1
|
Schneider C, Spaink H, Alexe G, Dharia NV, Meyer A, Merickel LA, Khalid D, Scheich S, Häupl B, Staudt LM, Oellerich T, Stegmaier K. Targeting the Sodium-Potassium Pump as a Therapeutic Strategy in Acute Myeloid Leukemia. Cancer Res 2024; 84:3354-3370. [PMID: 39024560 PMCID: PMC11479832 DOI: 10.1158/0008-5472.can-23-3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Tissue-specific differences in the expression of paralog genes, which are not essential in most cell types due to the buffering effect of the partner pair, can make for highly selective gene dependencies. To identify selective paralogous targets for acute myeloid leukemia (AML), we integrated the Cancer Dependency Map with numerous datasets characterizing protein-protein interactions, paralog relationships, and gene expression in cancer models. In this study, we identified ATP1B3 as a context-specific, paralog-related dependency in AML. ATP1B3, the β-subunit of the sodium-potassium pump (Na/K-ATP pump), interacts with the α-subunit ATP1A1 to form an essential complex for maintaining cellular homeostasis and membrane potential in all eukaryotic cells. When ATP1B3's paralog ATP1B1 is poorly expressed, elimination of ATP1B3 leads to the destabilization of the Na/K-ATP pump. ATP1B1 expression is regulated through epigenetic silencing in hematopoietic lineage cells through histone and DNA methylation in the promoter region. Loss of ATP1B3 in AML cells induced cell death in vitro and reduced leukemia burden in vivo, which could be rescued by stabilizing ATP1A1 through overexpression of ATP1B1. Thus, ATP1B3 is a potential therapeutic target for AML and other hematologic malignancies with low expression of ATP1B1. Significance: ATP1B3 is a lethal selective paralog dependency in acute myeloid leukemia that can be eliminated to destabilize the sodium-potassium pump, inducing cell death.
Collapse
Affiliation(s)
- Constanze Schneider
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Hermes Spaink
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Ashleigh Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lucy A. Merickel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2024:10.1038/s41585-024-00914-7. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2024. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
4
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
5
|
Pallotta MM, Di Nardo M, Musio A. Synthetic Lethality between Cohesin and WNT Signaling Pathways in Diverse Cancer Contexts. Cells 2024; 13:608. [PMID: 38607047 PMCID: PMC11011321 DOI: 10.3390/cells13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of β-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.
Collapse
Affiliation(s)
| | | | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), 56124 Pisa, Italy; (M.M.P.); (M.D.N.)
| |
Collapse
|
6
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Di Nardo M, Astigiano S, Baldari S, Pallotta MM, Porta G, Pigozzi S, Antonini A, Emionite L, Frattini A, Valli R, Toietta G, Soddu S, Musio A. The synergism of SMC1A cohesin gene silencing and bevacizumab against colorectal cancer. J Exp Clin Cancer Res 2024; 43:49. [PMID: 38365745 PMCID: PMC10870497 DOI: 10.1186/s13046-024-02976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND SMC1A is a subunit of the cohesin complex that participates in many DNA- and chromosome-related biological processes. Previous studies have established that SMC1A is involved in cancer development and in particular, is overexpressed in chromosomally unstable human colorectal cancer (CRC). This study aimed to investigate whether SMC1A could serve as a therapeutic target for CRC. METHODS At first, we studied the effects of either SMC1A overexpression or knockdown in vitro. Next, the outcome of SMC1A knocking down (alone or in combination with bevacizumab, a monoclonal antibody against vascular endothelial growth factor) was analyzed in vivo. RESULTS We found that SMC1A knockdown affects cell proliferation and reduces the ability to grow in anchorage-independent manner. Next, we demonstrated that the silencing of SMC1A and the combo treatment were effective in increasing overall survival in a xenograft mouse model. Functional analyses indicated that both treatments lead to atypical mitotic figures and gene expression dysregulation. Differentially expressed genes were implicated in several pathways including gene transcription regulation, cellular proliferation, and other transformation-associated processes. CONCLUSIONS These results indicate that SMC1A silencing, in combination with bevacizumab, can represent a promising therapeutic strategy for human CRC.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy
| | | | - Silvia Baldari
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Maria Michela Pallotta
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy
| | - Giovanni Porta
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
| | - Simona Pigozzi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Annalisa Antonini
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | | | - Annalisa Frattini
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Roberto Valli
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
| | - Gabriele Toietta
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Silvia Soddu
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Antonio Musio
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy.
| |
Collapse
|
8
|
Zhu S, Zhao H. Sexual dimorphism in bladder cancer: a review of etiology, biology, diagnosis, and outcomes. Front Pharmacol 2024; 14:1326627. [PMID: 38283839 PMCID: PMC10811034 DOI: 10.3389/fphar.2023.1326627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Bladder carcinoma represents a prevalent malignancy, wherein the influence of sex extends across its incidence, biological attributes, and clinical outcomes. This scholarly exposition meticulously examines pertinent investigations, elucidating the nuanced impact of sex on bladder cancer, and posits cogent avenues for future research and intervention modalities. In the initial discourse, an exhaustive scrutiny is undertaken of the etiological underpinnings of bladder cancer, encompassing variables such as tobacco consumption, occupational exposures, and genetic aberrations. Subsequently, a comprehensive dissection unfolds, delving into the intricate biological disparities inherent in sex vis-à-vis the initiation and progression of bladder cancer. This analytical framework embraces multifaceted considerations, spanning sex hormones, sex chromosomal dynamics, metabolic enzymatic cascades, and the intricate interplay with the microbiome. Lastly, a synthesized exposition encapsulates the ramifications of gender differentials on the diagnostic and prognostic landscapes of bladder cancer, underscoring the imperative for intensified investigative endeavors directed towards elucidating gender-specific variances and the formulation of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Urology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Huasheng Zhao
- Department of Urology, ShaoYang Hosptial, Affiliated to University of South China, ShaoYang, China
| |
Collapse
|
9
|
Bhattacharya SA, Dias E, Nieto-Aliseda A, Buschbeck M. The consequences of cohesin mutations in myeloid malignancies. Front Mol Biosci 2023; 10:1319804. [PMID: 38033389 PMCID: PMC10684907 DOI: 10.3389/fmolb.2023.1319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Recurrent somatic mutations in the genes encoding the chromatin-regulatory cohesin complex and its modulators occur in a wide range of human malignancies including a high frequency in myeloid neoplasms. The cohesin complex has a ring-like structure which can enclose two strands of DNA. A first function for the complex was described in sister chromatid cohesion during metaphase avoiding defects in chromosome segregation. Later studies identified additional functions of the cohesin complex functions in DNA replication, DNA damage response, 3D genome organisation, and transcriptional regulation through chromatin looping. In this review, we will focus on STAG2 which is the most frequently mutated cohesin subunit in myeloid malignancies. STAG2 loss of function mutations are not associated with chromosomal aneuploidies or genomic instability. We hypothesize that this points to changes in gene expression as disease-promoting mechanism and summarize the current state of knowledge on affected genes and pathways. Finally, we discuss potential strategies for targeting cohesion-deficient disease cells.
Collapse
Affiliation(s)
- Shubhra Ashish Bhattacharya
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eve Dias
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Nieto-Aliseda
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
10
|
Porter H, Li Y, Neguembor MV, Beltran M, Varsally W, Martin L, Cornejo MT, Pezić D, Bhamra A, Surinova S, Jenner RG, Cosma MP, Hadjur S. Cohesin-independent STAG proteins interact with RNA and R-loops and promote complex loading. eLife 2023; 12:e79386. [PMID: 37010886 PMCID: PMC10238091 DOI: 10.7554/elife.79386] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.
