1
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Burkhalter MD, Stiff T, Maerz LD, Casar Tena T, Wiese H, Gerhards J, Sailer SA, Vu LAT, Duong Phu M, Donow C, Alupei M, Iben S, Groth M, Wiese S, Church JA, Jeggo PA, Philipp M. Cilia defects upon loss of WDR4 are linked to proteasomal hyperactivity and ubiquitin shortage. Cell Death Dis 2024; 15:660. [PMID: 39251572 PMCID: PMC11384789 DOI: 10.1038/s41419-024-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lars D Maerz
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Steffen A Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Linh Anna Trúc Vu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Cornelia Donow
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Marius Alupei
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90033, USA
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
3
|
Kochenova OV, D’Alessandro G, Pilger D, Schmid E, Richards SL, Garcia MR, Jhujh SS, Voigt A, Gupta V, Carnie CJ, Wu RA, Gueorguieva N, Stewart GS, Walter JC, Jackson SP. USP37 prevents premature disassembly of stressed replisomes by TRAIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611025. [PMID: 39282314 PMCID: PMC11398331 DOI: 10.1101/2024.09.03.611025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Domenic Pilger
- The Gurdon Institute and Department of Biochemistry, University of Cambridge
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sean L. Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Marcos Rios Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Vipul Gupta
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Christopher J. Carnie
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
4
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
5
|
Jones RM, Reynolds-Winczura A, Gambus A. A Decade of Discovery-Eukaryotic Replisome Disassembly at Replication Termination. BIOLOGY 2024; 13:233. [PMID: 38666845 PMCID: PMC11048390 DOI: 10.3390/biology13040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The eukaryotic replicative helicase (CMG complex) is assembled during DNA replication initiation in a highly regulated manner, which is described in depth by other manuscripts in this Issue. During DNA replication, the replicative helicase moves through the chromatin, unwinding DNA and facilitating nascent DNA synthesis by polymerases. Once the duplication of a replicon is complete, the CMG helicase and the remaining components of the replisome need to be removed from the chromatin. Research carried out over the last ten years has produced a breakthrough in our understanding, revealing that replication termination, and more specifically replisome disassembly, is indeed a highly regulated process. This review brings together our current understanding of these processes and highlights elements of the mechanism that are conserved or have undergone divergence throughout evolution. Finally, we discuss events beyond the classic termination of DNA replication in S-phase and go over the known mechanisms of replicative helicase removal from chromatin in these particular situations.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
- School of Biosciences, Aston University, Birmingham B4 7ET, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| |
Collapse
|
6
|
Yu J, Li M, Ju L, Zhou F, Wang Y, Zhang Y, Zhang R, Du W, Huang R, Qian K, Wang G, Xiao Y, Wang X. TRAIP suppresses bladder cancer progression by catalyzing K48-linked polyubiquitination of MYC. Oncogene 2024; 43:470-483. [PMID: 38123820 DOI: 10.1038/s41388-023-02922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
TRAF-interacting protein (TRAIP), an E3 ligase containing a RING domain, has emerged as a significant contributor to maintaining genome integrity and is closely associated with cancer. Our study reveals that TRAIP shows reduced expression in bladder cancer (BLCA), which correlates with an unfavorable prognosis. In vitro and in vivo, TRAIP inhibits proliferation and migration of BLCA cells. MYC has been identified as a novel target for TRAIP, wherein direct interaction promotes K48-linked polyubiquitination at neighboring K428 and K430 residues, ultimately resulting in proteasome-dependent degradation and downregulation of MYC transcriptional activity. This mechanism effectively impedes the progression of BLCA. Restoring MYC expression reverses suppressed proliferation and migration of BLCA cells induced by TRAIP. Moreover, our results suggest that MYC may bind to the transcriptional start region of TRAIP, thereby exerting regulatory control over TRAIP transcription. Consequently, this interaction establishes a negative feedback loop that regulates MYC expression, preventing excessive levels. Taken together, this study reveals a mechanism that TRAIP inhibits proliferation and migration of BLCA by promoting ubiquitin-mediated degradation of MYC.
Collapse
Affiliation(s)
- Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruoyu Huang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
Espinoza-Derout J, Arambulo JML, Ramirez-Trillo W, Rivera JC, Hasan KM, Lao CJ, Jordan MC, Shao XM, Roos KP, Sinha-Hikim AP, Friedman TC. The lipolysis inhibitor acipimox reverses the cardiac phenotype induced by electronic cigarettes. Sci Rep 2023; 13:18239. [PMID: 37880325 PMCID: PMC10600141 DOI: 10.1038/s41598-023-44082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA.
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jose Mari Luis Arambulo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - William Ramirez-Trillo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Kamrul M Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Candice J Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria C Jordan
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuesi M Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kenneth P Roos
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amiya P Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Luo S, Chen Z, Deng L, Chen Y, Zhou W, Canavese F, Li L. Causal Link between Gut Microbiota, Neurophysiological States, and Bone Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2023; 15:3934. [PMID: 37764718 PMCID: PMC10534888 DOI: 10.3390/nu15183934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Increasing evidence highlights a robust correlation between the gut microbiota and bone diseases; however, the existence of a causal relationship between them remains unclear. In this study, we thoroughly examined the correlation between gut microbiota and skeletal diseases using genome-wide association studies. Linkage disequilibrium score regression and Mendelian randomization were used to probe genetic causality. Furthermore, the potential mediating role of neuropsychological states (i.e., cognition, depression, and insomnia) between the gut microbiota and bone diseases was evaluated using mediation analysis, with genetic colocalization analysis revealing potential targets. These findings suggest a direct causal relationship between Ruminococcaceae and knee osteoarthritis (OA), which appears to be mediated by cognitive performance and insomnia. Similarly, a causal association was observed between Burkholderiales and lumbar pelvic fractures, mediated by cognitive performance. Colocalization analysis identified a shared causal variant (rs2352974) at the TRAF-interacting protein locus for cognitive ability and knee OA. This study provides compelling evidence that alterations in the gut microbiota can enhance cognitive ability, ameliorate insomnia, and potentially reduce the risk of site-specific fractures and OA. Therefore, strategies targeting gut microbiota optimization could serve as novel and effective preventive measures against fractures and OA.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Zhiyang Chen
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Linfang Deng
- Department of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France;
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| |
Collapse
|
9
|
Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2023; 122:110605. [PMID: 37451021 DOI: 10.1016/j.intimp.2023.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major types of lung cancer with high morbidity and mortality. The TRAF-interacting protein (TRAIP) is a ring-type E3 ubiquitin ligase which has been recently identified to play pivotal roles in various cancers. However, the expression and function of TRAIP in LUAD remain elusive. METHODS In this study, we used bioinformatic tools as well as molecular experiments to explore the exact role of TRAIP and the underlying mechanism. RESULTS Data mining across the UALCAN, GEPIA and GTEx, GEO and HPA databases revealed that TRAIP was significantly overexpressed in LUAD tissues than that in adjacent normal tissues. Kaplan-Meier curve showed that high TRAIP expression was associated with poor overall survival (OS) and relapse-free survival (RFS). Univariate and multivariate cox regression analysis revealed that TRAIP was an independent risk factor in LUAD. And the TRAIP-based nomogram further supported the prognostic role of TRAIP in LUAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that TRAIP-associated genes were mainly involved in DNA replication, cell cycle and other processes. The immune infiltration analysis indicated that TRAIP expression was tightly correlated with the infiltration of diverse immune cell types, including B cell, CD8 + T cell, neutrophil and dendritic cell. Moreover, TRAIP expression was observed to be significantly associated with tumor infiltrating lymphocytes (TILs) and immune checkpoint molecules. In vitro experiments further confirmed knockdown of TRAIP inhibited cell migration and invasion, as well as decreasing chemokine production and inhibiting M2-like macrophage recruitment. Lastly, CMap analysis identified 10 small molecule compounds that may target TRAIP, providing potential therapies for LUAD. CONCLUSIONS Collectively, our study found that TRAIP is an oncogenic gene in LUAD, which may be a potential prognostic biomarker and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Scaramuzza S, Jones RM, Sadurni MM, Reynolds-Winczura A, Poovathumkadavil D, Farrell A, Natsume T, Rojas P, Cuesta CF, Kanemaki MT, Saponaro M, Gambus A. TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells. Nat Commun 2023; 14:5071. [PMID: 37604812 PMCID: PMC10442450 DOI: 10.1038/s41467-023-40695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.
