1
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Hill KD, Anderson LW, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. Cell Rep 2024; 43:114829. [PMID: 39365700 DOI: 10.1016/j.celrep.2024.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we develop a series of genetically engineered mouse models of treatment-naive and -experienced NTRK1/2/3 fusion-driven gliomas. All tested NTRK fusions are oncogenic in vivo. The NTRK variant, N-terminal fusion partners, and resistance-associated point mutations all influence tumor histology and aggressiveness. Additional tumor suppressor losses greatly enhance tumor aggressiveness. Treatment with TRK kinase inhibitors significantly extends the survival of NTRK fusion-driven glioma mice, but fails to fully eradicate tumors, leading to recurrence upon treatment discontinuation. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools to study therapy resistance of NTRK fusion tumors.
Collapse
MESH Headings
- Animals
- Glioma/genetics
- Glioma/pathology
- Glioma/drug therapy
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Disease Models, Animal
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Receptor, trkA/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/antagonists & inhibitors
- Humans
- Drug Resistance, Neoplasm/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptor, trkC/antagonists & inhibitors
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kimberly D Hill
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Larry W Anderson
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
3
|
Ibe M, Tamura S, Kosako H, Yamashita Y, Ishii M, Tanaka M, Mishima H, Kinoshita A, Iwabuchi S, Morita S, Yoshiura KI, Hashimoto S, Nakao N, Inoue S. Familial schwannomatosis carrying LZTR1 variant p.R340X with brain tumor: A case report. Mol Genet Metab Rep 2024; 40:101107. [PMID: 38983105 PMCID: PMC11231591 DOI: 10.1016/j.ymgmr.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Schwannomatosis (SWN) is a rare genetic condition characterized by the risk of developing multiple benign peripheral nerve sheath tumors; however, the risk of developing malignant tumors in patients with SWN remains unclear. This study described the case of a 57-year-old Japanese man diagnosed with SWN whose older brother also had SWN. Whole-exome sequencing identified a heterozygous mutation [c.1018C > T (p.Arg340X)] in the LZTR1 gene, linked to the RAS/MAPK pathway, in the patient and his brother. Moreover, the patient had aphasia and right-sided paralysis because of a brain tumor. RNA sequencing revealed the remarkable upregulation of several genes associated with oxidative stress, such as the reactive oxygen species pathway and oxidative phosphorylation, a downstream effector of the RAS/MAPK pathway, in the the patient and his brother compared with healthy volunteers. The final diagnosis was LZTR1-related familial SWN, and the dysregulated RAS/MAPK pathway in this patient might be associated with brain tumorigenesis.
Collapse
Affiliation(s)
- Masaki Ibe
- Postgraduate Clinical Training Center, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shinobu Tamura
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masamichi Ishii
- Department of Neurosurgery, Wakayama Medical University, 811-1 Kimiidera, 641-8509 Wakayama, Japan
| | - Masaoh Tanaka
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8521, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8521, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, 641-8509 Wakayama, Japan
| | - Shuhei Morita
- The First Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, 641-8509 Wakayama, Japan
| | - Ko-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8521, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, 641-8509 Wakayama, Japan
| | - Naoyuki Nakao
- Department of Neurosurgery, Wakayama Medical University, 811-1 Kimiidera, 641-8509 Wakayama, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Sun X, Jia Q, Li K, Tian C, Yi L, Yan L, Zheng J, Jia X, Gu M. Comparative genomic landscape of lower-grade glioma and glioblastoma. PLoS One 2024; 19:e0309536. [PMID: 39208202 PMCID: PMC11361568 DOI: 10.1371/journal.pone.0309536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Biomarkers for classifying and grading gliomas have been extensively explored, whereas populations in public databases were mostly Western/European. Based on public databases cannot accurately represent Chinese population. To identify molecular characteristics associated with clinical outcomes of lower-grade glioma (LGG) and glioblastoma (GBM) in the Chinese population, we performed whole-exome sequencing (WES) in 16 LGG and 35 GBM tumor tissues. TP53 (36/51), TERT (31/51), ATRX (16/51), EFGLAM (14/51), and IDH1 (13/51) were the most common genes harboring mutations. IDH1 mutation (c.G395A; p.R132H) was significantly enriched in LGG, whereas PCDHGA10 mutation (c.A265G; p.I89V) in GBM. IDH1-wildtype and PCDHGA10 mutation were significantly related to poor prognosis. IDH1 is an important biomarker in gliomas, whereas PCDHGA10 mutation has not been reported to correlate with gliomas. Different copy number variations (CNVs) and oncogenic signaling pathways were identified between LGG and GBM. Differential genomic landscapes between LGG and GBM were revealed in the Chinese population, and PCDHGA10, for the first time, was identified as the prognostic factor of gliomas. Our results might provide a basis for molecular classification and identification of diagnostic biomarkers and even potential therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Xinxin Sun
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kun Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Conghui Tian
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
5
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
6
|
Stumpf FM, Müller S, Marx A. Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells. RSC Chem Biol 2024; 5:833-840. [PMID: 39211475 PMCID: PMC11353076 DOI: 10.1039/d4cb00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Rlig1 is the first RNA ligase identified in humans utilising a classical 5'-3' ligation mechanism. It is a conserved enzyme in all vertebrates and is mutated in various cancers. During our initial research on Rlig1, we observed that Rlig1-knockout (KO) HEK293 cells are more sensitive to the stress induced by menadione than their WT counterpart, representing a type of chemical synthetic lethality. To gain further insight into the biological pathways in which Rlig1 may be involved, we aimed at identifying new synthetically lethal small molecules. To this end, we conducted a high-throughput screening with a compound library comprising over 13 000 bioactive small molecules. This approach led to the identification of compounds that exhibited synthetic lethality in combination with Rlig1-KO. In addition to the aforementioned novel compounds that diverge structurally from menadione, we also tested multiple small molecules containing a naphthoquinone scaffold.
Collapse
Affiliation(s)
- Florian M Stumpf
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Silke Müller
- Department of Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Screening Center, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
7
|
Uliana V, Ambrosini E, Taiani A, Cesarini S, Cannizzaro IR, Negrotti A, Serra W, Quintavalle G, Micale L, Fusco C, Castori M, Martorana D, Bortesi B, Belli L, Percesepe A, Pisani F, Barili V. Phenotypic Expansion of Autosomal Dominant LZTR1-Related Disorders with Special Emphasis on Adult-Onset Features. Genes (Basel) 2024; 15:916. [PMID: 39062695 PMCID: PMC11276570 DOI: 10.3390/genes15070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine zipper-like transcription regulator 1 (LZTR1) acts as a negative factor that suppresses RAS function and MAPK signaling; mutations in this protein may dysregulate RAS ubiquitination and lead to impaired degradation of RAS superfamily proteins. Germline LZTR1 variants are reported in Noonan syndrome, either autosomal dominant or autosomal recessive, and in susceptibility to schwannomatosis. This article explores the genetic and phenotypic diversity of the autosomal dominant LZTR1-related disorders, compiling a cohort of previously published patients (51 with the Noonan phenotype and 123 with schwannomatosis) and presenting two additional adult-onset cases: a male with schwannomatosis and Parkinson's disease and a female with Noonan syndrome, generalized joint hypermobility, and breast cancer. This review confirms that autosomal dominant LZTR1-related disorders exhibit an extreme phenotypic variability, ranging from relatively mild manifestations to severe and multi-systemic involvement, and offers updated frequences of each clinical feature. The aim is to precisely define the clinical spectrum of LZTR1-related diseases, using also two new emblematic clinical cases. Gaining insight into the mechanisms underneath this variability is crucial to achieve precision diagnostics and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Sofia Cesarini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Anna Negrotti
- Neurology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Walter Serra
- Unit of Cardiology, University Hospital of Parma, 43126 Parma, Italy
| | - Gabriele Quintavalle
- Regional Reference Centre for Inherited Bleeding Disorders, University Hospital of Parma, 43126 Parma, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Davide Martorana
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Laura Belli
- Neurosurgery Unit, Head and Neck Department, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy (D.M.)
