1
|
Huang D, Ovcharenko I. Silencer variants are key drivers of gene upregulation in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325386. [PMID: 40297423 PMCID: PMC12036408 DOI: 10.1101/2025.04.07.25325386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD), particularly late-onset AD, stands as the most prevalent neurodegenerative disorder globally. Owing to its substantial heritability, genetic studies have emerged as indispensable for elucidating genes and biological pathways driving AD onset and progression. However, genetic and molecular mechanisms underlying AD remain poorly defined, largely due to the pronounced heterogeneity of AD and the intricate interactions among AD genetic factors. Notably, approximately 90% of AD-associated genetic variants reside in intronic and intergenic regions, yet their functional significance has remained largely uncharacterized. To address this challenge, we developed a deep learning framework combining bulk and single-cell epigenomic data to evaluate the regulatory potential (i.e., silencing and activating strength) of noncoding AD variants in the dorsolateral prefrontal cortex (DLPFCs) and its major cell types. This model identified 1,457 silencer and 3,084 enhancer AD-associated variants in the DLPFC and binned them into silencer variants only (SL), enhancer variants only (EN), or both variant types (ENSL) classes. Each class exerts distinct cellular and molecular influences on AD pathogenesis. EN loci predominantly regulate housekeeping metabolic processes, whereas SL loci (including the genes MS4A6A , TREM2 , USP6NL , HLA-D ) are selectively linked to immune responses. Notably, 71% of these genes are significantly upregulated in AD and pro-inflammation-stimulated microglia. Furthermore, genes associated with SL loci are, in neuronal cells, often responsive to glutamate receptor antagonists (e.g, NBQX) and anti-inflammatory perturbagens (such as D-64131), the compound classes known for reducing the AD risk. ENSL loci, in contrast, are uniquely implicated in memory maintenance, neurofibrillary tangle assembly, and are also shared by other neurological disorders such as Parkinson's disease and schizophrenia. Key genes in this class of loci, such as MAPT , CR1/2 , and CLU , are frequently upregulated in AD subtypes with hyperphosphorylated tau aggregates. Critically, our model can accurately predict the impact of regulatory variants, with an average Pearson correlation coefficient of 0.54 and a directional concordance rate of 70% between our predictions and experimental outcomes. This model identified rs636317 as a causal AD variant in the MS4A locus, distinguishing it from the 7bp-away allele-neutral variant rs636341. Similarly, rs7922621 was prioritized over its 54-bp-away allele-neutral rs7901634 in the TSPAN14 locus. Additional causal variants include rs6701713 in the CR1 locus, and rs28834970 and rs755951 in the PTK2B locus. Collectively, this work advances our understanding of the regulatory landscape of AD-associated genetic variants, providing a framework to explore their functional roles in the pathogenesis of this complex disease.
Collapse
|
2
|
Putta YR, Pandi A, Priyadharsini JV. Investigations on the dysregulated genes in high-fat-fed mice infected with Prevotella intermedia and their possible role in the development of hepatocellular carcinoma. Folia Med (Plovdiv) 2025; 67. [PMID: 40270148 DOI: 10.3897/folmed.67.e143604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading global cancer, often linked to various factors, including viral infections and metabolic disorders. Recent studies suggest that microbial infections, particularly from oral pathogens like Prevotellaintermedia (Pi), may elevate the progression of HCC through dysbiosis and chronic inflammation.
Collapse
|
3
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. Mob DNA 2025; 16:6. [PMID: 39987084 PMCID: PMC11846448 DOI: 10.1186/s13100-025-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025] Open
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2 + tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.One sentence summary: Transposable elements generate alternative isoforms and alter post-transcriptional regulation in human breast cancer.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Diogo F T Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
4
|
He J, Perera D, Wen W, Ping J, Li Q, Lyu L, Chen Z, Shu X, Long J, Cai Q, Shu XO, Yin Z, Zheng W, Long Q, Guo X. Enhancing disease risk gene discovery by integrating transcription factor-linked trans-variants into transcriptome-wide association analyses. Nucleic Acids Res 2025; 53:gkae1035. [PMID: 39535029 PMCID: PMC11724290 DOI: 10.1093/nar/gkae1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-variants to enhance model building for TF downstream target genes. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these prediction models to large GWAS datasets for breast, prostate, lung cancers and other diseases. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene expression prediction models and identifying disease-associated genes, as shown by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study shed new light on several genetically driven key TF regulators and their associated TF-gene regulatory networks underlying disease susceptibility.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry & Molecular Biology, University of Calgary, HMRB 231, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Deshan Perera
- Department of Biochemistry & Molecular Biology, University of Calgary, HMRB 231, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Qing Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Linshuoshuo Lyu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 3rd Ave, 3rd Floor, New York, NY, 10017, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Zhijun Yin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| | - Quan Long
- Department of Biochemistry & Molecular Biology, University of Calgary, HMRB 231, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N2, Canada
- Department of Mathematics & Statistics, University of Calgary, Mathematical Sciences 476, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, USA
| |
Collapse
|
5
|
Hollingsworth EW, Liu TA, Alcantara JA, Chen CX, Jacinto SH, Kvon EZ. Rapid and quantitative functional interrogation of human enhancer variant activity in live mice. Nat Commun 2025; 16:409. [PMID: 39762235 PMCID: PMC11704014 DOI: 10.1038/s41467-024-55500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Taryn A Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Joshua A Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Cindy X Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Sandra H Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Sheu JJC, Lin WY, Liu TY, Chang CYY, Cheng J, Li YH, Chen CM, Tseng CC, Ding WY, Chung C, Hwang T, Chen PH, Tsai FJ. Ethnic-specific genetic susceptibility loci for endometriosis in Taiwanese-Han population: a genome-wide association study. J Hum Genet 2024; 69:573-583. [PMID: 38982179 DOI: 10.1038/s10038-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
Endometriosis is a common gynecological disorder affecting around 10% of reproductive-age women. Although many hypotheses were proposed, genetic alteration has been considered as one of the key factors promoting pathogenesis. Due to racial/ethnic disparities in the process of hormone regulation and nutrition metabolism, a genome-wide association study (GWAS) with 2794 cases and 27,940 controls was conducted in a Taiwanese-Han population. Our study identified five significant susceptibility loci for endometriosis, and three of them, WNT4 (on the 1p36.12), RMND1 (6q25.1), and CCDC170 (6q25.1), have been previously associated with endometriosis across different populations, including European and Japanese descent cohorts. Other two including C5orf66/C5orf66-AS2 (5q31.1) and STN1 (10q24.33) are newly identified ones. Functional network analysis of potent risk genes revealed the involvement of cancer susceptibility and neurodevelopmental disorders in endometriosis development. In addition, long non-coding RNAs (lncRNAs) C5orf66 and C5orf66-AS2 can interact with many RNA-binding proteins (RBPs) which can influence RNA metabolic process, mRNA stabilization, and mRNA splicing, leading to dysregulation in tumor-promoting gene expression. Those findings support clinical observations of differences in the presentation of endometriosis in Taiwanese-Han population with higher risks of developing deeply infiltrating/invasive lesions and the associated malignancies.
