1
|
Pepe D, Janssens X, Timcheva K, Marrón-Liñares GM, Verbelen B, Konstantakos V, De Groote D, De Bie J, Verhasselt A, Dewaele B, Godderis A, Cools C, Franco-Tolsau M, Royaert J, Verbeeck J, Kampen KR, Subramanian K, Cabrerizo Granados D, Menschaert G, De Keersmaecker K. Reannotation of cancer mutations based on expressed RNA transcripts reveals functional non-coding mutations in melanoma. Am J Hum Genet 2025:S0002-9297(25)00146-6. [PMID: 40359938 DOI: 10.1016/j.ajhg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The role of synonymous mutations in cancer pathogenesis is currently underexplored. We developed a method to detect significant clusters of synonymous and missense mutations in public cancer genomics data. In melanoma, we show that 22% (11/50) of these mutation clusters are misannotated as coding mutations because the reference transcripts used for their annotation are not expressed. Instead, these mutations are actually non-coding. This, for instance, applies to the mutation clusters targeting known cancer genes kinetochore localized astrin (SPAG5) binding protein (KNSTRN) and BCL2-like 12 (BCL2L12), each affecting 4%-5% of melanoma tumors. For the latter, we show that these mutations are functional non-coding mutations that target the shared promoter region of interferon regulatory factor 3 (IRF3) and BCL2L12. This results in downregulation of IRF3, BCL2L12, and tumor protein p53 (TP53) expression in a CRISPR-Cas9 primary melanocyte model and in melanoma tumors. In individuals with melanoma, these mutations were also associated with a worse response to immunotherapy. Finally, we propose a simple automated method to more accurately annotate cancer mutations based on expressed transcripts. This work shows the importance of integrating DNA- and RNA-sequencing data to properly annotate mutations and identifies a number of previously overlooked and wrongly annotated functional non-coding mutations in melanoma.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xander Janssens
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kalina Timcheva
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Grecia M Marrón-Liñares
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benno Verbelen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Vasileios Konstantakos
- Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Dylan De Groote
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Barbara Dewaele
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Charlotte Cools
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mireia Franco-Tolsau
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonathan Royaert
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jelle Verbeeck
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim R Kampen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium; Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Karthik Subramanian
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - David Cabrerizo Granados
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Gerben Menschaert
- OHMX.bio NV, Evergem, Belgium; Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
2
|
Li Z, Lu F, Zhou F, Song D, Chang L, Liu W, Yan G, Zhang G. From actinic keratosis to cutaneous squamous cell carcinoma: the key pathogenesis and treatments. Front Immunol 2025; 16:1518633. [PMID: 39925808 PMCID: PMC11802505 DOI: 10.3389/fimmu.2025.1518633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer, among which 82% arise from actinic keratosis (AK) characterized by lesions of epidermal keratinocyte dysplasia. It is of great significance to uncover the progression mechanisms from AK to cSCC, which will facilitate the early therapeutic intervention of AK before malignant transformation. Thus, more and more studies are trying to ascertain the potential transformation mechanisms through multi-omics, including genetics, transcriptomics, and epigenetics. In this review, we gave an overview of the specific biomarkers and signaling pathways that may be involved in the pathogenesis from AK to cSCC, pointing out future possible molecular therapies for the early intervention of AK and cSCC. We also discussed current interventions on AK and cSCC, together with future perspectives.
Collapse
MESH Headings
- Humans
- Keratosis, Actinic/therapy
- Keratosis, Actinic/pathology
- Keratosis, Actinic/etiology
- Keratosis, Actinic/metabolism
- Skin Neoplasms/therapy
- Skin Neoplasms/etiology
- Skin Neoplasms/pathology
- Skin Neoplasms/metabolism
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Animals
- Signal Transduction
- Cell Transformation, Neoplastic/genetics
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Zhenlin Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fangqi Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fujin Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dekun Song
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lunhui Chang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Weiying Liu
- Department of Dermatology, Hunan Aerospace Hospital, Changsha, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Zhang W, Xiao Y, Zhou Q, Zhu X, Zhang Y, Xiang Q, Wu S, Song X, Zhao J, Yuan R, Xiao B, Li L. KNSTRN Is a Prognostic Biomarker That Is Correlated with Immune Infiltration in Breast Cancer and Promotes Cell Cycle and Proliferation. Biochem Genet 2024; 62:3709-3739. [PMID: 38198023 PMCID: PMC11427568 DOI: 10.1007/s10528-023-10615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Kinetochore-localized astrin/SPAG5-binding protein (KNSTRN) promotes the progression of bladder cancer and lung adenocarcinoma. However, its expression and biological function in breast cancer remain largely unknown. Therefore, this study aimed to analyze KNSTRN expression, prognoses, correlation with immune infiltration, expression-associated genes, and regulated signaling pathways to characterize its role in regulating the cell cycle using both bioinformatics and in vitro functional experiments. Analyses of The Cancer Genome Atlas, Gene Expression Omnibus, TIMER, and The Human Protein Atlas databases revealed a significant upregulation of KNSTRN transcript and protein levels in breast cancer. Kaplan-Meier survival analyses demonstrated a significant association between high expression of KNSTRN and poor overall survival, relapse-free survival, post-progression survival, and distant metastases-free survival in patients with breast cancer. Furthermore, multivariate Cox regression analyses confirmed that KNSTRN is an independent prognostic factor for breast cancer. Immune infiltration analysis indicated a positive correlation between KNSTRN expression and T regulatory cell infiltration while showing a negative correlation with Tgd and natural killer cell infiltration. Gene set enrichment analysis along with single-cell transcriptome data analysis suggested that KNSTRN promoted cell cycle progression by regulating the expression of key cell cycle proteins. The overexpression and silencing of KNSTRN in vitro, respectively, promoted and inhibited the proliferation of breast cancer cells. The overexpression of KNSTRN enhanced the expression of key cell cycle regulators, including CDK4, CDK6, and cyclin D3, thereby accelerating the G1/S phase transition and leading to aberrant proliferation of breast cancer cells. In conclusion, our study demonstrates that KNSTRN functions as an oncogene in breast cancer by regulating immune response, promoting G1/S transition, and facilitating breast cancer cell proliferation. Moreover, KNSTRN has potential as a molecular biomarker for diagnostic and prognostic prediction in breast cancer.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Yuhan Xiao
- School of Public Health, Dali University, Dali, 671000, China
| | - Quan Zhou
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, 510010, China
| | - Xin Zhu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xiaoyu Song
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- School of Public Health, Dali University, Dali, 671000, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
4
|
Thamm JR, Schuh S, Welzel J. Epidemiology and Risk Factors of Actinic Keratosis. What is New for The Management for Sun-Damaged Skin. Dermatol Pract Concept 2024; 14:dpc.1403S1a146S. [PMID: 39133637 PMCID: PMC11566825 DOI: 10.5826/dpc.1403s1a146s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/17/2024] Open
Abstract
Actinic keratosis (AK) is considered a chronic skin disease mostly caused by long-term exposure to UV radiation and other risk factors such as immunosuppression, leading to an individual susceptibility for skin cancer manifestation. The treatment of AK is laborious and costly, and the incidence of skin cancer is forecasted to double until the year 2030 in an aging society.Risk factors in AK for malignant transformation in cutaneous squamous cell carcinoma (cSCC) are not fully understood, but studies suggest that histological features, such as atypia in the basal epidermal third and basal proliferation (PRO score) in AK play a pivotal role for development of malignancy. As the clinical appearance of AK does not correlate with the risk for malignancy, guidelines suggest treating every single AK lesion upon diagnosis. Skin imaging techniques, such as line-field confocal optical coherence tomography (LC-OCT) can help to provide an individual holistic follow-up for AK lesions by non-invasive visualization of atypia and basal proliferation. A follow-up for patients with AK may be critical for treatment success in terms of strengthening therapy adherence. When AK presents therapy refractory, cSCC manifests in nearly 30% of the cases after several years. Patients with AK suffering from field cancerization and immunosuppression are susceptible for a severe course of disease including metastasis and high mortality rates. Those vulnerable subgroups benefit from close skin cancer screening, early adequate treatment and chemoprevention, such as niacinamide or acitretin. Skin cancer prevention is substantial. Primary prevention should include chemical and physical UV-light protection and avoidance of indoor tanning. Secondary prevention is essential in high-risk populations, such as fair skin type elderly men and STORs. Tertiary prevention should comprise adequate treatment strategies to prevent therapy resistance, reoccurrence and cSCC, especially when field cancerization and immunosuppression are present.