| |
Collapse
|
8
|
Gettinger SN, Song Z, Reckamp KL, Moscow JA, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Kong XT, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT. Phase II Trial of Afatinib in Patients With EGFR-Mutated Solid Tumors Excluding Lung Cancer: Results From NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol A. JCO Precis Oncol 2024; 8:e2300725. [PMID: 38986051 DOI: 10.1200/po.23.00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) was a multicohort phase 2 trial that assigned patients with advanced pretreated cancers to molecularly targeted therapies on the basis of tumor genomic testing. NCI-MATCH Arm A evaluated afatinib, an EGFR tyrosine kinase inhibitor (TKI) approved for advanced non-small cell lung cancer, in patients with tumors other than lung cancer harboring EGFR mutations. METHODS Patients with advanced pretreated cancers other than lung cancer found to have selected actionable EGFR mutations were offered participation in Arm A. Previous therapy with an EGFR TKI was not allowed. Patients received afatinib 40 mg once daily continuously until disease progression or unacceptable toxicity. The primary end point was objective response rate (ORR). Secondary end points included progression-free survival (PFS), 6-month PFS, and overall survival (OS). RESULTS Seventeen patients received protocol therapy. Tumor types included glioblastoma multiforme (GBM) (13), gliosarcoma (1), adenocarcinoma not otherwise specified (NOS) (2), and adenosquamous carcinoma of the breast (1). Fifty-nine percent of patients received ≥2 lines of previous therapy. The ORR was 11.8% (90% CI, 2.1 to 32.6), with one complete response lasting 16.4 months (GBM harboring a rare exon 18 EGFR-SEPT14 fusion) and one partial response lasting 12.8 months (adenocarcinoma NOS with the classic EGFR mutation, p.Glu746_Ala750del). Three patients had stable disease. The 6-month PFS was 15% (90% CI, 0 to 30.7); the median OS was 9 months (90% CI, 4.6 to 14.0). Rash and diarrhea were the most common toxicities. CONCLUSION Afatinib had modest activity in a cohort of patients with heavily pretreated cancer with advanced nonlung, EGFR-mutated tumors, but the trial's primary end point was not met. Further evaluation of afatinib in GBM with EGFR exon 18 fusions may be of interest.
Collapse
Affiliation(s)
| | - Zihe Song
- Dana Farber Cancer Institute-ECOG-ACRIN Biostatistics Center, Boston, MA
| | | | - Jeffrey A Moscow
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Robert J Gray
- Dana Farber Cancer Institute-ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Victoria Wang
- Dana Farber Cancer Institute-ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David R Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD
| | | | | | - Xiao-Tang Kong
- UC Irvine Health/Chao Family Comprehensive Cancer Center, Orange, CA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P Chen
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
9
|
Jiang X, You H, Niu Y, Ding Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Deng D, Xue L, Peng Y, Yang Y, Fan L, Shao N. E2F1-regulated USP5 contributes to the tumorigenic capacity of glioma stem cells through the maintenance of OCT4 stability. Cancer Lett 2024; 593:216875. [PMID: 38643837 DOI: 10.1016/j.canlet.2024.216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Mesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a critical factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC. Subsequently, we demonstrated that USP5 is a deubiquitinating enzyme which directly interacts with OCT4 and preserves OCT4 stability through its deubiquitination. USP5 was additionally proven to be aberrantly over-expressed in MES GSCs, and its depletion resulted in a noticeable diminution of OCT4 and consequently a reduced self-renewal and tumorigenic capacity of MES GSCs, which can be substantially restored by ectopic expression of OCT4. In addition, we detected the dominant molecule that regulates USP5 transcription, E2F1, with dual luciferase reporter gene analysis. In combination, targeting the E2F1-USP5-OCT4 axis is a potentially emerging strategy for the therapy of GBM.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Hongtao You
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yixuan Niu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yudan Ding
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, 510280, Guangdong Province, China.
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yuan Xu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Peng Zhou
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Danni Deng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Lian Xue
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ya Peng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yilin Yang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ligang Fan
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Naiyuan Shao
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
10
|
Weller J, Potthoff AL, Zeyen T, Schaub C, Duffy C, Schneider M, Herrlinger U. Current status of precision oncology in adult glioblastoma. Mol Oncol 2024. [PMID: 38899374 DOI: 10.1002/1878-0261.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of precision oncology, the application of targeted drugs based on comprehensive molecular profiling, has revolutionized treatment strategies in oncology. This review summarizes the current status of precision oncology in glioblastoma (GBM), the most common and aggressive primary brain tumor in adults with a median survival below 2 years. Targeted treatments without prior target verification have consistently failed. Patients with BRAF V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell heterogeneity, and pathway redundancies. Systematic screening for actionable molecular alterations resulted in low rates (< 10%) of targeted treatments. Efficacy was observed in one-third and currently appears to be limited to BRAF-, VEGFR-, and mTOR-directed treatments. Advancing precision oncology for GBM requires consideration of pathways instead of single alterations, new trial concepts enabling rapid and adaptive drug evaluation, a focus on drugs with sufficient bioavailability in the CNS, and the extension of target discovery and validation to the tumor microenvironment, tumor cell networks, and their interaction with immune cells and neurons.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Germany
| | | | - Thomas Zeyen
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Germany
| | - Christina Schaub
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Germany
| | - Cathrina Duffy
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Germany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Germany
| |
Collapse
|
11
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
12
|
Liu A, Zhou L, Huang Y, Peng D. Analysis of copy number variants detected by sequencing in spontaneous abortion. Mol Cytogenet 2024; 17:13. [PMID: 38764094 PMCID: PMC11103966 DOI: 10.1186/s13039-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The incidence of spontaneous abortion (SA), which affects approximately 15-20% of pregnancies, is the most common complication of early pregnancy. Pathogenic copy number variations (CNVs) are recognized as potential genetic causes of SA. However, CNVs of variants of uncertain significance (VOUS) have been identified in products of conceptions (POCs), and their correlation with SA remains uncertain. RESULTS Of 189 spontaneous abortion cases, trisomy 16 was the most common numerical chromosome abnormality, followed by monosomy X. CNVs most often occurred on chromosomes 4 and 8. Gene Ontology and signaling pathway analysis revealed significant enrichment of genes related to nervous system development, transmembrane transport, cell adhesion, and structural components of chromatin. Furthermore, genes within the VOUS CNVs were screened by integrating human placental expression profiles, PhyloP scores, and Residual Variance Intolerance Score (RVIS) percentiles to identify potential candidate genes associated with spontaneous abortion. Fourteen potential candidate genes (LZTR1, TSHZ1, AMIGO2, H1-4, H2BC4, H2AC7, H3C8, H4C3, H3C6, PHKG2, PRR14, RNF40, SRCAP, ZNF629) were identified. Variations in LZTR1, TSHZ1, and H4C3 may contribute to embryonic lethality. CONCLUSIONS CNV sequencing (CNV-seq) analysis is an effective technique for detecting chromosomal abnormalities in POCs and identifying potential candidate genes for SA.
