking and other factors like non-smoking contribute to rs4975616 variations leading to LC, and other factors like non-smoking also induce rs4975616 variations leading to NSCLC (LUAD). In Asians, smoking is the major risk factor for the induction of rs4975616 variations leading to LC and NSCLC(LUAD).
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wen Li
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yunzhi Chen
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Rodrigues de Moura R, Patrizi S, Athanasakis E, Schleef J, Pederiva F, d'Adamo AP. Genomic instability in congenital lung malformations in children. Pediatr Surg Int 2024; 40:248. [PMID: 39237666 DOI: 10.1007/s00383-024-05835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To study the biological relationship between congenital lung malformations (CLMs) and malignancy. METHODS Biopsies of 12 CPAMs, 6 intralobar sequestrations and 2 extralobar sequestrations were analyzed through whole-genome sequencing. Blood samples from 10 patients were used to confirm or exclude somatic mosaicism. Putative somatic Single Nucleotide Variants (SNVs) were called for each malformed sample with a Panel of Normals built with control DNA samples extracted from blood. The variants were subsequently confirmed by Sanger sequencing and searched, whenever possible, in the blood samples of patients. RESULTS All CLMs but one presented a signature of genomic instability by means of multiple clusters of cells with gene mutations. Seven tumor transformation-related SNVs were detected in 6/20 congenital lung malformations. Four very rare in the general population SNVs were found in a region previously linked to lung cancer in 5p15.33, upstream of TERT oncogene. Furthermore, we identified missense genetic variants, whose tumorigenic role is well known, in the RET, FANCA and MET genes. CONCLUSIONS Genomic instability in 95% of CLMs and genetic variants linked to tumor development in 30% of them, regardless of histopathology, are predisposing factors to malignancy, that combined with exposure to carcinogens, might trigger the development of malignancy and explain the association between CLMs and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Jurgen Schleef
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Federica Pederiva
- Pediatric Surgery, "F. Del Ponte" Hospital, ASST Settelaghi, Via Filippo del Ponte 19, 21100, Varese, Italy.
| | - Adamo Pio d'Adamo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Zhou C, Yang Y, Shen L, Wang L, Zhang J, Wu X. Association of telomerase reverse transcriptase gene rs10069690 variant with cancer risk: an updated meta-analysis. BMC Cancer 2024; 24:1059. [PMID: 39192222 PMCID: PMC11350973 DOI: 10.1186/s12885-024-12833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE Existing evidence suggests telomerase activation is a crucial step in tumorigenesis. The telomerase reverse transcriptase (TERT), encoded by the human TERT gene, is critical for telomerase expression. The TERT rs10069690 (C > T) variant was identified to be associated with the risk of cancer, however, there have been inconsistent results. Therefore, we performed a comprehensive meta-analysis aiming to clarify the association between this variant and cancer susceptibility. METHODS We conducted literature search in PubMed, EMbase, MEDLINE and Cochrane Library up to April 30, 2024. Overall, there are 55 studies involving 334,196 patients with cancer and 741,187 controls included in the present study. All statistical analyses were performed by STATA software (version 11.0). RESULTS The pooled results showed a significant association between rs10069690 and an increased risk of cancer under allele model (OR = 1.10, 95% CI: 1.07-1.13, P < 0.001), especially in European and Asian populations. When stratified by cancer types, this variant was associated with elevated risk of breast cancer (OR = 1.11, 95% CI: 1.07-1.15, P < 0.001), ovarian cancer (OR = 1.14, 95% CI: 1.10-1.19, P < 0.001), lung cancer (OR = 1.20, 95% CI: 1.07-1.35, P = 0.003), thyroid cancer (OR = 1.23, 95% CI: 1.15-1.32, P < 0.001), gastric cancer (OR = 1.31, 95% CI: 1.19-1.45, P < 0.001), and renal cell carcinoma (OR = 1.29, 95% CI: 1.07-1.55, P = 0.007), while decreased risk was found for hepatocellular carcinoma, prostate cancer and pancreatic cancer. Our results also indicated that this variant was significantly associated with solid cancer (OR = 1.11, 95% CI: 1.07-1.14, P < 0.001), but not with hematological tumor. CONCLUSION This systematic meta-analysis demonstrated that the TERT rs10069690 variant was a risk factor for cancer. However, the effects of this variant may vary in different types of cancer and differ across ethnic populations.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yunke Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
10
|
Serio VB, Rosati D, Maffeo D, Rina A, Ghisalberti M, Bellan C, Spiga O, Mari F, Palmieri M, Frullanti E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers (Basel) 2024; 16:2887. [PMID: 39199663 PMCID: PMC11352340 DOI: 10.3390/cancers16162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer (LC) continues to be an important public health problem, being the most common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of research to identify genetic susceptibility genes by genome-wide association studies, only few loci associated to nicotine dependence have been consistently replicated. Our previously published study in few phenotypically discordant sib-pairs identified a combination of germline truncating mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental support to a model of a "private genetic epidemiology". Here, we used a combination of whole-exome and RNA sequencing coupled with a discordant sib's model in a novel cohort of pairs of never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role of the identified variants showing: (i) downregulation in LC tissue (indicating a "second hit" in tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation in both normal and cancer tissue (indicating transcript instability). The combination of the two techniques demonstrates that each patient has an average of six (with a range from four to eight) private mutations with a functional effect in tumor-predisposing genes. The presence of a unique combination of disrupting events in the affected subjects may explain the absence of the familial clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has his/her own "predisposing signature" to cancer development and suggest the use of personalized therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Viola Bianca Serio
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Diletta Rosati
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Debora Maffeo
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Angela Rina
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Marco Ghisalberti
- Thoracic Surgery Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Cristiana Bellan
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy;
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| |
Collapse
|
11
|
Nguyen OTD, Fotopoulos I, Nøst TH, Markaki M, Lagani V, Tsamardinos I, Røe OD. The HUNT lung-SNP model: genetic variants plus clinical variables improve lung cancer risk assessment over clinical models. J Cancer Res Clin Oncol 2024; 150:389. [PMID: 39129029 PMCID: PMC11317451 DOI: 10.1007/s00432-024-05909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The HUNT Lung Cancer Model (HUNT LCM) predicts individualized 6-year lung cancer (LC) risk among individuals who ever smoked cigarettes with high precision based on eight clinical variables. Can the performance be improved by adding genetic information? METHODS A polygenic model was developed in the prospective Norwegian HUNT2 study with clinical and genotype data of individuals who ever smoked cigarettes (n = 30749, median follow up 15.26 years) where 160 LC were diagnosed within six years. It included the variables of the original HUNT LCM plus 22 single nucleotide polymorphisms (SNPs) highly associated with LC. External validation was performed in the prospective Norwegian Tromsø Study (n = 2663). RESULTS The novel HUNT Lung-SNP model significantly improved risk ranking of individuals over the HUNT LCM in both HUNT2 (p < 0.001) and Tromsø (p < 0.05) cohorts. Furthermore, detection rate (number of participants selected to detect one LC case) was significantly better for the HUNT Lung-SNP vs. HUNT LCM in both cohorts (42 vs. 48, p = 0.003 and 11 vs. 14, p = 0.025, respectively) as well as versus the NLST, NELSON and 2021 USPSTF criteria. The area under the receiver operating characteristic curve (AUC) was higher for the HUNT Lung-SNP in both cohorts, but significant only in HUNT2 (AUC 0.875 vs. 0.844, p < 0.001). However, the integrated discrimination improvement index (IDI) indicates a significant improvement of LC risk stratification by the HUNT Lung-SNP in both cohorts (IDI 0.019, p < 0.001 (HUNT2) and 0.013, p < 0.001 (Tromsø)). CONCLUSION The HUNT Lung-SNP model could have a clinical impact on LC screening and has the potential to replace the HUNT LCM as well as the NLST, NELSON and 2021 USPSTF criteria in a screening setting. However, the model should be further validated in other populations and evaluated in a prospective trial setting.
Collapse
Affiliation(s)
- Olav Toai Duc Nguyen
- Department of Clinical Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gate. 1, Trondheim, NO, 7030, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Cancer Clinic, Kirkegata 2, Levanger, NO, 7600, Norway
| | - Ioannis Fotopoulos
- Department of Computer Science, University of Crete, Voutes Campus, Heraklion, GR, 70013, Greece
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, Tromsø, NO-9037, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Håkon Jarls Gate 12, Trondheim, 7030, Norway
| | - Maria Markaki
- Institute of Applied and Computational Mathematics, FORTH, Heraklion, Crete, GR-700 13, Greece
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23952, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal, 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| | - Ioannis Tsamardinos
- Department of Computer Science, University of Crete, Voutes Campus, Heraklion, GR, 70013, Greece
- Institute of Applied and Computational Mathematics, FORTH, Heraklion, Crete, GR-700 13, Greece
- JADBio Gnosis DA S.A, STEP-C, N. Plastira 100, Heraklion, 700-13, GR, Greece
| | - Oluf Dimitri Røe
- Department of Clinical Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinas gate. 1, Trondheim, NO, 7030, Norway.
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Cancer Clinic, Kirkegata 2, Levanger, NO, 7600, Norway.