Collapse
Affiliation(s)
- Hayley Porter
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Yang Li
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Beltran
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Wazeer Varsally
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Laura Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Tavares Cornejo
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Dubravka Pezić
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, Cancer Institute, University College London, London, United Kingdom
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, Cancer Institute, University College London, London, United Kingdom
| | - Richard G Jenner
- Regulatory Genomics Group, Cancer Institute, University College London, London, United Kingdom
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Eckardt JN, Stasik S, Röllig C, Sauer T, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Herbst R, Hänel M, Hanoun M, Kaiser U, Kaufmann M, Rácil Z, Mayer J, Cerqueira T, Kroschinsky F, Berdel WE, Serve H, Müller-Tidow C, Platzbecker U, Baldus CD, Schetelig J, Siepmann T, Bornhäuser M, Middeke JM, Thiede C. Alterations of cohesin complex genes in acute myeloid leukemia: differential co-mutations, clinical presentation and impact on outcome. Blood Cancer J 2023; 13:18. [PMID: 36693840 PMCID: PMC9873811 DOI: 10.1038/s41408-023-00790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Functional perturbations of the cohesin complex with subsequent changes in chromatin structure and replication are reported in a multitude of cancers including acute myeloid leukemia (AML). Mutations of its STAG2 subunit may predict unfavorable risk as recognized by the 2022 European Leukemia Net recommendations, but the underlying evidence is limited by small sample sizes and conflicting observations regarding clinical outcomes, as well as scarce information on other cohesion complex subunits. We retrospectively analyzed data from a multi-center cohort of 1615 intensively treated AML patients and identified distinct co-mutational patters for mutations of STAG2, which were associated with normal karyotypes (NK) and concomitant mutations in IDH2, RUNX1, BCOR, ASXL1, and SRSF2. Mutated RAD21 was associated with NK, mutated EZH2, KRAS, CBL, and NPM1. Patients harboring mutated STAG2 were older and presented with decreased white blood cell, bone marrow and peripheral blood blast counts. Overall, neither mutated STAG2, RAD21, SMC1A nor SMC3 displayed any significant, independent effect on clinical outcomes defined as complete remission, event-free, relapse-free or overall survival. However, we found almost complete mutual exclusivity of genetic alterations of individual cohesin subunits. This mutual exclusivity may be the basis for therapeutic strategies via synthetic lethality in cohesin mutated AML.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany. .,Division of Health Care Sciences, Dresden International University, Dresden, Germany.
| | - Sebastian Stasik
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tim Sauer
- grid.5253.10000 0001 0328 4908German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Scholl
- grid.275559.90000 0000 8517 6224Department of Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Andreas Hochhaus
- grid.275559.90000 0000 8517 6224Department of Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Martina Crysandt
- grid.412301.50000 0000 8653 1507Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim H. Brümmendorf
- grid.412301.50000 0000 8653 1507Department of Hematology, Oncology, Hemostaseology, and Cell Therapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralph Naumann
- Medical Clinic III, St. Marien-Hospital Siegen, Siegen, Germany
| | - Björn Steffen
- grid.411088.40000 0004 0578 8220Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Volker Kunzmann
- grid.411760.50000 0001 1378 7891Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- grid.411760.50000 0001 1378 7891Medical Clinic and Policlinic II, University Hospital Würzburg, Würzburg, Germany
| | - Markus Schaich
- grid.459932.0Department of Hematology, Oncology and Palliative Care, Rems-Murr-Hospital Winnenden, Winnenden, Germany
| | - Andreas Burchert
- grid.10253.350000 0004 1936 9756Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Andreas Neubauer
- grid.10253.350000 0004 1936 9756Department of Hematology, Oncology and Immunology, Philipps-University-Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- grid.511981.5Department of Internal Medicine V, Paracelsus Medizinische Privatuniversität and University Hospital Nurnberg, Nurnberg, Germany
| | - Christoph Schliemann
- grid.16149.3b0000 0004 0551 4246Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Stefan W. Krause
- grid.411668.c0000 0000 9935 6525Medical Clinic V, University Hospital Erlangen, Erlangen, Germany
| | - Regina Herbst
- grid.459629.50000 0004 0389 4214Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Mathias Hänel
- grid.459629.50000 0004 0389 4214Medical Clinic III, Chemnitz Hospital AG, Chemnitz, Germany
| | - Maher Hanoun
- grid.410718.b0000 0001 0262 7331Department of Hematology, University Hospital Essen, Essen, Germany
| | - Ulrich Kaiser
- grid.460019.aMedical Clinic II, St. Bernward Hospital, Hildesheim, Germany
| | - Martin Kaufmann
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Care, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Zdenek Rácil
- grid.412554.30000 0004 0609 2751Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Jiri Mayer
- grid.412554.30000 0004 0609 2751Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Tiago Cerqueira
- grid.440925.e0000 0000 9874 1261Division of Health Care Sciences, Dresden International University, Dresden, Germany
| | - Frank Kroschinsky
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Wolfgang E. Berdel
- grid.16149.3b0000 0004 0551 4246Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Hubert Serve
- grid.411088.40000 0004 0578 8220Medical Clinic II, University Hospital Frankfurt, Frankfurt (Main), Germany
| | - Carsten Müller-Tidow
- grid.5253.10000 0001 0328 4908German Cancer Research Center (DKFZ) and Medical Clinic V, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Platzbecker
- grid.411339.d0000 0000 8517 9062Medical Clinic I Hematology and Celltherapy, University Hospital Leipzig, Leipzig, Germany
| | - Claudia D. Baldus
- grid.412468.d0000 0004 0646 2097Department of Internal Medicine, University Hospital Kiel, Kiel, Germany
| | - Johannes Schetelig
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany ,DKMS Clinical Trials Unit, Dresden, Germany
| | - Timo Siepmann
- grid.440925.e0000 0000 9874 1261Division of Health Care Sciences, Dresden International University, Dresden, Germany ,grid.4488.00000 0001 2111 7257Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Consortium for Translational Cancer Research DKTK, Heidelberg, Germany ,National Center for Tumor Disease (NCT), Dresden, Germany
| | - Jan Moritz Middeke
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- grid.412282.f0000 0001 1091 2917Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
12
|
Park Y, Lelo A, Harris B, Berry DL, Chaldekas K, Kim JS, Waldman T. Identification of STAG2-Mutant Bladder Cancers by Immunohistochemistry. Methods Mol Biol 2023; 2684:145-151. [PMID: 37410232 DOI: 10.1007/978-1-0716-3291-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bladder cancer is the fifth most common cancer in the United States. Most bladder cancers are early-stage lesions confined to the mucosa or submucosa and are therefore classified as non-muscle-invasive bladder cancer (NMIBC). A minority of tumors are diagnosed after they have invaded the underlying detrusor muscle and are classified as muscle-invasive bladder cancer (MIBC). Mutational inactivation of the STAG2 tumor suppressor gene is common in bladder cancer, and we and others have recently demonstrated that STAG2 mutation status can be used as an independent prognostic biomarker to predict whether NMIBC will recur and/or progress to MIBC. Here we describe an immunohistochemistry-based assay for identifying the STAG2 mutational status of bladder tumors.
Collapse
Affiliation(s)
- Youngrok Park
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Alana Lelo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Brent Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Deborah L Berry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
13
|
Papadopoulou K, Koliou GA, Tsimiliotis D, Kotoula V, Foukas P, Goussia A, Tsiatas M, Visvikis A, Chatzopoulos K, Nifora M, Charchanti A, Koumarianou A, Christodoulou C, Pectasides D, Psyrri A, Fostira F, Fountzilas G, Samantas E. Investigation of prognostic biomarkers in patients with urothelial carcinoma treated with platinum-based regimens. Urol Oncol 2022; 40:538.e15-538.e24. [PMID: 36041976 DOI: 10.1016/j.urolonc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a heterogeneous malignancy with dismal outcome. PATIENTS AND METHODS Mutations in genes, altered or linked to platinum sensitivity in BC, were examined in 66 patients' tumors along with tumor infiltrating lymphocytes (TILs) density and MMR, PD-L1 and CD8 protein expression, as well as basal and luminal subtypes, defined by protein expression of markers, including CK5/6 and GATA3 or CK20, respectively. RESULTS 41 tumors harbored mutations, mainly in TP53 (38%), ARID1A (17%) and the DNA damage response and repair (DDR) genes ERCC2 (17%) and BRCA2 (15%). Mutations in other DDR relevant genes were also present. Age showed unfavorable prognosis for overall survival (HR=1.07, P = 0.026); no benefit was seen for patients with TP53, ARID1A, ERCC2 or BRCA2 mutations or mutations in 1 or more DDR genes. PD-L1 status positively correlated with stromal (rho=0.46, P < 0.001) and intratumoral (rho=0.53, P < 0.001) CD8 expression or TILs (rho=0.29, P = 0.018); none associated with overall survival (OS). A statistically significant difference was observed between PD-L1 status and immunohistochemistry (IHC)‑based subtypes, with tumors classified as luminal (GATA3+ and/or CK20+ and CK5/6-) showing lower PD-L1 expression relative to basal (CK5/6+ and GATA3- and/or CK20-) (median value 0 vs. 2.5, P = 0.029). Concerning OS, no statistically significant difference was seen among patients with basal or luminal tumors. CONCLUSION No association was seen herein between DDR mutations, TILs, PD-L1, CD8 expression or IHC-based subtypes and patient survival; these observations warrant validation within a larger cohort.