Collapse
Affiliation(s)
- Anhui Liu
- Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Liyuan Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410000, China
| | - Yazhou Huang
- Department of Medical Genetics, Xiangya School of Medicine, Changde Hospital, Central South University (The First People's Hospital of Changde city), Changde, 415000, China.
| | - Dan Peng
- Hengyang Medical School, University of South China, Hengyang, 421000, China.
- Department of Medical Genetics, Xiangya School of Medicine, Changde Hospital, Central South University (The First People's Hospital of Changde city), Changde, 415000, China.
| |
Collapse
|
13
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
14
|
Zhou Y, Chen X, Chen J, Kendrick CD, Ramanathan RK, Graham RP, Kossick KF, Boardman LA, Barrett MT. Genomic landscape of diploid and aneuploid microsatellite stable early onset colorectal cancer. Sci Rep 2024; 14:9368. [PMID: 38654044 DOI: 10.1038/s41598-024-59398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Although colorectal cancer (CRC) remains the second leading cause of cancer-related death in the United States, the overall incidence and mortality from the disease have declined in recent decades. In contrast, there has been a steady increase in the incidence of CRC in individuals under 50 years of age. Hereditary syndromes contribute disproportionately to early onset CRC (EOCRC). These include microsatellite instability high (MSI+) tumors arising in patients with Lynch Syndrome. However, most EOCRCs are not associated with familial syndromes or MSI+ genotypes. Comprehensive genomic profiling has provided the basis of improved more personalized treatments for older CRC patients. However, less is known about the basis of sporadic EOCRC. To define the genomic landscape of EOCRC we used DNA content flow sorting to isolate diploid and aneuploid tumor fractions from 21 non-hereditary cases. We then generated whole exome mutational profiles for each case and whole genome copy number, telomere length, and EGFR immunohistochemistry (IHC) analyses on subsets of samples. These results discriminate the molecular features of diploid and aneuploid EOCRC and provide a basis for larger population-based studies and the development of effective strategies to monitor and treat this emerging disease.
Collapse
Affiliation(s)
- Yumei Zhou
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Xianfeng Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Conner D Kendrick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramesh K Ramanathan
- Mayo Clinic Cancer Center, Phoenix, AZ, 85054, USA
- Ironwood Cancer and Research Center, Scottsdale, AZ, 85260, USA
| | | | - Kimberlee F Kossick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael T Barrett
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
15
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Nishimura K, Saika W, Inoue D. Minor introns impact on hematopoietic malignancies. Exp Hematol 2024; 132:104173. [PMID: 38309573 DOI: 10.1016/j.exphem.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
In the intricate orchestration of the central dogma, pre-mRNA splicing plays a crucial role in the post-transcriptional process that transforms DNA into mature mRNA. Widely acknowledged as a pivotal RNA processing step, it significantly influences gene expression and alters the functionality of gene product proteins. Although U2-dependent spliceosomes efficiently manage the removal of over 99% of introns, a distinct subset of essential genes undergo splicing with a different intron type, denoted as minor introns, using U12-dependent spliceosomes. Mutations in spliceosome component genes are now recognized as prevalent genetic abnormalities in cancer patients, especially those with hematologic malignancies. Despite the relative rarity of minor introns, genes containing them are evolutionarily conserved and play crucial roles in functions such as the RAS-MAPK pathway. Disruptions in U12-type minor intron splicing caused by mutations in snRNA or its regulatory components significantly contribute to cancer progression. Notably, recurrent mutations associated with myelodysplastic syndrome (MDS) in the minor spliceosome component ZRSR2 underscore its significance. Examination of ZRSR2-mutated MDS cells has revealed that only a subset of minor spliceosome-dependent genes, such as LZTR1, consistently exhibit missplicing. Recent technological advancements have uncovered insights into minor introns, raising inquiries beyond current understanding. This review comprehensively explores the importance of minor intron regulation, the molecular implications of minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the evolutionary progress of studies on minor, aiming to provide a sophisticated understanding of their intricate role in cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan; Department of Hematology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| |
Collapse
|
17
|
Nakashima T, Yamamoto R, Ohno M, Sugino H, Takahashi M, Funakoshi Y, Nambu S, Uneda A, Yanagisawa S, Uzuka T, Arakawa Y, Hanaya R, Ishida J, Yoshimoto K, Saito R, Narita Y, Suzuki H. Development of a rapid and comprehensive genomic profiling test supporting diagnosis and research for gliomas. Brain Tumor Pathol 2024; 41:50-60. [PMID: 38332448 DOI: 10.1007/s10014-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.
Collapse
Affiliation(s)
- Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobaya-Shi, Mibu, Shimotsuga-Gun, Tochigi, 321-0293, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho Shogoin Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Joji Ishida
- Department of Neurosurgery, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka City, 812-8582, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
18
|
Chen MF, Song Z, Yu HA, Sequist LV, Lovly CM, Mitchell EP, Moscow JA, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Umemura Y, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Osimertinib in Patients With Epidermal Growth Factor Receptor Mutations: Results From the NCI-MATCH ECOG-ACRIN (EAY131) Trial Subprotocol E. JCO Precis Oncol 2024; 8:e2300454. [PMID: 38591867 PMCID: PMC10896470 DOI: 10.1200/po.23.00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 04/10/2024] Open
Abstract
PURPOSE The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.
Collapse
Affiliation(s)
| | - Zihe Song
- Dana Farber Cancer Institute—ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Helena A. Yu
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Edith P. Mitchell
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Jeffrey A. Moscow
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Robert J. Gray
- Dana Farber Cancer Institute—ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Victoria Wang
- Dana Farber Cancer Institute—ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V. Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David R. Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD
| | | | | | - Yoshie Umemura
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Barbara A. Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N. Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
19
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584849. [PMID: 38558981 PMCID: PMC10979979 DOI: 10.1101/2024.03.13.584849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
21
|
El-Kamand S, Quinn JW, Sareen H, Becker T, Wong-Erasmus M, Cowley M. CRUX, a platform for visualising, exploring and analysing cancer genome cohort data. NAR Genom Bioinform 2024; 6:lqae003. [PMID: 38304083 PMCID: PMC10833466 DOI: 10.1093/nargab/lqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
To better understand how tumours develop, identify prognostic biomarkers and find new treatments, researchers have generated vast catalogues of cancer genome data. However, these datasets are complex, so interpreting their important features requires specialized computational skills and analytical tools, which presents a significant technical challenge. To address this, we developed CRUX, a platform for exploring genomic data from cancer cohorts. CRUX enables researchers to perform common analyses including cohort comparisons, biomarker discovery, survival analysis, and to create visualisations including oncoplots and lollipop charts. CRUX simplifies cancer genome analysis in several ways: (i) it has an easy-to-use graphical interface; (ii) it enables users to create custom cohorts, as well as analyse precompiled public and private user-created datasets; (iii) it allows analyses to be run locally to address data privacy concerns (though an online version is also available) and (iv) it makes it easy to use additional specialized tools by exporting data in the correct formats. We showcase CRUX's capabilities with case studies employing different types of cancer genome analysis, demonstrating how it can be used flexibly to generate valuable insights into cancer biology. CRUX is freely available at https://github.com/CCICB/CRUX and https://ccicb.shinyapps.io/crux (DOI: 10.5281/zenodo.8015714).