- Clinical Cancer Research Center, Department of Clinical Medicine, Aalborg University Hospital, Hobrovej 18-22, Aalborg, DK-9100, Denmark.
| |
Collapse
|
12
|
Duncan MS, Diaz-Zabala H, Jaworski J, Tindle HA, Greevy RA, Lipworth L, Hung RJ, Freiberg MS, Aldrich MC. Interaction between Continuous Pack-Years Smoked and Polygenic Risk Score on Lung Cancer Risk: Prospective Results from the Framingham Heart Study. Cancer Epidemiol Biomarkers Prev 2024; 33:500-508. [PMID: 38227004 PMCID: PMC10988206 DOI: 10.1158/1055-9965.epi-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer risk attributable to smoking is dose dependent, yet few studies examining a polygenic risk score (PRS) by smoking interaction have included comprehensive lifetime pack-years smoked. METHODS We analyzed data from participants of European ancestry in the Framingham Heart Study Original (n = 454) and Offspring (n = 2,470) cohorts enrolled in 1954 and 1971, respectively, and followed through 2018. We built a PRS for lung cancer using participant genotyping data and genome-wide association study summary statistics from a recent study in the OncoArray Consortium. We used Cox proportional hazards regression models to assess risk and the interaction between pack-years smoked and genetic risk for lung cancer adjusting for European ancestry, age, sex, and education. RESULTS We observed a significant submultiplicative interaction between pack-years and PRS on lung cancer risk (P = 0.09). Thus, the relative risk associated with each additional 10 pack-years smoked decreased with increasing genetic risk (HR = 1.56 at one SD below mean PRS, HR = 1.48 at mean PRS, and HR = 1.40 at one SD above mean PRS). Similarly, lung cancer risk per SD increase in the PRS was highest among those who had never smoked (HR = 1.55) and decreased with heavier smoking (HR = 1.32 at 30 pack-years). CONCLUSIONS These results suggest the presence of a submultiplicative interaction between pack-years and genetics on lung cancer risk, consistent with recent findings. Both smoking and genetics were significantly associated with lung cancer risk. IMPACT These results underscore the contributions of genetics and smoking on lung cancer risk and highlight the negative impact of continued smoking regardless of genetic risk.
Collapse
Affiliation(s)
- Meredith S. Duncan
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Diaz-Zabala
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James Jaworski
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilary A. Tindle
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Internal Medicine, Vanderbilt University Medical Center, Nashville Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
14
|
Li D. Structure and Function of the Glycosylphosphatidylinositol Transamidase, a Transmembrane Complex Catalyzing GPI Anchoring of Proteins. Subcell Biochem 2024; 104:425-458. [PMID: 38963495 DOI: 10.1007/978-3-031-58843-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.
Collapse
Affiliation(s)
- Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
15
|
Blechter B, Chien LH, Chen TY, Chang IS, Choudhury PP, Hsiao CF, Shu XO, Wong JYY, Chen KY, Chang GC, Tsai YH, Su WC, Huang MS, Chen YM, Chen CY, Hung HH, Hu JW, Shi J, Zheng W, Rositch AF, Chen CJ, Chatterjee N, Yang PC, Rothman N, Hsiung CA, Lan Q. Polygenic Risk Score, Environmental Tobacco Smoke, and Risk of Lung Adenocarcinoma in Never-Smoking Women in Taiwan. JAMA Netw Open 2023; 6:e2339254. [PMID: 37955902 PMCID: PMC10644212 DOI: 10.1001/jamanetworkopen.2023.39254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
Importance Estimating absolute risk of lung cancer for never-smoking individuals is important to inform lung cancer screening programs. Objectives To integrate data on environmental tobacco smoke (ETS), a known lung cancer risk factor, with a polygenic risk score (PRS) that captures overall genetic susceptibility, to estimate the absolute risk of lung adenocarcinoma (LUAD) among never-smokers in Taiwan. Design, Setting, and Participants The analyses were conducted in never-smoking women in the Taiwan Genetic Epidemiology Study of Lung Adenocarcinoma, a case-control study. Participants were recruited between September 17, 2002, and March 30, 2011. Data analysis was performed from January 17 to July 15, 2022. Exposures A PRS was derived using 25 genetic variants that achieved genome-wide significance (P < 5 × 10-8) in a recent genome-wide association study, and ETS was defined as never exposed, exposed at home or at work, and exposed at home and at work. Main Outcomes and Measures The Individualized Coherent Absolute Risk Estimator software was used to estimate the lifetime absolute risk of LUAD in never-smoking women aged 40 years over a projected 40-year span among the controls by using the relative risk estimates for the PRS and ETS exposures, as well as age-specific lung cancer incidence rates for never-smokers in Taiwan. Likelihood ratio tests were conducted to assess an additive interaction between the PRS and ETS exposure. Results Data were obtained on 1024 women with LUAD (mean [SD] age, 59.6 [11.4] years, 47.9% ever exposed to ETS at home, and 19.5% ever exposed to ETS at work) and 1024 controls (mean [SD] age, 58.9 [11.0] years, 37.0% ever exposed to ETS at home, and 14.3% ever exposed to ETS at work). The overall average lifetime 40-year absolute risk of LUAD estimated using PRS alone was 2.5% (range, 0.6%-10.3%) among women never exposed to ETS. When integrating both ETS and PRS data, the estimated absolute risk was 3.7% (range, 0.6%-14.5%) for women exposed to ETS at home or work and 5.3% (range, 1.2%-12.1%) for women exposed to ETS at home and work. A super-additive interaction between ETS and the PRS (P = 6.5 × 10-4 for interaction) was identified. Conclusions and Relevance This study found differences in absolute risk of LUAD attributed to genetic susceptibility according to levels of ETS exposure in never-smoking women. Future studies are warranted to integrate these findings in expanded risk models for LUAD.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Applied Mathematics, Chung Yuan Christian University, Zhongli, Taiwan
| | - Tzu-Yu Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Parichoy Pal Choudhury
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Now with American Cancer Society, Kennesaw, Georgia
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason Y. Y. Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
- Now with Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, Maryland
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Huang Tsai
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Han Hung
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Wei Hu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne F. Rositch
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
16
|
Huang Y, Bao T, Zhang T, Ji G, Wang Y, Ling Z, Li W. Machine Learning Study of SNPs in Noncoding Regions to Predict Non-small Cell Lung Cancer Susceptibility. Clin Oncol (R Coll Radiol) 2023; 35:701-712. [PMID: 37689528 DOI: 10.1016/j.clon.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/23/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer. Both environmental and genetic factors have been reported to impact the lung cancer susceptibility. We conducted a genome-wide association study (GWAS) of 287 NSCLC patients and 467 healthy controls in a Chinese population using the Illumina Genome-Wide Asian Screening Array Chip on 712,095 SNPs (single nucleotide polymorphisms). Using logistic regression modeling, GWAS identified 17 new noncoding region SNP loci associated with the NSCLC risk, and the top three (rs80040741, rs9568547, rs6010259) were under a stringent p-value (<3.02e-6). Notably, rs80040741 and rs6010259 were annotated from the intron regions of MUC3A and MLC1, respectively. Together with another five SNPs previously reported in Chinese NSCLC patients and another four covariates (e.g., smoking status, age, low dose CT screening, sex), a predictive model by machine learning methods can separate the NSCLC from healthy controls with an accuracy of 86%. This is the first time to apply machine learning method in predicting the NSCLC susceptibility using both genetic and clinical characteristics. Our findings will provide a promising method in NSCLC early diagnosis and improve our understanding of applying machine learning methods in precision medicine.
Collapse
Affiliation(s)
- Y Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - T Bao
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - T Zhang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - G Ji
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y Wang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Z Ling
- Chengdu Genepre Technology Co., LTD, Chengdu, Sichuan, China
| | - W Li
- Institute of Respiratory Healthy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Healthy, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, Sichuan 610041, West China Hospital, China.
| |
Collapse
|
17
|
Wu X, Huang G, Li W, Chen Y. Ethnicity-specific association between TERT rs2736100 (A > C) polymorphism and lung cancer risk: a comprehensive meta-analysis. Sci Rep 2023; 13:13271. [PMID: 37582820 PMCID: PMC10427644 DOI: 10.1038/s41598-023-40504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
The rs2736100 (A > C) polymorphism of the second intron of Telomerase reverse transcriptase (TERT) has been confirmed to be closely associated with the risk of Lung cancer (LC), but there is still no unified conclusion on the results of its association with LC. This study included Genome-wide association studies (GWAS) and case-control studies reported so far on this association between TERT rs2736100 polymorphism and LC to clarify such a correlation with LC and the differences in it between different ethnicities and different types of LC. Relevant literatures published before May 7, 2022 on 'TERT rs2736100 polymorphism and LC susceptibility' in PubMed, EMbase, CENTRAL, MEDLINE databases were searched through the Internet, and data were extracted. Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. Sensitivity and publication bias analysis were performed in Stata 12.0 software. The C allele of TERT rs2736100 was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 /Asians: [OR]) = 1.26). The other gene models also showed similar results. The results of stratified analysis of LC patients showed that the C allele was associated with the risk of Non-small-cell lung carcinoma (NSCLC) and Lung adenocarcinoma (LUAD), and the risk of NSCLC and LUAD in Asians was higher than that in Caucasians. The C allele was associated with the risk of Lung squamous cell carcinoma (LUSC) and Small cell lung carcinoma(SCLC) in Asians but not in Caucasians. NSCLC patients ([OR] = 1.27) had a stronger correlation than SCLC patients ([OR] = 1.03), and LUAD patients ([OR] = 1.32) had a stronger correlation than LUSC patients ([OR] = 1.09).In addition, the C allele of TERT rs2736100 was associated with the risk of LC, NSCLC and LUAD in both smoking groups and non-smoking groups, and the risk of LC in non-smokers of different ethnic groups was higher than that in smokers. In the Asians, non-smoking women were more at risk of developing LUAD. The C allele of TERT rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the Asian population is at a more common risk. The C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. And smoking is not the most critical factor that causes variation in TERT rs2736100 to increase the risk of most LC (NSCLC, LUAD). Therefore, LC is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Gao Huang
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China.