Collapse
Affiliation(s)
- Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Institute of Precision Medicine, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404333, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, 404327, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Jack Cheng
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yau-Hong Li
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- Department of Obstetrics and Gynecology, Pingtung Veterans General Hospital, Pingtung, 900053, Taiwan
| | - Chih-Mei Chen
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chung-Chen Tseng
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
| | - Wendy Yarou Ding
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Ching Chung
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
| | - Ping-Ho Chen
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 804201, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.
- Genetics Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| |
Collapse
|
7
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615242. [PMID: 39386569 PMCID: PMC11463404 DOI: 10.1101/2024.09.26.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2+ tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Diogo F. T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Xavier JM, Magno R, Russell R, de Almeida BP, Jacinta-Fernandes A, Besouro-Duarte A, Dunning M, Samarajiwa S, O'Reilly M, Maia AM, Rocha CL, Rosli N, Ponder BAJ, Maia AT. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Sci Rep 2024; 14:22526. [PMID: 39341862 PMCID: PMC11438911 DOI: 10.1038/s41598-024-72163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding breast cancer genetic risk relies on identifying causal variants and candidate target genes in risk loci identified by genome-wide association studies (GWAS), which remains challenging. Since most loci fall in active gene regulatory regions, we developed a novel approach facilitated by pinpointing the variants with greater regulatory potential in the disease's tissue of origin. Through genome-wide differential allelic expression (DAE) analysis, using microarray data from 64 normal breast tissue samples, we mapped the variants associated with DAE (daeQTLs). Then, we intersected these with GWAS data to reveal candidate risk regulatory variants and analysed their cis-acting regulatory potential. Finally, we validated our approach by extensive functional analysis of the 5q14.1 breast cancer risk locus. We observed widespread gene expression regulation by cis-acting variants in breast tissue, with 65% of coding and noncoding expressed genes displaying DAE (daeGenes). We identified over 54 K daeQTLs for 6761 (26%) daeGenes, including 385 daeGenes harbouring variants previously associated with BC risk. We found 1431 daeQTLs mapped to 93 different loci in strong linkage disequilibrium with risk-associated variants (risk-daeQTLs), suggesting a link between risk-causing variants and cis-regulation. There were 122 risk-daeQTL with stronger cis-acting potential in active regulatory regions with protein binding evidence. These variants mapped to 41 risk loci, of which 29 had no previous report of target genes and were candidates for regulating the expression levels of 65 genes. As validation, we identified and functionally characterised five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 and ATP6AP1L genes, likely acting via modulation of alternative transcription and transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL mapping to identify causal regulatory variants and target genes at breast cancer risk loci, including those with complex regulatory landscapes. It additionally provides a genome-wide resource of variants associated with DAE for future functional studies.
Collapse
Affiliation(s)
- Joana M Xavier
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - Ramiro Magno
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal
- Pattern Institute PT, Faro, Portugal
| | - Roslin Russell
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bernardo P de Almeida
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- InstaDeep, Paris, France
| | - Ana Jacinta-Fernandes
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
| | | | - Mark Dunning
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Sheffield Bioinformatics Core, The School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Shamith Samarajiwa
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- Genetics and Genomics Section, Imperial College London, London, UK
| | - Martin O'Reilly
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | | | - Cátia L Rocha
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine, Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Nordiana Rosli
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Training Division, Ministry of Health Malaysia, Putrajaya, Malaysia
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bruce A J Ponder
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | - Ana-Teresa Maia
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
9
|
Proestling K, Schreiber M, Miedl H, Hudson QJ, Husslein H, Kuessel L, Gstoettner M, Wenzl R, Yotova I. The rs2046210 Polymorphism Is Associated with Endometriosis Risk and Elevated Estrogen Receptor 1 Expression in the Eutopic Endometrium of Women with the Disease. Biomedicines 2024; 12:1657. [PMID: 39200122 PMCID: PMC11351714 DOI: 10.3390/biomedicines12081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
In this focused genetic case-control study, we analyzed two functional single-nucleotide variants (SNVs) associated with breast cancer risk (rs2046210, rs9383590) and one risk SNV for an implantation defect and infertility (rs9340799) for their association with endometriosis susceptibility, progression and ESR1 gene regulation in endometriosis patients. The rs2046210, rs9383590 and rs9340799 SNVs were genotyped in 153 endometriosis patients and 87 control subjects with Caucasian ancestry. We analyzed the association of all SNVs with endometriosis susceptibility in all patients and in subgroups and assessed the concordance between the SNVs. Quantitative reverse transcription PCR was used to determine ESR1 gene expression in the eutopic endometrial tissue of the controls and endometriosis patients. The heterozygous rs2046210 GA genotype was associated with significantly increased endometriosis risk, particularly in younger, leaner and infertile women and with an increased ESR1 gene expression in the eutopic endometrium of these patients, compared to controls. The minor AA genotype of rs2046210 was identified as a potential risk factor for endometriosis progression in women with mild endometriosis. The results from this analysis indicate that rs2046210 may be a functional genetic variant associated with endometriosis development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (M.S.); (H.M.); (Q.J.H.); (H.H.); (L.K.); (M.G.); (R.W.)
| |
Collapse
|
10
|
Adilbayeva A, Kunz J. Pathogenesis of Endometriosis and Endometriosis-Associated Cancers. Int J Mol Sci 2024; 25:7624. [PMID: 39062866 PMCID: PMC11277188 DOI: 10.3390/ijms25147624] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Endometriosis is a hormone-dependent, chronic inflammatory condition that affects 5-10% of reproductive-aged women. It is a complex disorder characterized by the growth of endometrial-like tissue outside the uterus, which can cause chronic pelvic pain and infertility. Despite its prevalence, the underlying molecular mechanisms of this disease remain poorly understood. Current treatment options are limited and focus mainly on suppressing lesion activity rather than eliminating it entirely. Although endometriosis is generally considered a benign condition, substantial evidence suggests that it increases the risk of developing specific subtypes of ovarian cancer. The discovery of cancer driver mutations in endometriotic lesions indicates that endometriosis may share molecular pathways with cancer. Moreover, the application of single-cell and spatial genomics, along with the development of organoid models, has started to illuminate the molecular mechanisms underlying disease etiology. This review aims to summarize the key genetic mutations and alterations that drive the development and progression of endometriosis to malignancy. We also review the significant recent advances in the understanding of the molecular basis of the disorder, as well as novel approaches and in vitro models that offer new avenues for improving our understanding of disease pathology and for developing new targeted therapies.
Collapse
Affiliation(s)
| | - Jeannette Kunz
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khans St, Astana 020000, Kazakhstan;
| |
Collapse
|
11
|
Huang D, Ovcharenko I. The contribution of silencer variants to human diseases. Genome Biol 2024; 25:184. [PMID: 38978133 PMCID: PMC11232194 DOI: 10.1186/s13059-024-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. RESULTS We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall twofold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in type 1 diabetes. CONCLUSIONS In summary, our results indicate that advances in deep learning models for the discovery of disease-causal variants within candidate silencers effectively "double" the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Di Huang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivan Ovcharenko
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
He J, Perera D, Wen W, Ping J, Li Q, Lyu L, Chen Z, Shu X, Long J, Cai Q, Shu XO, Zheng W, Long Q, Guo X. Enhancing Disease Risk Gene Discovery by Integrating Transcription Factor-Linked Trans-located Variants into Transcriptome-Wide Association Analyses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.10.23295443. [PMID: 37873299 PMCID: PMC10593059 DOI: 10.1101/2023.10.10.23295443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-located variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-located variants to enhance model building. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these models to large GWAS datasets for breast, prostate, and lung cancers. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene prediction models and identifying disease-associated genes, as evidenced by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study have shed new light on several genetically driven key regulators and their associated regulatory networks underlying disease susceptibility.