Collapse
Affiliation(s)
- Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Cancer Research UK - Manchester Institute, Manchester Cancer Research Centre, Manchester, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Martina Muste Sadurni
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Abigail Farrell
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Cyntia Fernandez Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Wang C, Zhou W, Zhang L, Fu L, Shi W, Qing Y, Lu F, Tang J, Gao X, Zhang A, Jia Z, Zhang Y, Zhao X, Zheng B. Diagnostic yield and novel candidate genes for neurodevelopmental disorders by exome sequencing in an unselected cohort with microcephaly. BMC Genomics 2023; 24:422. [PMID: 37501076 PMCID: PMC10373276 DOI: 10.1186/s12864-023-09505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Microcephaly is caused by reduced brain volume and most usually associated with a variety of neurodevelopmental disorders (NDDs). To provide an overview of the diagnostic yield of whole exome sequencing (WES) and promote novel candidates in genetically unsolved families, we studied the clinical and genetic landscape of an unselected Chinese cohort of patients with microcephaly. METHODS We performed WES in an unselected cohort of 103 NDDs patients with microcephaly as one of the features. Full evaluation of potential novel candidate genes was applied in genetically undiagnosed families. Functional validations of selected variants were conducted in cultured cells. To augment the discovery of novel candidates, we queried our genomic sequencing data repository for additional likely disease-causing variants in the identified candidate genes. RESULTS In 65 families (63.1%), causative sequence variants (SVs) and clinically relevant copy number variants (CNVs) with a pathogenic or likely pathogenic (P/LP) level were identified. By incorporating coverage analysis to WES, a pathogenic or likely pathogenic CNV was detected in 15 families (16/103, 15.5%). In another eight families (8/103, 7.8%), we identified variants in newly reported gene (CCND2) and potential novel neurodevelopmental disorders /microcephaly candidate genes, which involved in cell cycle and division (PWP2, CCND2), CDC42/RAC signaling related actin cytoskeletal organization (DOCK9, RHOF), neurogenesis (ELAVL3, PPP1R9B, KCNH3) and transcription regulation (IRF2BP1). By looking into our data repository of 5066 families with NDDs, we identified additional two cases with variants in DOCK9 and PPP1R9B, respectively. CONCLUSION Our results expand the morbid genome of monogenic neurodevelopmental disorders and support the adoption of WES as a first-tier test for individuals with microcephaly.
Collapse
Affiliation(s)
- Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Luyan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Luhan Fu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Shi
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Qing
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fen Lu
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiucheng Gao
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Xiaoke Zhao
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
13
|
Chung HJ, Lee JR, Kim TM, Kim S, Park K, Kim MJ, Jung E, Kim S, Lee EA, Ra JS, Hwang S, Lee JY, Schärer OD, Kim Y, Myung K, Kim H. ZNF212 promotes genomic integrity through direct interaction with TRAIP. Nucleic Acids Res 2023; 51:631-649. [PMID: 36594163 PMCID: PMC9881131 DOI: 10.1093/nar/gkac1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea,Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yonghwan Kim
- Correspondence may also be addressed to Yonghwan Kim. Tel: +82 2 710 9552;
| | - Kyungjae Myung
- Correspondence may also be addressed to Kyungjae Myung. Tel: +82 52 217 5323; Fax: +82 52 217 5519;
| | - Hongtae Kim
- To whom correspondence should be addressed. Tel: +82 52 217 5404; Fax: +82 52 217 5519;
| |
Collapse
|
14
|
Silencing TRAIP suppresses cell proliferation and migration/invasion of triple negative breast cancer via RB-E2F signaling and EMT. Cancer Gene Ther 2023; 30:74-84. [PMID: 36064576 PMCID: PMC9842503 DOI: 10.1038/s41417-022-00517-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023]
Abstract
TRAIP, as a 53 kDa E3 ubiquitin protein ligase, is involved in various cellular processes and closely related to the occurrence and development of tumors. At present, few studies on the relationship between TRAIP and triple negative breast cancer (TNBC) were reported. Bioinformatic analysis and Western blot, immunohistochemistry (IHC), CCK-8, colony formation, flow cytometry, wound healing, Transwell, and dual-luciferase reporter assays were performed, and xenograft mouse models were established to explore the role of TRAIP in TNBC. This study showed that the expression of TRAIP protein was upregulated in TNBC tissues and cell lines. Silencing of TRAIP significantly inhibited the proliferation, migration, and invasion of TNBC cells, whereas opposite results were observed in the TRAIP overexpression. In addition, TRAIP regulated cell proliferation, migration, and invasion through RB-E2F signaling and epithelial mesenchymal transformation (EMT). MiR-590-3p directly targeted the TRAIP 3'-UTR, and its expression were lower in TNBC tissues. Its mimic significantly downregulated the expression of TRAIP and subsequently suppressed cell proliferation, migration, and invasion. Rescue experiments indicated that TRAIP silencing reversed the promotion of miR-590-3p inhibitor on cell proliferation, migration, and invasion. TRAIP overexpression could also reverse the inhibition of miR-590-3p mimic on tumorigenesis. Finally, TRAIP knockdown significantly inhibited tumor growth and metastasis in animal experiments. In conclusion, TRAIP is an oncogene that influences the proliferation, migration, and invasion of TNBC cells through RB-E2F signaling and EMT. Therefore, TRAIP may be a potential therapeutic target for TNBC.