| |
Collapse
|
18
|
Kawamura A, Matsuda K, Murakami Y, Saruta M, Kohno T, Shiraishi K. Contribution of an Asian-prevalent HLA haplotype to the risk of HBV-related hepatocellular carcinoma. Sci Rep 2023; 13:12944. [PMID: 37558689 PMCID: PMC10412552 DOI: 10.1038/s41598-023-40000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Liver cancer, particularly hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), is more common in Asians than in Caucasians. This is due, at least in part, to regional differences in the prevalence of exogenous factors such as HBV; however, endogenous factors specific to Asia might also play a role. Such endogenous factors include HLA (human leukocyte antigen) genes, which are considered candidates due to their high racial diversity. Here, we performed a pancancer association analysis of 147 alleles of HLA-class I/II genes (HLA-A, B, and C/DRB1, DQA1, DQB1, DPA1, and DPB1) in 31,727 cases of 12 cancer types, including 1684 liver cancer cases and 107,103 controls. HLA alleles comprising a haplotype prevalent in Asia were significantly associated with pancancer risk (e.g., odds ratio [OR] for a DRB1*15:02 allele = 1.12, P = 2.7 × 10-15), and the associations were particularly strong in HBV-related HCC (OR 1.95, P = 2.8 × 10-5). In silico prediction suggested that the DRB1*15:02 molecule encoded by the haplotype does not bind efficiently to HBV-derived peptides. RNA sequencing indicated that HBV-related HCC in carriers of the haplotype shows low infiltration by NK cells. These results indicate that the Asian-prevalent HLA haplotype increases the risk of HBV-related liver cancer risk by attenuating immune activity against HBV infection, and by reducing NK cell infiltration into the tumor.
Collapse
Affiliation(s)
- Atsushi Kawamura
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Cortez Cardoso Penha R, Smith-Byrne K, Atkins JR, Haycock PC, Kar S, Codd V, Samani NJ, Nelson C, Milojevic M, Gabriel AAG, Amos C, Brennan P, Hung RJ, Kachuri L, Mckay JD. Common genetic variations in telomere length genes and lung cancer: a Mendelian randomisation study and its novel application in lung tumour transcriptome. eLife 2023; 12:e83118. [PMID: 37079368 PMCID: PMC10118386 DOI: 10.7554/elife.83118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours. Methods We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343). Results Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity. Conclusions This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas. Funding Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09).
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, University of OxfordOxfordUnited Kingdom
| | - Joshua R Atkins
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Christopher Nelson
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Maja Milojevic
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Aurélie AG Gabriel
- Ludwig Lausanne Branch, Faculty of Biology and MedicineLausanneSwitzerland
| | - Christopher Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonUnited States
| | - Paul Brennan
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | - Linda Kachuri
- Departament of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - James D Mckay
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| |
Collapse
|
20
|
Casagrande GMS, Silva MDO, Reis RM, Leal LF. Liquid Biopsy for Lung Cancer: Up-to-Date and Perspectives for Screening Programs. Int J Mol Sci 2023; 24:2505. [PMID: 36768828 PMCID: PMC9917347 DOI: 10.3390/ijms24032505] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the deadliest cancer worldwide. Tissue biopsy is currently employed for the diagnosis and molecular stratification of lung cancer. Liquid biopsy is a minimally invasive approach to determine biomarkers from body fluids, such as blood, urine, sputum, and saliva. Tumor cells release cfDNA, ctDNA, exosomes, miRNAs, circRNAs, CTCs, and DNA methylated fragments, among others, which can be successfully used as biomarkers for diagnosis, prognosis, and prediction of treatment response. Predictive biomarkers are well-established for managing lung cancer, and liquid biopsy options have emerged in the last few years. Currently, detecting EGFR p.(Tyr790Met) mutation in plasma samples from lung cancer patients has been used for predicting response and monitoring tyrosine kinase inhibitors (TKi)-treated patients with lung cancer. In addition, many efforts continue to bring more sensitive technologies to improve the detection of clinically relevant biomarkers for lung cancer. Moreover, liquid biopsy can dramatically decrease the turnaround time for laboratory reports, accelerating the beginning of treatment and improving the overall survival of lung cancer patients. Herein, we summarized all available and emerging approaches of liquid biopsy-techniques, molecules, and sample type-for lung cancer.
Collapse
Affiliation(s)
| | - Marcela de Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| |
Collapse
|
21
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Long E, Patel H, Byun J, Amos CI, Choi J. Functional studies of lung cancer GWAS beyond association. Hum Mol Genet 2022; 31:R22-R36. [PMID: 35776125 PMCID: PMC9585683 DOI: 10.1093/hmg/ddac140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants, moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS results beyond association.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
24
|
Shi H, Seegobin K, Heng F, Zhou K, Chen R, Qin H, Manochakian R, Zhao Y, Lou Y. Genomic landscape of lung adenocarcinomas in different races. Front Oncol 2022; 12:946625. [PMID: 36248982 PMCID: PMC9557241 DOI: 10.3389/fonc.2022.946625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background Lung adenocarcinoma is a molecularly heterogeneous disease. Several studies, including The Cancer Genome Atlas Research Network (TCGA) and Lung Cancer Mutation Consortium (LCMC), explored the genetic alterations among different ethnic groups. However, minority groups are often under-represented in these relevant studies and the genomic alterations among racial groups are not fully understood. Methods We analyze genomic characteristics among racial groups to understand the diversities and their impact on clinical outcomes. Results Native Americans had significantly higher rates of insertions and deletions than other races (P<0.001). Among patients with lung adenocarcinomas, EGFR and KRAS were the highest discrepancy genes in the different racial groups (P<0.001). The EGFR exon 21 L858R point mutation was three times higher in Asians than in all other races (P<0.001). Asians, Whites, and Blacks had 4.7%, 3.1%, and 1.8% ALK rearrangement, respectively (P<0.001). White patients had the highest rates of reported KRAS G12C (15.51%) than other races (P<0.001). Whites (17.2%), Blacks (15.1%), and Other (15.7%) had higher rates of STK11 mutation than Asians (3.94%) (P<0.001). RET rearrangement and ERBB2 amplification were more common in Asian patients than in Other racial groups. Apart from point mutations, structural variations, and fusion genes, we identified a significant amount of copy number alterations in each race. Conclusions The tumor genomic landscape is significantly distinct in different races. This data would shed light on the understanding of molecular alterations and their impacts on clinical management in different lung cancer patients.
Collapse
Affiliation(s)
- Huashan Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Karan Seegobin
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Fei Heng
- Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL, United States
| | - Kexun Zhou
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Ruqin Chen
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Hong Qin
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yujie Zhao
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Yanyan Lou,
| |
Collapse
|
25
|
Shi Q, Zhang XX, Shi XQ, Chen Y, Sun C. Identification of rs2736099 as a novel cis-regulatory variation for TERT and implications for tumorigenesis and cell proliferation. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04372-9. [PMID: 36131156 DOI: 10.1007/s00432-022-04372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Lung cancer is a malignant tumor with obvious genetic predisposition. Association studies have proposed that rs2853677, a SNP localizing at intron region of TERT (telomerase reverse transcriptase), is significantly associated with TERT expression, telomere length and eventually lung cancer risk. However, functional genomics work indicates that rs2853677 is not with the ability to alter gene expression. All these facts make us hypothesize that some other genetic variation(s) are in linkage disequilibrium (LD) with rs2853677 and influence TERT expression. METHODS LD pattern in rs2853677 nearby region was analyzed based on 1000 genomes data for three representative populations in the world and functional genomics research was performed for this locus. RESULTS Only one SNP, rs2736099, is in strong LD with rs2853677 in East Asian. Dual-luciferase reporter assay verifies that rs2736099 can regulate gene expression and should be the causal SNP for this disease. Through chromosome conformation capture assay, it is disclosed that the enhancer surrounding rs2736099 can interact with TERT promoter. Through chromatin immunoprecipitation, the transcription factor SP1 (Sp1 transcription factor) is recognized for the chromatin segment spanning rs2736099. CONCLUSIONS Our results provide the missing piece between genetic variation at this locus and lung cancer risk, which is also applied to tumorigenesis in other tissues and cell proliferation.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Gabriel AAG, Atkins JR, Penha RCC, Smith-Byrne K, Gaborieau V, Voegele C, Abedi-Ardekani B, Milojevic M, Olaso R, Meyer V, Boland A, Deleuze JF, Zaridze D, Mukeriya A, Swiatkowska B, Janout V, Schejbalová M, Mates D, Stojšić J, Ognjanovic M, Witte JS, Rashkin SR, Kachuri L, Hung RJ, Kar S, Brennan P, Sertier AS, Ferrari A, Viari A, Johansson M, Amos CI, Foll M, McKay JD. Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden. J Natl Cancer Inst 2022; 114:1159-1166. [PMID: 35511172 PMCID: PMC9360465 DOI: 10.1093/jnci/djac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. METHODS To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. RESULTS The GWAx-GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. CONCLUSIONS This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development.