Collapse
Affiliation(s)
- Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marinos Tsiatas
- Department of Oncology, Athens Medical Center, Marousi, Greece
| | - Anastasios Visvikis
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Kyriakos Chatzopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Martha Nifora
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | | | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Section of Medical Oncology, Athens, Greece
| | - Amanda Psyrri
- Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, InRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| | - Epaminontas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| |
Collapse
|
14
|
Athans SR, Krishnan N, Ramakrishnan S, Cortes Gomez E, Lage-Vickers S, Rak M, Kazmierczak ZI, Ohm JE, Attwood K, Wang J, Woloszynska A. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1129-1143. [PMID: 36275363 PMCID: PMC9583756 DOI: 10.1158/2767-9764.crc-22-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.
Collapse
Affiliation(s)
- Sarah R. Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Zara I. Kazmierczak
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Author: Anna Woloszynska, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203. Phone: 716-845-8495; E-mail:
| |
Collapse
|
15
|
Lee N, Canagasingham A, Bajaj M, Shanmugasundaram R, Hutton A, Bucci J, Graham P, Thompson J, Ni J. Urine exosomes as biomarkers in bladder cancer diagnosis and prognosis: From functional roles to clinical significance. Front Oncol 2022; 12:1019391. [PMID: 36203422 PMCID: PMC9530625 DOI: 10.3389/fonc.2022.1019391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer is one of the top ten most common cancers and top ten causes of cancer death globally. 5-year survival rates have decreased in Australia from 66% to 55% in the past three decades. The current gold standard for diagnosis is cystoscopy. However, cystoscopies are an invasive and health-resource intensive procedure which has sub-optimal sensitivity for flat lesions such as CIS (carcinoma in situ) and low specificity for differentiating inflammation from cancer - hence requiring biopsies under anesthesia. Frequent and life-long surveillance cystoscopy is required for most patients since there are high rates of progression and local recurrence in high-risk non-muscle invasive cancer (NMIBC) as well as poor outcomes associated with delayed detection of muscle-invasive bladder cancer (MIBC). There is an unmet need for a non-invasive test to provide better discrimination and risk-stratification of bladder cancer which could aid clinicians by improving patient selection for cystoscopy; enhanced risk stratification methods may guide the frequency of surveillance cystoscopies and inform treatment choices. Exosomes, which are nano-sized extracellular vesicles containing genetic material and proteins, have been shown to have functional roles in the development and progression of bladder cancer. Exosomes have also been demonstrated to be a robust source of potential biomarkers for bladder cancer diagnosis and prognosis and may also have roles as therapeutic agents. In this review, we summarize the latest evidence of biological roles of exosomes in bladder cancer and highlight their clinical significance in bladder cancer diagnosis, surveillance and treatment.
Collapse
Affiliation(s)
- Nicholas Lee
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | | | - Mohit Bajaj
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | | | - Anthony Hutton
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
- *Correspondence: James Thompson, ; Jie Ni,
| | - Jie Ni
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- *Correspondence: James Thompson, ; Jie Ni,
| |
Collapse
|
16
|
Molecular uropathology and cancer genetics for the urologist: key findings for classification and diagnosis. Curr Opin Urol 2022; 32:451-455. [PMID: 35916009 DOI: 10.1097/mou.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW To highlight the latest changes in prostate cancer (PCa), urothelial carcinoma, upper tract urothelial carcinoma (UTUC) and renal cell carcinoma (RCC) diagnosis and the impact of genetics in this field. RECENT FINDINGS Breast cancer1/2 mutations start to play a major role in PCa treatment with regard to personalized medicine. In urothelial carcinoma an overlap between histological pathological and molecular findings exists, fibroblast growth factor receptor alteration are starting to play a major role, programmed death-ligand 1 although problematic is still important in the treatment setting. UTUC is rare, but genetically different from urothelial carcinoma. In the development of RCC, different genetic pathways such as Von Hippel-Lindau, but also tuberous sclerosis 1/2 and others play a major role in tumor development. SUMMARY Over the last years, genetics has become increasingly important role in the diagnosis and the treatment of patients with urological malignancies. The upcoming 5th edition (1) of the WHO still considers conventional surgical pathology as the diagnostic gold standard, but molecular pathology is gaining importance not only for diagnosis, but also in personalized treatment, of prostate, kidney cancer and urothelial carcinomas. Therefore, a close collaboration between surgical urology, pathology and oncology departments is mandatory. In this review, we will discuss the latest evolutions in PCa, urothelial carcinoma, upper urinary tract carcinomas and RCC s in the field of genetics in urology.
Collapse
|
17
|
Cancrini F, Michel F, Cussenot O, Alshehhi H, Comperat E, Phé V. Bladder carcinomas in patients with neurogenic bladder and urinary schistosomiasis: are they the same tumors? World J Urol 2022; 40:1949-1959. [PMID: 35091808 DOI: 10.1007/s00345-022-03941-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of our study was to evaluate and compare the expression of different immunohistochemical markers in Bladder Carcinomas (BC) in patients with Neurogenic Bladder (NB) and Urinary Schistosomiasis (US) infection. MATERIALS AND METHODS We collected tissue samples from patients with Neurogenic Bladder and Bladder Carcinoma (NBC Group) and from patients with Urinary Schistosomiasis infection and Bladder Carcinoma (SBC Group). We compared to these two groups to control samples from resection from patients with Urinary Schistosomiasis without Bladder Carcinoma (US Group); we also investigate patients' characteristics according to urothelial transitional cell carcinoma (TCC), and squamous cell carcinoma (SCC) histopathological differentiation. The expression of markers in all groups (CK7, CK14, CK20, FoxP3, GATA3, STAG2, CD3, CD8, Ki67, and P53) was analyzed using immunohistochemistry of tissue micro-array sections (TMA). RESULTS Overall, 136 patients were included in the study (n = 72 in the NBC group, n = 33 in the SBC group, and n = 31 in the US group). In the TCC subgroup, the expression of CK7, CK14, CK20, and Ki67 was significantly higher compared to US controls (p 0.002; p < 0.001; p 0.036; p < 0.001). In the SCC subgroup, the expression of CK7, CK14, and CK20 was significantly higher compared to US controls (p 0.007; p < 0.001; p 0.005). Both in TCC and SCC subgroups, no difference in the expression of any tested markers was found comparing NBC and SBC groups. In US group, a significant higher expression of STAG2 was found compared to SCC subgroup (p 0.005). CONCLUSION Based on our results, the profile of immunohistochemical biomarkers' expression in both NBC and SBC groups is similar.