Collapse
|
15
|
Turkyilmaz A, Donmez AS, Cayir A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J Med 2022; 54:179-186. [PMID: 36655465 PMCID: PMC11163345 DOI: 10.5152/eurasianjmed.2022.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 01/19/2023] Open
Abstract
Short stature is considered a condition in which the height is 2 standard deviations below the mean height of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and its heritability is reported to be approximately 80%. More than 600 variants associated with human growth were detected in the genome-wide association studies. Rare and common variants concurrently affect human height. The rare variations that play a role in human height determination and have a strong impact on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of diseases ranging from isolated short stature to severe and syndromic short stature has promoted the understanding of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determination of the genetic etiology in growth disorders is essential for the development of novel targeted therapies and crucial in the development of mutation-specific treatments in the future.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ayse Sena Donmez
- Department of Pediatrics, Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
16
|
The Systematic Analyses of RING Finger Gene Signature for Predicting the Prognosis of Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2466006. [PMID: 36199791 PMCID: PMC9529411 DOI: 10.1155/2022/2466006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
RING finger (RNF) proteins are frequently dysregulated in human malignancies and are tightly associated with tumorigenesis. However, the expression profiles of RNF genes in hepatocellular carcinoma (HCC) and their relations with prognosis remain undetermined. Here, we aimed at constructing a prognostic model according to RNF genes for forecasting the outcomes of HCC patients using the data from The Cancer Genome Atlas (TCGA) program. We collected HCC datasets to validate the values of our model in predicting prognosis of HCC patients from International Cancer Genome Consortium (ICGC) platform. Then, functional experiments were carried out to explore the roles of the representative RNF in HCC progression. A total of 107 differentially expressed RNFs were obtained between TCGA-HCC tumor and normal tissues. After comprehensive evaluation, a prognostic signature composed of 11 RNFs (RNF220, RNF25, TRIM25, BMI1, RNF216P1, RNF115, RNF2, TRAIP, RNF157, RNF145, and RNF19B) was constructed based on TCGA cohort. Then, the Kaplan-Meier (KM) curves and the receiver operating characteristic curve (ROC) were employed to evaluate predictive power of the prognostic model in testing cohort (TCGA) and validation cohort (ICGC). The KM and ROC curves illustrated the good predictive power in testing and validation cohort. The areas under the ROC curve are 0.77 and 0.76 in these two cohorts, respectively. Among the prognostic signature genes, BMI1 was selected as a representative for functional study. We found that BMI1 protein level was significantly upregulated in HCC tissues. Moreover, the inhibitor of BMI1, PTC-209, displayed an excellent anti-HCC effect in vitro. Enrichment analysis of BMI1 downstream targets showed that BMI1 might be involved in tumor immunotherapy. Together, our overall analyses revealed that the 11-RNFs prognostic signature might provide us latent chances for evaluating HCC prognosis and developing novel HCC therapy.
Collapse
|
17
|
Fujisawa R, Polo Rivera C, Labib KPM. Multiple UBX proteins reduce the ubiquitin threshold of the mammalian p97-UFD1-NPL4 unfoldase. eLife 2022; 11:e76763. [PMID: 35920641 PMCID: PMC9377798 DOI: 10.7554/elife.76763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The p97/Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 are essential to unfold ubiquitylated proteins in many areas of eukaryotic cell biology. In yeast, Cdc48-Ufd1-Npl4 is controlled by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here, we show that mammalian p97-UFD1-NPL4 is governed by a complex interplay between additional p97 cofactors and the number of conjugated ubiquitins. Using reconstituted assays for the disassembly of ubiquitylated CMG (Cdc45-MCM-GINS) helicase by human p97-UFD1-NPL4, we show that the unfoldase has a high ubiquitin threshold for substrate unfolding, which can be reduced by the UBX proteins UBXN7, FAF1, or FAF2. Our data indicate that the UBX proteins function by binding to p97-UFD1-NPL4 and stabilising productive interactions between UFD1-NPL4 and K48-linked chains of at least five ubiquitins. Stimulation by UBXN7 is dependent upon known ubiquitin-binding motifs, whereas FAF1 and FAF2 use a previously uncharacterised coiled-coil domain to reduce the ubiquitin threshold of p97-UFD1-NPL4. We show that deleting the Ubnx7 and Faf1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.
Collapse
Affiliation(s)
- Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
18
|
Yadav N, Kirola L, Geetha TS, Mittal K, Kadandale J, Yogev Y, Birk OS, Gupta N, Balakrishnan P, Jana M, Gupta M, Kabra M, Thelma BK. A novel leaky splice variant in centromere protein J (CENPJ)-associated Seckel syndrome. Ann Hum Genet 2022; 86:245-256. [PMID: 35451063 DOI: 10.1111/ahg.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in CENPJ (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of CENPJ in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known CENPJ function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of CENPJ-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.
Collapse
Affiliation(s)
- Navneesh Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Laxmi Kirola
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Department of Molecular and Human Genetics, Banaras Hindu University, Uttar Pradesh, India
| | - Thenral S Geetha
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Medgenome, Labs, Bangalore, India
| | - Kirti Mittal
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Lunenfeld-Tanenbaum, Research Institute, Toronto, Canada
| | | | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neerja Gupta
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prahlad Balakrishnan
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India.,Genes2me, Haryana, India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Meena Gupta
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi, India.,Department of Neurology, Paras Hospitals, Haryana, India
| | - Madhulika Kabra
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
19
|
O'Neill RS, Rusan NM. Traip controls mushroom body size by suppressing mitotic defects. Development 2022; 149:dev199987. [PMID: 35297981 PMCID: PMC8995085 DOI: 10.1242/dev.199987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/28/2022] [Indexed: 05/12/2024]
Abstract
Microcephaly is a failure to develop proper brain size and neuron number. Mutations in diverse genes are linked to microcephaly, including several with DNA damage repair (DDR) functions; however, it is not well understood how these DDR gene mutations limit brain size. One such gene is TRAIP, which has multiple functions in DDR. We characterized the Drosophila TRAIP homolog nopo, hereafter traip, and found that traip mutants (traip-) have a brain-specific defect in the mushroom body (MB). traip- MBs were smaller and contained fewer neurons, but no neurodegeneration, consistent with human primary microcephaly. Reduced neuron numbers in traip- were explained by premature loss of MB neuroblasts (MB-NBs), in part via caspase-dependent cell death. Many traip- MB-NBs had prominent chromosome bridges in anaphase, along with polyploidy, aneuploidy or micronuclei. Traip localization during mitosis is sufficient for MB development, suggesting that Traip can repair chromosome bridges during mitosis if necessary. Our results suggest that proper brain size is ensured by the recently described role for TRAIP in unloading stalled replication forks in mitosis, which suppresses DNA bridges and premature neural stem cell loss to promote proper neuron number.
