1
|
Darras H, Pan Q. Clonal ants reveal a potentially hidden meiotic feature. Trends Genet 2024; 40:909-911. [PMID: 39271396 DOI: 10.1016/j.tig.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by Lacy et al. identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.
Collapse
Affiliation(s)
- Hugo Darras
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Faustino M, Gusmão L, Amorim A, Kling D, Pinto N. A mathematical framework for genetic relatedness analysis involving X chromosome aneuploidies. Forensic Sci Int Genet 2024; 74:103128. [PMID: 39243525 DOI: 10.1016/j.fsigen.2024.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique features of the X chromosome can be crucial to complement autosomal profiling or to disentangle complex kinship problems, providing in some cases a similar or even greater power than autosomes in paternity/maternity investigations. While theoretical and informatics approaches for pairwise X-linked kinship analyses are well established for euploid individuals, these are still lacking for individuals with an X chromosome aneuploidy. To trigger the fulfilment of this gap, this research presents a mathematical framework that enables the quantification of DNA evidence in pairwise kinship analyses, involving two non-inbred individuals, one of whom with a non-mosaic X chromosome aneuploidy: Trisomy X (47, XXX), Klinefelter (47, XXY) or Turner (45, X0) syndrome. As previously developed for a regular number of chromosomes, this approach relies on the probability of related individuals sharing identical-by-descent (IBD) alleles at one specific locus and it can be applied to any set of independently transmitted markers, with no gametic association in the population. The kinship hypotheses mostly considered in forensic casework are specifically addressed in this work, but the reasoning and procedure can be applied to virtually any pairwise kinship problem under the referred assumptions. Algebraic formulae for joint genotypic probabilities cover all the possible genotypic configurations and pedigrees. Compared with the analyses assuming individuals with a regular number of chromosomes, complicating factors rely on the different possibilities for both the parental origin of the error (either maternal or paternal), and the type of error occurred (either meiotic or post-zygotic mitotic). These imply that a non-inbred female with Triple X or a male with Klinefelter syndrome may carry two IBD alleles at the same locus. Thus, and contrarily to what occurs for the standard case, IBD partitions depend not only on the kinship hypothesis under analysis but also on the genotypic configuration of the analyzed individuals. For some cases, parameters of interest can be inferred, while for others recommended values based on the available literature are provided. This work is the starting point to analyze X-chromosomal data under the scope of kinship problems, involving individuals with aneuploidies, as it will enhance the quantification of the DNA evidence not only in forensics but also in the medical genetics field. We hope it will trigger the development of approaches including other complicating factors, as a greater number of individuals, possibility of the occurrence of mutations and/or silent alleles, as well as the analysis of linked markers.
Collapse
Affiliation(s)
- Marisa Faustino
- Faculdade de Ciências da Universidade do Porto (FCUP), Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - António Amorim
- Faculdade de Ciências da Universidade do Porto (FCUP), Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal
| | - Daniel Kling
- Department of Forensic Genetics and Toxicology, National Board of Forensic Medicine, Linköping, Sweden; Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Nádia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal; Centro de Matemática da Universidade do Porto (CMUP), Portugal
| |
Collapse
|
4
|
Hall JMM, Nguyen TV, Dinsmore AW, Perugini D, Perugini M, Fukunaga N, Asada Y, Schiewe M, Lim AYX, Lee C, Patel N, Bhadarka H, Chiang J, Bose DP, Mankee-Sookram S, Minto-Bain C, Bilen E, Diakiw SM. Use of federated learning to develop an artificial intelligence model predicting usable blastocyst formation from pre-ICSI oocyte images. Reprod Biomed Online 2024; 49:104403. [PMID: 39433005 DOI: 10.1016/j.rbmo.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024]
Abstract
RESEARCH QUESTION Can federated learning be used to develop an artificial intelligence (AI) model for evaluating oocyte competence using two-dimensional images of denuded oocytes in metaphase II prior to intracytoplasmic sperm injection (ICSI)? RESULTS The oocyte AI model demonstrated area under the curve (AUC) up to 0.65 on two blind test datasets. High sensitivity for predicting competent oocytes (83-88%) was offset by lower specificity (26-36%). Exclusion of confounding biological variables (male factor infertility and maternal age ≥35 years) improved AUC up to 14%, primarily due to increased specificity. AI score correlated with size of the zona pellucida and perivitelline space, and ooplasm appearance. AI score also correlated with blastocyst expansion grade and morphological quality. The sum of AI scores from oocytes in group culture images predicted the formation of two or more usable blastocysts (AUC 0.77). CONCLUSION An AI model to evaluate oocyte competence was developed using federated learning, representing an essential step in protecting patient data. The AI model was significantly predictive of oocyte competence, as defined by usable blastocyst formation, which is a critical factor for IVF success. Potential clinical utility ranges from selective oocyte fertilization to guiding treatment decisions regarding additional rounds of oocyte retrieval. DESIGN In total, 10,677 oocyte images with associated metadata were collected prospectively by eight IVF clinics across six countries. AI training used federated learning, where data were retained on regional servers to comply with data privacy laws. The final AI model required a single image as input to evaluate oocyte competence, which was defined by the formation of a usable blastocyst (≥expansion grade 3 by day 5 or 6 post ICSI).
Collapse
Affiliation(s)
- J M M Hall
- Life Whisperer Diagnostics (a subsidiary of Presagen), San Francisco, CA, USA, and Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Adelaide Business School, The University of Adelaide, Adelaide, Australia
| | - T V Nguyen
- Life Whisperer Diagnostics (a subsidiary of Presagen), San Francisco, CA, USA, and Adelaide, Australia
| | - A W Dinsmore
- California Fertility Partners, Los Angeles, CA, USA
| | - D Perugini
- Life Whisperer Diagnostics (a subsidiary of Presagen), San Francisco, CA, USA, and Adelaide, Australia
| | - M Perugini
- Life Whisperer Diagnostics (a subsidiary of Presagen), San Francisco, CA, USA, and Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - N Fukunaga
- Asada Institute for Reproductive Medicine, Nagoya, Japan
| | - Y Asada
- Asada Ladies Clinic, Nagoya, Japan
| | - M Schiewe
- California Fertility Partners, Los Angeles, CA, USA
| | - A Y X Lim
- Alpha IVF and Women's Specialists, Petaling Jaya, Selangor, Malaysia
| | - C Lee
- Alpha IVF and Women's Specialists, Petaling Jaya, Selangor, Malaysia
| | - N Patel
- Akanksha Hospital and Research Institute, Anand, Gujarat, India
| | - H Bhadarka
- Akanksha Hospital and Research Institute, Anand, Gujarat, India
| | - J Chiang
- Kensington Green Specialist Centre, Iskandar Puteri, Johor, Malaysia
| | - D P Bose
- Indore Infertility Clinic, Indore, Madhya Pradesh, India
| | - S Mankee-Sookram
- Trinidad and Tobago IVF and Fertility Centre, Maraval, Trinidad, Trinidad and Tobago
| | - C Minto-Bain
- Trinidad and Tobago IVF and Fertility Centre, Maraval, Trinidad, Trinidad and Tobago
| | - E Bilen
- Dokuz Eylül University, Inciraltı, Balçova/İzmir, Turkey
| | - S M Diakiw
- Life Whisperer Diagnostics (a subsidiary of Presagen), San Francisco, CA, USA, and Adelaide, Australia.