Collapse
Affiliation(s)
- Fabiana Cancrini
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza Univeristà di Roma, Sant 'Andrea University Hospital, Via di Grottarossa 1035, 00189, Rome, Italy. .,Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Floriane Michel
- Department of Urology and Kidney Transplantation, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, La Conception Hospital, Marseille, France.,Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Cussenot
- Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hussa Alshehhi
- Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pathology, Tenon Hospital, AP-HP. Sorbonne University, Paris, France
| | - Eva Comperat
- Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pathology, Tenon Hospital, AP-HP. Sorbonne University, Paris, France
| | - Véronique Phé
- Sorbonne University, GRC n°5, ONCOTYPE-URO, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
18
|
Multiparametric Classification of Non-Muscle Invasive Papillary Urothelial Neoplasms: Combining Morphological, Phenotypical, and Molecular Features for Improved Risk Stratification. Int J Mol Sci 2022; 23:ijms23158133. [PMID: 35897708 PMCID: PMC9330009 DOI: 10.3390/ijms23158133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Diagnosis and grading of non-invasive papillary urothelial tumors according to the current WHO classification poses some challenges for pathologists. The diagnostic reproducibility of separating low-grade and high-grade lesions is low, which impacts their clinical management. Whereas papillary urothelial neoplasms with low malignant potential (PUN-LMP) and low-grade papillary non-invasive carcinoma (LG-PUC) are comparable and show frequent local recurrence but rarely metastasize, high-grade papillary non-invasive carcinoma (HG-PUC) has a poor prognosis. The main objective of this work is to develop a multiparametric classification to unambiguously distinguish low-grade and high-grade tumors, considering immunohistochemical stains for p53, FGFR3, CK20, MIB-1, p16, p21 and p-HH3, and pathogenic mutations in TP53, FGFR3, TP53, ERCC2, PIK3CA, PTEN and STAG2. We reviewed and analyzed the clinical and histological data of 45 patients with a consensus diagnosis of PUN-LMP (n = 8), non-invasive LG-PUC (n = 23), and HG-PUC (n = 14). The proliferation index and mitotic count assessed with MIB-1 and P-HH3 staining, respectively correlated with grading and clinical behavior. Targeted sequencing confirmed frequent FGFR3 mutations in non-invasive papillary tumors and identified mutations in TP53 as high-risk. Cluster analysis of the different immunohistochemical and molecular parameters allowed a clear separation in two different clusters: cluster 1 corresponding to PUN-LMP and LG-PUC (low MIB-1 and mitotic count/FGFR3 and STAG2 mutations) and cluster 2, HG-PUC (high MIB-1 and mitosis count/CK20 +++ expression, FGFR3 WT and TP53 mutation). Further analysis is required to validate and analyze the reproducibility of these clusters and their biological and clinical implication.
Collapse
|
19
|
Saitta C, Rebellato S, Bettini LR, Giudici G, Panini N, Erba E, Massa V, Auer F, Friedrich U, Hauer J, Biondi A, Fazio G, Cazzaniga G. Potential role of STAG1 mutations in genetic predisposition to childhood hematological malignancies. Blood Cancer J 2022; 12:88. [PMID: 35654786 PMCID: PMC9163173 DOI: 10.1038/s41408-022-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
|
20
|
Pallotta MM, Di Nardo M, Sarogni P, Krantz ID, Musio A. Disease-associated c-MYC downregulation in human disorders of transcriptional regulation. Hum Mol Genet 2022; 31:1599-1609. [PMID: 34849865 PMCID: PMC9122636 DOI: 10.1093/hmg/ddab348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Maria M Pallotta
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
21
|
Wiessner GB, Plumber SA, Xiang T, Mendelsohn CL. Development, regeneration and tumorigenesis of the urothelium. Development 2022; 149:dev198184. [PMID: 35521701 PMCID: PMC10656457 DOI: 10.1242/dev.198184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Gregory B. Wiessner
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Sakina A. Plumber
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Tina Xiang
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Cathy L. Mendelsohn
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Gordon NS, Humayun-Zakaria N, Goel A, Abbotts B, Zeegers MP, Cheng K, James ND, Arnold R, Bryan RT, Ward DG. STAG2 Protein Expression in Non–muscle-invasive Bladder Cancer: Associations with Sex, Genomic and Transcriptomic Changes, and Clinical Outcomes. EUR UROL SUPPL 2022; 38:88-95. [PMID: 35495284 PMCID: PMC9051973 DOI: 10.1016/j.euros.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in STAG2 cause complete loss of STAG2 protein in approximately one-third of non–muscle-invasive bladder cancers (NMIBCs). STAG2 protein expression is easily determined via immunohistochemistry (IHC) and published data suggest that loss of STAG2 expression is a good prognostic indicator in NMIBC. Objective To confirm the relationship between STAG2 protein expression and clinical outcomes and tumour characteristics in NMIBC. Design, setting, and participants IHC was used to determine STAG2 expression in 748 incident urothelial bladder cancers (UBCs) and recurrence-free, progression-free, and disease-specific survival were compared for patients with and without STAG2 loss. Exome and RNA sequencing were used to explore links between STAG2 loss and tumour molecular characteristics. Results and limitations STAG2 loss was observed in 19% of UBC patients and was 1.6-fold more common among female patients. Loss was frequent among grade 1 pTa tumours (40%), decreasing with stage and grade to only 5% among grade 3 pT2+ tumours. Loss was associated with fewer copy-number changes and less aggressive expression subtypes. In UBC, STAG2 loss was a highly significant prognostic indicator of better disease-free survival but was not independent of stage and grade. STAG2 loss was not a statistically significant predictor of NMIBC recurrence. STAG2 loss was significantly associated with better progression-free survival in NMIBC and appeared to be more prognostic for males than for females. Conclusions A simple IHC-based STAG2 test shows promise for identifying NMIBC patients at lower risk of progression to MIBC for whom more conservative treatments may be suitable. Patient summary A protein called STAG2 is frequently lost in early bladder cancers, most often in less aggressive tumours. STAG2 loss is easily measured and could be used as a biomarker to help guide treatment decisions.
Collapse
|
23
|
Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. J Exp Clin Cancer Res 2022; 41:96. [PMID: 35287703 PMCID: PMC8919599 DOI: 10.1186/s13046-022-02321-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cohesin complex controls faithful chromosome segregation by pairing sister chromatids after DNA replication until mitosis. In addition, it is crucial for hierarchal three-dimensional organization of the genome, transcription regulation and maintaining DNA integrity. The core complex subunits SMC1A, SMC3, STAG1/2, and RAD21 as well as its modulators, have been found to be recurrently mutated in human cancers. The mechanisms by which cohesin mutations trigger cancer development and disease progression are still poorly understood. Since cohesin is involved in a range of chromosome-related processes, the outcome of cohesin mutations in cancer is complex. Herein, we discuss recent discoveries regarding cohesin that provide new insight into its role in tumorigenesis.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Maria M. Pallotta
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| |
Collapse
|
24
|
Michel F, Cancrini F, Cancel-Tassin G, Gamé X, Huyghe E, Rock A, Léon G, Uzan A, Desfemmes FR, Peyronnet B, Fallot J, Léon P, Rolland E, Perrouin-Verbe MA, Wodey J, Capon G, Karsenty G, Rouprêt M, Cussenot O, Alshehhi H, Comperat E, Phé V. A study of the immunohistochemical profile of bladder cancer in neuro-urological patients by the French Association of Urology. World J Urol 2022; 40:1939-1947. [PMID: 35138436 DOI: 10.1007/s00345-022-03942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To establish whether the expression of markers of cell differentiation (CK7, CK14, CK20, GATA3), apoptosis (p53), proliferation (Ki67, STAG2) and peri-tumoural lymphocytes (CD3, CD8), provides specific information about urothelial carcinogenesis in neuro-urological patients with bladder cancer (NBC). METHODS Tissue samples from NBC were retrieved from 15 centres in France and compared to control samples from non neuro-urological patients with bladder cancer (NNBC) and from neuro-urological patients without bladder cancer (NB). The expression of CK7, CK14, CK20, GATA3, p53, Ki67, STAG2, CD3 and CD8 markers was analysed using immunohistochemistry of tissue microarray sections. RESULTS Overall, tissue samples from 124 patients were included in the study (n = 72 NBC, n = 26 NNBC and n = 26 NB). Muscle invasive bladder cancer (MIBC) was found in 52 NBC patients (72.2%) and squamous cell differentiation in 9 (12.5%). In NBC samples, the expression of CK20 and GATA3 was significantly more frequent in NMIBC compared to MIBC (p = 0.015 and p = 0.004, respectively). CK20 and GATA3 were significantly more expressed in NBC compared to NNBC (p < 0.001 and p = 0.010, respectively). The expression of CK14, Ki67, CD3 and CD8 was significantly more frequent in NBC than in NNBC samples (p = 0.005, p < 0.001, p < 0.001 and p < 0.001, respectively). The expression of CD3 and CD8 was similar in NBC and NB samples. CONCLUSION In NBC, markers of basal differentiation, proliferation and peri-tumoural lymphocytes were significantly more expressed compared to NNBC controls. These results suggest the aggressiveness of NBC and the role of chronic inflammation in the carcinogenesis of bladder cancer in neuro-urological patients.