Collapse
Affiliation(s)
- Ryan S. O'Neill
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Conrad D, Stanley C, Denney J, Quinn K. Prenatal ultrasound diagnosis of Seckel syndrome with bi-allelic variant in TRAIP via exome sequencing. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:395-398. [PMID: 34235748 DOI: 10.1002/jcu.23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/18/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
We present two consecutive pregnancies with shared ultrasound findings-sloping forehead, micrognathia, ambiguous genitalia, brachycephaly, short extremities, single umbilical artery, choroid plexus cysts, and clenched hands. Subsequent whole exome sequencing identified TRAIP gene variants implicating diagnosis of Seckel syndrome 9 (SCKL9). Prenatal testing in subsequent pregnancy identified one variant. Our case highlights the utility of whole exome sequencing when prenatal ultrasound findings lend suspicion. Molecular confirmation allows for testing strategies in, or prior to, subsequent pregnancies. The finding of a rare, novel missense variant in TRAIP gene further implicates this mutation as having deleterious clinical manifestations.
Collapse
Affiliation(s)
- Daragh Conrad
- Department of Obstetrics and Gynecology, Section on Maternal Fetal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Christy Stanley
- Department of Obstetrics and Gynecology, Section on Maternal Fetal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey Denney
- Department of Obstetrics and Gynecology, Section on Maternal Fetal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kristen Quinn
- Department of Obstetrics and Gynecology, Section on Maternal Fetal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
21
|
Bhat EA, Sajjad N, Rather IA, Sabir JSM, Hor YY. In vitro assembly complex formation of TRAIP CC and RAP 80 zinc finger motif revealed by our study. Saudi J Biol Sci 2021; 28:7511-7516. [PMID: 34867056 PMCID: PMC8626312 DOI: 10.1016/j.sjbs.2021.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Tumor necrosis factor interacting protein (TRAIP/TRIP) is an important cell-signaling molecule that prevents the TNF-induced-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation via direct interaction with TRAF 2 protein. TRAIP is a crucial downstream signaling molecule, implicated in several signaling pathways. Due to these multifunctional effects, TRAIP is more related to cellular mitosis, chromosome segregation, and DNA damage response. Tumor necrosis factor interacting protein is a downstream signaling molecule that contains a RING domain with E3 ubiquitin ligase activity at the N terminal side followed by coiled-coil and C terminal leucine zipper domain. Human TRAIP is constituted of 469 amino acids with 76% sequence similarity with the mouse TRAIP protein. Although, the main inhibitory function of TRAIP has been known for decades, however, in vitro interaction of TRAIPCC domain with RAP80 Zinc finger motif has not been reported yet. Besides, RAP80, the binding partner of TRAIPCC protein has been implicated in DNA damage response. Results Our in vitro study shows that the TRAIP CC (64-166) associates with the RAP80 zinc finger of corresponding amino acid 490-584. However, TRAIP CCLZ (66-260) and TRAIP RINGCC (1 = 157) failed to interact with the RAP80 zinc finger of corresponding amino acid 490-584. The current study reinforces TRAIP CC (64-166) and RAP80 zinc finger of corresponding amino acid 490-584 associates to form a complex. Moreover, SDS PAGE arbitrated the homogeneity of RAP80 Zinc finger and TRAIP CC of corresponding amino acid 490-584 and 64-166, respectively. Conclusion In vitro, a specific interaction was observed between the TRAIP CC (64-166) and the RAP80 zinc finger of the corresponding amino acid 490-584 and a specific binding area of the RAP80 zinc finger motif were investigated. The TRAIPCC region is required for the complex to bind to the RAP80-Zn finger motif. This strategy may be necessary for the RAP80 zinc finger activity to the TRAIP CC protein.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
22
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
23
|
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet 2021; 37:317-336. [DOI: 10.1016/j.tig.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022]
|
24
|
Villa F, Fujisawa R, Ainsworth J, Nishimura K, Lie‐A‐Ling M, Lacaud G, Labib KPM. CUL2 LRR1 , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Rep 2021; 22:e52164. [PMID: 33590678 PMCID: PMC7926238 DOI: 10.15252/embr.202052164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.
Collapse
Affiliation(s)
- Fabrizio Villa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kohei Nishimura
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Michael Lie‐A‐Ling
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Georges Lacaud
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
25
|
Mechanisms of eukaryotic replisome disassembly. Biochem Soc Trans 2021; 48:823-836. [PMID: 32490508 PMCID: PMC7329349 DOI: 10.1042/bst20190363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
DNA replication is a complex process that needs to be executed accurately before cell division in order to maintain genome integrity. DNA replication is divided into three main stages: initiation, elongation and termination. One of the key events during initiation is the assembly of the replicative helicase at origins of replication, and this mechanism has been very well described over the last decades. In the last six years however, researchers have also focused on deciphering the molecular mechanisms underlying the disassembly of the replicative helicase during termination. Similar to replisome assembly, the mechanism of replisome disassembly is strictly regulated and well conserved throughout evolution, although its complexity increases in higher eukaryotes. While budding yeast rely on just one pathway for replisome disassembly in S phase, higher eukaryotes evolved an additional mitotic pathway over and above the default S phase specific pathway. Moreover, replisome disassembly has been recently found to be a key event prior to the repair of certain DNA lesions, such as under-replicated DNA in mitosis and inter-strand cross-links (ICLs) in S phase. Although replisome disassembly in human cells has not been characterised yet, they possess all of the factors involved in these pathways in model organisms, and de-regulation of many of them are known to contribute to tumorigenesis and other pathological conditions.