Collapse
Affiliation(s)
- Sam El-Kamand
- Children's Cancer Institute, Randwick, NSW 2031, Australia
| | | | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Marie Wong-Erasmus
- Children's Cancer Institute, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Xu Y, Zhao W, Zhang X, Yu X, Chen Y, Wang Z, Chu Y, Zhu X, Zhang P. Design, synthesis and evaluate of indazolylaminoquinazoline derivatives as potent Tropomyosin receptor kinase (TRK) inhibitors. Bioorg Med Chem 2024; 99:117608. [PMID: 38271867 DOI: 10.1016/j.bmc.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Tropomyosin receptor kinases (TRKs), the superfamily of transmembrane receptor tyrosine kinases, have recently become an attractive method for precision anticancer therapies since the approval of Larotrectinib and Entrectinib by FDA. Herein, we reported the discovery of a series of novel indazolylaminoquinazoline and indazolylaminoindazole as TRK inhibitors. The representative compound 30f exhibited good inhibitory activity against TRKWT, TRKG595R and TRKG667C with IC50 values of 0.55 nM, 25.1 nM and 5.4 nM, respectively. The compound also demonstrated potent superior to Larotrectinib antiproliferative activity against a panel of Ba/F3 cell lines transformed with both NTRK wild type and mutant fusions (IC50 = 10-200 nM). In addition, compound 30f exhibited good in vitro metabolic stability (T1/2 = 73.0 min), indicating that the quinazoline derivatives may have better metabolic stability. Finally, the binding mode of compound 30f predicted by molecular docking well explained the good enzyme inhibitory activity of indazolylaminoquinazoline compounds as TRK inhibitor. Thus, compound 30f can be used as a promising lead molecule for further structural optimization.
Collapse
Affiliation(s)
- Yunsheng Xu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Wei Zhao
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Xinyi Zhang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Xihua Yu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Yinbo Chen
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Zhenghai Wang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xueyan Zhu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China.
| | - Peng Zhang
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China.
| |
Collapse
|
23
|
Huang J, Jiang T, Li J, Qie J, Cheng X, Wang Y, Zhou T, Liu J, Han H, Yao K, Yu L. Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation. Adv Healthc Mater 2024; 13:e2302889. [PMID: 37988231 DOI: 10.1002/adhm.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by ≈75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui, 323000, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Tinglian Zhou
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
24
|
Mathur R, Wang Q, Schupp PG, Nikolic A, Hilz S, Hong C, Grishanina NR, Kwok D, Stevers NO, Jin Q, Youngblood MW, Stasiak LA, Hou Y, Wang J, Yamaguchi TN, Lafontaine M, Shai A, Smirnov IV, Solomon DA, Chang SM, Hervey-Jumper SL, Berger MS, Lupo JM, Okada H, Phillips JJ, Boutros PC, Gallo M, Oldham MC, Yue F, Costello JF. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 2024; 187:446-463.e16. [PMID: 38242087 PMCID: PMC10832360 DOI: 10.1016/j.cell.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick G Schupp
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ana Nikolic
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Darwin Kwok
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marisa Lafontaine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB; Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Bae H, Lee B, Hwang S, Lee J, Kim HS, Suh YL. Clinicopathological and Molecular Characteristics of IDH-Wildtype Glioblastoma with FGFR3::TACC3 Fusion. Biomedicines 2024; 12:150. [PMID: 38255255 PMCID: PMC10813214 DOI: 10.3390/biomedicines12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The World Health Organization Classification of Tumors of the Central Nervous System recently incorporated histological features, immunophenotypes, and molecular characteristics to improve the accuracy of glioblastoma (GBM) diagnosis. FGFR3::TACC3 (F3T3) fusion has been identified as an oncogenic driver in IDH-wildtype GBMs. Recent studies have demonstrated the potential of using FGFR inhibitors in clinical trials and TACC3-targeting agents in preclinical models for GBM treatment. However, there is limited information on the clinicopathological and genetic features of IDH-wildtype GBMs with F3T3 fusion. The aim of this study was to comprehensively investigate the clinical manifestations, histological features, and mutational profiles of F3T3-positive GBMs. Between September 2017 and February 2023, 25 consecutive cases (5.0%) of F3T3-positive GBM were extracted from 504 cases of IDH-wildtype GBM. Clinicopathological information and targeted sequencing results obtained from 25 primary and 4 recurrent F3T3-positive GBMs were evaluated and compared with those from F3T3-negative GBMs. The provisional grades determined by histology only were distributed as follows: 4 (26/29; 89.7%), 3 (2/29; 6.9%), and 2 (1/29; 3.4%). Grade 2-3 tumors were ultimately diagnosed as grade 4 GBMs based on the identification of the TERT promoter mutation and the combined gain of chromosome 7 and loss of chromosome 10 (7+/10-). F3T3-positive GBMs predominantly affected women (2.6 females per male). The mean age of patients with an F3T3-positive GBM at initial diagnosis was 62 years. F3T3-positive GBMs occurred more frequently in the cortical locations compared to F3T3-negative GBMs. Imaging studies revealed that more than one-third (12/29; 41.4%) of F3T3-positive GBMs displayed a circumscribed tumor border. Seven of the seventeen patients (41.2%) whose follow-up periods exceeded 20 months died of the disease. Histologically, F3T3-positive GBMs more frequently showed curvilinear capillary proliferation, palisading nuclei, and calcification compared to F3T3-negative GBMs. Molecularly, the most common alterations observed in F3T3-positive GBMs were TERT promoter mutations and 7+/10-, whereas amplifications of EGFR, PDGFRA, and KIT were not detected at all. Other genetic alterations included CDKN2A/B deletion, PTEN mutation, TP53 mutation, CDK4 amplification, and MDM2 amplification. Our observations suggest that F3T3-positive GBM is a distinct molecular subgroup of the IDH-wildtype GBM. Both clinicians and pathologists should consider this rare entity in the differential diagnosis of diffuse astrocytic glioma to make an accurate diagnosis and to ensure appropriate therapeutic management.
Collapse
Affiliation(s)
- Hyunsik Bae
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Jiyeon Lee
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| |
Collapse
|
26
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Hyrcza MD, Martins-Filho SN, Spatz A, Wang HJ, Purgina BM, Desmeules P, Park PC, Bigras G, Jung S, Cutz JC, Xu Z, Berman DM, Sheffield BS, Cheung CC, Leduc C, Hwang DM, Ionescu D, Klonowski P, Chevarie-Davis M, Chami R, Lo B, Stockley TL, Tsao MS, Torlakovic E. Canadian Multicentric Pan-TRK (CANTRK) Immunohistochemistry Harmonization Study. Mod Pathol 2024; 37:100384. [PMID: 37972928 DOI: 10.1016/j.modpat.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.