Collapse
|
13
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie JL, Aeilts AM, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 Germline Variants with TP53 Somatic Variants in Breast Tumors in a Genome-wide Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:1597-1608. [PMID: 38836758 PMCID: PMC11210444 DOI: 10.1158/2767-9764.crc-24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. A genome-wide association study was conducted in 2,850 women of European ancestry with breast cancer using TP53 and PIK3CA mutation status (positive or negative) as well as specific functional categories [e.g., TP53 gain-of-function (GOF) and loss-of-function, PIK3CA activating] as phenotypes. Germline variants showing evidence of association were selected for validation analyses and tested in multiple independent datasets. Discovery association analyses found five variants associated with TP53 mutation status with P values <1 × 10-6 and 33 variants with P values <1 × 10-5. Forty-four variants were associated with PIK3CA mutation status with P values <1 × 10-5. In validation analyses, only variants at the ESR1 locus were associated with TP53 mutation status after multiple comparisons corrections. Combined analyses in European and Malaysian populations found ESR1 locus variants rs9383938 and rs9479090 associated with the presence of TP53 mutations overall (P values 2 × 10-11 and 4.6 × 10-10, respectively). rs9383938 also showed association with TP53 GOF mutations (P value 6.1 × 10-7). rs9479090 showed suggestive evidence (P value 0.02) for association with TP53 mutation status in African ancestry populations. No other variants were significantly associated with TP53 or PIK3CA mutation status. Larger studies are needed to confirm these findings and determine if additional variants contribute to ancestry-specific differences in mutation frequency. SIGNIFICANCE Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, New York
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Medical School, Columbus, Ohio
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, Ohio
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| | - Heather Hampel
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Integrative Translational Sciences, City of Hope, Duarte, California
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrick Stevens
- Bioinformatics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, Malaysia
| | - Joseph Paul McElroy
- Department of Biomedical Informatics, The Ohio State University Center for Biostatistics, Columbus, Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
McClellan JC, Li JL, Gao G, Huo D. Expression- and splicing-based multi-tissue transcriptome-wide association studies identified multiple genes for breast cancer by estrogen-receptor status. Breast Cancer Res 2024; 26:51. [PMID: 38515142 PMCID: PMC10958972 DOI: 10.1186/s13058-024-01809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although several transcriptome-wide association studies (TWASs) have been performed to identify genes associated with overall breast cancer (BC) risk, only a few TWAS have explored the differences in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancer. Additionally, these studies were based on gene expression prediction models trained primarily in breast tissue, and they did not account for alternative splicing of genes. METHODS In this study, we utilized two approaches to perform multi-tissue TWASs of breast cancer by ER subtype: (1) an expression-based TWAS that combined TWAS signals for each gene across multiple tissues and (2) a splicing-based TWAS that combined TWAS signals of all excised introns for each gene across tissues. To perform this TWAS, we utilized summary statistics for ER + BC from the Breast Cancer Association Consortium (BCAC) and for ER- BC from a meta-analysis of BCAC and the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). RESULTS In total, we identified 230 genes in 86 loci that were associated with ER + BC and 66 genes in 29 loci that were associated with ER- BC at a Bonferroni threshold of significance. Of these genes, 2 genes associated with ER + BC at the 1q21.1 locus were located at least 1 Mb from published GWAS hits. For several well-studied tumor suppressor genes such as TP53 and CHEK2 which have historically been thought to impact BC risk through rare, penetrant mutations, we discovered that common variants, which modulate gene expression, may additionally contribute to ER + or ER- etiology. CONCLUSIONS Our study comprehensively examined how differences in common variation contribute to molecular differences between ER + and ER- BC and introduces a novel, splicing-based framework that can be used in future TWAS studies.
Collapse
Affiliation(s)
- Julian C McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
15
|
Winham SJ, Sherman ME. Leveraging GWAS: Path to Prevention? Cancer Prev Res (Phila) 2024; 17:13-18. [PMID: 38173393 DOI: 10.1158/1940-6207.capr-23-0336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Developing novel cancer prevention medication strategies is important for reducing mortality. Identification of common genetic variants associated with cancer risk suggests the potential to leverage these discoveries to define causal targets for cancer interception. Although each risk variant confers small increases in risk, researchers propose that blocking those that produce causal carcinogenic effects might have large impacts on cancer prevention. While a promising concept, we describe potential hurdles that may need to be scaled to reach this goal, including: (i) understanding the complexity of risk; (ii) achieving statistical power in studies with binary outcomes (cancer development: yes or no); (iii) characterization of cancer precursors; (iv) heterogeneity of cancer subtypes and the populations in which these diseases occur; (v) impact of static genetic markers across complex events of the life course; (vi) defining gene-gene and gene-environment interactions and (vii) demonstrating functional effects of markers in human populations. We assess short-term prospects for this research against the backdrop of these challenges and the potential to prevent cancer through other means. See related commentary by Peters and Tomlinson, p. 7.
Collapse
Affiliation(s)
- Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Mark E Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
16
|
Peters U, Tomlinson I. Utilizing Human Genetics to Develop Chemoprevention for Cancer-Too Good an Opportunity to be Missed. Cancer Prev Res (Phila) 2024; 17:7-12. [PMID: 38173394 DOI: 10.1158/1940-6207.capr-22-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Large-scale genetic studies are reliably identifying many risk factors for disease in the general population. Several of these genetic risk factors encode potential drug targets, and genetics has already helped to introduce targeted agents for some diseases, an example being lipid-lowering drugs to reduce the incidence of cardiovascular disease. Multiple drugs have been developed to treat cancers based on somatic mutations and genomics, but in stark contrast, there seems to be a reluctance to use germline genetic data to develop drugs to prevent malignancy, despite the large numbers of people who could benefit, the potential for lowering cancer rates, and the widespread current use of non-pharmaceutical measures to reduce cancer risk factors such as tobacco, alcohol, and infectious diseases. We argue that concerted efforts for cancer prevention based on genetics, including genes influenced by common polymorphisms that modulate cancer risk, are urgently needed. There are enormous, yet underutilized, opportunities to develop novel targeted agents for chemoprevention of cancer based on human germline genetics. Such efforts are likely to require the support of a dedicated funding program by national and international agencies. See related commentary by Winham and Sherman, p. 13.