Collapse
|
26
|
Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021; 184:1081-1097.e19. [PMID: 33606978 PMCID: PMC8018281 DOI: 10.1016/j.cell.2021.01.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.
Collapse
Affiliation(s)
- Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Fan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Mirsanaye AS, Typas D, Mailand N. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions. Trends Cell Biol 2021; 31:584-597. [PMID: 33612353 DOI: 10.1016/j.tcb.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Accurate duplication of chromosomal DNA is vital for faithful transmission of the genome during cell division. However, DNA replication integrity is frequently challenged by genotoxic insults that compromise the progression and stability of replication forks, posing a threat to genome stability. It is becoming clear that the organization of the replisome displays remarkable flexibility in responding to and overcoming a wide spectrum of fork-stalling insults, and that these transactions are dynamically orchestrated and regulated by protein post-translational modifications (PTMs) including ubiquitylation. In this review, we highlight and discuss important recent advances on how ubiquitin-mediated signaling at the replication fork plays a crucial multifaceted role in regulating replisome composition and remodeling its configuration upon replication stress, thereby ensuring high-fidelity duplication of the genome.
Collapse
Affiliation(s)
- Ann Schirin Mirsanaye
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
28
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
29
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
30
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Falquet B, Ölmezer G, Enkner F, Klein D, Challa K, Appanah R, Gasser SM, Rass U. Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication. Nucleic Acids Res 2020; 48:7265-7278. [PMID: 32544229 PMCID: PMC7367196 DOI: 10.1093/nar/gkaa524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 01/28/2023] Open
Abstract
DNA2 is an essential nuclease–helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5′-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2, 5′-flaps are thought to accumulate on the lagging strand, resulting in DNA damage-checkpoint arrest and cell death. In line with Dna2’s role in RF recovery, we find that the loss of Dna2 results in severe chromosome under-replication downstream of endogenous and exogenous RF-stalling. Importantly, unfaithful chromosome replication in Dna2-mutant cells is exacerbated by Pif1, which triggers the DNA damage checkpoint along a pathway involving Pif1’s ability to promote homologous recombination-coupled replication. We propose that Dna2 fulfils its essential function by promoting RF recovery, facilitating replication completion while suppressing excessive RF restart by recombination-dependent replication (RDR) and checkpoint activation. The critical nature of Dna2’s role in controlling the fate of stalled RFs provides a framework to rationalize the involvement of DNA2 in Seckel syndrome and cancer.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Franz Enkner
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
32
|
Brigant B, Demont Y, Ouled-Haddou H, Metzinger-Le Meuth V, Testelin S, Garçon L, Metzinger L, Rochette J. TRIM37 is highly expressed during mitosis in CHON-002 chondrocytes cell line and is regulated by miR-223. Bone 2020; 137:115393. [PMID: 32353567 DOI: 10.1016/j.bone.2020.115393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Multiple molecular disorders can affect mechanisms regulating proliferation and differentiation of growth plate chondrocytes. Mutations in the TRIM37 gene cause the Mulibrey nanism, a heritable growth disorder. Since chondrocytes are instrumental in long bone growth that is deficient in nanism, we hypothesized that TRIM37 defect could contribute to dysregulation of the chondrocyte cell cycle. Western blotting, confocal microscopy and imaging flow cytometry determined TRIM37 expression in CHON-002 cell lineage. We showed that TRIM37 is expressed during mitosis of chondrocytes and directly impacted their proliferation. During the chondrocyte cell cycle, TRIM37 was present in both nucleus and cytoplasm. During M phase we observed an increase of the TRIM37-Tubulin co-localization in comparison with G1, S and G2 phases. TRIM37 knock down inhibited proliferation, together with cell cycle anomalies and increased autophagy, while overexpression accordingly enhanced cell proliferation. We demonstrated that microRNA-223 directly targets TRIM37, and suggest that miR-223 regulates TRIM37 gene expression during the cell cycle. In summary, our results give clues to explain why TRIM37 deficiency in chondrocytes impacts bone growth. Modulating TRIM37 using miR-223 could be an approach to increase chondrogenesis.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Yohann Demont
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Sylvie Testelin
- Maxillo-Facial Surgery Department, Centre Hospitalo-Universitaire d'Amiens, Avenue Laennec, 80000 Amiens, France; EA CHIMERE, université de Picardie-Jules-Verne, Avenue Laennec, 80000 Amiens, France; Facing Faces Institute, Avenue Laennec, 80000 Amiens, France
| | - Loïc Garçon
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Laurent Metzinger
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Jacques Rochette
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
33
|
Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 2020; 21:633-651. [PMID: 32612242 DOI: 10.1038/s41580-020-0257-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
Complete and accurate DNA replication requires the progression of replication forks through DNA damage, actively transcribed regions, structured DNA and compact chromatin. Recent studies have revealed a remarkable plasticity of the replication process in dealing with these obstacles, which includes modulation of replication origin firing, of the architecture of replication forks, and of the functional organization of the replication machinery in response to replication stress. However, these specialized mechanisms also expose cells to potentially dangerous transactions while replicating DNA. In this Review, we discuss how replication forks are actively stalled, remodelled, processed, protected and restarted in response to specific types of stress. We also discuss adaptations of the replication machinery and the role of chromatin modifications during these transactions. Finally, we discuss interesting recent data on the relevance of replication fork plasticity to human health, covering its role in tumorigenesis, its crosstalk with innate immunity responses and its potential as an effective cancer therapy target.
Collapse
Affiliation(s)
- Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Olthof AM, Rasmussen JS, Campeau PM, Kanadia RN. Disrupted minor intron splicing is prevalent in Mendelian disorders. Mol Genet Genomic Med 2020; 8:e1374. [PMID: 32573973 PMCID: PMC7507305 DOI: 10.1002/mgg3.1374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Splicing is crucial for proper gene expression, and is predominately executed by the major spliceosome. Conversely, 722 introns in 699 human minor intron‐containing genes (MIGs) are spliced by the minor spliceosome. Splicing of these minor introns is disrupted in diseases caused by pathogenic variants in the minor spliceosome, ultimately leading to the aberrant expression of a subset of these MIGs. However, the effect of variants in minor introns and MIGs on diseases remains unexplored. Methods Variants in MIGs and associated clinical manifestations were identified using ClinVar. The HPO database was then used to curate the related symptoms and affected organ systems. Results: We found pathogenic variants in 211 MIGs, which commonly resulted in intellectual disability, seizures and microcephaly. This revealed a subset of MIGs whose aberrant splicing may contribute to the pathogenesis of minor spliceosome‐related diseases. Moreover, we identified 51 pathogenic variants in minor intron splice sites that reduce the splice site strength and can induce alternative splicing. Conclusion These findings highlight that disrupted minor intron splicing has a broader impact on human diseases than previously appreciated. The hope is that this knowledge will aid in the development of therapeutic strategies that incorporate the minor intron splicing pathway.