Collapse
Affiliation(s)
- Martin D Hyrcza
- Department of Pathology and Laboratory Medicine, University of Calgary, Arnie Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Sebastiao N Martins-Filho
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alan Spatz
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Han-Jun Wang
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Bibianna M Purgina
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrice Desmeules
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Paul C Park
- Shared Health, Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brandon S Sheffield
- Department of Pathology, William Osler Health System, Brampton, Ontario, Canada
| | - Carol C Cheung
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Charles Leduc
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - David M Hwang
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Diana Ionescu
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Klonowski
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine Diagnostic and Scientific Centre, Calgary, Alberta, Canada
| | - Myriam Chevarie-Davis
- Département de Pathologie et Biologie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Rose Chami
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Tracy L Stockley
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
28
|
Zheng L, Luthra R, Alvarez HA, San Lucas FA, Duose DY, Wistuba II, Fuller GN, Ballester LY, Roy-Chowdhuri S, Sweeney KJ, Rashid A, Yang RK, Chen W, Liu A, Wu Y, Albarracin C, Patel KP, Routbort MJ, Sahin AA, Ding Q, Chen H. Intragenic EGFR::EGFR.E1E8 Fusion (EGFRvIII) in 4331 Solid Tumors. Cancers (Basel) 2023; 16:6. [PMID: 38201434 PMCID: PMC10778229 DOI: 10.3390/cancers16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2-7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy.
Collapse
Affiliation(s)
- Lan Zheng
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - Hector A. Alvarez
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - F. Anthony San Lucas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - Dzifa Y. Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (I.I.W.)
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (I.I.W.)
| | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Leomar Y. Ballester
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Keith J. Sweeney
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Richard K. Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Wei Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - Audrey Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Constance Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - Mark J. Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (H.A.A.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| | - Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (Y.W.); (C.A.); (A.A.S.)
| |
Collapse
|
29
|
Carter T, Valenzuela RK, Yerukala Sathipati S, Medina-Flores R. Gene signatures associated with prognosis and chemotherapy resistance in glioblastoma treated with temozolomide. Front Genet 2023; 14:1320789. [PMID: 38259614 PMCID: PMC10802164 DOI: 10.3389/fgene.2023.1320789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Glioblastoma (GBM) prognosis remains extremely poor despite standard treatment that includes temozolomide (TMZ) chemotherapy. To discover new GBM drug targets and biomarkers, genes signatures associated with survival and TMZ resistance in GBM patients treated with TMZ were identified. Methods: GBM cases in The Cancer Genome Atlas who received TMZ (n = 221) were stratified into subgroups that differed by median overall survival (mOS) using network-based stratification to cluster patients whose somatic mutations affected genes in similar modules of a gene interaction network. Gene signatures formed from differentially mutated genes in the subgroup with the longest mOS were used to confirm their association with survival and TMZ resistance in independent datasets. Somatic mutations in these genes also were assessed for an association with OS in an independent group of 37 GBM cases. Results: Among the four subgroups identified, subgroup four (n = 71 subjects) exhibited the longest mOS at 18.3 months (95% confidence interval: 16.2, 34.1; p = 0.0324). Subsets of the 86 genes that were differentially mutated in this subgroup formed 20-gene and 8-gene signatures that predicted OS in two independent datasets (Spearman's rho of 0.64 and 0.58 between actual and predicted OS; p < 0.001). Patients with mutations in five of the 86 genes had longer OS in a small, independent sample of 37 GBM cases, but this association did not reach statistical significance (p = 0.07). Thirty-one of the 86 genes formed signatures that distinguished TMZ-resistant GBM samples from controls in three independent datasets (area under the curve ≥ 0.75). The prognostic and TMZ-resistance signatures had eight genes in common (ANG, BACH1, CDKN2C, HMGA1, IFI16, PADI4, SDF4, and TP53INP1). The latter three genes have not been associated with GBM previously. Conclusion: PADI4, SDF4, and TP53INP1 are novel therapy and biomarker candidates for GBM. Further investigation of their oncologic functions may provide new insight into GBM treatment resistance mechanisms.
Collapse
Affiliation(s)
- Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Robert K. Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | | | - Rafael Medina-Flores
- Department of Pathology (Neuropathology), Marshfield Clinic, Marshfield, WI, United States
| |
Collapse
|
30
|
Cipri S, Fabozzi F, Del Baldo G, Milano GM, Boccuto L, Carai A, Mastronuzzi A. Targeted therapy for pediatric central nervous system tumors harboring mutagenic tropomyosin receptor kinases. Front Oncol 2023; 13:1235794. [PMID: 38144536 PMCID: PMC10748602 DOI: 10.3389/fonc.2023.1235794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for members of the tropomyosin receptor kinase (TRK) family. Rearrangements involving NTRK1/2/3 are rare oncogenic factors reported with variable frequencies in an extensive range of cancers in pediatrics and adult populations, although they are more common in the former than in the latter. The alterations in these genes are causative of the constitutive activation of TRKs that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi) larotrectinib was granted accelerated approval from the FDA, having demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since this new era has begun, resistance to first-generation TRKi has been described and has opened the development of second-generation molecules, such as selitrectinib and repotrectinib. In this review, we provide a brief overview of the studies on NTRK alterations found in pediatric central nervous system tumors and first and second-generation TRKi useful in clinical practice.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
31
|
de la Fuente MI. Adult-type Diffuse Gliomas. Continuum (Minneap Minn) 2023; 29:1662-1679. [PMID: 38085893 DOI: 10.1212/con.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article highlights key aspects of the diagnosis and management of adult-type diffuse gliomas, including glioblastomas and IDH-mutant gliomas relevant to the daily practice of the general neurologist. LATEST DEVELOPMENTS The advances in molecular characterization of gliomas have translated into more accurate prognostication and tumor classification. Gliomas previously categorized by histological appearance solely as astrocytomas or oligodendrogliomas are now also defined by molecular features. Furthermore, ongoing clinical trials have incorporated these advances to tailor more effective treatments for specific glioma subtypes. ESSENTIAL POINTS Despite recent insights into the molecular aspects of gliomas, these tumors remain incurable. Care for patients with these complex tumors requires a multidisciplinary team in which the general neurologist has an important role. Efforts focus on translating the latest data into more effective therapies that can prolong survival.
Collapse
|
32
|
Makrodimitris S, Pronk B, Abdelaal T, Reinders M. An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics. Brief Bioinform 2023; 25:bbad416. [PMID: 38018908 PMCID: PMC10685331 DOI: 10.1093/bib/bbad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Multi-omic analyses are necessary to understand the complex biological processes taking place at the tissue and cell level, but also to make reliable predictions about, for example, disease outcome. Several linear methods exist that create a joint embedding using paired information per sample, but recently there has been a rise in the popularity of neural architectures that embed paired -omics into the same non-linear manifold. This work describes a head-to-head comparison of linear and non-linear joint embedding methods using both bulk and single-cell multi-modal datasets. We found that non-linear methods have a clear advantage with respect to linear ones for missing modality imputation. Performance comparisons in the downstream tasks of survival analysis for bulk tumor data and cell type classification for single-cell data lead to the following insights: First, concatenating the principal components of each modality is a competitive baseline and hard to beat if all modalities are available at test time. However, if we only have one modality available at test time, training a predictive model on the joint space of that modality can lead to performance improvements with respect to just using the unimodal principal components. Second, -omic profiles imputed by neural joint embedding methods are realistic enough to be used by a classifier trained on real data with limited performance drops. Taken together, our comparisons give hints to which joint embedding to use for which downstream task. Overall, product-of-experts performed well in most tasks and was reasonably fast, while early integration (concatenation) of modalities did quite poorly.