| |
Collapse
|
5
|
Blanc C, Delattre M. A new type of non-Mendelian segregation. Nat Ecol Evol 2024; 8:1387-1388. [PMID: 39014143 DOI: 10.1038/s41559-024-02482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Caroline Blanc
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| |
Collapse
|
6
|
Lacy KD, Hart T, Kronauer DJC. Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. Nat Ecol Evol 2024; 8:1522-1533. [PMID: 39014144 PMCID: PMC11310076 DOI: 10.1038/s41559-024-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Non-random segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte. Here we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi, in which both alleles are co-inherited at all loci across the entire genome. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole-genome sequencing, we show that crossover recombination is, in fact, common but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular 'memory' of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
7
|
Takenouchi O, Sakakibara Y, Kitajima TS. Live chromosome identifying and tracking reveals size-based spatial pathway of meiotic errors in oocytes. Science 2024; 385:eadn5529. [PMID: 39024439 DOI: 10.1126/science.adn5529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
Meiotic errors of relatively small chromosomes in oocytes result in egg aneuploidies that cause miscarriages and congenital diseases. Unlike somatic cells, which preferentially mis-segregate larger chromosomes, aged oocytes preferentially mis-segregate smaller chromosomes through unclear processes. Here, we provide a comprehensive three-dimensional chromosome identifying-and-tracking dataset throughout meiosis I in live mouse oocytes. This analysis reveals a prometaphase pathway that actively moves smaller chromosomes to the inner region of the metaphase plate. In the inner region, chromosomes are pulled by stronger bipolar microtubule forces, which facilitates premature chromosome separation, a major cause of segregation errors in aged oocytes. This study reveals a spatial pathway that facilitates aneuploidy of small chromosomes preferentially in aged eggs and implicates the role of the M phase in creating a chromosome size-based spatial arrangement.
Collapse
Affiliation(s)
- Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yogo Sakakibara
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
8
|
Wu CY, Zhou Y, Yin X, Peng R, Xie HN. Prenatal ultrasound findings and clinical outcomes of uniparental disomy: a retrospective study. BMC Pregnancy Childbirth 2024; 24:288. [PMID: 38637738 PMCID: PMC11027273 DOI: 10.1186/s12884-024-06493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Uniparental disomy is the inheritance of a homologous chromosome pair or part of homologous chromosomes from only one parent. However, the clinical significance of uniparental disomy and the difference among the prognosis of involvement of different chromosomes remain unclear. OBJECTIVE To assess the associated prenatal ultrasound presentations and clinical outcomes of uniparental disomy on different chromosomes and to analyze the relationship between prenatal ultrasound markers and clinical outcomes. STUDY DESIGN We retrospectively analyzed data from fetuses with uniparental disomy diagnosed using chromosome microarray analysis with the Affymetrix CytoScan HD array at our institution between January 2013 and September 2022. The relationship between prenatal ultrasound findings, the involved chromosome(s), and clinical outcomes was evaluated. RESULTS During the study period, 36 fetuses with uniparental disomy were diagnosed, and two cases were excluded for non-available postnatal data. Finally, 34 fetuses were included in our study, of which 30 (88.2%) had uniparental disomy occurring on a single chromosome, while four (11.8%) were identified with uniparental disomy on different chromosomes. The most frequently involved chromosomes were chromosomes 16, X and 2, which presented in 8 (23.5%), 5 (14.7%) and 4 (11.8%), respectively. Prenatal ultrasound abnormalities were detected in 21 fetuses, with the most common category being multiple abnormalities (12 (57.1%)). Fetal growth restriction was identified in 14 (41.2%) fetuses, all of which coexisted with other abnormal findings. The rate of adverse perinatal outcomes in patients with uniparental disomy and fetal abnormalities was significantly higher than those without abnormalities (76.2% versus 15.4%, P = 0.002). The incidence of fetal or neonatal death was significantly higher in fetuses with fetal growth restriction than those without (85.7% versus 30.0%, P = 0.004). CONCLUSIONS The prognosis of fetuses with uniparental disomy combined with fetal abnormalities, especially fetal growth restriction, was much poorer than those without.
Collapse
Affiliation(s)
- Cui-Yi Wu
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xia Yin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
10
|
Steinthorsdottir V, Halldorsson BV, Jonsson H, Palsson G, Oddsson A, Westergaard D, Arnadottir GA, Stefansdottir L, Banasik K, Esplin MS, Hansen TF, Brunak S, Nyegaard M, Ostrowski SR, Pedersen OBV, Erikstrup C, Thorleifsson G, Nadauld LD, Haraldsson A, Steingrimsdottir T, Tryggvadottir L, Jonsdottir I, Gudbjartsson DF, Hoffmann ER, Sulem P, Holm H, Nielsen HS, Stefansson K. Variant in the synaptonemal complex protein SYCE2 associates with pregnancy loss through effect on recombination. Nat Struct Mol Biol 2024; 31:710-716. [PMID: 38287193 PMCID: PMC11026158 DOI: 10.1038/s41594-023-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Two-thirds of all human conceptions are lost, in most cases before clinical detection. The lack of detailed understanding of the causes of pregnancy losses constrains focused counseling for future pregnancies. We have previously shown that a missense variant in synaptonemal complex central element protein 2 (SYCE2), in a key residue for the assembly of the synaptonemal complex backbone, associates with recombination traits. Here we show that it also increases risk of pregnancy loss in a genome-wide association analysis on 114,761 women with reported pregnancy loss. We further show that the variant associates with more random placement of crossovers and lower recombination rate in longer chromosomes but higher in the shorter ones. These results support the hypothesis that some pregnancy losses are due to failures in recombination. They further demonstrate that variants with a substantial effect on the quality of recombination can be maintained in the population.