Collapse
Affiliation(s)
- Anouk M Olthof
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S Rasmussen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
35
|
Kong LR, Ong RW, Tan TZ, Mohamed Salleh NAB, Thangavelu M, Chan JV, Koh LYJ, Periyasamy G, Lau JA, Le TBU, Wang L, Lee M, Kannan S, Verma CS, Lim CM, Chng WJ, Lane DP, Venkitaraman A, Hung HT, Cheok CF, Goh BC. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat Commun 2020; 11:2086. [PMID: 32350249 PMCID: PMC7190866 DOI: 10.1038/s41467-020-15608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically. Codon 158 gain-of-function mutant p53 (158-mutp53) promotes tumourigenesis in lung cancer. Here, the authors show that 158-mutp53 render cancers sensitive to cisplatin and p53 acetylation agents through a mechanism where acetylated mutant p53 upregulates TRAIP and inhibits NF-ĸB signaling.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Richard Weijie Ong
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Matan Thangavelu
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jane Vin Chan
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Lie Yong Judice Koh
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jieying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chwee Ming Lim
- Division of Surgical Oncology (Head and Neck Surgery), National University Cancer Institute, Singapore (NCIS), Singapore, 119074, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Ashok Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Huynh The Hung
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.
| |
Collapse
|
36
|
Li N, Wang J, Wallace SS, Chen J, Zhou J, D’Andrea AD. Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Res 2020; 48:3014-3028. [PMID: 31980815 PMCID: PMC7102959 DOI: 10.1093/nar/gkaa038] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The NEIL3 DNA glycosylase is a base excision repair enzyme that excises bulky base lesions from DNA. Although NEIL3 has been shown to unhook interstrand crosslinks (ICL) in Xenopus extracts, how NEIL3 participants in ICL repair in human cells and its corporation with the canonical Fanconi anemia (FA)/BRCA pathway remain unclear. Here we show that the NEIL3 and the FA/BRCA pathways are non-epistatic in psoralen-ICL repair. The NEIL3 pathway is the major pathway for repairing psoralen-ICL, and the FA/BRCA pathway is only activated when NEIL3 is not present. Mechanistically, NEIL3 is recruited to psoralen-ICL in a rapid, PARP-dependent manner. Importantly, the NEIL3 pathway repairs psoralen-ICLs without generating double-strand breaks (DSBs), unlike the FA/BRCA pathway. In addition, we found that the RUVBL1/2 complex physically interact with NEIL3 and function within the NEIL3 pathway in psoralen-ICL repair. Moreover, TRAIP is important for the recruitment of NEIL3 but not FANCD2, and knockdown of TRAIP promotes FA/BRCA pathway activation. Interestingly, TRAIP is non-epistatic with both NEIL3 and FA pathways in psoralen-ICL repair, suggesting that TRAIP may function upstream of the two pathways. Taken together, the NEIL3 pathway is the major pathway to repair psoralen-ICL through a unique DSB-free mechanism in human cells.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Rageul J, Park JJ, Jo U, Weinheimer AS, Vu TTM, Kim H. Conditional degradation of SDE2 by the Arg/N-End rule pathway regulates stress response at replication forks. Nucleic Acids Res 2019; 47:3996-4010. [PMID: 30698750 PMCID: PMC6486553 DOI: 10.1093/nar/gkz054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple pathways counteract DNA replication stress to prevent genomic instability and tumorigenesis. The recently identified human SDE2 is a genome surveillance protein regulated by PCNA, a DNA clamp and processivity factor at replication forks. Here, we show that SDE2 cleavage after its ubiquitin-like domain generates Lys-SDE2Ct, the C-terminal SDE2 fragment bearing an N-terminal Lys residue. Lys-SDE2Ct constitutes a short-lived physiological substrate of the Arg/N-end rule proteolytic pathway, in which UBR1 and UBR2 ubiquitin ligases mediate the degradation. The Arg/N-end rule and VCP/p97UFD1-NPL4 segregase cooperate to promote phosphorylation-dependent, chromatin-associated Lys-SDE2Ct degradation upon UVC damage. Conversely, cells expressing the degradation-refractory K78V mutant, Val-SDE2Ct, fail to induce RPA phosphorylation and single-stranded DNA formation, leading to defects in PCNA-dependent DNA damage bypass and stalled fork recovery. Together, our study elucidates a previously unappreciated axis connecting the Arg/N-end rule and the p97-mediated proteolysis with the replication stress response, working together to preserve replication fork integrity.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexandra S Weinheimer
- Biochemistry and Structural Biology graduate program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tri T M Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
38
|
Sonneville R, Bhowmick R, Hoffmann S, Mailand N, Hickson ID, Labib K. TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. eLife 2019; 8:e48686. [PMID: 31545170 PMCID: PMC6773462 DOI: 10.7554/elife.48686] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Rahul Bhowmick
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
39
|
Abstract
Faithful duplication of the genome is critical for the survival of an organism and prevention of malignant transformation. Accurate replication of a large amount of genetic information in a timely manner is one of the most challenging cellular processes and is often perturbed by intrinsic and extrinsic barriers to DNA replication fork progression, a phenomenon referred to as DNA replication stress. Elevated DNA replication stress is a primary source of genomic instability and one of the key hallmarks of cancer. Therefore, targeting DNA replication stress is an emerging concept for cancer therapy. The replication machinery associated with PCNA and other regulatory factors coordinates the synthesis and repair of DNA strands at the replication fork. The dynamic interaction of replication protein complexes with DNA is essential for sensing and responding to various signaling events relevant to DNA replication and damage. Thus, the disruption of the spatiotemporal regulation of protein homeostasis at the replication fork impairs genome integrity, which often involves the deregulation of ubiquitin-mediated proteolytic signaling. Notably, emerging evidence has highlighted the role of the AAA+ATPase VCP/p97 in extracting ubiquitinated protein substrates from the chromatin and facilitating the turnover of genome surveillance factors during DNA replication and repair. Here, we review recent advances in our understanding of chromatin-associated degradation pathways at the replication fork and the implication of these findings for cancer therapy.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Alexandra S Weinheimer
- Biochemistry and Structural Biology graduate program, Stony Brook University, New York 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA; Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, 11794, USA.