Collapse
Affiliation(s)
- Stavros Makrodimitris
- Delft Bioinformatics Lab, Delft University of Technology, Street, Postcode, State, Country
- Department of Medical Oncology, Erasmus University Medical Center, Street, Postcode, State, Country
- Department of Clinical Genetics, Erasmus University Medical Center, Street, Postcode, State, Country
| | - Bram Pronk
- Delft Bioinformatics Lab, Delft University of Technology, Street, Postcode, State, Country
| | - Tamim Abdelaal
- Delft Bioinformatics Lab, Delft University of Technology, Street, Postcode, State, Country
- Department of Radiology, Leiden University Medical Center, Street, Postcode, State, Country
- Leiden Computational Biology Center, Leiden University Medical Center, Street, Postcode, State, Country
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Street, Postcode, State, Country
- Leiden Computational Biology Center, Leiden University Medical Center, Street, Postcode, State, Country
| |
Collapse
|
33
|
Wang W, Lv W, Wang H, Xu Y, Yan J, Shen HM, Shan L, Hu J. A novel acquired EGFR-SEPT14 fusion confers differential drug resistance to EGFR inhibitors in lung adenocarcinoma. Genes Dis 2023; 10:2241-2244. [PMID: 37554188 PMCID: PMC10404941 DOI: 10.1016/j.gendis.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Weidong Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Faculty of Health Sciences, University of Macau, Macau SAR 519000, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hui Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Xu
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu 210000, China
| | - Junrong Yan
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu 210000, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 519000, China
| | - Liqun Shan
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Department of Thoracic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang 317599, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
34
|
Ricco G, Seminerio R, Andrini E, Malvi D, Gruppioni E, Altimari A, Zagnoni S, Campana D, Lamberti G. BRAF V600E-mutated large cell neuroendocrine carcinoma responding to targeted therapy: a case report and review of the literature. Anticancer Drugs 2023; 34:1076-1084. [PMID: 36847048 DOI: 10.1097/cad.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Large cell neuroendocrine carcinoma (LCNEC) is a rare and aggressive high-grade neuroendocrine tumor, commonly arising in the lung or in the gastrointestinal tract, with a frequent proportion of unknown primary origin (20%). In the metastatic setting, platinum-based or fluoropyrimidine-based chemotherapeutic regimens are as considered the first-line treatment, despite the limited duration of response. To date, the prognosis of advanced high-grade neuroendocrine carcinoma remains poor, suggesting the need to explore new treatment strategies in this orphan tumor. The evolving molecular landscape of LCNEC, not yet been completely defined, could explain the heterogeneous response to different chemotherapeutic regimens and suggest that treatment strategy could be driven by molecular features. v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations, well described in melanoma, thyroid cancer, colon cancer and lung adenocarcinoma, account for approximately 2% of cases in lung LCNEC. Here, we describe the case of a patient with a BRAF V600E-mutated LCNEC of unknown primary origin who partially responded to BRAF/mitogen-activated protein kinase kinase inhibitors after standard treatment. Additionally, BRAF V600E circulating tumor DNA was used to monitor disease response. Thereafter, we reviewed the available literature about the role of targeted therapy in high-grade neuroendocrine neoplasms to provide insight for future research to identify patients with driver oncogenic mutations, who can potentially benefit from target therapy.
Collapse
Affiliation(s)
- Gianluca Ricco
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi University Hospital, ENETS Center of Excellence
| | - Renata Seminerio
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi University Hospital, ENETS Center of Excellence
| | - Elisa Andrini
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi University Hospital, ENETS Center of Excellence
| | - Deborah Malvi
- Division of Pathology, Azienda Ospedaliero-Universitaria di Bologna
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Zagnoni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Campana
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi University Hospital, ENETS Center of Excellence
| | - Giuseppe Lamberti
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi University Hospital, ENETS Center of Excellence
| |
Collapse
|
35
|
Nishio Y, Kato K, Tran Mau-Them F, Futagawa H, Quélin C, Masuda S, Vitobello A, Otsuji S, Shawki HH, Oishi H, Thauvin-Robinet C, Takenouchi T, Kosaki K, Takahashi Y, Saitoh S. Gain-of-function MYCN causes a megalencephaly-polydactyly syndrome manifesting mirror phenotypes of Feingold syndrome. HGG ADVANCES 2023; 4:100238. [PMID: 37710961 PMCID: PMC10550848 DOI: 10.1016/j.xhgg.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Hiroshi Futagawa
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, 35200 Rennes, France
| | - Saori Masuda
- Department of Hematology and Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Antonio Vitobello
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Shiomi Otsuji
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, 21070 Dijon, France
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
36
|
Shen Y, Zheng D, Hu D, Ma B, Cai C, Chen W, Zeng J, Luo J, Xiao D, Zhao Y, Wu Z, Jing G, Xie Y. The prognostic value of tumor-associated macrophages in glioma patients. Medicine (Baltimore) 2023; 102:e35298. [PMID: 37747032 PMCID: PMC10519474 DOI: 10.1097/md.0000000000035298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Glioma is a complex tumor composed of both neoplastic and non-neoplastic cells, including tumor-infiltrating leukocytes (TILs), and each cell type contributes to tumor formation and malignant progression. Among TILs, tumor-associated macrophages (TAMs) are of great importance and play a key role in the immune response to cancer. In this study, 22 types of adaptive and innate TILs were evaluated in gliomas. TAMs, which account for 38.7% of all these cells, are the most abundant immune infiltrates in the tumor microenvironment. In addition, we observed different immune cell patterns in low-grade glioma and glioblastoma. Our research indicated that there was a connection between TILs, and 13 of 22 TILs were significantly associated with patient outcomes. Finally, the prognosis and diagnostic value of TAMs were revealed using Kaplan-Meier analysis. We identified the optimal cutoff point of TAMs at an infiltrating level of 0.47 to predict patient prognosis, with a median overall survival of 448 days in patients with higher TAM infiltration levels and 2660 days in patients with lower TAM infiltration levels. These findings provide a new idea for glioma to regulate tumor-specific immunity, clarify the potential effects of TAMs on disease pathology, and provide a theoretical basis for immune intervention treatment of gliomas.