Collapse
Affiliation(s)
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - M Sean Esplin
- Division of Maternal and Fetal Medicine, Intermountain Health, Murray, UT, USA
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Headache Center & Danish Multiple Sclerose Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Cancer Society Research and Registration Center, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
11
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
12
|
Fu L, Gu C, Mochizuki K, Xiong J, Miao W, Wang G. The genome-wide meiotic recombination landscape in ciliates and its implications for crossover regulation and genome evolution. J Genet Genomics 2024; 51:302-312. [PMID: 37797835 DOI: 10.1016/j.jgg.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa. However, genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates: the synaptonemal complex (SC)-independent meiosis and the nuclear dimorphism. Here, we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny. We detect 1021 crossover (CO) events (35.8 per meiosis), corresponding to an overall CO rate of 9.9 cM/Mb. However, gene conversion by non-crossover is rare (1.03 per meiosis) and not biased towards G or C alleles. Consistent with the reported roles of SC in CO interference, we find no obvious sign of CO interference. CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions. Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes. We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
Collapse
Affiliation(s)
- Lu Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34396 Montpellier, France
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
13
|
Lacy KD, Hart T, Kronauer DJ. Unselfish meiotic drive maintains heterozygosity in a parthenogenetic ant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579553. [PMID: 38405725 PMCID: PMC10888755 DOI: 10.1101/2024.02.09.579553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Nonrandom segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte1,2. Here, we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis3. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes4,5. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole genome sequencing, we show that crossover recombination is, in fact, common, but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular "memory" of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D. Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J.C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
14
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. Genome Res 2024; 34:70-84. [PMID: 38071472 PMCID: PMC10903951 DOI: 10.1101/gr.278168.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes rely either on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or on direct detection of crossovers in gametes or multigeneration pedigrees, which limits data set scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, and the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations show our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ∼150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared with disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Rina Abramov
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1E2, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
15
|
Liang M, Suresh B, Bareke E, Choufani S, Jagadeesh S, Weksberg R, Majewski J, Slim R. A homozygous stop codon in HORMAD2 in a patient with recurrent digynic triploid miscarriage. Mol Genet Genomic Med 2024; 12:e2402. [PMID: 38400599 PMCID: PMC10891434 DOI: 10.1002/mgg3.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology. METHODS Short tandem repeat (STR) markers, single nucleotide polymorphic (SNP) microarray, and human DNA methylation microarray were used to analyze the genotypes of two miscarriages. Exomes sequencing was performed on DNA from the two partners and identified variants were validated by Sanger sequencing. RESULTS STR marker genotyping demonstrated that the two available miscarriages are triploid digynic and resulted from the failure of Meiosis II. SNP microarray analysis revealed an additional Meiosis I abnormality that is the segregation of the two maternal homologous chromosomes in one triploid miscarriage. Whole-exome sequencing on DNA from the two partners identified candidate variants only in the female partner in two genes with roles in female reproduction, a missense in EIF4ENIF1 (OMIM 607445) and a stop gain in HORMAD2 (OMIM 618842). EIF4ENIF1 is a eukaryotic translation initiation factor 4E nuclear import factor required for the oocyte germinal vesicle breakdown, and HORMAD2 is part of the synaptonemal complex that was hypothesized to act as a checkpoint mechanism to eliminate oocytes with asynapsis during meiotic prophase I in mice. CONCLUSION While both genes may contribute to the phenotype, the Meiosis I abnormalities in the conceptions favor the causal role of HORMAD2 in the etiology of RM in this couple. This report illustrates the importance of comprehensively analyzing the products of conception to guide the search for the genetic causation of RM.
Collapse
Affiliation(s)
- Manqi Liang
- Department of Human GeneticsResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Beena Suresh
- Department of Clinical Genetics & Genetic CounsellingMediscan SystemsChennaiIndia
| | - Eric Bareke
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Sujatha Jagadeesh
- Department of Clinical Genetics & Genetic CounsellingMediscan SystemsChennaiIndia
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
- Division of Clinical & Metabolic Genetics, Department of PaediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Jacek Majewski
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Rima Slim
- Department of Human GeneticsResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Obstetrics and GynecologyMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
16
|
Ma Y, Wang J, Xu Y. A Method to Study the Meiotic Recombination Map in Human Preimplantation Blastocysts. Methods Mol Biol 2024; 2818:81-91. [PMID: 39126468 DOI: 10.1007/978-1-0716-3906-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Homologous recombination plays pivotal roles in physical attachments and genetic diversity. In the past, it was studied among individuals from different populations. However, only few gametes from individual could generate offspring, which limits its exploration in nature selection. In the last few years, preimplantation blastocysts based on trio SNP-chip data were available in individuals for preimplantation genetic testing (PGT). In this protocol, we demonstrate how to detect meiotic recombination events and construct the genetic map based on trio SNP-chip data, obtained from biopsied blastocysts and their related individuals in PGT cycles, which may allow better understanding of recombination events in nature selection.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Verdyck P, Altarescu G, Santos-Ribeiro S, Vrettou C, Koehler U, Griesinger G, Goossens V, Magli C, Albanese C, Parriego M, Coll L, Ron-El R, Sermon K, Traeger-Synodinos J. Aneuploidy in oocytes from women of advanced maternal age: analysis of the causal meiotic errors and impact on embryo development. Hum Reprod 2023; 38:2526-2535. [PMID: 37814912 DOI: 10.1093/humrep/dead201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