Collapse
Affiliation(s)
- Janis Raphael Thamm
- Department of Dermatology and Allergology, University Hospital Augsburg, Germany
| | - Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Germany
| |
Collapse
|
5
|
Hosseini TM, Park SJ, Guo T. The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers (Basel) 2024; 16:2904. [PMID: 39199674 PMCID: PMC11352924 DOI: 10.3390/cancers16162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) manifests through the complex interactions of UV-induced DNA damage, genetic mutations, and alterations in the tumor microenvironment. A high mutational burden is present in cSCC, as well as both cSCC precursors and normal skin, making driver genes difficult to differentiate. Despite this, several key driver genes have been identified, including TP53, the NOTCH family, CDKN2A, PIK3CA, and EGFR. In addition to mutations, the tumor microenvironment and the manipulation and evasion of the immune system play a critical role in cSCC progression. Novel therapeutic approaches, such as immunotherapy and EGFR inhibitors, have been used to target these dysregulations, and have shown promise in treating advanced cSCC cases, emphasizing the need for targeted interventions considering both genetic and microenvironmental factors for improved patient outcomes.
Collapse
Affiliation(s)
- Tara M. Hosseini
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Soo J. Park
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otolaryngology-Head & Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
7
|
Liu P, Wang L, Yu H. Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front Cell Dev Biol 2024; 12:1410637. [PMID: 39055650 PMCID: PMC11269155 DOI: 10.3389/fcell.2024.1410637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploid giant cancer cells (PGCCs) are characterized by the presence of either a single enlarged nucleus or multiple nuclei and are closely associated with tumor progression and treatment resistance. These cells contribute significantly to cellular heterogeneity and can arise from various stressors, including radiation, chemotherapy, hypoxia, and environmental factors. The formation of PGCCs can occur through mechanisms such as endoreplication, cell fusion, cytokinesis failure, mitotic slippage, or cell cannibalism. Notably, PGCCs exhibit traits similar to cancer stem cells (CSCs) and generate highly invasive progeny through asymmetric division. The presence of PGCCs and their progeny is pivotal in conferring resistance to chemotherapy and radiation, as well as facilitating tumor recurrence and metastasis. This review provides a comprehensive analysis of the origins, potential formation mechanisms, stressors, unique characteristics, and regulatory pathways of PGCCs, alongside therapeutic strategies targeting these cells. The objective is to enhance the understanding of PGCC initiation and progression, offering novel insights into tumor biology.
Collapse
Affiliation(s)
- Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Beifang Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Zhu Y, Koleilat MKI, Roszik J, Kwong MK, Wang Z, Maru DM, Kopetz S, Kwong LN. A Gold Standard-Derived Modular Barcoding Approach to Cancer Transcriptomics. Cancers (Basel) 2024; 16:1886. [PMID: 38791964 PMCID: PMC11120226 DOI: 10.3390/cancers16101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a "decoder" to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Mohamad Karim I. Koleilat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Man Kam Kwong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Zhonglin Wang
- Social Science Research Institute, Duke University, Durham, NC 27708, USA;
| | - Dipen M. Maru
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Thamm JR, Welzel J, Schuh S. Diagnosis and therapy of actinic keratosis. J Dtsch Dermatol Ges 2024; 22:675-690. [PMID: 38456369 DOI: 10.1111/ddg.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/28/2023] [Indexed: 03/09/2024]
Abstract
Actinic keratosis (AK) is considered a chronic and recurring in situ skin neoplasia, with a possible transformation into invasive squamous cell carcinoma (SCC). Among others, predominant risk factors for development of AK are UV-light exposure and immunosuppression. Basal epidermal keratinocyte atypia (AK I) and proliferation (PRO score) seem to drive malignant transformation, rather than clinical appearance of AK (Olsen I-III). Due to the invasiveness of punch biopsy, those histological criteria are not regularly assessed. Non-invasive imaging techniques, such as optical coherence tomography (OCT), reflectance confocal microscopy (RCM) and line-field confocal OCT (LC-OCT) are helpful to distinguish complex cases of AK, Bowen's disease, and SCC. Moreover, LC-OCT can visualize the epidermis and the papillary dermis at cellular resolution, allowing real-time PRO score assessment. The decision-making for implementation of therapy is still based on clinical risk factors, ranging from lesion- to field-targeted and ablative to non-ablative regimens, but in approximately 85% of the cases a recurrence of AK can be observed after a 1-year follow-up. The possible beneficial use of imaging techniques for a non-invasive follow-up of AK to detect recurrence or invasive progression early on should be subject to critical evaluation in further studies.
Collapse
Affiliation(s)
- Janis Raphael Thamm
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
10
|
Thamm JR, Welzel J, Schuh S. Diagnose und Therapie aktinischer Keratosen. J Dtsch Dermatol Ges 2024; 22:675-691. [PMID: 38730534 DOI: 10.1111/ddg.15288_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/28/2023] [Indexed: 05/13/2024]
Abstract
Actinic keratosis (AK) is considered a chronic and recurring in situ skin neoplasia, with a possible transformation into invasive squamous cell carcinoma (SCC). Among others, predominant risk factors for development of AK are UV-light exposure and immunosuppression. Basal epidermal keratinocyte atypia (AK I) and proliferation (PRO Score) seem to drive malignant turnover, rather than clinical appearance of AK (Olsen I-III). Due to the invasiveness of punch biopsy, those histological criteria are not regularly assessed. Non-invasive imaging techniques, such as optical coherence tomography (OCT), reflectance confocal microscopy (RCM) and line-field confocal OCT (LC-OCT) are helpful to distinguish complex cases of AK, Bowen's disease and SCC. Moreover, LC-OCT can visualize the epidermis and the papillary dermis at cellular resolution, allowing real-time PRO Score assessment. The decision-making for implementation of therapy is still based on clinical risk factors, ranging from lesion- to field-targeted and ablative to non-ablative regimes, but in approximately 85% of the cases a recurrence of AK can be observed after a 1-year follow-up. The possible beneficial use of imaging techniques for a non-invasive follow-up of AK to detect recurrence or invasive progression early on should be subject to critical evaluation in further studies.
Collapse
Affiliation(s)
| | - Julia Welzel
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Sandra Schuh
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| |
Collapse
|
11
|
Jin L, Zhang X, Fan M, Li W, Zhang X. NamiRNA-mediated high expression of KNSTRN correlates with poor prognosis and immune infiltration in hepatocellular carcinoma. Contemp Oncol (Pozn) 2023; 27:163-175. [PMID: 38239867 PMCID: PMC10793618 DOI: 10.5114/wo.2023.133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Mutations of kinetochore-localized astrin/sperm-associated antigen 5 (KNSTRN) can interfere with chromatid cohesion, increase aneuploidy in tumours, and enhance tumourigenesis. However, the role of the KNSTRN-binding protein in hepatocellular carcinoma (HCC) remains unclear. Material and methods Using The Cancer Genome Atlas databases, we investigated the potential oncogenic functions of KNSTRN in HCC along with R and various computational tools. Results Detailed results revealed that elevated expression of KNSTRN was considerably associated with poor overall survival (HR = 1.48, 95% CI: 1.05-2.09, p = 0.027) and progress-free interval (HR = 1.41, 95% CI: 1.05-1.89, p = 0.021) in HCC. Gene ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that KNSTRN is closely related to organelle fission, chromosomal region, tubulin binding, and cell cycle signalling pathway. TIMER database analysis showed the correlations between KNSTRN expression and tumour-infiltrating immune cells, biomarkers of immune cells, and immune checkpoint expression. Moreover, the KNSTRN level was significantly positively associated with immunosuppressive cells in the tumour microenvironment, including regulatory T-cells, myeloid-derived suppressor cells, and cancer-associated fibrocytes. Finally, a possible nuclear activating miRNA (NamiRNA)-enhancer network of hsa-miR-107, which activates the KNSTRN expression in liver hepatocellular carcinoma, was constructed by correlation analysis. Conclusions NamiRNA-mediated upregulation of KNSTRN correlated with poor prognosis and tumour immune infiltration in HCC. KNSTRN could serve as an effective biomarker for the diagnosis and prognosis of HCC and support the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Liang Jin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaojing Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ming Fan
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Weimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne) 2023; 10:1218404. [PMID: 37841001 PMCID: PMC10570430 DOI: 10.3389/fmed.2023.1218404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Over the past decade, Next-Generation Sequencing (NGS) has advanced our understanding, diagnosis, and management of several areas within dermatology. NGS has emerged as a powerful tool for diagnosing genetic diseases of the skin, improving upon traditional PCR-based techniques limited by significant genetic heterogeneity associated with these disorders. Epidermolysis bullosa and ichthyosis are two of the most extensively studied genetic diseases of the skin, with a well-characterized spectrum of genetic changes occurring in these conditions. NGS has also played a critical role in expanding the mutational landscape of cutaneous squamous cell carcinoma, enhancing our understanding of its molecular pathogenesis. Similarly, genetic testing has greatly benefited melanoma diagnosis and treatment, primarily due to the high prevalence of BRAF hot spot mutations and other well-characterized genetic alterations. Additionally, NGS provides a valuable tool for measuring tumor mutational burden, which can aid in management of melanoma. Lastly, NGS demonstrates promise in improving the sensitivity of diagnosing cutaneous T-cell lymphoma. This article provides a comprehensive summary of NGS applications in the diagnosis and management of genodermatoses, cutaneous squamous cell carcinoma, melanoma, and cutaneous T-cell lymphoma, highlighting the impact of NGS on the field of dermatology.