Collapse
Affiliation(s)
- Yang Shen
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Dingke Zheng
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Dong Hu
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Baoxin Ma
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Chunsheng Cai
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Wei Chen
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Jiahao Zeng
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Junran Luo
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Dan Xiao
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Yao Zhao
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Zhiyan Wu
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Guojie Jing
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| | - Yituan Xie
- Department of Cerebrovascular Disease, Huizhou First People’s Hospital, Huizhou, Guangdong, China
| |
Collapse
|
37
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. iScience 2023; 26:107528. [PMID: 37649695 PMCID: PMC10462858 DOI: 10.1016/j.isci.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
The evolutionary trajectories of genomic alterations underlying distant recurrence in glioma remain largely unknown. To elucidate glioma evolution, we analyzed the evolutionary trajectories of matched pairs of primary tumors and relapse tumors or tumor in situ fluid (TISF) based on deep whole-genome sequencing data (ctDNA). We found that MMR gene mutations occurred in the late stage in IDH-mutant glioma during gene evolution, which activates multiple signaling pathways and significantly increases distant recurrence potential. The proneural subtype characterized by PDGFRA amplification was likely prone to hypermutation and distant recurrence following treatment. The classical and mesenchymal subtypes tended to progress locally through subclonal reconstruction, trunk genes transformation, and convergence evolution. EGFR and NOTCH signaling pathways and CDNK2A mutation play an important role in promoting tumor local progression. Glioma subtypes displayed distinct preferred evolutionary patterns. ClinicalTrials.gov, NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chaojie Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Guangzhong Guo
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyue Zhang
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Shuang Wu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Sensen Xu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yage Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yushuai Gao
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Clinical Research Center, Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Tianxiao Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ming Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
38
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
39
|
Abe T, Kanno SI, Niihori T, Terao M, Takada S, Aoki Y. LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and controlling KLHL12-mediated collagen secretion. Cell Death Dis 2023; 14:556. [PMID: 37626065 PMCID: PMC10457367 DOI: 10.1038/s41419-023-06072-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Leucine zipper-like transcriptional regulator 1 (LZTR1), a substrate adaptor of Cullin 3 (CUL3)-based E3 ubiquitin ligase, regulates proteostasis of the RAS subfamily. Mutations in LZTR1 have been identified in patients with several types of cancer. However, the role of LZTR1 in tumor metastasis and the target molecules of LZTR1, excluding the RAS subfamily, are not clearly understood. Here, we show that LZTR1 deficiency increases tumor growth and metastasis. In lung adenocarcinoma cells, LZTR1 deficiency induced the accumulation of the RAS subfamily and enhanced cell proliferation, invasion, and xenograft tumor growth. Multi-omics analysis to clarify the pathways related to tumor progression showed that MAPK signaling, epithelial-mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling-related gene ontology terms were enriched in LZTR1 knockout cells. Indeed, LZTR1 deficiency induced high expression of EMT markers under TGF-β1 treatment. Our search for novel substrates that interact with LZTR1 resulted in the discovery of a Kelch-like protein 12 (KLHL12), which is involved in collagen secretion. LZTR1 could inhibit KLHL12-mediated ubiquitination of SEC31A, a component of coat protein complex II (COPII), whereas LZTR1 deficiency promoted collagen secretion. LZTR1-RIT1 and LZTR1-KLHL12 worked independently regarding molecular interactions and did not directly interfere with each other. Further, we found that LZTR1 deficiency significantly increases lung metastasis and promotes ECM deposition around metastatic tumors. Since collagen-rich extracellular matrix act as pathways for migration and facilitate metastasis, increased expression of RAS and collagen deposition may exert synergistic or additive effects leading to tumor progression and metastasis. In conclusion, LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and promoting collagen secretion. The functional inhibition of KLHL12 by LZTR1 provides important evidence that LZTR1 may be a repressor of BTB-Kelch family members. These results provide clues to the mechanism of LZTR1-deficiency carcinogenesis.
Collapse
Affiliation(s)
- Taiki Abe
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
40
|
Kothari S, Dusenbery AC, Doucette A, Zhang DY, Ballinger D, Desai A, Morrissette JJD, Bagley SJ, Nasrallah MP. RNA fusion transcript panel identifies diverse repertoire of fusions in adult glioma patients with therapeutic implications. Neurooncol Pract 2023; 10:370-380. [PMID: 37457221 PMCID: PMC10346416 DOI: 10.1093/nop/npad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Background Recurrent gliomas are therapeutically challenging diseases with few treatment options available. One area of potential therapeutic vulnerability is the presence of targetable oncogenic fusion proteins. Methods To better understand the clinical benefit of routinely testing for fusion proteins in adult glioma patients, we performed a retrospective review of 647 adult patients with glioma who underwent surgical resection at our center between August 2017 and May 2021 and whose tumors were analyzed with an in-house fusion transcript panel. Results Fifty-two patients (8%) were found to harbor a potentially targetable fusion with 11 (21%) of these patients receiving treatment with a fusion-targeted inhibitor. The targetable genes found to be involved in a fusion included FGFR3, MET, EGFR, NTRK1, NTRK2, BRAF, ROS1, and PIK3CA. Conclusions This analysis demonstrates that routine clinical testing for gene fusions identifies a diverse repertoire of potential therapeutic targets in adult patients with glioma and can offer rational therapeutic options for patients with recurrent disease.
Collapse
Affiliation(s)
- Shawn Kothari
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna C Dusenbery
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abigail Doucette
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominique Ballinger
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arati Desai
- Electronic Phenotyping Core, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Bagley
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
42
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Haas BJ, Dobin A, Ghandi M, Van Arsdale A, Tickle T, Robinson JT, Gillani R, Kasif S, Regev A. Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector. CELL REPORTS METHODS 2023; 3:100467. [PMID: 37323575 PMCID: PMC10261907 DOI: 10.1016/j.crmeth.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.
Collapse
Affiliation(s)
- Brian J. Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | | | - Anne Van Arsdale
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothy Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James T. Robinson
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Kasif
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
44
|
Feng X, Zhu F, Dai L, Liu X, Shao L, Hao L, Cang S, Cheng J. Caspase-3 in glioma indicates an unfavorable prognosis by involving surrounding angiogenesis and tumor cell repopulation. J Neurooncol 2023:10.1007/s11060-023-04339-x. [PMID: 37195411 DOI: 10.1007/s11060-023-04339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
AIM Effective biomarkers for estimating glioma prognosis are deficient. Canonically, caspase-3 acts as an "apoptosis executioner". However, its prognostic role in glioma and mechanistic effects on prognosis remain unclear. METHODS With glioma tissue microarrays, the prognostic roles of cleaved caspase-3 and its association with angiogenesis were explored. Next, by analyzing the mRNA microarray data from the CGGA, the prognostic role of CASP3 expression and correlations between CASP3 and markers of glioma angiogenesis and proliferation were investigated. To biologically interpret the prognostic role of caspase-3 in glioma, the influence of caspase-3 on surrounding angiogenesis and glioma cell repopulation was investigated with an in vitro cell co-culture model, which comprises irradiated U87 cells and un-irradiated firefly luciferase (Fluc)-labeled HUVEC (HUVEC-Fluc) or U87 (U87-Fluc) cells. The over-expressed dominant-negative caspase-3 was used to suppress normal caspase-3 activity. RESULTS High levels of cleaved caspase-3 expression were associated with poor survival outcomes in glioma patients. Higher microvessel density was observed in patients with high levels of cleaved caspase-3 expression. By mining the microarray data in CGGA, it was revealed that higher CASP3 expression was found in glioma patients with lower Karnofsky Performance score, higher WHO grade, malignant histological subtype, wild-type IDH. Higher CASP3 expression indicated a worse survival rate in glioma patients. Patients with high CASP3 expression and negative IDH mutation showed the worst survival rate. Positive correlations were found between CASP3 and markers of tumor angiogenesis and proliferation. Subsequent data based on an in vitro cell co-culture model revealed that caspase-3 in irradiated glioma cells mediated pro-angiogenic and repopulation-promoting effects via regulating COX-2 signaling. With glioma tissue microarrays, high levels of COX-2 expression showed inferior survival outcomes in glioma patients. Glioma patients with high levels of cleaved caspase-3 and COX-2 expression showed the worst survival outcomes. CONCLUSION This study innovatively identified an unfavorable prognostic role of caspase-3 in glioma. The pro-angiogenic and repopulation-prompting effects of caspase-3/COX-2 signaling may explain its unfavorable prognostic role and offer novel insights into therapy sensitization and curative effect prediction of glioma.