STUDY QUESTION In oocytes of advanced maternal age (AMA) women, what are the mechanisms leading to aneuploidy and what is the association of aneuploidy with embryo development? SUMMARY ANSWER Known chromosome segregation errors such as precocious separation of sister chromatids explained 90.4% of abnormal chromosome copy numbers in polar bodies (PBs), underlying impaired embryo development. WHAT IS KNOWN ALREADY Meiotic chromosomal aneuploidies in oocytes correlate with AMA (>35 years) and can affect over half of oocytes in this age group. This underlies the rationale for PB biopsy as a form of early preimplantation genetic testing for aneuploidy (PGT-A), as performed in the 'ESHRE STudy into the Evaluation of oocyte Euploidy by Microarray analysis' (ESTEEM) randomized controlled trial (RCT). So far, chromosome analysis of oocytes and PBs has shown that precocious separation of sister chromatids (PSSC), Meiosis II (MII) non-disjunction (ND), and reverse segregation (RS) are the main mechanisms leading to aneuploidy in oocytes. STUDY DESIGN, SIZE, DURATION Data were sourced from the ESTEEM study, a multicentre RCT from seven European centres to assess the clinical utility of PGT-A on PBs using array comparative genomic hybridization (aCGH) in patients of AMA (36-40 years). This included data on the chromosome complement in PB pairs (PGT-A group), and on embryo morphology in a subset of embryos, up to Day 6 post-insemination, from both the intervention (PB biopsy and PGT-A) and control groups. PARTICIPANTS/MATERIALS, SETTING, METHODS ESTEEM recruited 396 AMA patients: 205 in the intervention group and 191 in the control group. Complete genetic data from 693 PB pairs were analysed. Additionally, the morphology from 1034 embryos generated from fertilized oocytes (two pronuclei) in the PB biopsy group and 1082 in the control group were used for statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Overall, 461/693 PB pairs showed abnormal segregation in 1162/10 810 chromosomes. The main observed abnormal segregations were compatible with PSSC in Meiosis I (MI) (n = 568/1162; 48.9%), ND of chromatids in MII or RS (n = 417/1162; 35.9%), and less frequently ND in MI (n = 65/1162; 5.6%). For 112 chromosomes (112/1162; 9.6%), we observed a chromosome copy number in the first PB (PB1) and second PB (PB2) that is not explained by any of the known mechanisms causing aneuploidy in oocytes. We observed that embryos in the PGT-A arm of the RCT did not have a significantly different morphology between 2 and 6 days post-insemination compared to the control group, indicating that PB biopsy did not affect embryo quality. Following age-adjusted multilevel mixed-effect ordinal logistic regression models performed for each embryo evaluation day, aneuploidy was associated with a decrease in embryo quality on Day 3 (adjusted odds ratio (aOR) 0.62, 95% CI 0.43-0.90), Day 4 (aOR 0.15, 95% CI 0.06-0.39), and Day 5 (aOR 0.28, 95% CI 0.14-0.58). LIMITATIONS, REASON FOR CAUTION RS cannot be distinguished from normal segregation or MII ND using aCGH. The observed segregations were based on the detected copy number of PB1 and PB2 only and were not confirmed by the analysis of embryos. The embryo morphology assessment was static and single observer. WIDER IMPLICATIONS OF THE FINDINGS Our finding of frequent unexplained chromosome copy numbers in PBs indicates that our knowledge of the mechanisms causing aneuploidy in oocytes is incomplete. It challenges the dogma that aneuploidy in oocytes is exclusively caused by mis-segregation of chromosomes during MI and MII. STUDY FUNDING/COMPETING INTEREST(S) Data were mined from a study funded by ESHRE. Illumina provided microarrays and other consumables necessary for aCGH testing of PBs. None of the authors have competing interests. TRIAL REGISTRATION NUMBER Data were mined from the ESTEEM study (ClinicalTrials.gov Identifier NCT01532284).
Collapse
Affiliation(s)
- P Verdyck
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - G Altarescu
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, Jerusalem, Israël
| | - S Santos-Ribeiro
- IVI-RMA Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - U Koehler
- MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - G Griesinger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Lübeck, Germany
| | - V Goossens
- The European Society of Human Reproduction and Embryology, Strombeek-Bever, Belgium
| | - C Magli
- SISMER, Reproductive Medicine Unit, Bologna, Italy
| | - C Albanese
- SISMER, Reproductive Medicine Unit, Bologna, Italy
| | - M Parriego
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - L Coll
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - R Ron-El
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, Jerusalem, Israël
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - J Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
20
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
21
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543910. [PMID: 37333422 PMCID: PMC10274764 DOI: 10.1101/2023.06.07.543910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes either rely on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or direct detection of crossovers in gametes or multi-generation pedigrees, which limits dataset scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, as well as the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations demonstrate our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ~150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared to disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Blanc C, Saclier N, Le Faou E, Marie-Orleach L, Wenger E, Diblasi C, Glemin S, Galtier N, Delattre M. Cosegregation of recombinant chromatids maintains genome-wide heterozygosity in an asexual nematode. SCIENCE ADVANCES 2023; 9:eadi2804. [PMID: 37624896 PMCID: PMC10456839 DOI: 10.1126/sciadv.adi2804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
In asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown. Cytological and population genomic analyses in the nematode Mesorhabditis belari revealed another case of recombining asexual being highly heterozygous genome-wide. We demonstrated that heterozygosity is maintained despite recombination because the recombinant chromatids of each chromosome pair cosegregate during the unique meiotic division. A theoretical model confirmed that this segregation bias is necessary to account for the observed pattern and likely to evolve under a wide range of conditions. Our study uncovers an unexpected type of non-Mendelian genetic inheritance involving cosegregation of recombinant chromatids.
Collapse
Affiliation(s)
- Caroline Blanc
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Nathanaelle Saclier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Ehouarn Le Faou
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Lucas Marie-Orleach
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Celian Diblasi
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Sylvain Glemin
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
24
|
Sun S, Aboelenain M, Ariad D, Haywood ME, Wageman CR, Duke M, Bag A, Viotti M, Katz-Jaffe M, McCoy RC, Schindler K, Xing J. Identifying risk genes for embryo aneuploidy using ultra-low coverage whole-genome sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.22.23292618. [PMID: 37546814 PMCID: PMC10402236 DOI: 10.1101/2023.07.22.23292618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Aneuploidy, the state of a cell containing extra or missing chromosomes, frequently arises during human meiosis and is the primary cause of early miscarriage and maternal age-related in vitro fertilization (IVF) failure. IVF patients exhibit significant variability in aneuploidy rates, although the exact genetic causes of the variability in aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy (PGT-A) using ultra-low coverage whole-genome sequencing (ulc-WGS) is a standard test for identifying and selecting IVF-derived embryos with a normal chromosome complement. The wealth of embryo aneuploidy data and ulc-WGS data from PGT-A has potential for discovering variants in paternal genomes that are associated with aneuploidy risk in their embryos. Methods Using ulc-WGS data from ∼10,000 PGT-A biopsies, we imputed genotype likelihoods of genetic variants in parental genomes. We then used the imputed variants and aneuploidy calls from the embryos to perform a genome-wide association study of aneuploidy incidence. Finally, we carried out functional evaluation of the identified candidate gene in a mouse oocyte system. Results We identified one locus on chromosome 3 that is significantly associated with maternal meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is involved in chromosome segregation during meiosis. Using mouse oocytes, we showed that CCDC66 regulates meiotic progression and chromosome segregation fidelity, especially in older mice. Conclusions Our work extended the research utility of PGT-A ulc-WGS data by allowing robust association testing and improved the understanding of the genetic contribution to maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that can be leveraged for similar association studies using ulc-WGS data.