Collapse
Affiliation(s)
- Andrew D. King
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hany Deirawan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Catherine I. Dumur
- Bernhardt Laboratories, Sonic Healthcare Anatomic Pathology Division, Jacksonville, FL, United States
| | - Darius R. Mehregan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Rusu B, Kukreja B, Wu T, Dan SJ, Feng MY, Kalish BT. Single-Nucleus Profiling Identifies Accelerated Oligodendrocyte Precursor Cell Senescence in a Mouse Model of Down Syndrome. eNeuro 2023; 10:ENEURO.0147-23.2023. [PMID: 37491366 PMCID: PMC10449487 DOI: 10.1523/eneuro.0147-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.
Collapse
Affiliation(s)
- Bianca Rusu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Taiyi Wu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Sophie J Dan
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Brian T Kalish
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
14
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
15
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
16
|
Win TS, Tsao H. Keratinocytic skin cancers-Update on the molecular biology. Cancer 2023; 129:836-844. [PMID: 36645692 DOI: 10.1002/cncr.34635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
Although much attention has been devoted to a detailed genomic exposition of cutaneous melanoma, other nonmelanoma skin cancers have also recently been subjected to similar analytical scrutiny. Chief among these are the most common malignancies worldwide: basal cell carcinomas and cutaneous squamous cell carcinomas. In this review, the authors summarize their latest knowledge about the molecular pathways and therapeutic opportunities attendant to these keratinocytic skin cancers. PLAIN LANGUAGE SUMMARY: The most common cancers in the United States arise from skin cells called keratinocytes. Although these tumors are not formally tracked by the National Cancer Institute, it is estimated that there are millions of skin cancers called basal cell carcinomas and squamous cell carcinomas. This article reviews the current recent genetic insights into these tumors and therapeutic opportunities.
Collapse
Affiliation(s)
- Thet Su Win
- Department of Dermatology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Ge W, Sun YC, Qiao T, Liu HX, He TR, Wang JJ, Chen CL, Cheng SF, Dyce PW, De Felici M, Shen W. Murine skin-derived multipotent papillary dermal fibroblast progenitors show germline potential in vitro. Stem Cell Res Ther 2023; 14:17. [PMID: 36737797 PMCID: PMC9898921 DOI: 10.1186/s13287-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuan-Chao Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Xia Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Lei Chen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
18
|
Shea LK, Akhave NS, Sutton LA, Compton LA, York C, Ramakrishnan SM, Miller CA, Wartman LD, Chen DY. Combined Kdm6a and Trp53 Deficiency Drives the Development of Squamous Cell Skin Cancer in Mice. J Invest Dermatol 2023; 143:232-241.e6. [PMID: 36055401 PMCID: PMC10334302 DOI: 10.1016/j.jid.2022.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 01/25/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) has among the highest mutation burdens of all cancers, reflecting its pathogenic association with the mutagenic effects of UV light exposure. Although mutations in cancer-relevant genes such as TP53 and NOTCH1 are common in cSCC, they are also tolerated in normal skin and suggest that other events are required for transformation; it is not yet clear whether epigenetic regulators cooperate in the pathogenesis of cSCC. KDM6A encodes a histone H3K27me2/me3 demethylase that is frequently mutated in cSCC and other cancers. Previous sequencing studies indicate that roughly 7% of cSCC samples harbor KDM6A mutations, including frequent truncating mutations, suggesting a role for this gene as a tumor suppressor in cSCC. Mice with epidermal deficiency of both Kdm6a and Trp53 exhibited 100% penetrant, spontaneous cSCC development within a year, and exome sequencing of resulting tumors reveals recurrent mutations in Ncstn and Vcan. Four of 16 tumors exhibited deletions in large portions of chromosome 1 involving Ncstn, whereas another 25% of tumors harbored deletions in chromosome 19 involving Pten, implicating the loss of other tumor suppressors as cooperating events for combined KDM6A- and TRP53-dependent tumorigenesis. This study suggests that KDM6A acts as an important tumor suppressor for cSCC pathogenesis.
Collapse
Affiliation(s)
- Lauren K Shea
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Neal S Akhave
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leslie A Sutton
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leigh A Compton
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conner York
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sai Mukund Ramakrishnan
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Christopher A Miller
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lukas D Wartman
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David Y Chen
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
19
|
Newell F, Johansson PA, Wilmott JS, Nones K, Lakis V, Pritchard AL, Lo SN, Rawson RV, Kazakoff SH, Colebatch AJ, Koufariotis LT, Ferguson PM, Wood S, Leonard C, Law MH, Brooks KM, Broit N, Palmer JM, Couts KL, Vergara IA, Long GV, Barbour AP, Nieweg OE, Shivalingam B, Robinson WA, Stretch JR, Spillane AJ, Saw RP, Shannon KF, Thompson JF, Mann GJ, Pearson JV, Scolyer RA, Waddell N, Hayward NK. Comparative Genomics Provides Etiologic and Biological Insight into Melanoma Subtypes. Cancer Discov 2022; 12:2856-2879. [PMID: 36098958 PMCID: PMC9716259 DOI: 10.1158/2159-8290.cd-22-0603] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023]
Abstract
Melanoma is a cancer of melanocytes, with multiple subtypes based on body site location. Cutaneous melanoma is associated with skin exposed to ultraviolet radiation; uveal melanoma occurs in the eyes; mucosal melanoma occurs in internal mucous membranes; and acral melanoma occurs on the palms, soles, and nail beds. Here, we present the largest whole-genome sequencing study of melanoma to date, with 570 tumors profiled, as well as methylation and RNA sequencing for subsets of tumors. Uveal melanoma is genomically distinct from other melanoma subtypes, harboring the lowest tumor mutation burden and with significantly mutated genes in the G-protein signaling pathway. Most cutaneous, acral, and mucosal melanomas share alterations in components of the MAPK, PI3K, p53, p16, and telomere pathways. However, the mechanism by which these pathways are activated or inactivated varies between melanoma subtypes. Additionally, we identify potential novel germline predisposition genes for some of the less common melanoma subtypes. SIGNIFICANCE This is the largest whole-genome analysis of melanoma to date, comprehensively comparing the genomics of the four major melanoma subtypes. This study highlights both similarities and differences between the subtypes, providing insights into the etiology and biology of melanoma. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Peter A. Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L. Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Genetics and Immunology, Division of Biomedical Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Andrew J. Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Peter M. Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew H. Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kelly M. Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Q-Gen Cell Therapeutics, Brisbane, Queensland, Australia
| | - Jane M. Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kasey L. Couts
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Andrew P. Barbour
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Omgo E. Nieweg
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - William A. Robinson
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robyn P.M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Kerwin F. Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | | |
Collapse
|
20
|
Castrogiovanni C, Meraldi P. Cell division: The science friction of chromosome attachment. Curr Biol 2022; 32:R744-R746. [PMID: 35820385 DOI: 10.1016/j.cub.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
During mitosis, chromosomes must bind spindle microtubules via kinetochores in a stable yet dynamic manner to ensure rapid frictionless movements. A recent study identifies the first complex that specifically reduces friction in the kinetochore-microtubule interface to ensure efficient chromosome segregation.
Collapse
Affiliation(s)
- Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
21
|
Rosas-Salvans M, Sutanto R, Suresh P, Dumont S. The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface. Curr Biol 2022; 32:2621-2631.e3. [PMID: 35580605 PMCID: PMC9295892 DOI: 10.1016/j.cub.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. While we know nearly all mammalian kinetochore proteins, how these give rise to the strong yet dynamic microtubule attachments required for function remains poorly understood. Here, we focus on the Astrin-SKAP complex, which localizes to bioriented kinetochores and is essential for chromosome segregation but whose mechanical role is unclear. Live imaging reveals that SKAP depletion dampens the movement and decreases the coordination of metaphase sister kinetochores and increases the tension between them. Using laser ablation to isolate kinetochores bound to polymerizing versus depolymerizing microtubules, we show that without SKAP, kinetochores move slower on both polymerizing and depolymerizing microtubules and that more force is needed to rescue microtubules to polymerize. Thus, in contrast to the previously described kinetochore proteins that increase the grip on microtubules under force, Astrin-SKAP reduces the grip, increasing attachment dynamics and force responsiveness and reducing friction. Together, our findings suggest a model where the Astrin-SKAP complex effectively "lubricates" correct, bioriented attachments to help preserve them.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA.