Collapse
Affiliation(s)
- Xiao Feng
- Cancer Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Jinshui District, 7 Weiwu Road, Zhengzhou, Henan, 450003, People's Republic of China
| | - Feng Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
- School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lihua Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Xiaoying Liu
- Translational Research Institute, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Liyang Shao
- Department of Ultrasound, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Liuwei Hao
- Department of Physical Examination and Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Shundong Cang
- Cancer Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Jinshui District, 7 Weiwu Road, Zhengzhou, Henan, 450003, People's Republic of China.
| | - Jin Cheng
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
45
|
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, Bainbridge MN. The genomic landscape of familial glioma. SCIENCE ADVANCES 2023; 9:eade2675. [PMID: 37115922 PMCID: PMC10146888 DOI: 10.1126/sciadv.ade2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Armstrong
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Terence C. Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Boerwinkle
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Melissa L. Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - The Gliogene Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Genomics England Research Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
46
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
47
|
Qiu W, Xiao Z, Yang Y, Jiang L, Song S, Qi X, Chen Y, Yang H, Liu J, Chu L. USP10 deubiquitinates RUNX1 and promotes proneural-to-mesenchymal transition in glioblastoma. Cell Death Dis 2023; 14:207. [PMID: 36949071 PMCID: PMC10033651 DOI: 10.1038/s41419-023-05734-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The mesenchymal (MES) subtype of glioblastoma (GBM) is a highly aggressive, malignant and proliferative cancer that is resistant to chemotherapy. Runt-related transcription factor 1 (RUNX1) was shown to support MES GBM, however, its underlying mechanisms are unclear. Here, we identified USP10 as a deubiquitinating enzyme that regulates RUNX1 stabilization and is mainly expressed in MES GBM. Overexpression of USP10 upregulated RUNX1 and induced proneural-to-mesenchymal transition (PMT), thus maintaining MES properties in GBM. Conversely, USP10 knockdown inhibited RUNX1 and resulted in the loss of MES properties. USP10 was shown to interact with RUNX1, with RUNX1 being stabilized upon deubiquitylation. Moreover, we found that USP10 inhibitor Spautin-1 induced RUNX1 degradation and inhibited MES properties in vitro and in vivo. Furthermore, USP10 was strongly correlated with RUNX1 expression in samples of different subtypes of human GBM and had prognostic value for GBM patients. We identified USP10 as a key deubiquitinase for RUNX1 protein stabilization. USP10 maintains MES properties of GBM, and promotes PMT of GBM cells. Our study indicates that the USP10/RUNX1 axis may be a potential target for novel GBM treatments.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
48
|
Lv R, Wang X, Sun Y, Qin Q, Liu N, Wu T, Sun Y, Yin W, Zhao D, Cheng M. Design, synthesis, and biological evaluation of aminopyridine derivatives as novel tropomyosin receptor kinase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200438. [PMID: 36398500 DOI: 10.1002/ardp.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Tropomyosin receptor kinase (TRK) is a successful target for the treatment of various cancers caused by NTRK gene fusions. Herein, based on a rational drug design strategy, we designed and synthesized 35 aminopyrimidine derivatives that were shown to be TRKA inhibitors in the enzyme assay, among which compounds C3, C4, and C6 showed potent inhibitory activities against TRKA with IC50 values of 6.5, 5.0, and 7.0 nM, respectively. In vitro antiproliferative activity study showed that compound C3 significantly inhibited the proliferation of KM-12 cells but had weak inhibitory effect on MCF-7 cells and HUVEC cells. The preliminary druggability evaluation showed that compound C3 exhibited favorable liver microsomal and plasma stabilities and had weak or no inhibitory activity against cytochrome P450 isoforms at 10 µM. Compounds C3, C4, and C6 were also selected for ADME (absorption, distribution, metabolism, and elimination) properties prediction and molecular docking studies. Inhibition experiments showed that compound C3 was not selective for TRK subtypes. All results indicated that compound C3 was a useful candidate for the development of TRK inhibitors.
Collapse
Affiliation(s)
- Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
49
|
Ko A, Hasanain M, Oh YT, D'Angelo F, Sommer D, Frangaj B, Tran S, Bielle F, Pollo B, Paterra R, Mokhtari K, Soni RK, Peyre M, Eoli M, Papi L, Kalamarides M, Sanson M, Iavarone A, Lasorella A. LZTR1 Mutation Mediates Oncogenesis through Stabilization of EGFR and AXL. Cancer Discov 2023; 13:702-723. [PMID: 36445254 DOI: 10.1158/2159-8290.cd-22-0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Mohammad Hasanain
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Suzanne Tran
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Bianca Pollo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karima Mokhtari
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
| | - Rajesh Kumar Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthieu Peyre
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marica Eoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Michel Kalamarides
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
- Onconeurotek Tumor Bank, Brain and Spinal Cord Institute ICM, 75013 Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
50
|
Design, synthesis of novel benzimidazole derivatives as ENL inhibitors suppressing leukemia cells viability via downregulating the expression of MYC. Eur J Med Chem 2023; 248:115093. [PMID: 36645983 DOI: 10.1016/j.ejmech.2023.115093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Eleven-Nineteen-Leukemia Protein (ENL) containing YEATS domain, a potential drug target, has emerged as a reader of lysine acetylation. SGC-iMLLT bearing with benzimidazole scaffold was identified as an effective ENL inhibitor, but with weak activity against mixed-lineage leukemia (MLL)-rearranged cells proliferation. In this study, a series of compounds were designed and synthesized by structural optimization on SGC-iMLLT. All the compounds have been evaluated for their ENL inhibitory activities. The results showed that compounds 13, 23 and 28 are the most potential ones with the IC50 values of 14.5 ± 3.0 nM, 10.7 ± 5.3 nM, and 15.4 ± 2.2 nM, respectively, similar with that of SGC-iMLLT. They could interact with ENL protein and strengthen its thermal stability in vitro. Among them, compound 28 with methyl phenanthridinone moiety replacement of indazole in SGC-iMLLT, exhibited significantly inhibitory activities towards MV4-11 and MOLM-13 cell lines with IC50 values of 4.8 μM and 8.3 μM, respectively, exhibiting ∼7 folds and ∼9 folds more potent inhibition of cell growth than SGC-iMLLT. It could also increase the ENL thermal stability while SGC-iMLLT had no obvious effect on leukemia cells. Moreover, compound 28 could downregulate the expression of target gene MYC either alone or in combination with JQ-1 in cells, which was more effective than SGC-iMLLT. Besides, in vivo pharmacokinetic studies showed that the PK properties for compound 28 was much improved over that of SGC-iMLLT. These observations suggested compound 28 was a potential ligand for ENL-related MLL chemotherapy.
Collapse
|