Collapse
|
25
|
Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat Cell Biol 2023; 25:439-452. [PMID: 36732633 PMCID: PMC10014578 DOI: 10.1038/s41556-022-01082-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.
Collapse
|
26
|
A Novel System for the Detection of Spontaneous Abortion-Causing Aneuploidy and Its Erroneous Chromosome Origins through the Combination of Low-Pass Copy Number Variation Sequencing and NGS-Based STR Tests. J Clin Med 2023; 12:jcm12051809. [PMID: 36902595 PMCID: PMC10003649 DOI: 10.3390/jcm12051809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
During the period of 2018-2020, we first combined reported low-pass whole genome sequencing and NGS-based STR tests for miscarriage samples analysis. Compared with G-banding karyotyping, the system increased the detection rate of chromosomal abnormalities in miscarriage samples to 56.4% in 500 unexplained recurrent spontaneous abortions. In this study, a total of 386 STR loci were developed on twenty-two autosomes and two sex chromosomes (X and Y chromosomes), which can help to distinguish triploidy, uniparental diploidy and maternal cell contamination and can trace the parental origin of erroneous chromosomes. It is not possible to accomplish this with existing methods of detection in miscarriage samples. Among the tested aneuploid errors, the most frequently detected error was trisomy (33.4% in total and 59.9% in the error chromosome group). In the trisomy samples, 94.7% extra chromosomes were of maternal origin and 5.31% were of paternal origin. This novel system improves the genetic analysis method of miscarriage samples and provides more reference information for clinical pregnancy guidance.
Collapse
|
27
|
Brekke C, Johnston SE, Gjuvsland AB, Berg P. Variation and genetic control of individual recombination rates in Norwegian Red dairy cattle. J Dairy Sci 2023; 106:1130-1141. [PMID: 36543643 DOI: 10.3168/jds.2022-22368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
Meiotic recombination is an important evolutionary mechanism that breaks up linkages between loci and creates novel haplotypes for selection to act upon. Understanding the genetic control of variation in recombination rates is therefore of great interest in both natural and domestic breeding populations. In this study, we used pedigree information and medium-density (∼50K) genotyped data in a large cattle (Bos taurus) breeding population in Norway (Norwegian Red cattle) to investigate recombination rate variation between sexes and individual animals. Sex-specific linkage mapping showed higher rates in males than in females (total genetic length of autosomes = 2,492.9 cM in males and 2,308.9 cM in females). However, distribution of recombination along the genome showed little variation between males and females compared with that in other species. The heritability of autosomal crossover count was low but significant in both sexes (h2 = 0.04 and 0.09 in males and females, respectively). We identified 2 loci associated with variation in individual crossover counts in female, one close to the candidate gene CEP55 and one close to both MLH3 and NEK9. All 3 genes have been associated with recombination rates in other cattle breeds. Our study contributes to the understanding of how recombination rates are controlled and how they may vary between closely related breeds as well as between species.
Collapse
Affiliation(s)
- C Brekke
- Norwegian University of Life Sciences, Department of Animal and Aquacultural sciences, Oluf Thesens vei 6, 1433 Ås, Norway.
| | - S E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | | | - P Berg
- Norwegian University of Life Sciences, Department of Animal and Aquacultural sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| |
Collapse
|
28
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
29
|
Dutreux F, Dutta A, Peltier E, Bibi-Triki S, Friedrich A, Llorente B, Schacherer J. Lessons from the meiotic recombination landscape of the ZMM deficient budding yeast Lachancea waltii. PLoS Genet 2023; 19:e1010592. [PMID: 36608114 PMCID: PMC9851511 DOI: 10.1371/journal.pgen.1010592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/19/2023] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.
Collapse
Affiliation(s)
- Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Emilien Peltier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France,* E-mail: (BL); (JS)
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France,Institut Universitaire de France (IUF), Paris, France,* E-mail: (BL); (JS)
| |
Collapse
|
30
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
31
|
McCarty KJ, Haywood ME, Lee R, Henry L, Arnold A, McReynolds S, McCallie B, Schoolcraft B, Katz-Jaffe M. Segmental aneuploid hotspots identified across the genome concordant on reanalysis. Mol Hum Reprod 2022; 29:6865036. [PMID: 36458926 DOI: 10.1093/molehr/gaac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize a large set of full segmental aneuploidies identified in trophectoderm (TE) biopsies and evaluate concordance in human blastocysts. Full segmental aneuploid errors were identified in TE biopsies (n = 2766) from preimplantation genetic testing for aneuploid (PGT-A) cycles. Full segmental deletions (n = 1872; 66.1%) presented twice as many times as duplications (n = 939; 33.9%), mapped more often to the q-arm (n = 1696; 61.3%) than the p-arm (n = 847; 31.0%) or both arms (n = 223; 8.1%; P < 0.05), and were eight times more likely to include the distal end of a chromosome than not (P < 0.05). Additionally, 37 recurring coordinates (each ≥ 10 events) were discovered across 17 different chromosomes, which were also significantly enriched for distal regions (P = 4.1 × 10-56). Blinded concordance analysis of 162 dissected blastocysts validated the original TE PGT-A full segmental result for a concordance of 96.3% (n = 156); remaining dissected blastocysts were identified as mosaic (n = 6; 3.7%). Origin of aneuploid analysis revealed full segmental aneuploid errors were mostly paternally derived (67%) in contrast to whole chromosome aneuploid errors (5.8% paternally derived). Errors from both parental gametes were observed in 6.5% of aneuploid embryos when multiple whole chromosomes were affected. The average number of recombination events was significantly less in paternally derived (1.81) compared to maternally derived (3.81) segmental aneuploidies (P < 0.0001). In summary, full segmental aneuploidies were identified at hotspots across the genome and were highly concordant upon blinded analysis. Nevertheless, future studies assessing the reproductive potential of full (non-mosaic) segmental aneuploid embryos are critical to rule out potential harmful reproductive risks.