Collapse
Affiliation(s)
- Floriane Michel
- Department of Urology and Kidney Transplantation, Aix-Marseille University, La Conception Hospital, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13005, Marseille, France. .,Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Fabiana Cancrini
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Géraldine Cancel-Tassin
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Xavier Gamé
- Department of Urology, CHU Rangueil, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Eric Huyghe
- Department of Urology, CHU Rangueil, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Aurélien Rock
- Department of Urology, Groupe Hospitalier de L'Institut Catholique Lillois, Lille, France
| | - Grégoire Léon
- Department of Urology and Transplantation, CHU de Caen, Caen, France
| | - Audrey Uzan
- Department of Urology, Sorbonne University, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Jérémy Fallot
- Department of Urology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Priscilla Léon
- Department of Urology, Clinique Urologie Royan, Royan, France
| | | | | | - Jacques Wodey
- Department of Urology, Clinique Rhône Durance, Avignon, France
| | - Grégoire Capon
- Department of Urology, University of Bordeaux, Bordeaux, France
| | - Gilles Karsenty
- Department of Urology and Kidney Transplantation, Aix-Marseille University, La Conception Hospital, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13005, Marseille, France
| | - Morgan Rouprêt
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Urology, Sorbonne University, Pitié-Salpêtrière Academic Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Cussenot
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Urology, Sorbonne University, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hussa Alshehhi
- Department of Pathology, Sorbonne University, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eva Comperat
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pathology, Sorbonne University, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Phé
- Sorbonne University, GRC5 Predictive Onco-urology, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Urology, Sorbonne University, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
25
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
26
|
Richart L, Lapi E, Pancaldi V, Cuenca-Ardura M, Pau ECDS, Madrid-Mencía M, Neyret-Kahn H, Radvanyi F, Rodríguez JA, Cuartero Y, Serra F, Le Dily F, Valencia A, Marti-Renom MA, Real FX. STAG2 loss-of-function affects short-range genomic contacts and modulates the basal-luminal transcriptional program of bladder cancer cells. Nucleic Acids Res 2021; 49:11005-11021. [PMID: 34648034 PMCID: PMC8565347 DOI: 10.1093/nar/gkab864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.
Collapse
Affiliation(s)
- Laia Richart
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.,Center for Biomedical Research Network (CIBERONC), 28029 Madrid, Spain
| | - Vera Pancaldi
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, ERL5294 CNRS, 31037 Toulouse, France.,University Paul Sabatier III, Toulouse, France
| | - Mirabai Cuenca-Ardura
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | | - Miguel Madrid-Mencía
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, ERL5294 CNRS, 31037 Toulouse, France.,University Paul Sabatier III, Toulouse, France
| | - Hélène Neyret-Kahn
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France.,Sorbonne Université, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France.,Sorbonne Université, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - François Serra
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - François Le Dily
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.,Center for Biomedical Research Network (CIBERONC), 28029 Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
27
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
28
|
Koutros S, Rao N, Moore LE, Nickerson ML, Lee D, Zhu B, Pardo LA, Baris D, Schwenn M, Johnson A, Jones K, Garcia-Closas M, Prokunina-Olsson L, Silverman DT, Rothman N, Dean M. Targeted Deep Sequencing of Bladder Tumors Reveals Novel Associations between Cancer Gene Mutations and Mutational Signatures with Major Risk Factors. Clin Cancer Res 2021; 27:3725-3733. [PMID: 33849962 PMCID: PMC8254772 DOI: 10.1158/1078-0432.ccr-20-4419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Exome- and whole-genome sequencing of muscle-invasive bladder cancer has revealed important insights into the molecular landscape; however, there are few studies of non-muscle-invasive bladder cancer with detailed risk factor information. EXPERIMENTAL DESIGN We examined the relationship between smoking and other bladder cancer risk factors and somatic mutations and mutational signatures in bladder tumors. Targeted sequencing of frequently mutated genes in bladder cancer was conducted in 322 formalin-fixed paraffin-embedded bladder tumors from a population-based case-control study. Logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI), evaluating mutations and risk factors. We used SignatureEstimation to extract four known single base substitution mutational signatures and Poisson regression to calculate risk ratios (RR) and 95% CIs, evaluating signatures and risk factors. RESULTS Non-silent KDM6A mutations were more common in females than males (OR = 1.83; 95% CI, 1.05-3.19). There was striking heterogeneity in the relationship between smoking status and established single base substitution signatures: current smoking status was associated with greater ERCC2-Signature mutations compared with former (P = 0.024) and never smoking (RR = 1.40; 95% CI, 1.09-1.80; P = 0.008), former smoking was associated with greater APOBEC-Signature13 mutations (P = 0.05), and never smoking was associated with greater APOBEC-Signature2 mutations (RR = 1.54; 95% CI, 1.17-2.01; P = 0.002). There was evidence that smoking duration (the component most strongly associated with bladder cancer risk) was associated with ERCC2-Signature mutations and APOBEC-Signature13 mutations among current (P trend = 0.005) and former smokers (P = 0.0004), respectively. CONCLUSIONS These data quantify the contribution of bladder cancer risk factors to mutational burden and suggest different signature enrichments among never, former, and current smokers.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| | - Nina Rao
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Lee E Moore
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Michael L Nickerson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Donghyuk Lee
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Bin Zhu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Larissa A Pardo
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | | | | | - Kristine Jones
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland
| | - Montserrat Garcia-Closas
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland
| |
Collapse
|
29
|
Cai H, Chew SK, Li C, Tsai MK, Andrejka L, Murray CW, Hughes NW, Shuldiner EG, Ashkin EL, Tang R, Hung KL, Chen LC, Lee SYC, Yousefi M, Lin WY, Kunder CA, Cong L, McFarland CD, Petrov DA, Swanton C, Winslow MM. A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS-Driven Lung Cancer. Cancer Discov 2021; 11:1754-1773. [PMID: 33608386 PMCID: PMC8292166 DOI: 10.1158/2159-8290.cd-20-1325] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS-driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
- Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, California
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | | | - Emily L Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - King L Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Leo C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shi Ya C Lee
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Wen-Yang Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Le Cong
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | | | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, California.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
30
|
Taber A, Park Y, Lelo A, Prip F, Xiao J, Berry DL, Chaldekas K, Jensen JB, Philips G, Kim JS, Harris BT, Dyrskjøt L, Waldman T. STAG2 as a prognostic biomarker in low-grade non-muscle invasive bladder cancer. Urol Oncol 2021; 39:438.e1-438.e9. [PMID: 33712344 PMCID: PMC8286298 DOI: 10.1016/j.urolonc.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Improvements to bladder cancer risk stratification guidelines are needed to better tailor post-operative surveillance and adjuvant therapy to individual patients. We previously identified STAG2 as a commonly mutated tumor suppressor gene in bladder cancer and an independent predictor of progression in NMIBC. Here we test the value of combining STAG2 immunostaining with other risk stratification biomarkers in NMIBC, and as an individual biomarker in MIBC. MATERIALS AND METHODS STAG2 immunohistochemistry was performed on a progressor-enriched cohort of tumors from 297 patients with NMIBC, and on tumors from 406 patients with MIBC from Aarhus University Hospital in Denmark. Survival analysis was performed using Kaplan-Meier survival analysis, the log rank test, and Cox proportional hazards models. RESULTS STAG2-negative low-grade NMIBC tumors were 2.5 times less likely to progress to muscle invasion than STAG2-positive low-grade NMIBC tumors (Log-rank test, P = 0.008). In a composite group of patients with AUA intermediate and high-risk NMIBC tumors, STAG2-negative tumors were less likely to progress (Log-rank test, P = 0.02). In contrast to NMIBC, we show that STAG2 is not useful as a prognostic biomarker in MIBC. CONCLUSIONS STAG2 immunostaining can be used to subdivide low-grade NMIBC tumors into two groups with substantially different risks of disease progression. Furthermore, STAG2 immunostaining may be useful to enhance NMIBC risk stratification guidelines, though larger cohorts are needed to solidify this conclusion in individual risk groups. STAG2 is not useful as a biomarker in MIBC. Further study of the use of STAG2 immunostaining as a biomarker for predicting the clinical behavior in NMIBC is warranted.