Collapse
Affiliation(s)
- Aurélie A G Gabriel
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Joshua R Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Ricardo C C Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Catherine Voegele
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Maja Milojevic
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Robert Olaso
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Vincent Meyer
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean François Deleuze
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Vladimir Janout
- Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | | | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Jelena Stojšić
- Department of Thoracic Pathology, Service of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Miodrag Ognjanovic
- International Organisation for Cancer Prevention and Research, Belgrade, Serbia
| | | | - John S Witte
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Anne-Sophie Sertier
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
| | - Anthony Ferrari
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
| | - Alain Viari
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
- Inria Centre de Recherche Grenoble Rhone-Alpes, Grenoble, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, USA
| | - Matthieu Foll
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - James D McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| |
Collapse
|
27
|
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, Bossé Y, Song Z, Schwartz A, Lusk C, Rafnar T, Stefansson K, Zhang T, Zhao W, Pettit RW, Liu Y, Li X, Zhou H, Walsh KM, Gorlov I, Gorlova O, Zhu D, Rosenberg SM, Pinney S, Bailey-Wilson JE, Mandal D, de Andrade M, Gaba C, Willey JC, You M, Anderson M, Wiencke JK, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojeson S, Brenner H, Landi MT, Chanock SJ, Johansson M, Muley T, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold S, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Andrew AS, Kiemeney LA, Shen H, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Cox A, Hong YC, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Patel A, Lan Q, Rothman N, Taylor F, Kachuri L, Witte JS, Sakoda LC, Spitz M, Brennan P, Lin X, McKay J, Hung RJ, Amos CI. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet 2022; 54:1167-1177. [PMID: 35915169 PMCID: PMC9373844 DOI: 10.1038/s41588-022-01115-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Wen Zhou
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Christine Lusk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xihao Li
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - James C Willey
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, Houston, TX, USA
| | | | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephan Lam
- Department of Integrative Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stig Bojeson
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Muley
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjay Shete
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alpa Patel
- American Cancer Society, Atlanta, GA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Margaret Spitz
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xihong Lin
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Zhang R, Shen S, Wei Y, Zhu Y, Li Y, Chen J, Guan J, Pan Z, Wang Y, Zhu M, Xie J, Xiao X, Zhu D, Li Y, Albanes D, Landi MT, Caporaso NE, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Wichmann HE, Rennert G, Arnold S, Brennan P, McKay JD, Field JK, Shete SS, Le Marchand L, Liu G, Andrew AS, Kiemeney LA, Zienolddiny-Narui S, Behndig A, Johansson M, Cox A, Lazarus P, Schabath MB, Aldrich MC, Dai J, Ma H, Zhao Y, Hu Z, Hung RJ, Amos CI, Shen H, Chen F, Christiani DC. A Large-Scale Genome-Wide Gene-Gene Interaction Study of Lung Cancer Susceptibility in Europeans With a Trans-Ethnic Validation in Asians. J Thorac Oncol 2022; 17:974-990. [PMID: 35500836 PMCID: PMC9512697 DOI: 10.1016/j.jtho.2022.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although genome-wide association studies have been conducted to investigate genetic variation of lung tumorigenesis, little is known about gene-gene (G × G) interactions that may influence the risk of non-small cell lung cancer (NSCLC). METHODS Leveraging a total of 445,221 European-descent participants from the International Lung Cancer Consortium OncoArray project, Transdisciplinary Research in Cancer of the Lung and UK Biobank, we performed a large-scale genome-wide G × G interaction study on European NSCLC risk by a series of analyses. First, we used BiForce to evaluate and rank more than 58 billion G × G interactions from 340,958 single-nucleotide polymorphisms (SNPs). Then, the top interactions were further tested by demographically adjusted logistic regression models. Finally, we used the selected interactions to build lung cancer screening models of NSCLC, separately, for never and ever smokers. RESULTS With the Bonferroni correction, we identified eight statistically significant pairs of SNPs, which predominantly appeared in the 6p21.32 and 5p15.33 regions (e.g., rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.17, p = 6.57 × 10-13; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.17, p = 2.43 × 10-13; rs2858859HLA-DQA1 and rs9275572HLA-DQA2, ORinteraction = 1.15, p = 2.84 × 10-13; rs2853668TERT and rs62329694CLPTM1L, ORinteraction = 0.73, p = 2.70 × 10-13). Notably, even with much genetic heterogeneity across ethnicities, three pairs of SNPs in the 6p21.32 region identified from the European-ancestry population remained significant among an Asian population from the Nanjing Medical University Global Screening Array project (rs521828C6orf10 and rs204999PRRT1, ORinteraction = 1.13, p = 0.008; rs3135369BTNL2 and rs2858859HLA-DQA1, ORinteraction = 1.11, p = 5.23 × 10-4; rs3135369BTNL2 and rs9271300HLA-DQA1, ORinteraction = 0.89, p = 0.006). The interaction-empowered polygenetic risk score that integrated classical polygenetic risk score and G × G information score was remarkable in lung cancer risk stratification. CONCLUSIONS Important G × G interactions were identified and enriched in the 5p15.33 and 6p21.32 regions, which may enhance lung cancer screening models.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Jiajin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinxing Guan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zoucheng Pan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junxing Xie
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangjun Xiao
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dakai Zhu
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yafang Li
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen Lam
- Department of Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Department of Epidemiology, University of Washington School of Public Health, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- Department of Biosciences and Cancer Cluster Salzburg, University of Salzburg, Salzburg, Austria
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
| | - Gadi Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Carmel, Haifa, Israel
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sanjay S Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Angeline S Andrew
- Department of Epidemiology, Department of Community and Family Medicine, Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Angela Cox
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- The Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hongbing Shen
- China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; China International Cooperation Center (CICC) for Environment and Human Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
MicrobiomeGWAS: A Tool for Identifying Host Genetic Variants Associated with Microbiome Composition. Genes (Basel) 2022; 13:genes13071224. [PMID: 35886007 PMCID: PMC9317577 DOI: 10.3390/genes13071224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
The microbiome is the collection of all microbial genes and can be investigated by sequencing highly variable regions of 16S ribosomal RNA (rRNA) genes. Evidence suggests that environmental factors and host genetics may interact to impact human microbiome composition. Identifying host genetic variants associated with human microbiome composition not only provides clues for characterizing microbiome variation but also helps to elucidate biological mechanisms of genetic associations, prioritize genetic variants, and improve genetic risk prediction. Since a microbiota functions as a community, it is best characterized by β diversity; that is, a pairwise distance matrix. We develop a statistical framework and a computationally efficient software package, microbiomeGWAS, for identifying host genetic variants associated with microbiome β diversity with or without interacting with an environmental factor. We show that the score statistics have positive skewness and kurtosis due to the dependent nature of the pairwise data, which makes p-value approximations based on asymptotic distributions unacceptably liberal. By correcting for skewness and kurtosis, we develop accurate p-value approximations, whose accuracy was verified by extensive simulations. We exemplify our methods by analyzing a set of 147 genotyped subjects with 16S rRNA microbiome profiles from non-malignant lung tissues. Correcting for skewness and kurtosis eliminated the dramatic deviation in the quantile–quantile plots. We provided preliminary evidence that six established lung cancer risk SNPs were collectively associated with microbiome composition for both unweighted (p = 0.0032) and weighted (p = 0.011) UniFrac distance matrices. In summary, our methods will facilitate analyzing large-scale genome-wide association studies of the human microbiome.