| | - Renaldo Sutanto
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA
| | - Pooja Suresh
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Biophysics Graduate Program, UCSF, 600 16th Street, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Biophysics Graduate Program, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, UCSF, 600 16th Street, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Qin B, Zhu Z, Yin F, Yan D, Wan J, Dong M, Wang Z. Phosphorylation of small kinetochore-associated protein induced by GSK3β promotes cell migration and invasion in esophageal cancer. Cell Cycle 2022; 21:972-983. [PMID: 35201967 PMCID: PMC9037550 DOI: 10.1080/15384101.2022.2038847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glycogen synthesis kinase-3β (GSK-3β) is a kinase shown to regulate esophageal cancer (EC) progression. However, the significance of GSK-3β in phosphorylation of small kinetochore-associated protein (SKAP) has not been fully characterized. GSK-3β/SKAP expression was analyzed in EC tissues by RT-qPCR. The association between GSK-3β expression and the overall survival was analyzed using the Kaplan-Meier method. Transwell and wound healing assays were performed to assess the effects of GSK-3β/SKAP knockdown on EC cell migration and invasion. By in vitro kinase assay, the SKAP T294 site was identified as a phosphorylated target of GSK-3β. Moreover, we established two cell lines expressing either T294D (phosphor-mimic) or T294A (phosphor-deficiency) SKAP to analyze the effect of SKAP phosphorylation on EC cell invasion, migration, and epithelial-mesenchymal transition (EMT) process. GSK-3β was overexpressed and positively correlated with SKAP levels in EC tissues. Increased GSK-3β expression was associated with EC poor prognosis. Both of GSK-3β knockdown and silencing SKAP decreased EC cell migration and invasion. GSK-3β phosphorylated SKAP protein at Thr294 site. Additionally, a T294D mutant SKAP enhanced cell migration, invasion, and EMT process. Conversely, a T294A mutant SKAP inhibited EC cell malignancy. Meanwhile, cell invasion and migration abilities were inhibited after silencing GSK-3β in EC109-WT, EC109-T294A and EC109-T294D cells. Phosphorylation of SKAP induced by GSK-3β promoted EC cell migration and invasion.
Collapse
Affiliation(s)
- Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fanxiang Yin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Dong
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,CONTACT Zhengyang Wang ; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou450000, Henan, China
| |
Collapse
|
23
|
Emerging precision diagnostics in advanced cutaneous squamous cell carcinoma. NPJ Precis Oncol 2022; 6:17. [PMID: 35322182 PMCID: PMC8943023 DOI: 10.1038/s41698-022-00261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced cutaneous squamous cell carcinoma (cSCC) encompasses unresectable and metastatic disease. Although immune checkpoint inhibition has been approved for this entity recently, a considerable proportion of cases is associated with significant morbidity and mortality. Clinical, histopathological, and radiological criteria are used for current diagnostics, classification, and therapeutic decision-making. The identification of complex molecular biomarkers to accurately stratify patients is a not yet accomplished requirement to further shift current diagnostics and care to a personalized precision medicine. This article highlights new insights into the mutational profile of cSCC, summarizes current diagnostic and therapeutic standards, and discusses emerging diagnostic approaches with emphasis on liquid biopsy and tumor tissue-based analyses.
Collapse
|
24
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
25
|
Dauch C, Shim S, Cole MW, Pollock NC, Beer AJ, Ramroop J, Klee V, Allain DC, Shakya R, Knoblaugh SE, Kulewsky J, Toland AE. KMT2D loss drives aggressive tumor phenotypes in cutaneous squamous cell carcinoma. Am J Cancer Res 2022; 12:1309-1322. [PMID: 35411237 PMCID: PMC8984905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most lethal skin cancer. Due to ultraviolet light-induced damage, cSCCs have a high mutation rate, but some genes are more frequently mutated in aggressive cSCCs. Lysine-specific histone methyltransferase 2D (KMT2D) has a two-fold higher mutation frequency in metastatic cSCCs relative to primary non-metastatic associated cSCCs. The role of KMT2D in more aggressive phenotypes in cSCC is uncharacterized. Studies of other tumor types suggest that KMT2D acts to suppress tumor development. To determine whether KMT2D loss has an impact on tumor characteristics, we disrupted KMT2D in a cSCC cell line using CRISPR-cas9 and performed phenotypic analyses. KMT2D loss modestly increased cell proliferation and colony formation (1.4- and 1.6-fold respectively). Cells lacking KMT2D showed increased rates of migration and faster cell cycle progression. In xenograft models, tumors with KMT2D loss showed slight increases in mitotic indices. Collectively, these findings suggest that KMT2D loss-of-function mutations may promote more aggressive and invasive behaviors in cSCC, suggesting that KMT2D-related pathways could be targets for cancer therapies. Future studies to determine the downstream genes and mechanism of phenotypic effect are needed.
Collapse
Affiliation(s)
- Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Sharon Shim
- Central Michigan University College of MedicineMount Pleasant, MI 48858, USA
| | - Matthew Wyatt Cole
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State UniversityColumbus, OH 43210, USA
| | - Nijole C Pollock
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Abigail J Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Johnny Ramroop
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
| | - Victoria Klee
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
| | - Dawn C Allain
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State UniversityColumbus, OH 43210, USA
| | - Jesse Kulewsky
- Department of Pathology, The Ohio State University Wexner Medical CenterColumbus, OH 43210, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of MedicineColumbus, OH 43210, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State UniversityColumbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State UniversityColumbus, OH 43210, USA
| |
Collapse
|
26
|
Circ_0001821 contributes to the development of cutaneous squamous cell carcinoma by regulating miR-148a-3p/EGFR axis and activating PI3K/Akt pathway. Mol Cell Biol 2022; 42:e0008921. [PMID: 35191745 DOI: 10.1128/mcb.00089-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are implicated in diverse human cancers. However, the effects of circRNAs on cutaneous squamous cell carcinoma (CSCC) are barely known. we focused on the function of circ_0001821 in CSCC. Methods: QRT-PCR assay was performed for the expression of circ_0001821, miR-148a-3p and epidermal growth factor receptor (EGFR). Cell Counting Kit-8 (CCK-8) assay and colony formation assay were conducted to evaluate cell viability and colony formation ability. Flow cytometry analysis was adopted to analyze cell cycle and apoptosis. Transwell assay was employed to detect cell motility. Dual-luciferase reporter assay, RIP assay and RNA pull-down assay were utilized to verify the interaction between miR-148a-3p and circ_0001821 or EGFR. Western blot assay was conducted for protein levels. Murine xenograft model assay was used to explore the function of circ_0001821 in vivo. Results: Circ_0001821 level was increased in CSCC tissues and cells. Circ_0001821 knockdown restrained cell viability, colony formation, cell cycle process and metastasis and facilitated cell apoptosis in vitro and restrained tumor growth in vivo. For mechanism analysis, circ_0001821 directly targeted miR-148a-3p to elevate EGFR expression. Downregulation of miR-148a-3p weakened the impacts of circ_0001821 deficiency on CSCC malignant phenotypes. Moreover, miR-148a-3p overexpression inhibited the malignant phenotypes of CSCC cells, with EGFR elevation abrogated the effects. In addition, circ_0001821 knockdown blocked the activation of PI3K/Akt pathway. Conclusion: Circ_0001821 functioned as a tumor promotor in CSCC via regulating miR-148a-3p/EGFR axis and PI3K/Akt pathway.
Collapse
|
27
|
Nawrocka PM, Galka-Marciniak P, Urbanek-Trzeciak MO, M-Thirusenthilarasan I, Szostak N, Philips A, Susok L, Sand M, Kozlowski P. Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants. Front Oncol 2021; 11:752579. [PMID: 34900699 PMCID: PMC8656283 DOI: 10.3389/fonc.2021.752579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is the most common cancer in humans, characterized by the highest mutation rate among cancers, and is mostly driven by mutations in genes involved in the hedgehog pathway. To date, almost all BCC genetic studies have focused exclusively on protein-coding sequences; therefore, the impact of noncoding variants on the BCC genome is unrecognized. In this study, with the use of whole-exome sequencing of 27 tumor/normal pairs of BCC samples, we performed an analysis of somatic mutations in both protein-coding sequences and gene-associated noncoding regions, including 5'UTRs, 3'UTRs, and exon-adjacent intron sequences. Separately, in each region, we performed hotspot identification, mutation enrichment analysis, and cancer driver identification with OncodriveFML. Additionally, we performed a whole-genome copy number alteration analysis with GISTIC2. Of the >80,000 identified mutations, ~50% were localized in noncoding regions. The results of the analysis generally corroborated the previous findings regarding genes mutated in coding sequences, including PTCH1, TP53, and MYCN, but more importantly showed that mutations were also clustered in specific noncoding regions, including hotspots. Some of the genes specifically mutated in noncoding regions were identified as highly potent cancer drivers, of which BAD had a mutation hotspot in the 3'UTR, DHODH had a mutation hotspot in the Kozak sequence in the 5'UTR, and CHCHD2 frequently showed mutations in the 5'UTR. All of these genes are functionally implicated in cancer-related processes (e.g., apoptosis, mitochondrial metabolism, and de novo pyrimidine synthesis) or the pathogenesis of UV radiation-induced cancers. We also found that the identified BAD and CHCHD2 mutations frequently occur in melanoma but not in other cancers via The Cancer Genome Atlas analysis. Finally, we identified a frequent deletion of chr9q, encompassing PTCH1, and unreported frequent copy number gain of chr9p, encompassing the genes encoding the immune checkpoint ligands PD-L1 and PD-L2. In conclusion, this study is the first systematic analysis of coding and noncoding mutations in BCC and provides a strong basis for further analyses of the variants in BCC and cancer in general.