Collapse
Affiliation(s)
- Ann Taber
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Youngrok Park
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC; Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Alana Lelo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC; Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jerry Xiao
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC; Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Deborah L Berry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - George Philips
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Brent T Harris
- Departments of Pathology and Neurology , Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC.
| |
Collapse
|
31
|
Nicol PB, Coombes KR, Deaver C, Chkrebtii O, Paul S, Toland AE, Asiaee A. Oncogenetic network estimation with disjunctive Bayesian networks. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Kevin R. Coombes
- Department of Biomedical Informatics Ohio State University Columbus Ohio
| | - Courtney Deaver
- Natural Sciences Division Pepperdine University Malibu California
| | | | - Subhadeep Paul
- Department of Statistics Ohio State University Columbus Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics and Department of Internal Medicine Division of Human Genetics, Comprehensive Cancer Center Ohio State University Columbus Ohio
| | - Amir Asiaee
- Mathematical Biosciences Institute Ohio State University Columbus Ohio
| |
Collapse
|
32
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
33
|
Adane B, Alexe G, Seong BKA, Lu D, Hwang EE, Hnisz D, Lareau CA, Ross L, Lin S, Dela Cruz FS, Richardson M, Weintraub AS, Wang S, Iniguez AB, Dharia NV, Conway AS, Robichaud AL, Tanenbaum B, Krill-Burger JM, Vazquez F, Schenone M, Berman JN, Kung AL, Carr SA, Aryee MJ, Young RA, Crompton BD, Stegmaier K. STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell 2021; 39:827-844.e10. [PMID: 34129824 PMCID: PMC8378827 DOI: 10.1016/j.ccell.2021.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.
Collapse
Affiliation(s)
- Biniam Adane
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Bo Kyung A Seong
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diana Lu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Elizabeth E Hwang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Linda Ross
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Shan Lin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Wang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Neekesh V Dharia
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Saur Conway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Amanda L Robichaud
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | | | | | | | - Jason N Berman
- Department of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
34
|
Moura‐Castro LH, Peña‐Martínez P, Castor A, Galeev R, Larsson J, Järås M, Yang M, Paulsson K. Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:410-417. [PMID: 33368842 PMCID: PMC8247877 DOI: 10.1002/gcc.22933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022] Open
Abstract
High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.
Collapse
Affiliation(s)
| | - Pablo Peña‐Martínez
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Department of Pediatrics, Skåne University HospitalLund UniversityLundSweden
| | - Roman Galeev
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Marcus Järås
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| |
Collapse
|
35
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
36
|
Lopez-Beltran A, Cimadamore A, Montironi R, Cheng L. Molecular pathology of urothelial carcinoma. Hum Pathol 2021; 113:67-83. [PMID: 33887300 DOI: 10.1016/j.humpath.2021.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
The current personalized oncology era has witnessed significant efforts to integrate clinical, pathological, and molecular classifications. The growing need for molecular biomarkers to feed personalized oncology, together with the unprecedented wealth of knowledge on the molecular basis of bladder cancer, has led to a novel approach to this disease, incorporating molecularly generated data in clinical practice for locally advanced or metastatic disease. Translational research allows a better understanding of the early events in the development of urothelial carcinoma in the urinary bladder. Thus, mutations in the KMT2D and KDM6A chromatin-modifying genes confer competitive advantages that drive cells to colonize larger regions of the urothelium. Additional mutations in TP53, PIK3CA, FGFR3, or RB1 genes then trigger the process of malignant transformation in the urothelium. In the current review, we provide an overview of what could be the expected transition from the morphology-based classification to a combined, molecularly enriched reporting of clinically meaningful parameters aiming to promote personalized oncology of urothelial carcinoma.
Collapse
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, E-14004, Spain.
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, 60126, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, 60126, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
37
|
McConkey DJ. Molecular Biology of Bladder Cancer: Potential Implications for Therapy. Hematol Oncol Clin North Am 2021; 35:457-468. [PMID: 33958145 DOI: 10.1016/j.hoc.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently completed studies provided high-resolution descriptions of the molecular biological characteristics of urothelial bladder cancers. Whole transcriptome messenger RNA expression profiling revealed that they can be grouped into basal and luminal molecular subtypes resembling the ones described in breast cancers. Retrospective DNA sequencing efforts revealed roles for disruption of DNA damage response pathways in response to conventional chemotherapy and immune checkpoint blockade, and completed and ongoing studies indicate that the molecular biological properties of infiltrating host cells dictate also influence therapeutic outcomes. This article reviews these findings and identify gaps in knowledge that represent opportunities for future research.
Collapse
Affiliation(s)
- David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, 600 North Wolfe Street, Park 219, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Rittenhouse NL, Carico ZM, Liu YF, Stefan HC, Arruda NL, Zhou J, Dowen JM. Functional impact of cancer-associated cohesin variants on gene expression and cellular identity. Genetics 2021; 217:iyab025. [PMID: 33704438 PMCID: PMC8049558 DOI: 10.1093/genetics/iyab025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Cohesin is a ring-shaped protein complex that controls dynamic chromosome structure. Cohesin activity is important for a variety of biological processes, including formation of DNA loops that regulate gene expression. The precise mechanisms by which cohesin shapes local chromosome structure and gene expression are not fully understood. Recurrent mutations in cohesin complex members have been reported in various cancers, though it is not clear whether many cohesin sequence variants have phenotypes and contribute to disease. Here, we utilized CRISPR/Cas9 genome editing to introduce a variety of cohesin sequence variants into murine embryonic stem cells and investigate their molecular and cellular consequences. Some of the cohesin variants tested caused changes to transcription, including altered expression of gene encoding lineage-specifying developmental regulators. Altered gene expression was also observed at insulated neighborhoods, where cohesin-mediated DNA loops constrain potential interactions between genes and enhancers. Furthermore, some cohesin variants altered the proliferation rate and differentiation potential of murine embryonic stem cells. This study provides a functional comparison of cohesin variants found in cancer within an isogenic system, revealing the relative roles of various cohesin perturbations on gene expression and maintenance of cellular identity.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary M Carico
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ying Frances Liu
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Holden C Stefan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole L Arruda
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junjie Zhou
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Bontoux C, Rialland T, Cussenot O, Compérat E. A four-antibody immunohistochemical panel can distinguish clinico-pathological clusters of urothelial carcinoma and reveals high concordance between primary tumor and lymph node metastases. Virchows Arch 2020; 478:637-645. [PMID: 33128085 DOI: 10.1007/s00428-020-02951-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Urothelial carcinoma of the bladder (UC) has a poor prognosis, partly because of chemotherapy resistance. Molecular classifications have shown their interest and can help to offer personalized treatment. In this study, we evaluated the feasibility of an immunohistochemical study to divide advanced UC into clinico-pathological-molecular subgroups and evaluate phenotypic correspondence between primary UC and matched lymph node metastases (LMN). An eight-antibody immunohistochemical panel was performed on UC and matched LMN from patients treated with radical cystectomy. One hundred eighty-seven UCs (100 pN0 tumor and 87 pN+ tumor) were tested. Multiple correspondence analysis showed that UC expressing GATA3 also expressed FOXA1 (p = 0.010) and did not stain for CK5/6 (p = 0.031) nor CK14 (p = 0.003). UC expressing CK14 coexpressed CK5/6 (p < 0.0001), had high Ki67 (p = 0.010) and no GATA3 (p = 0.003) nor FOXA1 (p = 0.011) expression. Loss of expression of STAG2 was associated with high Ki67 (p = 0.001). Sixty-seven percent of [CK5/6 CK14]+ [GATA3 FOAXA1]- patients had high Ki67 expression vs 37% of [GATA3 FOXA1]+ [CK5/6 CK14]- patients (p = 0.024). The majority of [CK5/6 CK14]+ [GATA3 FOAXA1]- patients (92%) had advanced disease (pT3-pT4) whilst 86% of pT1-T2 cases were [GATA3 FOXA1]+ [CK5/6 CK14]- (p = 0.041). Differential antigen expression between 63 pN+ primary tumors and their corresponding LNM showed the following concordance percentages: p53 (76%), p63 (75%), CK5/6 (65%), CK14 (89%), GATA3 (75%), FOXA1 (68%), STAG2 (65%), and Ki-67 (71%). These results support the interest of immunohistochemistry for subtype profiling in metastatic UC, using CK5/6, CK14, GATA3, and FOXA1, highlighting also few phenotypical modifications when tumor spreads to lymph nodes.