Collapse
|
30
|
Tian J, Wang Y, Dong Y, Chang J, Wu Y, Chang S, Che G. Cumulative Evidence for Relationships Between Multiple Variants in the TERT and CLPTM1L Region and Risk of Cancer and Non-Cancer Disease. Front Oncol 2022; 12:946039. [PMID: 35847915 PMCID: PMC9279858 DOI: 10.3389/fonc.2022.946039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Genetic studies previously reported that variants in TERT-CLPTM1L genes were related to susceptibility of cancer and non-cancer diseases. However, conclusions were not always concordant. Methods We performed meta-analyses to assess correlations between 23 variants within TERT-CLPTM1L region and susceptibility to 12 cancers and 1 non-cancer disease based on data in 109 papers (involving 139,510 cases and 208,530 controls). Two approaches (false-positive report probability test and Venice criteria) were adopted for assessing the cumulative evidence of significant associations. Current study evaluated the potential role of these variants based on data in Encyclopedia of DNA Elements (ENCODE) Project. Results Thirteen variants were statistically associated with susceptibility to 11 cancers and 1 non-cancer disease (p < 0.05). Besides, 12 variants with eight cancers and one non-cancer disease were rated as strong evidence (rs2736098, rs401681, and rs402710 in bladder cancer; rs2736100, rs2853691, and rs401681 in esophageal cancer; rs10069690 in gastric cancer; rs2736100 and rs2853676 in glioma; rs2242652, rs2736098, rs2736100, rs2853677, rs31489, rs401681, rs402710, rs465498, and rs4975616 in lung cancer; rs2736100 in idiopathic pulmonary fibrosis and myeloproliferative neoplasms; and rs401681 in pancreatic and skin cancer). According to data from ENCODE and other public databases, 12 variants with strong evidence might fall within putative functional regions. Conclusions This paper demonstrated that common variants of TERT-CLPTM1L genes were related to susceptibility to bladder, esophageal, gastric, lung, pancreatic, and skin cancer, as well as to glioma, myeloproliferative neoplasms, and idiopathic pulmonary fibrosis, and, besides, the crucial function of the TERT-CLPTM1L region in the genetic predisposition to human diseases is elucidated.
Collapse
Affiliation(s)
- Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxian Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junke Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che,
| |
Collapse
|
31
|
Wang LN, Wang L, Cheng G, Dai M, Yu Y, Teng G, Zhao J, Xu D. The association of telomere maintenance and TERT expression with susceptibility to human papillomavirus infection in cervical epithelium. Cell Mol Life Sci 2022; 79:110. [PMID: 35098380 PMCID: PMC11072999 DOI: 10.1007/s00018-021-04113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
The role of telomerase reverse transcriptase (TERT) induction and telomere maintenance in carcinogenesis including cervical cancer (CC) pathogenesis has been well established. However, it remains unclear whether they affect infection of high-risk human papillomavirus (hrHPV), an initiating event for CC development. Similarly, genetic variants at the TERT locus are shown to be associated with susceptibility to CC, but it is unclear whether these SNPs modify the risk for cervical HPV infection. Here we show that in CC-derived HeLa cells, TERT overexpression inhibits, while its depletion upregulates expression of Syndecan-1 (SDC-1), a key component for HPV entry receptors. The TCGA cohort of CC analyses reveals an inverse correlation between TERT and SDC-1 expression (R = -0.23, P = 0.001). We further recruited 1330 females (520 non-HPV and 810 hrHPV-infected) without CC or high-grade cervical intraepithelial neoplasia to analyze telomeres in cervical epithelial cells and SNPs at rs2736098, rs2736100 and rs2736108, previously identified TERT SNPs for CC risk. Non-infected females exhibited age-related telomere shortening in cervical epithelial cells and their telomeres were significantly longer than those in hrHPV-infected group (1.31 ± 0.62 vs 1.19 ± 0.48, P < 0.001). There were no differences in rs2736098 and rs2736100 genotypes, but non-infected individuals had significantly a higher C-allele frequency (associated with higher TERT expression) while lower T-allele levels at rs2736108 compared with those in the hrHPV group (P = 0.020). Collectively, appropriate telomere maintenance and TERT expression in normal cervical cells may prevent CC by modulating hrHPV infection predisposition, although they are required for CC development and progression.
Collapse
Affiliation(s)
- Li-Na Wang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Li Wang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Guanghui Cheng
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Mingkai Dai
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Yunhai Yu
- Department of Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Guoxin Teng
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Jingjie Zhao
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Dawei Xu
- Division of Hematology, Bioclinicum and Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, 171 64, Solna, Sweden.
| |
Collapse
|
32
|
Macek P, Wieckiewicz M, Poreba R, Gac P, Bogunia-Kubik K, Dratwa M, Wojakowska A, Mazur G, Martynowicz H. Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. J Clin Med 2022; 11:jcm11030525. [PMID: 35159976 PMCID: PMC8836512 DOI: 10.3390/jcm11030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Sleep bruxism (SB) is a widespread masticatory muscle activity during sleep and affects approximately 13.2% of the general population. Telomerase reverse transcriptase (TERT) plays a role in preventing the shortening of the telomere. This prospective, observational study aimed to investigate the relationship between single nucleotide polymorphism (SNP) of TERT and the severity of SB and to identify the independent risk factors for SB. Methods: A total of 112 patients were diagnosed by performing one-night polysomnography based on the guidelines of the American Academy of Sleep Medicine. TERT SNP was detected by real-time quantitative polymerase chain reaction (qPCR). Results: Statistical analysis showed the lack of relationship between the rs2853669 polymorphism of TERT and severity of SB (p > 0.05). However, the study showed that patients with allele T in the 2736100 polymorphism of TERT had a lower score on the phasic bruxism episode index (BEI). Based on the receiver operating characteristic (ROC) curve, the value of phasic BEI was 0.8 for the differential prediction for the presence of allele T in the locus. The sensitivity and specificity were 0.328 and 0.893, respectively. The regression analysis showed that lack of TERT rs2736100 T allele, male gender, and arterial hypertension are the risk factors for the higher value of phasic BEI. Conclusion: The SNP of the TERT gene affects phasic SB intensity. The absence of TERT rs2736100 T allele, male sex, and arterial hypertension are independent risk factors for phasic SB.
Collapse
Affiliation(s)
- Piotr Macek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence:
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Pawel Gac
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| |
Collapse
|
33
|
Analysis of MNS16A VNTR polymorphic sequence variations of the TERT gene and associated risk for development of bladder cancer. Curr Urol 2021; 15:225-230. [PMID: 35069087 PMCID: PMC8772657 DOI: 10.1097/cu9.0000000000000040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background: The MNS16A variable number tandem repeat (VNTR) polymorphism of the human telomerase reverse transcriptase (hTERT) gene acts as a regulator of hTERT promoter activity and has been shown to have a role in the predisposition toward various cancers. The current study aimed to investigate the association between MNS16A VNTR alleles and genetic predisposition to bladder cancer in the Kashmir region of northern India. Materials and methods: A total of 130 patients with bladder cancer and 170 age- and gender-matched healthy controls were included in this study. Primer-specific polymerase chain reaction was used to genotype the different variants of VNTR alleles of the MNS16A VNTR polymorphism. Results: Short allele VNTR-243 (SS) genotype frequency significantly differed between cases (9.23%) and controls (3.52%) (OR = 3.08 [95% CI = 1.10–8.61], p = 0.042). The VNTR-243 short allele (S) was found significantly more frequent in bladder cancer cases (28.46%) than controls (20.88%) (OR = 1.50 [95% CI = 1.03–2.19], p = 0.034). Likewise, the long allele (LL) hTERT MNS16A genotype was distributed more frequently in low stage disease versus high stage disease (60.29% vs. 39.70%) (OR = 0.79 [95% CI = 0.39–1.60], p = 0.595). Conclusion: The MNS16A VNTR short allele (S) was associated with a higher risk for bladder cancer in our population as compared to long alleles.
Collapse
|
34
|
Hou Y, Xue F, Fu Y, Feng G, Wang R, Yuan H. CLPTM1L Is a Novel Putative Oncogene Promoting Tumorigenesis in Oral Squamous Cell Carcinoma. Cell Transplant 2021; 30:9636897211045970. [PMID: 34586883 PMCID: PMC8485279 DOI: 10.1177/09636897211045970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to explore the function of CLPTM1L in oral squamous cell carcinoma and mechanism of tumorigenesis. The expression of CLPTM1L was detected by immunohistochemistry. The localization in cells was detected by immunofluorescence. Cell invasion, proliferation, and migration were detected by transwell, CCK-8 and scratch-wound test. The possible characteristics of CLPTM1L were analysed in TCGA, GO, KEGG and String databases. IHC revealed that the expression of CLPTM1L in 92 cases of OSCC tissues was significantly higher (P < 0.01) than 29 cases of normal oral epithelium tissues. The expression of CLPTM1L was significantly higher in oral squamous cell carcinoma in TCGA database. CLPTM1L expression was not significantly correlated with the patients’ clinical parameters. High expression of CLPTM1L was associated with worse prognosis. Cox regression analysis demonstrated that the CLPTM1L expression was the significant risk factor. CLPTM1L was mainly localized in the perinuclear cytoplasm. The vitro studies revealed that the knockdown of CLPTM1L suppressed invasion, proliferation and migration. CLPTM1L related genes were enriched in protein processing in the endoplasmic reticulum, protein folding, endoplasmic reticulum formation, N-glycan biosynthesis, and protein hydroxylation. Highly expressed CLPTM1L may contribute to a poor prognosis and increase invasion, proliferation and migration of oral squamous cell carcinoma. CLPTM1L may play an important role in tumorgenesis and would be a valuable target gene for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yunwen Hou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Yunwen Hou, Feifei Xue and Yu Fu contribute equally to this work
| | - Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Yunwen Hou, Feifei Xue and Yu Fu contribute equally to this work
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Yunwen Hou, Feifei Xue and Yu Fu contribute equally to this work
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Sanyal N, Napolioni V, de Rochemonteix M, Belloy ME, Caporaso NE, Landi MT, Greicius MD, Chatterjee N, Han SS. A Robust Test for Additive Gene-Environment Interaction Under the Trend Effect of Genotype Using an Empirical Bayes-Type Shrinkage Estimator. Am J Epidemiol 2021; 190:1948-1960. [PMID: 33942053 DOI: 10.1093/aje/kwab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/12/2022] Open
Abstract
Evaluating gene by environment (G × E) interaction under an additive risk model (i.e., additive interaction) has gained wider attention. Recently, statistical tests have been proposed for detecting additive interaction, utilizing an assumption on gene-environment (G-E) independence to boost power, that do not rely on restrictive genetic models such as dominant or recessive models. However, a major limitation of these methods is a sharp increase in type I error when this assumption is violated. Our goal was to develop a robust test for additive G × E interaction under the trend effect of genotype, applying an empirical Bayes-type shrinkage estimator of the relative excess risk due to interaction. The proposed method uses a set of constraints to impose the trend effect of genotype and builds an estimator that data-adaptively shrinks an estimator of relative excess risk due to interaction obtained under a general model for G-E dependence using a retrospective likelihood framework. Numerical study under varying levels of departures from G-E independence shows that the proposed method is robust against the violation of the independence assumption while providing an adequate balance between bias and efficiency compared with existing methods. We applied the proposed method to the genetic data of Alzheimer disease and lung cancer.