Collapse
Affiliation(s)
- Paulina Maria Nawrocka
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Natalia Szostak
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Laura Susok
- Department of Dermatology, Venereology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael Sand
- Department of Dermatology, Venereology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, Essen, Germany Department of Plastic, Reconstructive and Aesthetic Surgery, St. Josef Hospital, Essen, Germany
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
28
|
Positive association between actinic keratosis and internal malignancies: a nationwide population-based cohort study. Sci Rep 2021; 11:19769. [PMID: 34611257 PMCID: PMC8492719 DOI: 10.1038/s41598-021-99225-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Little is known about the comorbidities in actinic keratosis patients. To evaluate the association of actinic keratosis with certain malignancies. All patients with actinic keratosis (n = 61,438) and age- and sex-matched control subjects (n = 307,190) at a 5:1 ratio were enrolled using data from the Korean National Health Insurance Service between the years 2007 and 2014. In subjects with actinic keratosis, overall cancer incidence was higher than that for controls after income level, habitat, diabetes, hypertension, and dyslipidemia were adjusted (Hazard Ratio [HR] = 1.43 [95% confidence interval 1.38–1.47]). The positive association of specific cancers were observed in the following order: skin cancer (HR = 3.43 [2.47–4.75]), oral cavity and pharyngeal cancer (HR = 1.99 [1.57–2.52]), lymphoma (HR = 1.59 [1.28–1.96]), leukemia (HR = 1.35 [1.03–1.77]), prostate cancer (HR = 1.35 [1.21–1.51]), renal cancer (HR = 1.29 [1.02–1.63]), liver cancer (HR = 1.21 [1.09–1.35]), thyroid cancer (HR = 1.20 [1.05–1.38]), and gastric cancer (HR = 1.13 [1.03–1.23]). Although further research on pathologic mechanism is needed, the implications of a positive correlation between actinic keratosis and internal organ malignancies has great significance.
Collapse
|
29
|
Wei R, Quan J, Li S, Liu H, Guan X, Jiang Z, Wang X. Integrative Analysis of Biomarkers Through Machine Learning Identifies Stemness Features in Colorectal Cancer. Front Cell Dev Biol 2021; 9:724860. [PMID: 34568334 PMCID: PMC8456021 DOI: 10.3389/fcell.2021.724860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Cancer stem cells (CSCs), which are characterized by self-renewal and plasticity, are highly correlated with tumor metastasis and drug resistance. To fully understand the role of CSCs in colorectal cancer (CRC), we evaluated the stemness traits and prognostic value of stemness-related genes in CRC. Methods: In this study, the data from 616 CRC patients from The Cancer Genome Atlas (TCGA) were assessed and subtyped based on the mRNA expression-based stemness index (mRNAsi). The correlations of cancer stemness with the immune microenvironment, tumor mutational burden (TMB), and N6-methyladenosine (m6A) RNA methylation regulators were analyzed. Weighted gene co-expression network analysis (WGCNA) was performed to identify the crucial stemness-related genes and modules. Furthermore, a prognostic expression signature was constructed using the Lasso-penalized Cox regression analysis. The signature was validated via multiplex immunofluorescence staining of tissue samples in an independent cohort of 48 CRC patients. Results: This study suggests that high-mRNAsi scores are associated with poor overall survival in stage IV CRC patients. Moreover, the levels of TMB and m6A RNA methylation regulators were positively correlated with mRNAsi scores, and low-mRNAsi scores were characterized by increased immune activity in CRC. The analysis identified 34 key genes as candidate prognosis biomarkers. Finally, a three-gene prognostic signature (PARPBP, KNSTRN, and KIF2C) was explored together with specific clinical features to construct a nomogram, which was successfully validated in an external cohort. Conclusion: There is a unique correlation between CSCs and the prognosis of CRC patients, and the novel biomarkers related to cell stemness could accurately predict the clinical outcomes of these patients.
Collapse
Affiliation(s)
- Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichuan Quan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Bloehdorn J, Braun A, Taylor-Weiner A, Jebaraj BMC, Robrecht S, Krzykalla J, Pan H, Giza A, Akylzhanova G, Holzmann K, Scheffold A, Johnston HE, Yeh RF, Klymenko T, Tausch E, Eichhorst B, Bullinger L, Fischer K, Weisser M, Robak T, Schneider C, Gribben J, Dahal LN, Carter MJ, Elemento O, Landau DA, Neuberg DS, Cragg MS, Benner A, Hallek M, Wu CJ, Döhner H, Stilgenbauer S, Mertens D. Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nat Commun 2021; 12:5395. [PMID: 34518531 PMCID: PMC8438057 DOI: 10.1038/s41467-021-25403-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.
Collapse
Affiliation(s)
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Adam Giza
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Gulnara Akylzhanova
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Harvey E Johnston
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Ru-Fang Yeh
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Tetyana Klymenko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eugen Tausch
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Lars Bullinger
- Medical Clinic for Hematology, Oncology and Tumor Biology, Charité University Hospital, Berlin, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Martin Weisser
- Roche Pharma Research and Early Development, Penzberg, Germany
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lekh N Dahal
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mathew J Carter
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- Cancer Genomics and Evolutionary Dynamics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark S Cragg
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Daniel Mertens
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Kim YS, Shin S, Jung SH, Park YM, Park GS, Lee SH, Chung YJ. Genomic progression of precancerous actinic keratosis to squamous cell carcinoma. J Invest Dermatol 2021; 142:528-538.e8. [PMID: 34480890 DOI: 10.1016/j.jid.2021.07.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
The mechanism underlying the progression of actinic keratosis (AK) and cutaneous squamous cell carcinoma in situ (SCCIS) to squamous cell carcinoma (SCC) remains unclear. To investigate this, we performed regional microdissection and targeted deep sequencing in SCC (N=10) and paired adjacent SE (sun-damaged epidermis)/AK/SCCIS (N=13) samples to detect mutations and copy number alterations (CNAs). Most (11/13) SE/AK/SCCIS tissues harbored ≥ 1 driver alterations, indicating their precancerous nature. All pairs except one showed genome architectures representing genomic progression of SE/AK/SCCIS to SCC with common trunks and unique branches (7 parallel and 5 linear progression cases). SE/AK/SCCIS tissues tended to harbor lower mutation/CNA burdens than SCC tissues, but most of them had driver mutations, including NOTCH1 and TP53 mutations. SCC-specific genomic alterations included TP53, PIK3CA, FBXW7, and CDKN2A mutations and a MYC copy-number gain, but they were heterogeneous among cases, suggesting that a single gene or pathway does not explain the progression of AK to SCC. In multiregion analyses of AK lesions, only some AK samples were related to SCC. In conclusion, the SE/AK/SCCIS genomes may have previously acquired truncal driver alterations, such as NOTCH1 and TP53 mutations, which promote parallel or linear progression to SCC upon acquisition of additional genomic alterations.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea
| | - Sun Shin
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea
| | | | - Young Min Park
- Department of Dermatology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Gyeong Sin Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea; Department of Pathology, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Aiderus A, Newberg JY, Guzman-Rojas L, Contreras-Sandoval AM, Meshey AL, Jones DJ, Amaya-Manzanares F, Rangel R, Ward JM, Lee SC, Ban KHK, Rogers K, Rogers SM, Selvanesan L, McNoe LA, Copeland NG, Jenkins NA, Tsai KY, Black MA, Mann KM, Mann MB. Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genet 2021; 17:e1009094. [PMID: 34398873 PMCID: PMC8389471 DOI: 10.1371/journal.pgen.1009094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates. Non-melanoma skin cancers, the most common cancers in the US, are caused by UV skin exposure. Nearly 1 million cases of cutaneous squamous cell carcinoma (cuSCC) are diagnosed in the US each year. While most cuSCCs are highly treatable, more than twice as many individuals die from this disease as from melanoma. The high burden of UV-induced DNA damage in human skin poses a challenge for identifying initiating and cooperating mutations that promote cuSCC development and for defining potential therapeutic targets. Here, we describe a genetic screen in mice using a DNA transposon system to mutagenize the genome of keratinocytes and drive squamous cell carcinoma in the absence of UV. By sequencing where the transposons selectively integrated in the genomes of normal skin, skin with pre-cancerous lesions and skin with fully developed cuSCCs from our mouse model, we were able to identify frequently mutated genes likely important for this disease. Our analysis also defined cooperation between sets of genes not previously appreciated in cuSCC. Our mouse model and ensuing data provide a framework for understanding the genetics of cuSCC and for defining the molecular changes that may lead to the future therapies for patients.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Devin J. Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Felipe Amaya-Manzanares
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Song-Choon Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Hon-Kim Ban
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Susan M. Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Luxmanan Selvanesan
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leslie A. McNoe
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael A. Black
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol 2021; 141:2354-2368. [PMID: 33845078 DOI: 10.1016/j.jid.2020.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) are frequent heterogeneous tumors arising from sun-exposed regions of the skin and characterized by complex pathogenesis. HOPX is a member of the homeodomain-containing superfamily of proteins holding an atypical homeodomain unable to bind to DNA. First discovered in the heart as a regulator of cardiac development, in the skin, HOPX modulates the terminal differentiation of keratinocytes. There is a particular interest in studying HOPX in squamous skin carcinogenesis because it has the atypical structure and the functional duality as an oncogene and a tumor suppressor gene, reported in different malignancies. In this study, we analyzed the effects of HOPX knockdown and overexpression on SCC tumorigenicity in vitro and in vivo. Our data show that HOPX knockdown in SCC cells inhibits their proliferative and invasive activity through the acceleration of apoptosis. We established that methylation of two alternative HOPX promoters leads to differential expression of HOPX transcripts in normal keratinocytes and SCC cells. Importantly, we report that HOPX acts as an oncogene in the pathogenesis of SCC probably through the activation of the second alternative promoter and the modulation of apoptosis.