Collapse
Affiliation(s)
- Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
19
|
McGrath IM, Montgomery GW, Mortlock S. Insights from Mendelian randomization and genetic correlation analyses into the relationship between endometriosis and its comorbidities. Hum Reprod Update 2023; 29:655-674. [PMID: 37159502 PMCID: PMC10477944 DOI: 10.1093/humupd/dmad009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Endometriosis remains a poorly understood disease, despite its high prevalence and debilitating symptoms. The overlap in symptoms and the increased risk of multiple other traits in women with endometriosis is becoming increasingly apparent through epidemiological data. Genetic studies offer a method of investigating these comorbid relationships through the assessment of causal relationships with Mendelian randomization (MR), as well as identification of shared genetic variants and genes involved across traits. This has the capacity to identify risk factors for endometriosis as well as provide insight into the aetiology of disease. OBJECTIVE AND RATIONALE We aim to review the current literature assessing the relationship between endometriosis and other traits using genomic data, primarily through the methods of MR and genetic correlation. We critically examine the limitations of these studies in accordance with the assumptions of the utilized methods. SEARCH METHODS The PubMed database was used to search for peer-reviewed original research articles using the terms 'Mendelian randomization endometriosis' and '"genetic correlation" endometriosis'. Additionally, a Google Scholar search using the terms '"endometriosis" "mendelian randomization" "genetic correlation"' was performed. All relevant publications (n = 21) published up until 7 October 2022 were included in this review. Upon compilation of all traits with published MR and/or genetic correlation with endometriosis, additional epidemiological and genetic information on their comorbidity with endometriosis was sourced by searching for the trait in conjunction with 'endometriosis' on Google Scholar. OUTCOMES The association between endometriosis and multiple pain, gynaecological, cancer, inflammatory, gastrointestinal, psychological, and anthropometric traits has been assessed using MR analysis and genetic correlation analysis. Genetic correlation analyses provide evidence that genetic factors contributing to endometriosis are shared with multiple traits: migraine, uterine fibroids, subtypes of ovarian cancer, melanoma, asthma, gastro-oesophageal reflux disease, gastritis/duodenitis, and depression, suggesting the involvement of multiple biological mechanisms in endometriosis. The assessment of causality with MR has revealed several potential causes (e.g. depression) and outcomes (e.g. ovarian cancer and uterine fibroids) of a genetic predisposition to endometriosis; however, interpretation of these results requires consideration of potential violations of the MR assumptions. WIDER IMPLICATIONS Genomic studies have demonstrated that there is a molecular basis for the co-occurrence of endometriosis with other traits. Dissection of this overlap has identified shared genes and pathways, which provide insight into the biology of endometriosis. Thoughtful MR studies are necessary to ascertain causality of the comorbidities of endometriosis. Given the significant diagnostic delay of endometriosis of 7-11 years, determining risk factors is necessary to aid diagnosis and reduce the disease burden. Identification of traits for which endometriosis is a risk factor is important for holistic treatment and counselling of the patient. The use of genomic data to disentangle the overlap of endometriosis with other traits has provided insights into the aetiology of endometriosis.
Collapse
Affiliation(s)
- Isabelle M McGrath
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Han R, Huang J, Zeng N, Xie F, Wang Y, Wang Y, Fan J. Systematic analyses of GWAS summary statistics from UK Biobank identified novel susceptibility loci and genes for upper gastrointestinal diseases. J Hum Genet 2023; 68:599-606. [PMID: 37198407 DOI: 10.1038/s10038-023-01151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
In recent decades, upper gastrointestinal (GI) diseases have been highly prevalent worldwide. Although genome-wide association studies (GWASs) have identified thousands of susceptibility loci, only a few of them were conducted for chronic upper GI disorders, and most of them were underpowered and with small sample sizes. Additionally, for the known loci, only a tiny fraction of heritability can be explained and the underlying mechanisms and related genes remain unclear. In this study, we conducted a multi-trait analysis by the MTAG software and a two-stage transcriptome-wide association study (TWAS) with UTMOST and FUSION for seven upper GI diseases (oesophagitis, gastro-oesophageal reflux disease, other diseases of oesophagus, gastric ulcer, duodenal ulcer, gastritis and duodenitis and other diseases of stomach and duodenum) based on summary GWAS statistics from UK Biobank. In the MTAG analysis, we identified 7 loci associated with these upper GI diseases, including 3 novel ones at 4p12 (rs10029980), 12q13.13 (rs4759317) and 18p11.32 (rs4797954). In the TWAS analysis, we revealed 5 susceptibility genes in known loci and identified 12 novel potential susceptibility genes, including HOXC9 at 12q13.13. Further functional annotations and colocalization analysis indicated that rs4759317 (A>G) driven the association for GWAS signals and expression quantitative trait loci (eQTL) simultaneously at 12q13.13. The identified variant acted by decreasing the expression of HOXC9 to affect the risk of gastro-oesophageal reflux disease. This study provided insights into the genetic nature of upper GI diseases.
Collapse
Affiliation(s)
- Renfang Han
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Junxiang Huang
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Nimei Zeng
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fangfei Xie
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yi Wang
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yun Wang
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Jingyi Fan
- Health Management Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
21
|
Mariapun S, Ho WK, Eriksson M, Tai MC, Mohd Taib NA, Yip CH, Rahmat K, Li J, Hartman M, Hall P, Easton DF, Lindstrom S, Teo SH. Evaluation of SNPs associated with mammographic density in European women with mammographic density in Asian women from South-East Asia. Breast Cancer Res Treat 2023; 201:237-245. [PMID: 37338730 PMCID: PMC10865780 DOI: 10.1007/s10549-023-06984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Mammographic density (MD), after accounting for age and body mass index (BMI), is a strong heritable risk factor for breast cancer. Genome-wide association studies (GWAS) have identified 64 SNPs in 55 independent loci associated with MD in women of European ancestry. Their associations with MD in Asian women, however, are largely unknown. METHOD Using linear regression adjusting for age, BMI, and ancestry-informative principal components, we evaluated the associations of previously reported MD-associated SNPs with MD in a multi-ethnic cohort of Asian ancestry. Area and volumetric mammographic densities were determined using STRATUS (N = 2450) and Volpara™ (N = 2257). We also assessed the associations of these SNPs with breast cancer risk in an Asian population of 14,570 cases and 80,870 controls. RESULTS Of the 61 SNPs available in our data, 21 were associated with MD at a nominal threshold of P value < 0.05, all in consistent directions with those reported in European ancestry populations. Of the remaining 40 variants with a P-value of association > 0.05, 29 variants showed consistent directions of association as those previously reported. We found that nine of the 21 MD-associated SNPs in this study were also associated with breast cancer risk in Asian women (P < 0.05), seven of which showed a direction of associations that was consistent with that reported for MD. CONCLUSION Our study confirms the associations of 21 SNPs (19/55 or 34.5% out of all known MD loci identified in women of European ancestry) with area and/or volumetric densities in Asian women, and further supports the evidence of a shared genetic basis through common genetic variants for MD and breast cancer risk.
Collapse
Affiliation(s)
- Shivaani Mariapun
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Weang Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mei Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Faculty of Medicine, University Malaya Cancer Research Institute, University Malaya, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheng Har Yip
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - Kartini Rahmat
- Faculty of Medicine, University Malaya Cancer Research Institute, University Malaya, Kuala Lumpur, Malaysia
- Biomedical Imaging Department, Faculty of Medicine, Universiti Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Jingmei Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Surgery, National University Hospital and National University Health System, Singapore, Singapore
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.