| |
Collapse
|
40
|
Karaca E, Posey JE, Bostwick B, Liu P, Gezdirici A, Yesil G, Coban Akdemir Z, Bayram Y, Harms FL, Meinecke P, Alawi M, Bacino CA, Sutton VR, Kortüm F, Lupski JR. Biallelic and De Novo Variants in DONSON Reveal a Clinical Spectrum of Cell Cycle-opathies with Microcephaly, Dwarfism and Skeletal Abnormalities. Am J Med Genet A 2019; 179:2056-2066. [PMID: 31407851 DOI: 10.1002/ajmg.a.61315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 01/30/2023]
Abstract
Co-occurrence of primordial dwarfism and microcephaly together with particular skeletal findings are seen in a wide range of Mendelian syndromes including microcephaly micromelia syndrome (MMS, OMIM 251230), microcephaly, short stature, and limb abnormalities (MISSLA, OMIM 617604), and microcephalic primordial dwarfisms (MPDs). Genes associated with these syndromes encode proteins that have crucial roles in DNA replication or in other critical steps of the cell cycle that link DNA replication to cell division. We identified four unrelated families with five affected individuals having biallelic or de novo variants in DONSON presenting with a core phenotype of severe short stature (z score < -3 SD), additional skeletal abnormalities, and microcephaly. Two apparently unrelated families with identical homozygous c.631C > T p.(Arg211Cys) variant had clinical features typical of Meier-Gorlin syndrome (MGS), while two siblings with compound heterozygous c.346delG p.(Asp116Ile*62) and c.1349A > G p.(Lys450Arg) variants presented with Seckel-like phenotype. We also identified a de novo c.683G > T p.(Trp228Leu) variant in DONSON in a patient with prominent micrognathia, short stature and hypoplastic femur and tibia, clinically diagnosed with Femoral-Facial syndrome (FFS, OMIM 134780). Biallelic variants in DONSON have been recently described in individuals with microcephalic dwarfism. These studies also demonstrated that DONSON has an essential conserved role in the cell cycle. Here we describe novel biallelic and de novo variants that are associated with MGS, Seckel-like phenotype and FFS, the last of which has not been associated with any disease gene to date.
Collapse
Affiliation(s)
- Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bret Bostwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Bioinformatics, University of Hamburg, Hamburg, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas
| |
Collapse
|
41
|
Tarnauskaitė Ž, Bicknell LS, Marsh JA, Murray JE, Parry DA, Logan CV, Bober MB, de Silva DC, Duker AL, Sillence D, Wise C, Jackson AP, Murina O, Reijns MAM. Biallelic variants in DNA2 cause microcephalic primordial dwarfism. Hum Mutat 2019; 40:1063-1070. [PMID: 31045292 PMCID: PMC6773220 DOI: 10.1002/humu.23776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 11/11/2022]
Abstract
Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.
Collapse
Affiliation(s)
- Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Louise S. Bicknell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jennie E. Murray
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - David A. Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Clare V. Logan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael B. Bober
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaColomboSri Lanka
| | - Angela L. Duker
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - David Sillence
- Discipline of Genomic Medicine, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Western Sydney Genetics ProgramSydney Children's Hospitals NetworkWestmeadAustralia
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish, Rite Hospital for ChildrenDallasTexas
- McDermott Center for Human Growth and DevelopmentUniversity of Texas, Southwestern Medical CenterDallasTexas
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexas
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Andrew P. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Martin A. M. Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
42
|
Chiticariu E, Regamey A, Huber M, Hohl D. CENPV Is a CYLD-Interacting Molecule Regulating Ciliary Acetylated α-Tubulin. J Invest Dermatol 2019; 140:66-74.e4. [PMID: 31260673 DOI: 10.1016/j.jid.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
CYLD is a deubiquitylase with tumor suppressor functions, first identified in patients with familial cylindromatosis. Despite many molecular mechanisms in which a function of CYLD was reported, affected patients only develop skin appendage tumors, and their precise pathogenesis remains enigmatic. To elucidate how CYLD contributes to tumor formation, we aimed to identify molecular partners in keratinocytes. By using yeast two-hybrid, coprecipitation, and proximity ligation experiments, we identified CENPV as a CYLD-interacting partner. CENPV, a constituent of mitotic chromosomes associating with cytoplasmic microtubules, interacts with CYLD through the region between the third cytoskeleton-associated protein-glycine domain and the active site. CENPV is deubiquitylated by CYLD and localizes in interphase to primary cilia where it increases the ciliary levels of acetylated α-tubulin. CENPV is overexpressed in basal cell carcinoma. Our results support the notion that centromeric proteins have functions in ciliogenesis.
Collapse
Affiliation(s)
- Elena Chiticariu
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Alexandre Regamey
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Marcel Huber
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Daniel Hohl
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
43
|
Chen Y, Li J, Cao F, Lam J, Cheng CC, Yu CH, Huen MS. Nucleolar residence of the seckel syndrome protein TRAIP is coupled to ribosomal DNA transcription. Nucleic Acids Res 2019; 46:10119-10131. [PMID: 30165463 PMCID: PMC6212796 DOI: 10.1093/nar/gky775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The RING finger protein TRAIP protects genome integrity and its mutation causes Seckel syndrome. TRAIP encodes a nucleolar protein that migrates to UV-induced DNA lesions via a direct interaction with the DNA replication clamp PCNA. Thus far, mechanistically how UV mobilizes TRAIP from the nucleoli remains unknown. We found that PCNA binding is dispensable for the nucleolus-nucleoplasm shuttling of TRAIP following cell exposure to UV irradiation, and that its redistribution did not rely on the master DNA damage kinases ATM and ATR. Interestingly, I-PpoI-induced ribosomal DNA damage led to TRAIP exclusion from the nucleoli, raising the possibility that active ribosomal DNA transcription may underlie TRAIP retention in the nuclear sub-compartments. Accordingly, chemical inhibition of RNA polymerase I activity led to TRAIP diffusion into the nucleoplasm, and was coupled with marked reduction of DNA/RNA hybrids in the nucleoli, suggesting that TRAIP may be sequestered via binding to nucleic acid structures in the nucleoli. Consistently, cell pre-treatment with DNase/RNase effectively released TRAIP from the nucleoli. Taken together, our study defines a bipartite mechanism that drives TRAIP trafficking in response to UV damage, and highlights the nucleolus as a stress sensor that contributes to orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Yangzi Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Fakun Cao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Jason Lam
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Clooney Cy Cheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Michael Sy Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.,Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R
| |
Collapse
|
44
|
Priego Moreno S, Jones RM, Poovathumkadavil D, Scaramuzza S, Gambus A. Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Sci Alliance 2019; 2:2/2/e201900390. [PMID: 30979826 PMCID: PMC6464043 DOI: 10.26508/lsa.201900390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Analysis of the mitotic replisome disassembly pathway in X. laevis egg extract shows that any replisomes retained on chromatin past S-phase are unloaded through formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and p97/VCP activity. We have shown previously that the process of replication machinery (replisome) disassembly at the termination of DNA replication forks in the S-phase is driven through polyubiquitylation of one of the replicative helicase subunits (Mcm7) by Cul2LRR1 ubiquitin ligase. Interestingly, upon inhibition of this pathway in Caenorhabditis elegans embryos, the replisomes retained on chromatin were unloaded in the subsequent mitosis. Here, we show that this mitotic replisome disassembly pathway exists in Xenopus laevis egg extract and we determine the first elements of its regulation. The mitotic disassembly pathway depends on the formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and the activity of p97/VCP protein segregase. Unlike in lower eukaryotes, however, it does not require SUMO modifications. Importantly, we also show that this process can remove all replisomes from mitotic chromatin, including stalled ones, which indicates a wide application for this pathway over being just a “backup” for terminated replisomes. Finally, we characterise the composition of the replisome retained on chromatin until mitosis.