Collapse
|
35
|
Chang D, Shain AH. The landscape of driver mutations in cutaneous squamous cell carcinoma. NPJ Genom Med 2021; 6:61. [PMID: 34272401 PMCID: PMC8285521 DOI: 10.1038/s41525-021-00226-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma is a form of skin cancer originating from keratinocytes in the skin. It is the second most common type of cancer and is responsible for an estimated 8000 deaths per year in the United States. Compared to other cancer subtypes with similar incidences and death tolls, our understanding of the somatic mutations driving cutaneous squamous cell carcinoma is limited. The main challenge is that these tumors have high mutation burdens, primarily a consequence of UV-radiation-induced DNA damage from sunlight, making it difficult to distinguish driver mutations from passenger mutations. We overcame this challenge by performing a meta-analysis of publicly available sequencing data covering 105 tumors from 10 different studies. Moreover, we eliminated tumors with issues, such as low neoplastic cell content, and from the tumors that passed quality control, we utilized multiple strategies to reveal genes under selection. In total, we nominated 30 cancer genes. Among the more novel genes, mutations frequently affected EP300, PBRM1, USP28, and CHUK. Collectively, mutations in the NOTCH and p53 pathways were ubiquitous, and to a lesser extent, mutations affected genes in the Hippo pathway, genes in the Ras/MAPK/PI3K pathway, genes critical for cell-cycle checkpoint control, and genes encoding chromatin remodeling factors. Taken together, our study provides a catalog of driver genes in cutaneous squamous cell carcinoma, offering points of therapeutic intervention and insights into the biology of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Darwin Chang
- University of California San Francisco, Department of Dermatology, San Francisco, CA, USA
- University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - A Hunter Shain
- University of California San Francisco, Department of Dermatology, San Francisco, CA, USA.
- University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
36
|
Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins. Cancers (Basel) 2021; 13:cancers13081770. [PMID: 33917267 PMCID: PMC8068014 DOI: 10.3390/cancers13081770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In this review, the genetic landscape of squamous cell carcinoma is related to the potential targets of indirubin-based small molecules in cancer therapy. Being a component of traditional Chinese medicine, indirubins are used to treat chronic or inflammatory diseases, and have received increasing attention in cancer treatment due to their proapoptotic and antiproliferative activity. Frequent genetic alterations of squamous cell carcinomas are summarized, and it is discussed how these may render tumors susceptible to indirubin-based small molecule inhibitors. Abstract Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5′-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.
Collapse
|
37
|
Deng P, Zhou R, Zhang J, Cao L. Increased Expression of KNSTRN in Lung Adenocarcinoma Predicts Poor Prognosis: A Bioinformatics Analysis Based on TCGA Data. J Cancer 2021; 12:3239-3248. [PMID: 33976733 PMCID: PMC8100810 DOI: 10.7150/jca.51591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Available evidence indicates that kinetochore-localized astrin/SPAG5-binding protein (KNSTRN) is an oncogene in skin carcinoma. This study aimed to evaluate the prognostic value of KNSTRN in lung adenocarcinoma (LUAD) underlying the Cancer Genome Atlas (TCGA) database. Methods: The relationship between clinicopathological features and KNSTRN was analyzed with the Wilcoxon signed-rank test and logistic regression. The clinicopathological characteristics associated with overall survival (OS) were evaluated using Cox regression and the Kaplan-Meier method. Gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and single-sample GSEA (ssGSEA) were performed using TCGA data. Results: The KNSTRN expression level was found to be significantly higher in LUAD tissue than in normal lung tissue. Also, it correlated significantly with advanced clinicopathological characteristics. The Kaplan-Meier survival curve revealed a significant relationship of high expression of KNSTRN with poor OS in patients with LUAD. The multivariate Cox regression hazard model demonstrated the KNSTRN expression level as an independent prognostic factor for patients with LUAD. GO and GSEA analyses indicated the involvement of KNSTRN in cell cycle checkpoints, DNA replication, and G2-M checkpoint M phase. Based on ssGSEA analysis, KNSTRN had a positive relationship with Th2 cells and CD56dim natural killer cells. The KNSTRN expression levels in several types of immune cells were significantly different. Conclusion: The findings suggested that the increased expression level of KNSTRN was significantly associated with the progression of LUAD and could also serve as a novel prognostic biomarker for patients with LUAD.
Collapse
Affiliation(s)
- Pengbo Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinghui Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Liming Cao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China.,Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Lobl MB, Clarey D, Schmidt C, Wichman C, Wysong A. Analysis of mutations in cutaneous squamous cell carcinoma reveals novel genes and mutations associated with patient-specific characteristics and metastasis: a systematic review. Arch Dermatol Res 2021; 314:711-718. [PMID: 33735396 DOI: 10.1007/s00403-021-02213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) causes approximately 1,000,000 cases and 9000 deaths each year in the United States. While individual tumor sequencing studies have discovered driver mutations in SCC, there has yet to be a review and subsequent analysis synthesizing current studies. To conduct a comprehensive synthesis and analysis of SCC sequencing studies with individual patient-level data, a comprehensive literature search was performed. Statistical analyses were performed to identify trends. Studies meeting inclusion criteria included a total of 279 patients (189 localized SCCs, 90 metastatic SCCs). Several mutations were correlated with demographic characteristics (TP53, MLL4, BRCA2, COL4A1). TP53, TERT, SPEN, MLL3, and NOTCH2 mutations were significantly more likely to be found in metastatic versus localized SCCs even after the Bonferroni correction for multiple comparisons. Silent mutations were found more in localized SCCs than metastatic SCCs, and nonsense mutations were found more in metastatic SCCs than localized SCCs (p = 0.0003 and p = 0.04, respectively). Additional mutations were identified that have not yet been explored in SCC including AHNAK2, LRP1B, TRIO, MDN1, COL4A2, SVIL, VPS13C, DST, DMD, and DYSF. Overall, novel mutations were identified and differences between mutation patterns in localized and metastatic SCCs were found. These findings may have clinical applications.