Collapse
|
36
|
Matsuda T, Matsuo K, Sawada N, Inoue M. International strategy in cancer epidemiology: Japan's involvement in global projects and future role. Glob Health Med 2021; 3:187-195. [PMID: 34532599 DOI: 10.35772/ghm.2021.01002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/09/2022]
Abstract
In recent years, collaboration among researchers in the field of cancer epidemiology has been accelerating in various forms. Here, we review recent trends in international collaborative research activities in the cancer epidemiology field in Japan. These include not only support for other countries with less developed cancer statistics infrastructures, but also large-scale compilations and international comparisons through collaborative studies, as well as integration with analytical epidemiology and clinical research. Formation of international cohort consortia and estimates of cancer and risk factors in each country have contributed to raising the skill levels of cancer epidemiologists as well as to expanding research networks and activities among cancer epidemiologists. Molecular and genome epidemiological studies on cancer have progressed over decades and these continue to increase in size and dimension. Application of evidence from this area in prevention is still underway and needs further effort. Japanese epidemiologists have great potential to assume international leadership roles by taking advantage of the uniqueness, originality and characteristics of Japanese cohorts.
Collapse
Affiliation(s)
- Tomohiro Matsuda
- Division of International Collaborative Research, Center for Public Health Sciences, National Cancer Center, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Norie Sawada
- Division of Cohort Research, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Manami Inoue
- Division of Cohort Research, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.,Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
37
|
Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J Clin Med 2021; 10:jcm10163760. [PMID: 34442055 PMCID: PMC8397216 DOI: 10.3390/jcm10163760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A family history of melanoma greatly increases the risk of developing cutaneous melanoma, a highly aggressive skin cancer whose incidence has been steadily increasing worldwide. Familial melanomas account for about 10% of all malignant melanomas and display an inheritance pattern consistent with the presence of pathogenic germline mutations, among which those involving CDKN2A are the best characterized. In recent years, a growing number of genes, such as MC1R, MITF, CDK4, POT1, TERT, ACD, TERF2IP, and BAP1, have been implicated in familial melanoma. The fact that individuals harboring these germline mutations along with their close blood relatives have a higher risk of developing multiple primary melanomas as well as other internal organ malignancies, especially pancreatic cancer, makes cascade genetic testing and surveillance of these families of the utmost importance. Unfortunately, due to a polygenic inheritance mechanism involving multiple low-risk alleles, genetic modifiers, and environmental factors, it is still very difficult to predict the presence of these mutations. It is, however, known that germline mutation carriers can sometimes develop specific clinical traits, such as high atypical nevus counts and specific dermoscopic features, which could theoretically help clinicians predict the presence of these mutations in prone families. In this review, we provide a comprehensive overview of the high- and intermediate-penetrance genes primarily linked to familial melanoma, highlighting their most frequently associated non-cutaneous malignancies and clinical/dermoscopic phenotypes.
Collapse
|
38
|
Zhang L, Chen L, Xiao M, Xie X, Wang F. Locally advanced undifferentiated sarcomatoid carcinoma of the right maxillary sinus with PDCD6-TERT fusion: A rare case report. Oral Oncol 2021; 124:105466. [PMID: 34348839 DOI: 10.1016/j.oraloncology.2021.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023]
Abstract
Sarcomatoid carcinoma of maxillary sinus tumor is extremely rare in head and neck tumors and has poor prognosis and frequently occurs to relapse locally after surgery. We first reported a case of locally advanced undifferentiated sarcomatoid carcinoma of right maxillary sinus with PDCD6-TERT fusion gene. The patient with a previous history of moderate alcohol drinking and smoking. The patient underwent surgical treatment. The tumor tissue using NGS analysis, no other driver gene mutations, and the PD-L1 IHC was negative. He received TPF regimen induction chemotherapy combined with anti-PD1 inhibitor and radiotherapy. The effect of treatment was good.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Lin Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210002, China
| | - Mingzhe Xiao
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing 210002, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chendu, Sichuan Province, China
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China.
| |
Collapse
|
39
|
Xu T, Cheng D, Zhao Y, Zhang J, Zhu X, Zhang F, Chen G, Wang Y, Yan X, Robertson GP, Gaddameedhi S, Lazarus P, Wang S, Zhu J. Polymorphic tandem DNA repeats activate the human telomerase reverse transcriptase gene. Proc Natl Acad Sci U S A 2021; 118:e2019043118. [PMID: 34155099 PMCID: PMC8256013 DOI: 10.1073/pnas.2019043118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.
Collapse
Affiliation(s)
- Tao Xu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - De Cheng
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jinglong Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Xiaolu Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Fan Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Gang Chen
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yang Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shobhan Gaddameedhi
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606
| | - Philip Lazarus
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Shuwen Wang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Jiyue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210;
| |
Collapse
|
40
|
Li M, Chen R, Ji B, Fan C, Wang G, Yue C, Jin G. RAD52 variants influence NSCLC risk in the Chinese population in a high altitude area. Ther Adv Respir Dis 2021; 14:1753466620918192. [PMID: 32401173 PMCID: PMC7223216 DOI: 10.1177/1753466620918192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 80% of diagnosed lung cancer patients. RAD52 has been reported to be associated with the development of squamous cell lung carcinoma. In this study, we assessed the relationships of RAD52 genetic polymorphisms and NSCLC risk among the Chinese population at high altitude. METHODS Eight single nucleotide polymorphisms (SNPs) of RAD52 were genotyped in the Agena MassARRAY platform among 506 NSCLC patients and 510 healthy controls. We examined the association of RAD52 polymorphisms with NSCLC risk using odds ratios (ORs) and 95% confidence intervals (CIs) via multiple genetic models. RESULTS The rs10774474 A allele was related to a decreased risk of NSCLC in a high altitude population of China (OR = 0.82, 95% CI = 0.69-0.98, p = 0.032), whereas mutant alleles of rs1051672, rs7310449, rs1051669, rs6413436, rs4766377 and rs10849605 significantly increased NSCLC risk. Haplotype analysis showed that four haplotypes of RAD52 polymorphisms conferred an enhanced susceptibility to NSCLC (Ars1051672Grs7310449Trs1051669Ars6413436: OR = 1.29, p = 0.021; Grs1051672Ars7310449Crs1051669Grs6413436: OR = 1.21, p = 0.027; Grs4766377Crs12822733Trs10774474Crs10849605: OR = 1.26, p = 0.032; Ars4766377Crs12822733Ars10774474Trs10849605: OR = 1.21, p = 0.032). CONCLUSIONS Our findings suggested the remarkable association of RAD52 polymorphisms with NSCLC risk among the Chinese population in a high altitude area. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Miao Li
- Department of Medicine Oncology, The Fifth People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Rong Chen
- Department of Medicine Oncology, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Baoyan Ji
- Department of Medicine Oncology, The People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Chunmei Fan
- Department of Science and Education, The Fifth People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Guanying Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenli Yue
- Department of Respiratory Medicine, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi, China
| | - Guoquan Jin
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, 166 East Nanshan Road, Xining, Qinghai 810007, China
| |
Collapse
|
41
|
Polymorphisms in the Gene Encoding Caspase 8 May Predict the Response to First-Line Platinum-Based Chemotherapy in Locally Advanced or Advanced Non-Small-Cell Lung Cancer. J Clin Med 2021; 10:jcm10051126. [PMID: 33800294 PMCID: PMC7962636 DOI: 10.3390/jcm10051126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/03/2022] Open
Abstract
Caspase 8 is a protein involved in the process of cell apoptosis, which may affect the efficacy of anti-cancer treatment. The aim of our study was to determine the impact of polymorphisms in the CASP-8 gene encoding caspase 8 on the prognosis in non-small-cell lung cancer (NSCLC). The study involved 99 patients with newly diagnosed locally advanced or metastatic NSCLC treated with platinum-based chemotherapy. The presence of the GG genotype was associated with distant metastases, smoking, and a family history of cancer. The higher risk of early progression was associated with weight loss and the CASP-8 genotype (GG vs. AG or AA: 20.51% vs. 2.86%). The higher risk of progression-free survival (PFS) shortening was associated with a higher stage of disease (hazard ratio (HR) = 2.50, 95% CI: 1.61–3.89, p < 0.0001), distant metastases (HR = 2.30, 95% CI: 1.42–3.72, p = 0.0016), and the GG genotype (HR = 1.68, 95% CI: 1.10–2.57, p = 0.0152). The influence of the GG genotype on the PFS was confirmed in a multivariate analysis (HR = 1.80, 95% CI: 1.06–3.05, p = 0.0317). We did not confirm the influence of CASP-8 genotypes on the overall survival (OS).