Collapse
Affiliation(s)
- Sara Priego Moreno
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca M Jones
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shaun Scaramuzza
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Mol Cell 2019; 73:915-929.e6. [PMID: 30849395 PMCID: PMC6410736 DOI: 10.1016/j.molcel.2018.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Burrage LC, Reynolds JJ, Baratang NV, Phillips JB, Wegner J, McFarquhar A, Higgs MR, Christiansen AE, Lanza DG, Seavitt JR, Jain M, Li X, Parry DA, Raman V, Chitayat D, Chinn IK, Bertuch AA, Karaviti L, Schlesinger AE, Earl D, Bamshad M, Savarirayan R, Doddapaneni H, Muzny D, Jhangiani SN, Eng CM, Gibbs RA, Bi W, Emrick L, Rosenfeld JA, Postlethwait J, Westerfield M, Dickinson ME, Beaudet AL, Ranza E, Huber C, Cormier-Daire V, Shen W, Mao R, Heaney JD, Orange JS, Bertola D, Yamamoto GL, Baratela WAR, Butler MG, Ali A, Adeli M, Cohn DH, Krakow D, Jackson AP, Lees M, Offiah AC, Carlston CM, Carey JC, Stewart GS, Bacino CA, Campeau PM, Lee B. Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. Am J Hum Genet 2019; 104:422-438. [PMID: 30773277 PMCID: PMC6408318 DOI: 10.1016/j.ajhg.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nissan Vida Baratang
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | | | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ashley McFarquhar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mahim Jain
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Parry
- Medical Research Council Institute of Genetics & Molecular Medicine, the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Vandana Raman
- Division of Pediatric Endocrinology and Diabetes, University of Utah, Salt Lake City, UT 84112, USA
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1Z5, Canada; Department of Pediatrics, Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Pediatric Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lefkothea Karaviti
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alan E Schlesinger
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dawn Earl
- Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Michael Bamshad
- Seattle Children's Hospital, Seattle, WA 98195, USA; Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77030, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience and Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emmanuelle Ranza
- Service of Genetic Medicine, University of Geneva Medical School, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Celine Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris 75015, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris 75015, France
| | - Wei Shen
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Rong Mao
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan S Orange
- Division of Pediatric Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA; Current affiliation: Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York Presbyterian, New York, NY 10032, USA
| | - Débora Bertola
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Instituto de Biociências da Universidade de São Paulo, SP 05508-0900, Brazil
| | - Guilherme L Yamamoto
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Instituto de Biociências da Universidade de São Paulo, SP 05508-0900, Brazil
| | - Wagner A R Baratela
- Clinical Genetics Unit, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Mehdi Adeli
- Department of Allergy and Immunology, Sidra Medicine, Hamad Medical Corporation, Weill Cornell Medicine, Qatar, Doha, Qatar
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology and Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Department of Human Genetics and Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew P Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Melissa Lees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Amaka C Offiah
- Department of Oncology and Metabolism, Academic Unit of Child Health, University of Sheffield, Sheffield S10 2TH, UK
| | - Colleen M Carlston
- Associated Regional and University Pathologists Laboratories, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - John C Carey
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Wu RA, Semlow DR, Kamimae-Lanning AN, Kochenova OV, Chistol G, Hodskinson MR, Amunugama R, Sparks JL, Wang M, Deng L, Mimoso CA, Low E, Patel KJ, Walter JC. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 2019; 567:267-272. [PMID: 30842657 PMCID: PMC6417926 DOI: 10.1038/s41586-019-1002-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ravindra Amunugama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
48
|
Larsen NB, Gao AO, Sparks JL, Gallina I, Wu RA, Mann M, Räschle M, Walter JC, Duxin JP. Replication-Coupled DNA-Protein Crosslink Repair by SPRTN and the Proteasome in Xenopus Egg Extracts. Mol Cell 2018; 73:574-588.e7. [PMID: 30595436 PMCID: PMC6375733 DOI: 10.1016/j.molcel.2018.11.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/20/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023]
Abstract
DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.
Collapse
Affiliation(s)
- Nicolai B Larsen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alan O Gao
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Gallina
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias Mann
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Julien P Duxin
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
49
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
50
|
In Vitro Inhibitory Mechanism Effect of TRAIP on the Function of TRAF2 Revealed by Characterization of Interaction Domains. Int J Mol Sci 2018; 19:ijms19082457. [PMID: 30127245 PMCID: PMC6121587 DOI: 10.3390/ijms19082457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022] Open
Abstract
TRAF-interacting protein (TRAIP), a negative regulator of TNF-induced-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, inhibits adaptor protein TRAF2 by direct interaction and is critical in apoptosis, cell proliferation, antiviral response, and embryonic development. Although the critical function of TRAIP in NF-κB signaling is well-known, the molecular inhibitory mechanism of TRAIP remains unclear. We found that the TRAIP coiled-coil domain altered its stoichiometry between dimer and trimer in a concentration-dependent manner. Additionally, the TRAIP RING domain induced even higher-ordered assembly, which was necessary for interacting with the TRAF-N domain of TRAF2 but not TRAF1. Characterization of the TRAF-N domains of TRAF1 and TRAF2, the tentative TRAIP-binding region of TRAFs, suggested the molecular basis of the inhibitory effect of TRAIP on TRAF2 in NF-κB signaling.
Collapse
|