- Faculty of Medicine, University Malaya Cancer Research Institute, University Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
23
|
Tuano NK, Beesley J, Manning M, Shi W, Perlaza-Jimenez L, Malaver-Ortega LF, Paynter JM, Black D, Civitarese A, McCue K, Hatzipantelis A, Hillman K, Kaufmann S, Sivakumaran H, Polo JM, Reddel RR, Band V, French JD, Edwards SL, Powell DR, Chenevix-Trench G, Rosenbluh J. CRISPR screens identify gene targets at breast cancer risk loci. Genome Biol 2023; 24:59. [PMID: 36991492 PMCID: PMC10053147 DOI: 10.1186/s13059-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.
Collapse
Affiliation(s)
- Natasha K Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Murray Manning
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia
| | - Wei Shi
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laura Perlaza-Jimenez
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Jacob M Paynter
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Debra Black
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Civitarese
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen McCue
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Aaron Hatzipantelis
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine Hillman
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
24
|
Association of the Estrogen Receptor 1 Polymorphisms rs2046210 and rs9383590 with the Risk, Age at Onset and Prognosis of Breast Cancer. Cells 2023; 12:cells12040515. [PMID: 36831182 PMCID: PMC9953811 DOI: 10.3390/cells12040515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Estrogen receptor α (ERα), encoded by the ESR1 gene, is a key prognostic and predictive biomarker firmly established in routine diagnostics and as a therapeutic target of breast cancer, and it has a central function in breast cancer biology. Genetic variants at 6q25.1, containing the ESR1 gene, were found to be associated with breast cancer susceptibility. The rs2046210 and rs9383590 single nucleotide variants (SNVs) are located in the same putative enhancer region upstream of ESR1 and were separately identified as candidate causal variants responsible for these associations. Here, both SNVs were genotyped in a hospital-based case-control study of 409 female breast cancer patients and 422 female controls of a Central European (Austrian) study population. We analyzed the association of both SNVs with the risk, age at onset, clinically and molecularly relevant characteristics and prognosis of breast cancer. We also assessed the concordances between both SNVs and the associations of each SNV conditional on the other SNV. The minor alleles of both SNVs were found to be non-significantly associated with an increased breast cancer risk. Significant associations were found in specific subpopulations, particularly in patients with an age younger than 55 years. The minor homozygotes of rs2046210 and the minor homozygotes plus heterozygotes of rs9383590 exhibited a several-years-younger age at onset than the common homozygotes, which was more pronounced in ER-positive and luminal patients. Importantly, the observed associations of each SNV were not consistently nullified upon correction for the other SNV nor upon analyses in common homozygotes for the other SNV. We conclude that both SNVs remain independent candidate causal variants.
Collapse
|
25
|
Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, et alMueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, Li J, Linet M, Lo WY, Long J, Lophatananon A, Mannermaa A, Manoochehri M, Margolin S, Matsuo K, Mavroudis D, Menon U, Muir K, Murphy RA, Nevanlinna H, Newman WG, Niederacher D, O'Brien KM, Obi N, Offit K, Olopade OI, Olshan AF, Olsson H, Park SK, Patel AV, Patel A, Perou CM, Peto J, Pharoah PDP, Plaseska-Karanfilska D, Presneau N, Rack B, Radice P, Ramachandran D, Rashid MU, Rennert G, Romero A, Ruddy KJ, Ruebner M, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneider MO, Scott C, Shah M, Sharma P, Shen CY, Shu XO, Simard J, Surowy H, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Toland AE, Tollenaar RAEM, Torres D, Torres-Mejía G, Troester MA, Truong T, Vachon CM, Vijai J, Weinberg CR, Wendt C, Winqvist R, Wolk A, Wu AH, Yamaji T, Yang XR, Yu JC, Zheng W, Ziogas A, Ziv E, Dunning AM, Easton DF, Hemingway H, Hamann U, Kuchenbaecker KB. Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome Med 2023; 15:7. [PMID: 36703164 PMCID: PMC9878779 DOI: 10.1186/s13073-022-01152-5] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.
Collapse
Affiliation(s)
| | - Alvina G Lai
- Institute of Health Informatics, University College London, London, UK
| | | | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Zomoruda Abu-Ful
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Thais Baert
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Javier Benitez
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, 70185, Örebro, Sweden
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, 72076, Tübingen, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, 10032, USA
| | - Sarah V Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), 69372, Lyon, France
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Arif B Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pœblica Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 20032, China
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - José A García-Sáenz
- Medical Oncology Department, Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Health and Medical University, 14471, Potsdam, Germany
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Nightingale and Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore, 119077, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Weang-Kee Ho
- Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Dezheng Huo
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Daehee Kang
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, 1000, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, 3001, Louvain, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3000, Louvain, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Keitaro Matsuo
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Usha Menon
- Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Sue K Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Achal Patel
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, 1000, Republic of North Macedonia
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | - Dhanya Ramachandran
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, 54000, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Michael O Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66205, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, G1V 4G2, Canada
| | - Harald Surowy
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - William J Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, 90570, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, 90570, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 751 05, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Elad Ziv
- Department of Medicine, Diller Family Comprehensive Cancer Center, Institute for Human Genetics, UCSF Helen, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK
- The Alan Turing Institute, London, UK
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karoline B Kuchenbaecker
- Division of Psychiatry, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
26
|
Khorshid Shamshiri A, Alidoust M, Hemmati Nokandei M, Pasdar A, Afzaljavan F. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1729-1747. [PMID: 36639603 DOI: 10.1007/s12094-022-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density. METHODS The terms related to "Common genetic variations" and "Breast density" were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed. RESULTS Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait. CONCLUSION Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.
Collapse
Affiliation(s)
- Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Hemmati Nokandei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
27
|
He J, Wen W, Beeghly A, Chen Z, Cao C, Shu XO, Zheng W, Long Q, Guo X. Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers. Nat Commun 2022; 13:7118. [PMID: 36402776 PMCID: PMC9675749 DOI: 10.1038/s41467-022-34888-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases.
Collapse
Affiliation(s)
- Jingni He
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada ,grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wanqing Wen
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Alicia Beeghly
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Zhishan Chen
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Chen Cao
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Xiao-Ou Shu
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Zheng
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Quan Long
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Medical Genetics, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Mathematics & Statistics, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Xingyi Guo
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
28
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
29
|
Dey R, Zhou W, Kiiskinen T, Havulinna A, Elliott A, Karjalainen J, Kurki M, Qin A, Lee S, Palotie A, Neale B, Daly M, Lin X. Efficient and accurate frailty model approach for genome-wide survival association analysis in large-scale biobanks. Nat Commun 2022; 13:5437. [PMID: 36114182 PMCID: PMC9481565 DOI: 10.1038/s41467-022-32885-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/22/2022] [Indexed: 01/11/2023] Open
Abstract
With decades of electronic health records linked to genetic data, large biobanks provide unprecedented opportunities for systematically understanding the genetics of the natural history of complex diseases. Genome-wide survival association analysis can identify genetic variants associated with ages of onset, disease progression and lifespan. We propose an efficient and accurate frailty model approach for genome-wide survival association analysis of censored time-to-event (TTE) phenotypes by accounting for both population structure and relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the computational cost. The saddlepoint approximation is used to allow for analysis of heavily censored phenotypes (>90%) and low frequency variants (down to minor allele count 20). We demonstrate the performance of our method through extensive simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white British ancestry and ~180,000 individuals in FinnGen. We further analyzed 871 TTE phenotypes in the UK Biobank and presented the genome-wide scale phenome-wide association results with the PheWeb browser.