Collapse
Affiliation(s)
| | - Mary E Haywood
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Rachel Lee
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Lauren Henry
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | - Alison Arnold
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | | | - Blair McCallie
- Colorado Center of Reproductive Medicine, Lone Tree, CO, USA
| | | | | |
Collapse
|
32
|
Wooldridge LK, Dumont BL. Rapid Evolution of the Fine-scale Recombination Landscape in Wild House Mouse (Mus musculus) Populations. Mol Biol Evol 2022; 40:6889355. [PMID: 36508360 PMCID: PMC9825251 DOI: 10.1093/molbev/msac267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
Collapse
|
33
|
Brosens JJ, Bennett PR, Abrahams VM, Ramhorst R, Coomarasamy A, Quenby S, Lucas ES, McCoy RC. Maternal selection of human embryos in early gestation: Insights from recurrent miscarriage. Semin Cell Dev Biol 2022; 131:14-24. [PMID: 35094946 PMCID: PMC9325922 DOI: 10.1016/j.semcdb.2022.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection. Aneuploidy originating in oocytes during meiosis drives the age-related risk of miscarriage. By contrast, the frequency of endometrial cycles with an impaired decidual response may account for the stepwise increase in miscarriage rates with each pregnancy loss independently of maternal age. Additional physiological mechanisms operate in early gestation to ensure that most failing pregnancies are lost before vascular maternal-fetal connections are established by the end of the first trimester. Here, we summarise how investigations into the mechanisms that cause miscarriage led to new insights into the processes that govern maternal selection of human embryos in early gestation.
Collapse
Affiliation(s)
- Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK.
| | - Phillip R Bennett
- Tommy's National Centre for Miscarriage Research, Imperial College London, UK
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Arri Coomarasamy
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
34
|
Yun Y, Lee S, So C, Manhas R, Kim C, Wibowo T, Hori M, Hunter N. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117007. [PMID: 36367780 PMCID: PMC9651182 DOI: 10.1289/ehp11343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Egg development has unique features that render it vulnerable to environmental perturbation. The herbicide atrazine is an endocrine disruptor shown to have detrimental effects on reproduction across several vertebrate species. OBJECTIVES This study was designed to determine whether exposure to low levels of atrazine impairs meiosis in female mammals, using a mouse model; in particular, the study's researchers sought to determine whether and how the fidelity of oocyte chromosome segregation may be affected and whether aging-related aneuploidy is exacerbated. METHODS Female C57BL/6J mice were exposed to two levels of atrazine in drinking water: The higher level equaled aqueous saturation, and the lower level corresponded to detected environmental contamination. To model developmental exposure, atrazine was ingested by pregnant females at 0.5 d post coitum and continued until pups were weaned at 21 d postpartum. For adult exposure, 2-month-old females ingested atrazine for 3 months. Following exposure, various indicators of oocyte development and quality were determined, including: a) chromosome synapsis and crossing over in fetal oocytes using immunofluorescence staining of prophase-I chromosome preparations; b) sizes of follicle pools in sectioned ovaries; c) efficiencies of in vitro fertilization and early embryogenesis; d) chromosome alignment and segregation in cultured oocytes; e) chromosomal errors in metaphase-I and -II (MI and MII) preparations; and f) sister-chromatid cohesion via immunofluorescence intensity of cohesin subunit REC8 on MI-chromosome preparations, and measurement of interkinetochore distances in MII preparations. RESULTS Mice exposed to atrazine during development showed slightly higher levels of defects in chromosome synapsis, but sizes of initial follicle pools were indistinguishable from controls. However, although more eggs were ovulated, oocyte quality was lower. At the chromosome level, frequencies of spindle misalignment and numerical and structural abnormalities were greater at both meiotic divisions. In vitro fertilization was less efficient, and there were more apoptotic cells in blastocysts derived from eggs of atrazine-exposed females. Similar levels of chromosomal defects were seen in oocytes following both developmental and adult exposure regimens, suggesting quiescent primordial follicles may be a consequential target of atrazine. An important finding was that defects were observed long after exposure was terminated. Moreover, chromosomally abnormal eggs were very frequent in older mice, implying that atrazine exposure during development exacerbates effects of maternal aging on oocyte quality. Indeed, analogous to the effects of maternal age, weaker cohesion between sister chromatids was observed in oocytes from atrazine-exposed animals. CONCLUSION Low-level atrazine exposure caused persistent changes to the female mammalian germline in mice, with potential consequences for reproductive lifespan and congenital disease. https://doi.org/10.1289/EHP11343.
Collapse
Affiliation(s)
- Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
| | - Sunkyung Lee
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christina So
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Rushali Manhas
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Carol Kim
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Tabitha Wibowo
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Michael Hori
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Neil Hunter
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| |
Collapse
|
35
|
Tesarik J, Mendoza-Tesarik R. Molecular Clues to Understanding Causes of Human-Assisted Reproduction Treatment Failures and Possible Treatment Options. Int J Mol Sci 2022; 23:10357. [PMID: 36142268 PMCID: PMC9499616 DOI: 10.3390/ijms231810357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
More than forty years after the first birth following in vitro fertilization (IVF), the success rates of IVF and of IVF-derived assisted reproduction techniques (ART) still remain relatively low. Interindividual differences between infertile couples and the nature of the problems underlying their infertility appear to be underestimated nowadays. Consequently, the molecular basis of each couple's reproductive function and of its disturbances is needed to offer an individualized diagnostic and therapeutic approaches to each couple, instead of applying a standard or minimally adapted protocols to everybody. Interindividual differences include sperm and oocyte function and health status, early (preimplantation) embryonic development, the optimal window of uterine receptivity for the implanting embryo, the function of the corpus luteum as the main source of progesterone production during the first days of pregnancy, the timing of the subsequent luteoplacental shift in progesterone production, and aberrant reactions of the uterine immune cells to the implanting and recently implanted embryos. In this article, the molecular basis that underlies each of these abnormalities is reviewed and discussed, with the aim to design specific treatment options to be used for each of them.