Collapse
Affiliation(s)
- Christophe Bontoux
- Department of Pathology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 4 rue de la Chine, 75020, Paris, France
| | - Thomas Rialland
- Department of Pathology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 4 rue de la Chine, 75020, Paris, France
| | - Olivier Cussenot
- Department of Urology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
- GRC5 Predictive Onco-urology, Sorbonne University, Paris, France
| | - Eva Compérat
- Department of Pathology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 4 rue de la Chine, 75020, Paris, France.
- GRC5 Predictive Onco-urology, Sorbonne University, Paris, France.
| |
Collapse
|
40
|
The meiosis-specific cohesin component stromal antigen 3 promotes cell migration and chemotherapeutic resistance in colorectal cancer. Cancer Lett 2020; 497:112-122. [PMID: 33039558 DOI: 10.1016/j.canlet.2020.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Chromosome instability is one of the hallmarks of cancer. Stromal antigen (STAG) 3 is a core component of the meiosis-specific cohesin complex, which regulates sister chromatid cohesion. Although aberrantly activated genes encoding the cohesin complex have been identified in cancers, little is known about the role of STAG3 in colorectal cancer (CRC). Here, we evaluated the prognostic impact and role of STAG3 in CRC. Analysis of 172 CRC surgical specimens revealed that high STAG3 expression was associated with poor prognosis. STAG3 knockdown inhibited cell migration and increased drug sensitivity to oxaliplatin, 5-fluorouracil, irinotecan hydrochloride hydrate, and BRAF inhibitor in CRC cell lines. The enhanced drug sensitivity was also confirmed in a human organoid established from a CRC specimen. Moreover, suppression of STAG3 increased γH2AX foci. Particularly, in BRAF-mutant CRC cells, STAG3 silencing suppressed the expression of snail family transcriptional repressor 1 and phosphorylation of extracellular signal-regulated kinase via upregulation of dual-specificity phosphatase 6. Our findings suggest that STAG3 is related to poor clinical outcomes and promotes metastasis and chemotherapeutic resistance in CRC. STAG3 may be a novel prognostic marker and potential therapeutic target for CRC.
Collapse
|
41
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
42
|
Abstract
Mutations of the cohesin complex in human cancer were first discovered ~10 years ago. Since then, researchers worldwide have demonstrated that cohesin is among the most commonly mutated protein complexes in cancer. Inactivating mutations in genes encoding cohesin subunits are common in bladder cancers, paediatric sarcomas, leukaemias, brain tumours and other cancer types. Also in those 10 years, the prevailing view of the functions of cohesin in cell biology has undergone a revolutionary transformation. Initially, the predominant view of cohesin was as a ring that encircled and cohered replicated chromosomes until its cleavage triggered the metaphase-to-anaphase transition. As such, early studies focused on the role of tumour-derived cohesin mutations in the fidelity of chromosome segregation and aneuploidy. However, over the past 5 years the cohesin field has shifted dramatically, and research now focuses on the primary role of cohesin in generating, maintaining and regulating the intra-chromosomal DNA looping events that modulate 3D genome organization and gene expression. This Review focuses on recent discoveries in the cohesin field that provide insight into the role of cohesin inactivation in cancer pathogenesis, and opportunities for exploiting these findings for the clinical benefit of patients with cohesin-mutant cancers.
Collapse
Affiliation(s)
- Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
43
|
Hayashi T, Fujita K, Hayashi Y, Hatano K, Kawashima A, McConkey DJ, Nonomura N. Mutational Landscape and Environmental Effects in Bladder Cancer. Int J Mol Sci 2020; 21:ijms21176072. [PMID: 32842545 PMCID: PMC7503658 DOI: 10.3390/ijms21176072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Bladder cancer is the most common cancer of the urinary tract. Although nonmuscle-invasive bladder cancers have a good prognosis, muscle-invasive bladder cancers promote metastases and have a poor prognosis. Comprehensive analyses using RNA sequence of clinical tumor samples in bladder cancer have been reported. These reports implicated the candidate genes and pathways that play important roles in carcinogenesis and/or progression of bladder cancer. Further investigations for the function of each mutation are warranted. There is suggestive evidence for several environmental factors as risk factors of bladder cancer. Environmental factors such as cigarette smoking, exposure to chemicals and gases, bladder inflammation due to microbial and parasitic infections, diet, and nutrition could induce several genetic mutations and alter the tumor microenvironment, such as immune cells and fibroblasts. The detailed mechanism of how these environmental factors induce carcinogenesis and/or progression of bladder cancer remains unclear. To identify the relationship between the mutations and the lifestyle could be useful for prevention and treatment of bladder cancer.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
- Greenberg Bladder Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MA 21287-2101, USA;
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
- Department of Urology, Faculty of Medicine, Kindai University, Ohno-higashi, Osakasayama, Osaka 589-8511, Japan
- Correspondence: ; Tel.: +81-6-6879-3531; Fax: +81-6-6879-3539
| | - Yujiro Hayashi
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - Atsunari Kawashima
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - David J. McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MA 21287-2101, USA;
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| |
Collapse
|
44
|
Minoli M, Kiener M, Thalmann GN, Kruithof-de Julio M, Seiler R. Evolution of Urothelial Bladder Cancer in the Context of Molecular Classifications. Int J Mol Sci 2020; 21:E5670. [PMID: 32784716 PMCID: PMC7461199 DOI: 10.3390/ijms21165670] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a heterogeneous disease that is not depicted by current classification systems. It was originally classified into non-muscle invasive and muscle invasive. However, clinically and genetically variable tumors are summarized within both classes. A definition of three groups may better account for the divergence in prognosis and probably also choice of treatment. The first group represents mostly non-invasive tumors that reoccur but do not progress. Contrarily, the second group represent non-muscle invasive tumors that likely progress to the third group, the muscle invasive tumors. High throughput tumor profiling improved our understanding of the biology of bladder cancer. It allows the identification of molecular subtypes, at least three for non-muscle invasive bladder cancer (Class I, Class II and Class III) and six for muscle-invasive bladder cancer (luminal papillary, luminal non-specified, luminal unstable, stroma-rich, basal/squamous and neuroendocrine-like) with distinct clinical and molecular phenotypes. Molecular subtypes can be potentially used to predict the response to treatment (e.g., neoadjuvant chemotherapy and immune checkpoint inhibitors). Moreover, they may allow to characterize the evolution of bladder cancer through different pathways. However, to move towards precision medicine, the understanding of the biological meaning of these molecular subtypes and differences in the composition of cell subpopulations will be mandatory.