Collapse
Affiliation(s)
- Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki Havulinna
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Amanda Elliott
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Juha Karjalainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Ashley Qin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Korea
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Benjamin Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Zavala VA, Casavilca-Zambrano S, Navarro-Vásquez J, Castañeda CA, Valencia G, Morante Z, Calderón M, Abugattas JE, Gómez H, Fuentes HA, Liendo-Picoaga R, Cotrina JM, Monge C, Neciosup SP, Huntsman S, Hu D, Sánchez SE, Williams MA, Núñez-Marrero A, Godoy L, Hechmer A, Olshen AB, Dutil J, Ziv E, Zabaleta J, Gelaye B, Vásquez J, Gálvez-Nino M, Enriquez-Vera D, Vidaurre T, Fejerman L. Association between Ancestry-Specific 6q25 Variants and Breast Cancer Subtypes in Peruvian Women. Cancer Epidemiol Biomarkers Prev 2022; 31:1602-1609. [PMID: 35654312 PMCID: PMC9662925 DOI: 10.1158/1055-9965.epi-22-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Breast cancer incidence in the United States is lower in Hispanic/Latina (H/L) compared with African American/Black or Non-Hispanic White women. An Indigenous American breast cancer-protective germline variant (rs140068132) has been reported near the estrogen receptor 1 gene. This study tests the association of rs140068132 and other polymorphisms in the 6q25 region with subtype-specific breast cancer risk in H/Ls of high Indigenous American ancestry. METHODS Genotypes were obtained for 5,094 Peruvian women with (1,755) and without (3,337) breast cancer. Associations between genotype and overall and subtype-specific risk for the protective variant were tested using logistic regression models and conditional analyses, including other risk-associated polymorphisms in the region. RESULTS We replicated the reported association between rs140068132 and breast cancer risk overall [odds ratio (OR), 0.53; 95% confidence interval (CI), 0.47-0.59], as well as the lower odds of developing hormone receptor negative (HR-) versus HR+ disease (OR, 0.77; 95% CI, 0.61-0.97). Models, including HER2, showed further heterogeneity with reduced odds for HR+HER2+ (OR, 0.68; 95% CI, 0.51-0.92), HR-HER2+ (OR, 0.63; 95% CI, 0.44-0.90) and HR-HER2- (OR, 0.77; 95% CI, 0.56-1.05) compared with HR+HER2-. Inclusion of other risk-associated variants did not change these observations. CONCLUSIONS The rs140068132 polymorphism is associated with decreased risk of breast cancer in Peruvians and is more protective against HR- and HER2+ diseases independently of other breast cancer-associated variants in the 6q25 region. IMPACT These results could inform functional analyses to understand the mechanism by which rs140068132-G reduces risk of breast cancer development in a subtype-specific manner. They also illustrate the importance of including diverse individuals in genetic studies.
Collapse
Affiliation(s)
- Valentina A. Zavala
- Department of Public Health Sciences, University of California Davis, Davis, California
| | | | | | | | | | - Zaida Morante
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | - Henry Gómez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | | | - Claudia Monge
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Sixto E. Sánchez
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru and Asociación Civil Proyectos en Salud (PROESA), Lima, Peru
| | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Angel Núñez-Marrero
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lenin Godoy
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Aaron Hechmer
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Adam B. Olshen
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Julie Dutil
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, Louisiana
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jule Vásquez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | | | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Corresponding Author: Laura Fejerman, UC Davis Comprehensive Cancer Center, 451 Health Sciences Drive, Davis, CA 95616. Phone: 530-754-1690; E-mail:
| |
Collapse
|
31
|
Yang H, Ting X, Geng YH, Xie Y, Nierenberg JL, Huo YF, Zhou YT, Huang Y, Yu YQ, Yu XY, Li XF, Ziv E, Zhang H, Fang WG, Shen Y, Tian XX. The risk variant rs11836367 contributes to breast cancer onset and metastasis by attenuating Wnt signaling via regulating NTN4 expression. SCIENCE ADVANCES 2022; 8:eabn3509. [PMID: 35687692 PMCID: PMC9187238 DOI: 10.1126/sciadv.abn3509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Most genome-wide association study (GWAS)-identified breast cancer-associated causal variants remain uncharacterized. To provide a framework of understanding GWAS-identified variants to function, we performed a comprehensive study of noncoding regulatory variants at the NTN4 locus (12q22) and NTN4 gene in breast cancer etiology. We find that rs11836367 is the more likely causal variant, disrupting enhancer activity in both enhancer reporter assays and endogenous genome editing experiments. The protective T allele of rs11837367 increases the binding of GATA3 to the distal enhancer and up-regulates NTN4 expression. In addition, we demonstrate that loss of NTN4 gene in mice leads to tumor earlier onset, progression, and metastasis. We discover that NTN4, as a tumor suppressor, can attenuate the Wnt signaling pathway by directly binding to Wnt ligands. Our findings bridge the gaps among breast cancer-associated single-nucleotide polymorphisms, transcriptional regulation of NTN4, and breast cancer biology, which provides previously unidentified insights into breast cancer prediction and prevention.
Collapse
Affiliation(s)
- Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Xia Ting
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yue-Hang Geng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yuntao Xie
- Breast Center, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Jovia L. Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Yan-Fei Huo
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yang Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Qing Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xin-Yao Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xiao-Fei Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
32
|
Welslau M, Müller V, Lüftner D, Schütz F, Stickeler E, Fasching PA, Janni W, Thomssen C, Witzel I, Fehm TN, Belleville E, Bader S, Seitz K, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Schneeweiss A, Harbeck N, Würstlein R, Hartkopf AD, Wöckel A, Seliger B, Massa C, Kolberg HC. Update Breast Cancer 2022 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2022; 82:580-589. [PMID: 35903719 PMCID: PMC9315400 DOI: 10.1055/a-1811-6106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/26/2022] Open
Abstract
Evidence relating to the treatment of breast cancer patients with early-stage disease has increased significantly in the past year. Abemaciclib, olaparib, and pembrolizumab are new drugs with good efficacy in the relevant patient groups. However, some questions remain unanswered. In particular, it remains unclear which premenopausal patients with hormone receptor-positive breast cancer should be spared unnecessary treatment. The question of the degree to which chemotherapy exerts a direct cytotoxic effect on the tumor or reduces ovarian function through chemotherapy could be of key importance. This group of patients could potentially be spared chemotherapy. New, previously experimental biomarker analysis methods, such as spatial analysis of gene expression (spatial transcriptomics) are gradually finding their way into large randomized phase III trials, such as the NeoTRIP trial. This in turn leads to a better understanding of the predictive factors of new therapies, for example immunotherapy. This review summarizes the scientific innovations from recent congresses such as the San Antonio Breast Cancer Symposium 2021 but also from recent publications.