Collapse
|
36
|
Capalbo A, Poli M, Jalas C, Forman EJ, Treff NR. On the reproductive capabilities of aneuploid human preimplantation embryos. Am J Hum Genet 2022; 109:1572-1581. [PMID: 36055209 PMCID: PMC9502046 DOI: 10.1016/j.ajhg.2022.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
In IVF cycles, the application of aneuploidy testing at the blastocyst stage is quickly growing, and the latest reports estimate almost half of cycles in the US undergo preimplantation genetic testing for aneuploidies (PGT-A). Following PGT-A cycles, understanding the predictive value of an aneuploidy result is paramount for making informed decisions about the embryo's fate and utilization. Compelling evidence from non-selection trials strongly supports that embryos diagnosed with a uniform whole-chromosome aneuploidy very rarely result in the live birth of a healthy baby, while their transfer exposes women to significant risks of miscarriage and chromosomally abnormal pregnancy. On the other hand, embryos displaying low range mosaicism for whole chromosomes have shown reproductive capabilities somewhat equivalent to uniformly euploid embryos, and they have comparable clinical outcomes and gestational risks. Therefore, given their clearly distinct biological origin and clinical consequences, careful differentiation between uniform and mosaic aneuploidy is critical in both the clinical setting when counseling individuals and in the research setting when presenting aneuploidy studies in human embryology. Here, we focus on the evidence gathered so far on PGT-A diagnostic predictive values and reproductive outcomes observed across the broad spectrum of whole-chromosome aneuploidies detected at the blastocyst stage to obtain evidence-based conclusions on the clinical management of aneuploid embryos in the quickly growing PGT-A clinical setting.
Collapse
|
37
|
Stetsenko R, Roze D. The evolution of recombination in self-fertilizing organisms. Genetics 2022; 222:6656355. [PMID: 35929790 PMCID: PMC9434187 DOI: 10.1093/genetics/iyac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytological data from flowering plants suggest that the evolution of recombination rates is affected by the mating system of organisms, as higher chiasma frequencies are often observed in self-fertilizing species compared with their outcrossing relatives. Understanding the evolutionary cause of this effect is of particular interest, as it may shed light on the selective forces favoring recombination in natural populations. While previous models showed that inbreeding may have important effects on selection for recombination, existing analytical treatments are restricted to the case of loosely linked loci and weak selfing rates, and ignore the stochastic effect of genetic interference (Hill-Robertson effect), known to be an important component of selection for recombination in randomly mating populations. In this article, we derive general expressions quantifying the stochastic and deterministic components of selection acting on a mutation affecting the genetic map length of a whole chromosome along which deleterious mutations occur, valid for arbitrary selfing rates. The results show that selfing generally increases selection for recombination caused by interference among mutations as long as selection against deleterious alleles is sufficiently weak. While interference is often the main driver of selection for recombination under tight linkage or high selfing rates, deterministic effects can play a stronger role under intermediate selfing rates and high recombination, selecting against recombination in the absence of epistasis, but favoring recombination when epistasis is negative. Individual-based simulation results indicate that our analytical model often provides accurate predictions for the strength of selection on recombination under partial selfing.
Collapse
Affiliation(s)
- Roman Stetsenko
- CNRS, IRL 3614 Evolutionary Biology and Ecology of Algae, 29688 Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Denis Roze
- CNRS, IRL 3614 Evolutionary Biology and Ecology of Algae, 29688 Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, 29688 Roscoff, France
| |
Collapse
|
38
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
39
|
Meng TG, Lei WL, Lu X, Liu XY, Ma XS, Nie XQ, Zhao ZH, Li QN, Huang L, Hou Y, Ouyang YC, Li L, Tang TS, Schatten H, Xie W, Gao SR, Ou XH, Wang ZB, Sun QY. Maternal EHMT2 is essential for homologous chromosome segregation by regulating Cyclin B3 transcription in oocyte meiosis. Int J Biol Sci 2022; 18:4513-4531. [PMID: 35864958 PMCID: PMC9295060 DOI: 10.7150/ijbs.75298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysine-Methyltransferase 2) from the primordial follicle stage, we found that female mutant mice were infertile. Oocyte-specific knockout of Ehmt2 caused failure of homologous chromosome separation independent of persistently activated SAC during the first meiosis. Further studies revealed that lacking maternal Ehmt2 affected the transcriptional level of Ccnb3, while microinjection of exogenous Ccnb3 mRNA could partly rescue the failure of homologous chromosome segregation. Of particular importance was that EHMT2 regulated ccnb3 transcriptions by regulating CTCF binding near ccnb3 gene body in genome in oocytes. In addition, the mRNA level of Ccnb3 significantly decreased in the follicles microinjected with Ctcf siRNA. Therefore, our findings highlight the novel function of maternal EHMT2 on the metaphase I-to-anaphase I transition in mouse oocytes: regulating the transcription of Ccnb3.
Collapse
Affiliation(s)
- Tie-Gang Meng
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Yu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xue-Shan Ma
- The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Xiao-Qing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Nan Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Center for Clinical Medicine Research, The Affiliated Hospital of Southwest Medical University, Luzhou 6460000, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shao-Rong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Sen S, Dodamani A, Nambiar M. Emerging mechanisms and roles of meiotic crossover repression at centromeres. Curr Top Dev Biol 2022; 151:155-190. [PMID: 36681469 DOI: 10.1016/bs.ctdb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.
Collapse
Affiliation(s)
- Sucharita Sen
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ananya Dodamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
41
|
Kouznetsova A, Liu JG, Valentiniene S, Brismar H, Höög C. Age-dependent aneuploidy in mammalian oocytes instigated at the second meiotic division. Aging Cell 2022; 21:e13649. [PMID: 35665589 PMCID: PMC9282850 DOI: 10.1111/acel.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Jian Guo Liu
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Sonata Valentiniene
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics Royal Institute of Technology Solna Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| |
Collapse
|
42
|
Brekke C, Berg P, Gjuvsland AB, Johnston SE. Recombination rates in pigs differ between breeds, sexes and individuals, and are associated with the RNF212, SYCP2, PRDM7, MEI1 and MSH4 loci. Genet Sel Evol 2022; 54:33. [PMID: 35596132 PMCID: PMC9123673 DOI: 10.1186/s12711-022-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Recombination is a fundamental part of mammalian meiosis that leads to the exchange of large segments of DNA between homologous chromosomes and is therefore an important driver of genetic diversity in populations. In breeding populations, understanding recombination is of particular interest because it can break up unfavourable linkage phases between alleles and produce novel combinations of alleles that could be exploited in selection. In this study, we used dense single nucleotide polymorphism (SNP) genotype data and pedigree information to analyse individual and sex-specific variation and genetic architecture of recombination rates within and between five commercially selected pig breeds. Results In agreement with previous studies, recombination rates were higher in females than in males for all breeds and for all chromosomes, except 1 and 13, for which male rates were slightly higher. Total recombination rate differed between breeds but the pattern of recombination along the chromosomes was well conserved across breeds for the same sex. The autosomal linkage maps spanned a total length of 1731 to 1887 cM for males and of 2231 to 2515 cM for females. Estimates of heritability for individual autosomal crossover count ranged from 0.04 to 0.07 for males and from 0.08 to 0.11 for females. Fourteen genomic regions were found to be associated with individual autosomal crossover count. Of these, four were close to or within candidate genes that have previously been associated with individual recombination rates in pigs and other mammals, namely RNF212, SYCP2 and MSH4. Two of the identified regions included the PRDM7 and MEI1 genes, which are known to be involved in meiosis but have not been previously associated with variation in individual recombination rates. Conclusions This study shows that genetic variation in autosomal recombination rate persists in domesticated species under strong selection, with differences between closely-related breeds and marked differences between the sexes. Our findings support results from other studies, i.e., that individual crossover counts are associated with the RNF212, SYCP2 and MSH4 genes in pig. In addition, we have found two novel candidate genes associated with the trait, namely PRDM7 and MEI1. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00723-9.