Collapse
Affiliation(s)
- Martina Minoli
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
| | - Mirjam Kiener
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
| | - George N. Thalmann
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Roland Seiler
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| |
Collapse
|
45
|
Nielsen MM, Trolle C, Vang S, Hornshøj H, Skakkebaek A, Hedegaard J, Nordentoft I, Pedersen JS, Gravholt CH. Epigenetic and transcriptomic consequences of excess X-chromosome material in 47,XXX syndrome-A comparison with Turner syndrome and 46,XX females. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:279-293. [PMID: 32489015 DOI: 10.1002/ajmg.c.31799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
47,XXX (triple X) and Turner syndrome (45,X) are sex chromosomal abnormalities with detrimental effects on health with increased mortality and morbidity. In karyotypical normal females, X-chromosome inactivation balances gene expression between sexes and upregulation of the X chromosome in both sexes maintain stoichiometry with the autosomes. In 47,XXX and Turner syndrome a gene dosage imbalance may ensue from increased or decreased expression from the genes that escape X inactivation, as well as from incomplete X chromosome inactivation in 47,XXX. We aim to study genome-wide DNA-methylation and RNA-expression changes can explain phenotypic traits in 47,XXX syndrome. We compare DNA-methylation and RNA-expression data derived from white blood cells of seven women with 47,XXX syndrome, with data from seven female controls, as well as with seven women with Turner syndrome (45,X). To address these questions, we explored genome-wide DNA-methylation and transcriptome data in blood from seven females with 47,XXX syndrome, seven females with Turner syndrome, and seven karyotypically normal females (46,XX). Based on promoter methylation, we describe a demethylation of six X-chromosomal genes (AMOT, HTR2C, IL1RAPL2, STAG2, TCEANC, ZNF673), increased methylation for GEMIN8, and four differentially methylated autosomal regions related to four genes (SPEG, MUC4, SP6, and ZNF492). We illustrate how these changes seem compensated at the transcriptome level although several genes show differential exon usage. In conclusion, our results suggest an impact of the supernumerary X chromosome in 47,XXX syndrome on the methylation status of selected genes despite an overall comparable expression profile.
Collapse
Affiliation(s)
| | - Christian Trolle
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hornshøj
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hedegaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Persistent STAG2 mutation despite multimodal therapy in recurrent pediatric glioblastoma. NPJ Genom Med 2020; 5:23. [PMID: 32528726 PMCID: PMC7264170 DOI: 10.1038/s41525-020-0130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Similar to their adult counterparts, the prognosis for pediatric patients with high-grade gliomas remains poor. At time of recurrence, treatment options are limited and remain without consensus. This report describes the genetic findings, obtained from whole-exome sequencing of a pediatric patient with glioblastoma who underwent multiple surgical resections and treatment with standard chemoradiation, as well as a novel recombinant poliovirus vaccine therapy. Strikingly, despite the variety of treatments, there was persistence of a tumor clone, characterized by a deleterious STAG2 mutation, whose deficiency in preclinical studies can cause aneuploidy and aberrant mitotic progression, but remains understudied in the clinical setting. There was near elimination of an EGFR mutated and amplified tumor clone after gross total resection, standard chemoradiation, and poliovirus therapy, followed by the emergence of a persistently STAG2 mutated clone, with rare mutations in PTPN11 and BRAF, the latter composed of a novel deleterious mutation previously not reported in pediatric glioblastoma (p.D594G). This was accompanied by a mutation signature shift towards one characterized by increased DNA damage repair defects, consistent with the known underlying STAG2 deficiency. As such, this case represents a novel report following the clinical and genetic progression of a STAG2 mutated glioblastoma, including treatment with a novel and emerging immunotherapy. Although STAG2 deficiency comprises only a small subset of gliomas, this case adds clinical evidence to existing preclinical data supporting a role for STAG2 mutations in gliomagenesis and resistance to standard therapies.
Collapse
|
47
|
Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J Med Genet 2020; 57:289-295. [PMID: 31704779 PMCID: PMC7231464 DOI: 10.1136/jmedgenet-2019-106277] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Maria M Pallotta
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
48
|
Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, Oole E, van IJcken WFJ, Houtsmuller AB, Papantonis A, Wendt KS. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res 2020; 30:515-527. [PMID: 32253279 PMCID: PMC7197483 DOI: 10.1101/gr.253211.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022]
Abstract
Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.
Collapse
Affiliation(s)
- Valentina Casa
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | | | - Eduardo Gade Gusmao
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anne Zirkel
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Natasa Josipovic
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Edwin Oole
- Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | | | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
49
|
The prognostic value of the urokinase-plasminogen activator system (uPA) in bladder cancer patients treated with radical cystectomy (RC). Urol Oncol 2020; 38:423-432. [PMID: 32209281 DOI: 10.1016/j.urolonc.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Urokinase-plasminogen activator (uPA), its receptor (uPAR), and the plasmin-activator inhibitor type 1 (PAI-1) have been associated with oncologic outcomes in various malignancies and could help identify bladder cancer (BC) patients treated with radical cystectomy (RC) who are likely to benefit from intensification of therapy to prevent disease progression. Our aim was to assess the value of uPA, uPAR, and PAI-1 for prognosticating survival outcomes of patients treated with RC for BC. MATERIALS AND METHODS Tumor specimens from 272 consecutive patients treated with RC for advanced BC were assessed with immunohistochemical staining for uPA, uPAR, and PAI-1. Overexpression was assessed by pathological image analysis. Kaplan-Meier estimates and multivariable Cox-regression were used to analyze survival. Harrell's C-index was used to assess for clinical impact of the uPA system. RESULTS uPA, uPAR, and PAI-1 were overexpressed in 48.2%, 51.1%, and 52.2% of patients, respectively. uPA overexpression was associated with lymphovascular invasion (P = 0.034) and nodal status (P = 0.013); PAI-1 overexpression was associated with primary muscle-invasive BC (P = 0.015) and lymphovascular invasion (P = 0.024). uPA, uPAR, and the number of overexpressed markers were all 3 significantly associated with shorter overall recurrence-free-, distant recurrence-free-, and cancer-specific survival. In multivariable analyses, uPA overexpression remained associated with shorter recurrence-free survival (hazard ratio [HR] = 1.79; P = 0.036) in the entire cohort, in patients without lymph node metastasis (HR = 1.98; P = 0.018) and those with nonorgan-confined disease (HR = 1.98; P = 0.022). uPAR overexpression was associated with shorter recurrence-free survival in patients without lymph node metastasis (HR = 2.01; P = 0.021) and those with organ-confined disease (HR = 4.11; P = 0.037). CONCLUSION Members of the uPA system are associated with features of biologically aggressive BC and oncologic outcomes. However, their value beyond currently available information remains limited.
Collapse
|
50
|
The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer. Oncogene 2020; 39:3588-3603. [PMID: 32127645 DOI: 10.1038/s41388-020-1236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
CUL4B, which acts as a scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes, participates in a variety of biological processes. Previous studies have shown that CUL4B is often overexpressed and exhibits oncogenic activities in a variety of solid tumors. However, the roles and the underlying mechanisms of CUL4B in bladder cancer (BC) were poorly understood. Here, we showed that CUL4B levels were overexpressed and positively correlated with the malignancy of BC, and CUL4B could confer BC cells increased motility, invasiveness, stemness, and chemoresistance. The PIK3CA/AKT pathway was identified as a critical downstream mediator of CUL4B-driven oncogenicity in BC cells. Furthermore, we demonstrated that CRL4B epigenetically repressed the transcription of miR-372/373, via catalyzing monoubiquitination of H2AK119 at the gene cluster encoding miR-372/373, leading to upregulation of PIK3CA and activation of AKT. Our findings thus establish a critical role for the CUL4B-miR-372/373-PIK3CA/AKT axis in the pathogenesis of BC and have important prognostic and therapeutic implications in BC.
Collapse
|