Collapse
Affiliation(s)
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, University Medicine Berlin, Berlin, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Simon Bader
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Katharina Seitz
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Genecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt am Main
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Germany
| | - Bahriye Aktas
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Seliger
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | - Chiara Massa
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | | |
Collapse
|
33
|
Loo SK, Yates ME, Yang S, Oesterreich S, Lee AV, Wang X. Fusion-associated carcinomas of the breast: Diagnostic, prognostic, and therapeutic significance. Genes Chromosomes Cancer 2022; 61:261-273. [PMID: 35106856 PMCID: PMC8930468 DOI: 10.1002/gcc.23029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Recurrent gene fusions comprise a class of viable genetic targets in solid tumors that have culminated several recent breakthrough cancer therapies. Their role in breast cancer, however, remains largely underappreciated due to the complexity of genomic rearrangements in breast malignancy. Just recently, we and others have identified several recurrent gene fusions in breast cancer with important clinical and biological implications. Examples of the most significant recurrent gene fusions to date include (1) ESR1::CCDC170 gene fusions in luminal B and endocrine-resistant breast cancer that exert oncogenic function via modulating the HER2/HER3/SRC Proto-Oncogene (SRC) complex, (2) ESR1 exon 6 fusions in metastatic disease that drive estrogen-independent estrogen-receptor transcriptional activity, (3) BCL2L14::ETV6 fusions in a more aggressive form of the triple-negative subtype that prime epithelial-mesenchymal transition and endow paclitaxel resistance, (4) the ETV6::NTRK3 fusion in secretory breast carcinoma that constitutively activates NTRK3 kinase, (5) the oncogenic MYB-NFIB fusion as a genetic driver underpinning adenoid cystic carcinomas of the breast that activates MYB Proto-Oncogene (MYB) pathway, and (6) the NOTCH/microtubule-associated serine-threonine (MAST) kinase gene fusions that activate NOTCH and MAST signaling. Importantly, these fusions are enriched in more aggressive and lethal breast cancer presentations and appear to confer therapeutic resistance. Thus, these gene fusions could be utilized as genetic biomarkers to identify patients who require more intensive treatment and surveillance. In addition, kinase fusions are currently being evaluated in breast cancer clinical trials and ongoing mechanistic investigation is exposing therapeutic vulnerabilities in patients with fusion-positive disease.
Collapse
Affiliation(s)
- Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Megan E. Yates
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steffi Oesterreich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Adrian V. Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| |
Collapse
|
34
|
Mendoza-Fandiño G, Lyra PCM, Nepomuceno TC, Harro CM, Woods NT, Li X, Rangel LB, Carvalho MA, Couch FJ, Monteiro ANA. Two distinct mechanisms underlie estrogen-receptor-negative breast cancer susceptibility at the 2p23.2 locus. Eur J Hum Genet 2022; 30:465-473. [PMID: 34803163 PMCID: PMC8990004 DOI: 10.1038/s41431-021-01005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Genome wide-association studies (GWAS) have established over 400 breast cancer risk loci defined by common single nucleotide polymorphisms (SNPs), including several associated with estrogen-receptor (ER)-negative disease. Most of these loci have not been studied systematically and the mechanistic underpinnings of risk are largely unknown. Here we explored the landscape of genomic features at an ER-negative breast cancer susceptibility locus at chromosome 2p23.2 and assessed the functionality of 81 SNPs with strong evidence of association from previous fine mapping. Five candidate regulatory regions containing risk-associated SNPs were identified. Regulatory Region 1 in the first intron of WDR43 contains SNP rs4407214, which showed allele-specific interaction with the transcription factor USF1 in in vitro assays. CRISPR-mediated disruption of Regulatory Region 1 led to expression changes in the neighboring PLB1 gene, suggesting that the region acts as a distal enhancer. Regulatory Regions 2, 4, and 5 did not provide sufficient evidence for functionality in in silico and experimental analyses. Two SNPs (rs11680458 and rs1131880) in Regulatory Region 3, mapping to the seed region for miRNA-recognition sites in the 3' untranslated region of WDR43, showed allele-specific effects of ectopic expression of miR-376 on WDR43 expression levels. Taken together, our data suggest that risk of ER-negative breast cancer associated with the 2p23.2 locus is likely driven by a combinatorial effect on the regulation of WDR43 and PLB1.
Collapse
Affiliation(s)
- Gustavo Mendoza-Fandiño
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Corporación Universitaria Remington, Medellin, Colombia
| | | | - Thales C Nepomuceno
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, 20231-050, Brazil
| | - Carly M Harro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida Tampa, Tampa, FL, 33612, USA
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xueli Li
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leticia B Rangel
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, 20231-050, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, 20270-021, Brazil
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
35
|
Functional annotation of breast cancer risk loci: current progress and future directions. Br J Cancer 2022; 126:981-993. [PMID: 34741135 PMCID: PMC8980003 DOI: 10.1038/s41416-021-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer.
Collapse
|
36
|
Ahearn TU, Zhang H, Michailidou K, Milne RL, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baten A, Becher H, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Clarke CL, Collée JM, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dwek M, Eccles DM, Evans DG, Fasching PA, Figueroa J, Floris G, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haiman CA, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Jakimovska M, Jakubowska A, John EM, Jones ME, Jung A, Kaaks R, Kauppila S, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Koutros S, Kristensen VN, Krüger U, Kubelka-Sabit K, Kurian AW, Kyriacou K, Lambrechts D, Lee DG, Lindblom A, Linet M, Lissowska J, Llaneza A, Lo WY, MacInnis RJ, Mannermaa A, Manoochehri M, Margolin S, Martinez ME, McLean C, et alAhearn TU, Zhang H, Michailidou K, Milne RL, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baten A, Becher H, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Clarke CL, Collée JM, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dwek M, Eccles DM, Evans DG, Fasching PA, Figueroa J, Floris G, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haiman CA, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Jakimovska M, Jakubowska A, John EM, Jones ME, Jung A, Kaaks R, Kauppila S, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Koutros S, Kristensen VN, Krüger U, Kubelka-Sabit K, Kurian AW, Kyriacou K, Lambrechts D, Lee DG, Lindblom A, Linet M, Lissowska J, Llaneza A, Lo WY, MacInnis RJ, Mannermaa A, Manoochehri M, Margolin S, Martinez ME, McLean C, Meindl A, Menon U, Nevanlinna H, Newman WG, Nodora J, Offit K, Olsson H, Orr N, Park-Simon TW, Patel AV, Peto J, Pita G, Plaseska-Karanfilska D, Prentice R, Punie K, Pylkäs K, Radice P, Rennert G, Romero A, Rüdiger T, Saloustros E, Sampson S, Sandler DP, Sawyer EJ, Schmutzler RK, Schoemaker MJ, Schöttker B, Sherman ME, Shu XO, Smichkoska S, Southey MC, Spinelli JJ, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Teras LR, Terry MB, Torres D, Troester MA, Vachon CM, van Deurzen CHM, van Veen EM, Wagner P, Weinberg CR, Wendt C, Wesseling J, Winqvist R, Wolk A, Yang XR, Zheng W, Couch FJ, Simard J, Kraft P, Easton DF, Pharoah PDP, Schmidt MK, García-Closas M, Chatterjee N. Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Res 2022; 24:2. [PMID: 34983606 PMCID: PMC8725568 DOI: 10.1186/s13058-021-01484-x] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
Collapse
Affiliation(s)
- Thomas U Ahearn
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kyriaki Michailidou
- Institute of Neurology & Genetics, Biostatistics Unit, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cyprus School of Molecular Medicine, Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Adinda Baten
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network On Rare Diseases (CIBERER), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Angela Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute, Ruhr University Bochum (IPA), Bochum, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C080, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Department of Neuroscience, Academic Unit of Pathology, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - D Gareth Evans