Collapse
Affiliation(s)
- Cathrine Brekke
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433, Ås, Norway.
| | - Peer Berg
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433, Ås, Norway
| | | | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
43
|
Fan C, Yang X, Nie H, Wang S, Zhang L. Per-nucleus crossover covariation is regulated by chromosome organization. iScience 2022; 25:104115. [PMID: 35391833 PMCID: PMC8980760 DOI: 10.1016/j.isci.2022.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Meiotic crossover (CO) recombination between homologous chromosomes regulates chromosome segregation and promotes genetic diversity. Human females have different CO patterns than males, and some of these features contribute to the high frequency of chromosome segregation errors. In this study, we show that CO covariation is transmitted to progenies without detectable selection in both human males and females. Further investigations show that chromosome pairs with longer axes tend to have stronger axis length covariation and a stronger correlation between axis length and CO number, and the consequence of these two effects would be the stronger CO covariation as observed in females. These findings reveal a previously unsuspected feature for chromosome organization: long chromosome axes are more coordinately regulated than short ones. Additionally, the stronger CO covariation may work with human female-specific CO maturation inefficiency to confer female germlines the ability to adapt to changing environments on evolution.
Collapse
Affiliation(s)
- Cunxian Fan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Nie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China.,Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
44
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
45
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lee Y, Trout A, Marti-Gutierrez N, Kang S, Xie P, Mikhalchenko A, Kim B, Choi J, So S, Han J, Xu J, Koski A, Ma H, Yoon JD, Van Dyken C, Darby H, Liang D, Li Y, Tippner-Hedges R, Xu F, Amato P, Palermo GD, Mitalipov S, Kang E. Haploidy in somatic cells is induced by mature oocytes in mice. Commun Biol 2022; 5:95. [PMID: 35079104 PMCID: PMC8789866 DOI: 10.1038/s42003-022-03040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Haploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN). Upon culture, 18% of somatic-sperm zygotes reach the blastocyst stage, and 16% of them possess heterozygous diploid genomes consisting of somatic haploid and sperm homologs across all chromosomes. We also generate embryonic stem cells and live offspring from somatic-sperm embryos. Our finding may offer an alternative strategy for generating oocytes carrying somatic genomes.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Aysha Trout
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoon Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Bitnara Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jiwan Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seongjun So
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jing Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Junchul David Yoon
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fuhua Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
| |
Collapse
|
47
|
Aneuploidiescreening von Eizellen und Embryonen im Rahmen der assistierten Reproduktion. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-021-00425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Ghevaria H, SenGupta S, Naja R, Odia R, Exeter H, Serhal P, Gonzalez XV, Sun X, Delhanty J. Next Generation Sequencing Detects Premeiotic Errors in Human Oocytes. Int J Mol Sci 2022; 23:ijms23020665. [PMID: 35054849 PMCID: PMC8776218 DOI: 10.3390/ijms23020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autosomal aneuploidy is the leading cause of embryonic and foetal death in humans. This arises mainly from errors in meiosis I or II of oogenesis. A largely ignored source of error stems from germinal mosaicism, which leads to premeiotic aneuploidy. Molecular cytogenetic studies employing metaphase fluorescence in situ hybridization and comparative genomic hybridisation suggest that premeiotic aneuploidy may affect 10–20% of oocytes overall. Such studies have been criticised on technical grounds. We report here an independent study carried out on unmanipulated oocytes that have been analysed using next generation sequencing (NGS). This study confirms that the incidence of premeiotic aneuploidy in an unselected series of oocytes exceeds 10%. A total of 140 oocytes donated by 42 women gave conclusive results; of these, 124 (88.5%) were euploid. Sixteen out of 140 (11.4%) provided evidence of premeiotic aneuploidy. Of the 140, 112 oocytes were immature (germinal vesicle or metaphase I), of which 10 were aneuploid (8.93%); the remaining 28 were intact metaphase II - first polar body complexes, and six of these were aneuploid (21.4%). Of the 16 aneuploid cells, half contained simple errors (one or two abnormal chromosomes) and half contained complex errors. We conclude that germinal mosaicism leading to premeiotic aneuploidy is a consistent finding affecting at least 10% of unselected oocytes from women undergoing egg collection for a variety of reasons. The importance of premeiotic aneuploidy lies in the fact that, for individual oocytes, it greatly increases the risk of an aneuploid mature oocyte irrespective of maternal age. As such, this may account for some cases of aneuploid conceptions in very young women.
Collapse
Affiliation(s)
- Harita Ghevaria
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Sioban SenGupta
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
- Correspondence:
| | - Roy Naja
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Rabi Odia
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Holly Exeter
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Paul Serhal
- Clinical Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK;
| | - Xavier Viñals Gonzalez
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Xuhui Sun
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Joy Delhanty
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| |
Collapse
|
49
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
50
|
Archetti M. Evidence from automixis with inverted meiosis for the maintenance of sex by loss of complementation. J Evol Biol 2021; 35:40-50. [PMID: 34927297 DOI: 10.1111/jeb.13975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
The adaptive value of sexual reproduction is still debated. A short-term disadvantage of asexual reproduction is loss of heterozygosity, which leads to the unmasking of recessive deleterious mutations. The cost of this loss of complementation is predicted to be higher than the twofold cost of meiosis for most types of asexual reproduction. Automixis with terminal fusion of sister nuclei is especially vulnerable to the effect of loss of complementation. It is found, however, in some taxa including oribatid mites, the most prominent group of ancient asexuals. Here, I show that automixis with terminal fusion is stable if it is associated with inverted meiosis and that this appears to be the case in nature, notably in oribatid mites. The existence of automixis with terminal fusion, and its co-occurrence with inverted meiosis, therefore, is consistent with the hypothesis that loss of complementation is important in the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|