Collapse
Affiliation(s)
- Marissa B Lobl
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dillon Clarey
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cynthia Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher Wichman
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashley Wysong
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
39
|
Was H, Borkowska A, Olszewska A, Klemba A, Marciniak M, Synowiec A, Kieda C. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin Cancer Biol 2021; 81:24-36. [PMID: 33727077 DOI: 10.1016/j.semcancer.2021.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023]
Abstract
Ploidy increase has been shown to occur in different type of tumors and participate in tumor initiation and resistance to the treatment. Polyploid giant cancer cells (PGCCs) are cells with multiple nuclei or a single giant nucleus containing multiple complete sets of chromosomes. The mechanism leading to formation of PGCCs may depend on: endoreplication, mitotic slippage, cytokinesis failure, cell fusion or cell cannibalism. Polyploidy formation might be triggered in response to various genotoxic stresses including: chemotherapeutics, radiation, hypoxia, oxidative stress or environmental factors like: air pollution, UV light or hyperthermia. A fundamental feature of polyploid cancer cells is the generation of progeny during the reversal of the polyploid state (depolyploidization) that may show high aggressiveness resulting in the formation of resistant disease and tumor recurrence. Therefore, we propose that modern anti-cancer therapies should be designed taking under consideration polyploidization/ depolyploidization processes, which confer the polyploidization a hidden potential similar to a Trojan horse delayed aggressiveness. Various mechanisms and stress factors leading to polyploidy formation in cancer cells are discussed in this review.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Klemba
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c Street, Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| |
Collapse
|
40
|
Xiong Y, Ju L, Yuan L, Chen L, Wang G, Xu H, Peng T, Luo Y, Xiao Y, Wang X. KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer. Oncogene 2021; 40:1595-1608. [PMID: 33452459 DOI: 10.1038/s41388-020-01634-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
KNSTRN is a component of the mitotic spindle, which was rarely investigated in tumorigenesis. AKT plays an essential role in tumorigenesis by modulating the phosphorylation of various substrates. The activation of AKT is regulated by PTEN and PIP3. Here, we prove KNSTRN is positively correlated with malignancy of bladder cancer and KNSTRN activates AKT phosphorylation at Thr308 and Ser473. More importantly, our study reveals that both KNSTRN and PTEN interact with PH domain of AKT at cell membrane. The amount of KNSTRN interacted with AKT is negatively related to PTEN. Furthermore, PIP3 pull-down assay proves that KNSTRN promoted AKT movement to PIP3. These data suggest KNSTRN may activate AKT phosphorylation by promoting AKT movement to PIP3 and alleviating PTEN suppression. Based on the activation of AKT phosphorylation, our study demonstrates that KNSTRN promotes bladder cancer metastasis and gemcitabine resistance in vitro and in vivo. Meanwhile, the effect of KNSTRN on tumorigenesis and gemcitabine resistance could be restored by AKT specific inhibitor MK2206 or AKT overexpression. In conclusion, we identify an oncogene KNSTRN that promotes tumorigenesis and gemcitabine resistance by activating AKT phosphorylation and may serve as a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lushun Yuan
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huimin Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China. .,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Cao C, Zhang C, Sun Y, Mu Z, Shen Q. Myosin18B predicts favorable prognosis of cutaneous squamous-cell carcinoma. Genes Genomics 2021; 43:371-378. [PMID: 33555505 DOI: 10.1007/s13258-021-01037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Myosin18 family, including Myosin18A (MYO18A) and Myosin18B (MYO18B), are newly-identified Myosins in Myosin superfamily. The expression and function of Myosin18 family in cancer progression is still controversial, and in cutaneous squamous-cell carcinoma (cSCC) is totally unknown. OBJECTIVE To investigate the expression and prognostic significance of Myosin18 family in cSCC. METHODS In this study, the expressions of MYO18 family, including MYO18A and MYO18B were detected in six pairs of cSCCs and corresponding normal tissues with qRT-PCR. MYO18A and MYO18B expressions and intracellular locations in 80 cSCCs were detected with immunohistochemistry. The clinical significance was evaluated by analyzing the correlation between MYO18 family and clinicopathological factors. The prognostic significance of MYO18 family was estimated by univariate analysis with log-rank test, and by multivariate analysis by Cox-regression model. RESULTS The percentages of high MYO18A and MYO18B in cSCC were 43.75% and 36.25%, respectively. High expression of MYO18A (P = 0.035) and MYO18B (P = 0.032) were both associated with less tumor size. MYO18A had no significant influence on sSCC prognosis (P = 0.686), but low expression of MYO18B was proved to be significantly associated with poor outcome of cSCC (P = 0.014). MYO18B was confirmed as an independent prognostic biomarker of cSCC (P = 0.002), indicating the favorable outcome. CONCLUSION The expression of MYO18B was an independent prognostic biomarker of cSCC, predicting the favorable prognosis independently. Investigating the expression of MYO18B can help stratify the subset of high-risk cSCC patients for more potent treatment and post-operational surveillance.
Collapse
Affiliation(s)
- Can Cao
- Departments of Dermatology, the Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Chao Zhang
- Departments of Dermatology, the Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Ying Sun
- Departments of Dermatology, the Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Zhen Mu
- Departments of Dermatology, the Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Qin Shen
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, No.856, Luoyu Road, Hongshan District, Wuhan, 430061, Hubei, China. .,Department of Dermatology, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China.
| |
Collapse
|
42
|
Krushkal J, Negi S, Yee LM, Evans JR, Grkovic T, Palmisano A, Fang J, Sankaran H, McShane LM, Zhao Y, O'Keefe BR. Molecular genomic features associated with in vitro response of the NCI-60 cancer cell line panel to natural products. Mol Oncol 2021; 15:381-406. [PMID: 33169510 PMCID: PMC7858122 DOI: 10.1002/1878-0261.12849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Natural products remain a significant source of anticancer chemotherapeutics. The search for targeted drugs for cancer treatment includes consideration of natural products, which may provide new opportunities for antitumor cytotoxicity as single agents or in combination therapy. We examined the association of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 1302 small molecules which included natural products, semisynthetic natural product derivatives, and synthetic compounds based on a natural product pharmacophore from the Developmental Therapeutics Program of the US National Cancer Institute's database. These compounds were obtained from a variety of plant, marine, and microbial species. Molecular information utilized for the analysis included expression measures for 23059 annotated transcripts, lncRNAs, and miRNAs, and data on protein-changing single nucleotide variants in 211 cancer-related genes. We found associations of expression of multiple genes including SLFN11, CYP2J2, EPHX1, GPC1, ELF3, and MGMT involved in DNA damage repair, NOTCH family members, ABC and SLC transporters, and both mutations in tyrosine kinases and BRAF V600E with NCI-60 responses to specific categories of natural products. Hierarchical clustering identified groups of natural products, which correlated with a specific mechanism of action. Specifically, several natural product clusters were associated with SLFN11 gene expression, suggesting that potential action of these compounds may involve DNA damage. The associations between gene expression or genome alterations of functionally relevant genes with the response of cancer cells to natural products provide new information about potential mechanisms of action of these identified clusters of compounds with potentially similar biological effects. This information will assist in future drug discovery and in design of new targeted cancer chemotherapy agents.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Simarjeet Negi
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Laura M. Yee
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Jason R. Evans
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
| | - Tanja Grkovic
- Natural Products Support GroupFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Alida Palmisano
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
- General Dynamics Information Technology (GDIT)Falls ChurchVAUSA
| | - Jianwen Fang
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Hari Sankaran
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Lisa M. McShane
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Yingdong Zhao
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Barry R. O'Keefe
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
- Molecular Targets ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| |
Collapse
|
43
|
Economopoulou P, Anastasiou M, Papaxoinis G, Spathas N, Spathis A, Oikonomopoulos N, Kotsantis I, Tsavaris O, Gkotzamanidou M, Gavrielatou N, Vagia E, Kyrodimos E, Gagari E, Giotakis E, Delides A, Psyrri A. Patterns of Response to Immune Checkpoint Inhibitors in Association with Genomic and Clinical Features in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2021; 13:cancers13020286. [PMID: 33466719 PMCID: PMC7828787 DOI: 10.3390/cancers13020286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy agents, such as immune checkpoint inhibitors (ICIs), act through different mechanisms compared to conventional chemotherapy and are characterized by unique patterns of response, such as hyperprogression (HPD), which refers to the paradoxical acceleration of tumor growth kinetics (TGK). In this regard, we sought to compare patterns of response to ICIs with respect to clinical and genomic features in a cohort of patients with recurrent/metastatic head and neck squamous cell carcinoma (HNSCC). In our cohort, HPD was observed in 15.4% of patients. We report for the first time an association of HPD with both shorter progression free survival and overall survival in HNSCC. Importantly, in a multivariate Cox analysis, the presence of HPD remained an independent prognostic factor for survival. Primary site in the oral cavity and administration of ICI in the second/third setting were significant predictors of HPD in multivariate analysis. Genomic profiling revealed that gene amplification was more common in HPD patients. Abstract Background: We sought to compare patterns of response to immune checkpoint inhibitors (ICI) with respect to clinical and genomic features in a retrospective cohort of patients with recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Methods: One hundred seventeen patients with R/M HNSCC treated with ICI were included in this study. Tumor growth kinetics (TGK) prior to and TGK upon immunotherapy (IO) was available for 49 patients. The TGK ratio (TGKR, the ratio of tumor growth velocity before and upon treatment) was calculated. Hyperprogression (HPD) was defined as TGKR ≥ 2. Results: HPD was documented in 18 patients (15.4% of the whole cohort). Patients with HPD had statistically significant shorter progression free survival (PFS) (median PFS 1.8 months (95% CI, 1.03–2.69) vs. 6.1 months for patients with non-HPD (95% CI, 4.78–7.47), p = 0.0001) and overall survival (OS) (median OS 6.53 months (95% CI, 0–13.39) vs. 15 months in patients with non HPD (95% CI, 7.1–22.8), p = 0.0018). In a multivariate Cox analysis, the presence of HPD remained an independent prognostic factor (p = 0.049). Primary site in the oral cavity and administration of ICI in the second/third setting were significant predictors of HPD in multivariate analysis (p = 0.028 and p = 0.012, respectively). Genomic profiling revealed that gene amplification was more common in HPD patients. EGFR gene amplification was only observed in HPD patients, but the number of events was inadequate for the analysis to reach statistical significance. The previously described MDM2 amplification was not identified. Conclusions: HPD was observed in 15.4 % of patients with R/M HNSCC treated with IO and was associated with worse PFS and OS. EGFR amplification was identified in patients with HPD.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Maria Anastasiou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - George Papaxoinis
- Second Department of Medical Oncology, Agios Savas Anticancer Hospital, 11522 Athens, Greece;
| | - Nikolaos Spathas
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.S.); (N.O.)
| | - Nikolaos Oikonomopoulos
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (A.S.); (N.O.)
| | - Ioannis Kotsantis
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Onoufrios Tsavaris
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Maria Gkotzamanidou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Niki Gavrielatou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Elena Vagia
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
| | - Efthymios Kyrodimos
- Department of Otolaryngology-Head and Neck Surgery, Hippokration General Hospital, University of Athens, 11527 Athens, Greece;
| | - Eleni Gagari
- Oral Medicine Clinics, A. Syggros Hospital of Dermatologic and Venereal Diseases, Department of Dermatology, School of Medicine, University of Athens, 16121 Athens, Greece;
| | - Evangelos Giotakis
- Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany;
| | - Alexander Delides
- Second Otolaryngology Department, Attikon University Hospital, 12462 Athens, Greece;
| | - Amanda Psyrri
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (M.A.); (N.S.); (I.K.); (O.T.); (M.G.); (N.G.); (E.V.)