Collapse
|
42
|
Kalungi A, Kinyanda E, Womersley JS, Joloba ML, Ssembajjwe W, Nsubuga RN, Kaleebu P, Levin J, Kidd M, Seedat S, Hemmings SMJ. TERT rs2736100 and TERC rs16847897 genotypes moderate the association between internalizing mental disorders and accelerated telomere length attrition among HIV+ children and adolescents in Uganda. BMC Med Genomics 2021; 14:15. [PMID: 33407441 PMCID: PMC7789327 DOI: 10.1186/s12920-020-00857-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Internalizing mental disorders (IMDs) (depression, anxiety and post-traumatic stress disorder) have been associated with accelerated telomere length (TL) attrition; however, this association has not been investigated in the context of genetic variation that has been found to influence TL. We have previously reported an association between IMDs and accelerated TL attrition among Ugandan HIV+ children and adolescents. This study investigated the moderating effects of selected single nucleotide polymorphisms in the telomerase reverse transcriptase gene (TERT) (rs2736100, rs7726159, rs10069690 and rs2853669) and the telomerase RNA component gene (TERC) (rs12696304, rs16847897 and rs10936599) on the association between IMDs and TL, among Ugandan HIV+ children (aged 5-11 years) and adolescents (aged 12-17 years). RESULTS We found no significant interaction between IMDs as a group and any of the selected SNPs on TL at baseline. We observed significant interactions of IMDs with TERT rs2736100 (p = 0.007) and TERC rs16847897 (p = 0.012), respectively, on TL at 12 months. CONCLUSIONS TERT rs2736100 and TERC rs16847897 moderate the association between IMDs and TL among Ugandan HIV+ children and adolescents at 12 months. Understanding the nature of this association may shed light on the pathophysiological mechanisms underlying advanced cellular aging in IMDs.
Collapse
Affiliation(s)
- Allan Kalungi
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
- Mental Health Section, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda.
| | - Eugene Kinyanda
- Mental Health Section, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jacqueline S Womersley
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Moses L Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Wilber Ssembajjwe
- Mental Health Section, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Statistics and Data Science Section, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Rebecca N Nsubuga
- Statistics and Data Science Section, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | - Jonathan Levin
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
43
|
de Rochemonteix M, Napolioni V, Sanyal N, Belloy ME, Caporaso NE, Landi MT, Greicius MD, Chatterjee N, Han SS. A Likelihood Ratio Test for Gene-Environment Interaction Based on the Trend Effect of Genotype Under an Additive Risk Model Using the Gene-Environment Independence Assumption. Am J Epidemiol 2021; 190:129-141. [PMID: 32870973 DOI: 10.1093/aje/kwaa132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Several statistical methods have been proposed for testing gene-environment (G-E) interactions under additive risk models using data from genome-wide association studies. However, these approaches have strong assumptions from underlying genetic models, such as dominant or recessive effects that are known to be less robust when the true genetic model is unknown. We aimed to develop a robust trend test employing a likelihood ratio test for detecting G-E interaction under an additive risk model, while incorporating the G-E independence assumption to increase power. We used a constrained likelihood to impose 2 sets of constraints for: 1) the linear trend effect of genotype and 2) the additive joint effects of gene and environment. To incorporate the G-E independence assumption, a retrospective likelihood was used versus a standard prospective likelihood. Numerical investigation suggests that the proposed tests are more powerful than tests assuming dominant, recessive, or general models under various parameter settings and under both likelihoods. Incorporation of the independence assumption enhances efficiency by 2.5-fold. We applied the proposed methods to examine the gene-smoking interaction for lung cancer and gene-apolipoprotein E $\varepsilon$4 interaction for Alzheimer disease, which identified 2 interactions between apolipoprotein E $\varepsilon$4 and loci membrane-spanning 4-domains subfamily A (MS4A) and bridging integrator 1 (BIN1) genes at genome-wide significance that were replicated using independent data.
Collapse
|
44
|
Küster MM, Schneider MA, Richter AM, Richtmann S, Winter H, Kriegsmann M, Pullamsetti SS, Stiewe T, Savai R, Muley T, Dammann RH. Epigenetic Inactivation of the Tumor Suppressor IRX1 Occurs Frequently in Lung Adenocarcinoma and Its Silencing Is Associated with Impaired Prognosis. Cancers (Basel) 2020; 12:E3528. [PMID: 33256112 PMCID: PMC7760495 DOI: 10.3390/cancers12123528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Iroquois homeobox (IRX) encodes members of homeodomain containing genes which are involved in development and differentiation. Since it has been reported that the IRX1 gene is localized in a lung cancer susceptibility locus, the epigenetic regulation and function of IRX1 was investigated in lung carcinogenesis. We observed frequent hypermethylation of the IRX1 promoter in non-small cell lung cancer (NSCLC) compared to small cell lung cancer (SCLC). Aberrant IRX1 methylation was significantly correlated with reduced IRX1 expression. In normal lung samples, the IRX1 promoter showed lower median DNA methylation levels (<10%) compared to primary adenocarcinoma (ADC, 22%) and squamous cell carcinoma (SQCC, 14%). A significant hypermethylation and downregulation of IRX1 was detected in ADC and SQCC compared to matching normal lung samples (p < 0.0001). Low IRX1 expression was significantly correlated with impaired prognosis of ADC patients (p = 0.001). Reduced survival probability was also associated with higher IRX1 promoter methylation (p = 0.02). Inhibition of DNA methyltransferase (DNMT) activity reactivated IRX1 expression in human lung cancer cell lines. Induced DNMT3A and EZH2 expression was correlated with downregulation of IRX1. On the cellular level, IRX1 exhibits nuclear localization and expression of IRX1 induced fragmented nuclei in cancer cells. Localization of IRX1 and induction of aberrant nuclei were dependent on the presence of the homeobox of IRX1. By data mining, we showed that IRX1 is negatively correlated with oncogenic pathways and IRX1 expression induces the proapoptotic regulator BAX. In conclusion, we report that IRX1 expression is significantly associated with improved survival probability of ADC patients. IRX1 hypermethylation may serve as molecular biomarker for ADC diagnosis and prognosis. Our data suggest that IRX1 acts as an epigenetically regulated tumor suppressor in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Miriam M. Küster
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Antje M. Richter
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Hauke Winter
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Mark Kriegsmann
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Soni S. Pullamsetti
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thorsten Stiewe
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, 35032 Marburg, Germany
| | - Rajkumar Savai
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Reinhard H. Dammann
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| |
Collapse
|
45
|
Potential Genes Associated with the Survival of Lung Adenocarcinoma Were Identified by Methylation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7103412. [PMID: 34007304 PMCID: PMC8108640 DOI: 10.1155/2020/7103412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. The purpose of this study is to search for genes related to the prognosis of LUAD through methylation based on a linear mixed model (LMM). Methods Gene expression, methylation, and survival data of LUAD patients were downloaded from the TCGA database. Based on the LMM model, the GEMMA algorithm was used to screen the predictive genes related to LUAD survival. The Cox model was used to further screen the predicted genes, and then, protein-protein interaction (PPI) network was constructed. Through the software plugin Cytoscape MCODE 3.8.0, the most closely related genes in the PPI network module were selected for in-depth biological function analysis to further explore the interaction and correlation between genes. Results We screened out 97 predictive genes from 18,834 genes and eliminated one gene associated with lung squamous cell carcinoma from previous studies, leaving 96 genes. The MCODE and the Kaplan-Meier curve analysis were used to finally identify two genes ASB16 and NEDD4 that are related to the prognosis of LUAD. Conclusions The newly identified two genes associated with the prognosis of LUAD may provide a basis for the treatment of patients.