- Correspondence: ; Tel.: +30-2105831664
| |
Collapse
|
44
|
Mutant collagen COL11A1 enhances cancerous invasion. Oncogene 2021; 40:6299-6307. [PMID: 34584216 PMCID: PMC8566234 DOI: 10.1038/s41388-021-02013-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Collagens are the most abundant proteins in the body and comprise the basement membranes and stroma through which cancerous invasion occurs; however, a pro-neoplastic function for mutant collagens is undefined. Here we identify COL11A1 mutations in 66 of 100 cutaneous squamous cell carcinomas (cSCCs), the second most common U.S. cancer, concentrated in a triple helical region known to produce trans-dominant collagens. Analysis of COL11A1 and other collagen genes found that they are mutated across common epithelial malignancies. Knockout of mutant COL11A1 impairs cSCC tumorigenesis in vivo. Compared to otherwise genetically identical COL11A1 wild-type tissue, gene-edited mutant COL11A1 skin is characterized by induction of β1 integrin targets and accelerated neoplastic invasion. In mosaic tissue, mutant COL11A1 cells enhanced invasion by neighboring wild-type cells. These results suggest that specific collagens are commonly mutated in cancer and that mutant collagens may accelerate this process.
Collapse
|
45
|
Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink A, Bergenstråhle J, Larsson L, Bai Y, Zhu B, Bhaduri A, Meyers JM, Rovira-Clavé X, Hollmig ST, Aasi SZ, Nolan GP, Lundeberg J, Khavari PA. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020; 182:497-514.e22. [PMID: 32579974 PMCID: PMC7391009 DOI: 10.1016/j.cell.2020.05.039] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.
Collapse
Affiliation(s)
- Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam J Rubin
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kim Thrane
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Sizun Jiang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annelie Mollbrink
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Yunhao Bai
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bokai Zhu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S Tyler Hollmig
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sumaira Z Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
46
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
47
|
Gualandi M, Iorio M, Engeler O, Serra-Roma A, Gasparre G, Schulte JH, Hohl D, Shakhova O. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance 2020; 3:3/6/e201900601. [PMID: 32312912 PMCID: PMC7184028 DOI: 10.26508/lsa.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer characterized by increased mortality. Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Our data demonstrate that the overexpression of the constitutively active, mutated ALK, ALKF1174L, is sufficient to initiate the development of cSCC and is 100% penetrant. Moreover, we show that cSCC development upon ALKF1174L overexpression is independent of the cell-of-origin. Molecularly, our data demonstrate that ALKF1174L cooperates with oncogenic KrasG12D and loss of p53, well-established events in the biology of cSCC. This cooperation results in a more aggressive cSCC type associated with a higher grade histological morphology. Finally, we demonstrate that Stat3 is a key downstream effector of ALKF1174L and likely plays a role in ALKF1174L-driven cSCC tumorigenesis. In sum, these findings reveal that ALK can exert its tumorigenic potential via cooperation with multiple pathways crucial in the pathogenesis of cSCC. Finally, we show that human cSCCs contain mutations in the ALK gene. Taken together, our data identify ALK as a new key player in the pathogenesis of cSCC, and this knowledge suggests that oncogenic ALK signaling can be a target for future clinical trials.
Collapse
Affiliation(s)
- Marco Gualandi
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Maria Iorio
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Olivia Engeler
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - André Serra-Roma
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Johannes H Schulte
- Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Daniel Hohl
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Centre, Lausanne, Switzerland
| | - Olga Shakhova
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2020; 12:cancers12040908. [PMID: 32276424 PMCID: PMC7226044 DOI: 10.3390/cancers12040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear transport receptors, such as karyopherin-β1 (KPNB1), play important roles in the nuclear-cytoplasmic transport of macromolecules. Recent evidence indicates the involvement of nuclear transport receptors in the progression of cancer, making these receptors promising targets for the treatment of cancer. Here, we investigated the anticancer effects of KPNB1 blockage or in combination with ionizing radiation on human head and neck squamous cell carcinoma (HNSCC). HNSCC cell line SAS and Ca9-22 cells were used in this study. Importazole, an inhibitor of KPNB1, or knockdown of KPNB1 by siRNA transfection were applied for the blockage of KPNB1 functions. The roles of KPNB1 on apoptosis induction and cell surface expression levels of programmed death-ligand 1 (PD-L1) in irradiated HNSCC cells were investigated. The major findings of this study are that (i) blockage of KPNB1 specifically enhanced the radiation-induced apoptosis and radiosensitivity of HNSCC cells; (ii) importazole elevated p53-upregulated modulator of apoptosis (PUMA) expression via blocking the nuclear import of SCC-specific oncogene ΔNp63 in HNSCC cells; and (iii) blockage of KPNB1 attenuated the upregulation of cell surface PD-L1 expression on irradiated HNSCC cells. Taken together, these results suggest that co-treatment with KPNB1 blockage and ionizing radiation is a promising strategy for the treatment of HNSCC.
Collapse
|
49
|
Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med 2020; 52:538-547. [PMID: 32235869 PMCID: PMC7210257 DOI: 10.1038/s12276-020-0412-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding the cellular and molecular mechanisms of tumor initiation and progression for each cancer type is central to making improvements in both prevention and therapy. Identifying the cancer cells of origin and the necessary and sufficient mechanisms of transformation and progression provide opportunities for improved specific clinical interventions. In the last few decades, advanced genetic manipulation techniques have facilitated rapid progress in defining the etiologies of cancers and their cells of origin. Recent studies driven by various groups have provided experimental evidence indicating the cellular origins for each type of skin and esophageal cancer and have identified underlying mechanisms that stem/progenitor cells use to initiate tumor development. Specifically, cyclooxygenase-2 (Cox-2) is associated with tumor initiation and progression in many cancer types. Recent studies provide data demonstrating the roles of Cox-2 in skin and esophageal malignancies, especially in squamous cell carcinomas (SCCs) occurring in both sites. Here, we review experimental evidence aiming to define the origins of skin and esophageal cancers and discuss how Cox-2 contributes to tumorigenesis and differentiation.
Collapse
Affiliation(s)
- Hyeongsun Moon
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA.
| | - Andrew C White
- Department of Biological Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA
| |
Collapse
|
50
|
Soutou B, Senet P, Lionnet F, Habibi A, Aractingi S. Sickle cell disease induces resistance to cutaneous carcinogenesis. Orphanet J Rare Dis 2020; 15:66. [PMID: 32143660 PMCID: PMC7060573 DOI: 10.1186/s13023-020-1341-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Background While skin carcinomas are reported in chronic ulcers and in patients treated with hydroxyurea (HU) for myeloproliferative neoplasms, no skin carcinoma has been reported in patients with sickle cell disease (SCD), presenting chronic skin ulcers or treated with HU. The objective was to estimate the risk of cutaneous malignant transformation in SCD patients with prolonged leg ulcers or under HU therapy. Results In this cross-sectional study, the cohort consisted of 1543 patients. In the first series, 29 patients presented a total of 53 ulcers lasting more than two years. The median age was 35 ± 8.4 years old. The median duration for a single ulcer was 9.2 ± 7 years. None of the examined ulcers showed any suspicious area of malignant transformation. In the second series, 187 patients treated with HU for more than two years were identified. The median age was 31.3 ± 9.9 years old. The median duration of treatment with HU was 6 ± 3.2 years. No skin carcinoma or actinic keratosis was recorded. Conclusions This study showed that skin carcinogenesis did not occur in our series of SCD patients exposed to transforming events such as long term HU treatment or prolonged leg ulcers.
Collapse
Affiliation(s)
- Boutros Soutou
- Faculté de médecine, Université Saint-Joseph, Beirut, 16-6830, Lebanon.
| | - Patricia Senet
- Department of Dermatology, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - François Lionnet
- Department of Internal Medicine, Center for sickle cell disease, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Anoosha Habibi
- Centre de référence des syndromes drépanocytaires majeurs, Unité des Maladies génétiques du globule rouge, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Sélim Aractingi
- Faculté de médecine Paris 5 Descartes. Service de Dermatologie, Hôpital Cochin Tarnier, Paris. Equipe Cellules souches foetales, Inserm UMR S 938, Paris, France
| |
Collapse
|