Collapse
|
46
|
Brhane Y, Yang P, Christiani DC, Liu G, McLaughlin JR, Brennan P, Shete S, Field JK, Tardón A, Kohno T, Shiraishi K, Matsuo K, Bossé Y, Amos CI, Hung RJ. Genetic Determinants of Lung Cancer Prognosis in Never Smokers: A Pooled Analysis in the International Lung Cancer Consortium. Cancer Epidemiol Biomarkers Prev 2020; 29:1983-1992. [PMID: 32699080 PMCID: PMC7541720 DOI: 10.1158/1055-9965.epi-20-0248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer death worldwide, with 15% to 20% occurring in never smokers. To assess genetic determinants for prognosis among never smokers, we conducted a genome-wide investigation in the International Lung Cancer Consortium (ILCCO). METHODS Genomic and clinical data from 1,569 never-smoking patients with lung cancer of European ancestry from 10 ILCCO studies were included. HRs and 95% confidence intervals of overall survival were estimated. We assessed whether the associations were mediated through mRNA expression-based 1,553 normal lung tissues from the lung expression quantitative trait loci (eQTL) dataset and Genotype-Tissue Expression (GTEx). For cross-ethnicity generalization, we assessed the associations in a Japanese study (N = 887). RESULTS One locus at 13q22.2 was associated with lung adenocarcinoma survival at genome-wide level, with carriers of rs12875562-T allele exhibiting poor prognosis [HR = 1.71 (1.41-2.07), P = 3.60 × 10-8], and altered mRNA expression of LMO7DN in lung tissue (GTEx, P = 9.40 × 10-7; Lung eQTL dataset, P = 0.003). Furthermore, 2 of 11 independent loci that reached the suggestive significance level (P < 10-6) were significant eQTL affecting mRNA expression of nearby genes in lung tissues, including CAPZB at 1p36.13 and UBAC1 at 9q34.3. One locus encoding NWD2/KIAA1239 at 4p14 showed associations in both European [HR = 0.50 (0.38-0.66), P = 6.92 × 10-7] and Japanese populations [HR = 0.79 (0.67-0.94), P = 0.007]. CONCLUSIONS Based on the largest genomic investigation on the lung cancer prognosis of never smokers to date, we observed that lung cancer prognosis is affected by inherited genetic variants. IMPACT We identified one locus near LMO7DN at genome-wide level and several potential prognostic genes with cis-effect on mRNA expression. Further functional genomics work is required to understand their role in tumor progression.
Collapse
Affiliation(s)
- Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | | | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Canada
| | - John R McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Sanjay Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adonina Tardón
- University of Oviedo, ISPA and CIBERESP, Faculty of Medicine, Campus del Cristo, Oviedo, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Jia Q, Chen H, Chen X, Tang Q. Barriers to Low-Dose CT Lung Cancer Screening among Middle-Aged Chinese. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7107. [PMID: 32998298 PMCID: PMC7579028 DOI: 10.3390/ijerph17197107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE The current study aims to explore the barriers for middle-aged Chinese to learn about and uptake low-dose computed tomography (LDCT) lung cancer screening. METHODS Data were collected via an online survey in December 2019. Final valid sample included 640 respondents, aged 40-60 years old, from 21 provinces of China. We performed multiple linear regressions to test the potential barriers to LDCT scan. FINDINGS Cost concerns, distrust in doctors, fears of disease, lack of knowledge, and optimistic bias are negatively associated with the intention to learn about and uptake LDCT scan. IMPLICATIONS Our study contributes to understanding the negative predictors of middle-aged Chinese to get LDCT lung cancer scans. Future campaign programs should help audiences to build comprehensive understandings about lung cancer and LDCT scan. To better promote LDCT scan in China, the government should fund more trial programs continuously and public efforts should be made to rebuild the patient-doctor trust.
Collapse
Affiliation(s)
- Qike Jia
- School of Management, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Hongliang Chen
- College of Media and International Culture, Public Diplomacy and Strategic Communication Research Center, Zhejiang University, Hangzhou 310058, China
| | - Xuewei Chen
- School of Community Health Sciences, Counseling and Counseling Psychology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Qichuan Tang
- College of Media and International Culture, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
48
|
Tang D, Zhao YC, Liu H, Luo S, Clarke JM, Glass C, Su L, Shen S, Christiani DC, Gao W, Wei Q. Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer. Int J Cancer 2020; 147:1559-1570. [PMID: 32072637 PMCID: PMC8078192 DOI: 10.1002/ijc.32932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey M. Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
49
|
Qin N, Ma Z, Wang C, Zhang E, Li Y, Huang M, Chen C, Zhang C, Fan J, Gu Y, Xu X, Yang L, Wei X, Yin R, Jiang Y, Dai J, Jin G, Xu L, Hu Z, Shen H, Ma H. Comprehensive characterization of functional eRNAs in lung adenocarcinoma reveals novel regulators and a prognosis-related molecular subtype. Am J Cancer Res 2020; 10:11264-11277. [PMID: 33042282 PMCID: PMC7532687 DOI: 10.7150/thno.47039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: As the transcriptional products of active enhancers, enhancer RNAs (eRNAs) are essential for the initiation of tumorigenesis. However, the landscape and functional characteristics of eRNAs in Chinese lung adenocarcinoma, and the clinical utility of eRNA-based molecular subtypes remain largely unknown. Methods: A genome-wide profiling of eRNAs was performed in 80 Chinese lung adenocarcinoma patients with RNA-seq data. Functional eRNAs and associated genes were identified between paired adenocarcinoma and adjacent samples. Unsupervised clustering of functional eRNAs was conducted and the associations with molecular characteristics and clinical outcomes were accessed by integrating whole-genome sequencing data and clinical data. Additionally, 481 lung adenocarcinoma patients were used for the validation based on The Cancer Genome Atlas (TCGA) dataset. Results: A total of 3297 eRNAs with sufficient expression were identified, which were globally upregulated in adenocarcinoma samples compared to matched-adjacent pairs (P = 7.61×10-3). Further analyses indicated that these upregulated eRNAs were correlated with copy number amplification (CNA) status (Cor = 0.22, P = 0.045), and eRNA-correlated genes were primarily involved in cell cycle and immune system-related pathways. Based on the co-expression analysis of eRNAs with protein-coding genes, we defined 188 functional eRNAs and their correlated genes were overrepresented in cancer driver genes (ER = 1.98, P = 5.95×10-12) and clinically-actionable genes (ER = 2.19, P = 3.44×10-4). The eRNA-based consensus clustering further identified a novel molecular subtype with immune deficiency and a high-level of genomic alterations, which was associated with poor clinical outcomes of lung adenocarcinoma patients (OS: HR = 1.91, P = 0.015; PFI: HR = 1.64, P = 0.034). Conclusions: The genome-wide identification and characterization of eRNAs reveal novel regulators for the development of lung cancer, which provides a new biological dimension for the understanding of eRNAs during lung carcinogenesis and emphasize the clinical utility of eRNA-based molecular subtypes in the treatment of lung adenocarcinoma.
Collapse
|
50
|
Pandith AA, Wani ZA, Qasim I, Afroze D, Manzoor U, Amin I, Baba SM, Koul A, Anwar I, Mohammad F, Bhat AR, Shah P. Association of strong risk of hTERT gene polymorphic variants to malignant glioma and its prognostic implications with respect to different histological types and survival of glioma cases. J Gene Med 2020; 22:e3260. [PMID: 32783258 DOI: 10.1002/jgm.3260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Germline genetic variants of human telomerase reverse transcriptase (hTERT) are known to predispose for various malignancies, including glioma. The present study investigated genetic variation of hTERT T/G (rs2736100) and hTERT G/A (rs2736098) with respect to glioma risk. METHODS Confirmed cases (n = 106) were tested against 210 cancer-free healthy controls by the polymerase chain reaction-restriction fragment length polymorphism technique for genotyping. RESULTS Homozygous variant 'GG' genotype of rs2736100 frequency was > 4-fold significantly different in cases versus controls (39.6% 17.2%; p < 0.0001). Furthermore, variant 'G' allele was found to be significantly associated with cases (0.5 versus 0.2 in controls; p < 0.0001). Homozygous variant rs2736098 'AA' genotype (35.8% versus 23.8%) and allele 'A' (0.49 versus 0.34) showed a marked significant difference in cases and controls, respectively (p < 0.05). In hTERT rs2736100, the GG genotype significantly presented more in higher grades and GBM (p < 0.0001). Furthermore, the GG variant of hTERT rs2736100 had a poor probability with respect to the overall survival of patients compared to TG and TT genotypes (log rank p = 0.03). Interestingly, two haplotypes of hTERT rs2736100/rs2736098 were identified as GG and GA that conferred a > 3- and 5-fold risk to glioma patients respectively, where variant G/A haplotype was observed to have the highest impact with respect to glioma risk (p < 0.0001). CONCLUSIONS The results of the present study indicate that hTERT rs2736098 and rs2736100 variants play an important role in conferring a strong risk of developing glioma. Furthermore, hTERT rs2736100 GG variant appears to play a role in the bad prognosis of glioma patients. Haplotypes GG and GA could prove to be vital tools for monitoring risk in glioma patients.
Collapse
Affiliation(s)
- Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Zahoor A Wani
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Ina Amin
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Shahid M Baba
- Immunology and Molecular Medicine, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Aabid Koul
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Iqra Anwar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Abdul R Bhat
- Department of Neurosurgery, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Parveen Shah
- Department of Pathology, SKIMS, Srinagar, Jammu and Kashmir, India
| |
Collapse
|