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - José A García-Sáenz
- Medical Oncology Department, Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mark S Goldberg
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Grethe I Grenaker Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | | | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert N Hoover
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Milena Jakimovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, Republic of North Macedonia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter Kliniken Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Stella Koutros
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ute Krüger
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyriacos Kyriacou
- Cyprus School of Molecular Medicine, Institute of Neurology & Genetics, Nicosia, Cyprus
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Derrick G Lee
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ana Llaneza
- General and Gastroenterology Surgery Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset Stockholm, Sweden
| | | | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
| | - Usha Menon
- Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G Newman
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jesse Nodora
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland, UK
| | | | - Alpa V Patel
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, School of Hygiene and Tropical Medicine, London, UK
| | - Guillermo Pita
- Human Genotyping-CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, Republic of North Macedonia
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Biocenter Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Technion Faculty of Medicine, Clalit National Cancer Control Center, Carmel Medical Center, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Thomas Rüdiger
- Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Sarah Sampson
- Prevent Breast Cancer Centre and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Snezhana Smichkoska
- Medical Faculty, Ss. Cyril and Methodius University in Skopje, University Clinic of Radiotherapy and Oncology, Skopje, Republic of North Macedonia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren R Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | | | - Elke M van Veen
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philippe Wagner
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Camilla Wendt
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset Stockholm, Sweden
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Biocenter Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Genomics Center, Department of Molecular Medicine, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Université Laval, Québec City, QC, Canada
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Valentini S, Marchioretti C, Bisio A, Rossi A, Zaccara S, Romanel A, Inga A. TranSNPs: A class of functional SNPs affecting mRNA translation potential revealed by fraction-based allelic imbalance. iScience 2021; 24:103531. [PMID: 34917903 PMCID: PMC8666669 DOI: 10.1016/j.isci.2021.103531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Few studies have explored the association between SNPs and alterations in mRNA translation potential. We developed an approach to identify SNPs that can mark allele-specific protein expression levels and could represent sources of inter-individual variation in disease risk. Using MCF7 cells under different treatments, we performed polysomal profiling followed by RNA sequencing of total or polysome-associated mRNA fractions and designed a computational approach to identify SNPs showing a significant change in the allelic balance between total and polysomal mRNA fractions. We identified 147 SNPs, 39 of which located in UTRs. Allele-specific differences at the translation level were confirmed in transfected MCF7 cells by reporter assays. Exploiting breast cancer data from TCGA we identified UTR SNPs demonstrating distinct prognosis features and altering binding sites of RNA-binding proteins. Our approach produced a catalog of tranSNPs, a class of functional SNPs associated with allele-specific translation and potentially endowed with prognostic value for disease risk.
Collapse
Affiliation(s)
- Samuel Valentini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Caterina Marchioretti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Zaccara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Weill Medical College, Cornell University, New York 10065, NY, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
38
|
Wang Y, Qiao L, Yang J, Li X, Duan Y, Liu J, Chen S, Li H, Liu D, Fang T, Ma J, Li X, Ye F, Wan J, Wei J, Xu Q, Guo E, Jin P, Wu M, Zhang L, Xia Y, Wu Y, Shao J, Feng Y, Zhang Q, Yang Z, Chen G, Zhang Q, Li X, Wang S, Hu J, Wang X, Tan MP, Takabe K, Kong B, Yang Q, Ma D, Gao Q. Serum semaphorin 4C as a diagnostic biomarker in breast cancer: A multicenter retrospective study. Cancer Commun (Lond) 2021; 41:1373-1386. [PMID: 34738326 PMCID: PMC8696225 DOI: 10.1002/cac2.12233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background To date, there is no approved blood‐based biomarker for breast cancer detection. Herein, we aimed to assess semaphorin 4C (SEMA4C), a pivotal protein involved in breast cancer progression, as a serum diagnostic biomarker. Methods We included 6,213 consecutive inpatients from Tongji Hospital, Qilu Hospital, and Hubei Cancer Hospital. Training cohort and two validation cohorts were introduced for diagnostic exploration and validation. A pan‐cancer cohort was used to independently explore the diagnostic potential of SEMA4C among solid tumors. Breast cancer patients who underwent mass excision prior to modified radical mastectomy were also analyzed. We hypothesized that increased pre‐treatment serum SEMA4C levels, measured using optimized in‐house enzyme‐linked immunosorbent assay kits, could detect breast cancer. The endpoints were diagnostic performance, including area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Post‐surgery pathological diagnosis was the reference standard and breast cancer staging followed the TNM classification. There was no restriction on disease stage for eligibilities. Results We included 2667 inpatients with breast lesions, 2378 patients with other solid tumors, and 1168 healthy participants. Specifically, 118 patients with breast cancer were diagnosed with stage 0 (5.71%), 620 with stage I (30.00%), 966 with stage II (46.73%), 217 with stage III (10.50%), and 8 with stage IV (0.39%). Patients with breast cancer had significantly higher serum SEMA4C levels than benign breast tumor patients and normal controls (P < 0.001). Elevated serum SEMA4C levels had AUC of 0.920 (95% confidence interval [CI]: 0.900–0.941) and 0.932 (95%CI: 0.911–0.953) for breast cancer detection in the two validation cohorts. The AUCs for detecting early‐stage breast cancer (n = 366) and ductal carcinoma in situ (n = 85) were 0.931 (95%CI: 0.916–0.946) and 0.879 (95%CI: 0.832–0.925), respectively. Serum SEMA4C levels significantly decreased after surgery, and the reduction was more striking after modified radical mastectomy, compared with mass excision (P < 0.001). The positive rate of enhanced serum SEMA4C levels was 84.77% for breast cancer and below 20.75% for the other 14 solid tumors. Conclusions Serum SEMA4C demonstrated promising potential as a candidate biomarker for breast cancer diagnosis. However, validation in prospective settings and by other study groups is warranted.
Collapse
Affiliation(s)
- Ya Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P. R. China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiong Li
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P. R. China
| | - Yaqi Duan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jiahao Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Shaoqi Chen
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Huayi Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Tian Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jingjing Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiaoting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, 90001, USA
| | - Juncheng Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qin Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yun Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yaqun Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jun Shao
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, P. R. China
| | - Yaojun Feng
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079, P. R. China
| | - Qing Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Zongyuan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qinghua Zhang
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P. R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiaoyun Wang
- Yidu Cloud (Beijing) Technology Co., Beijing, 100000, P. R. China
| | - Mona P Tan
- MammoCare, The Breast Clinic & Surgery, Singapore, 329563, Singapore
| | - Kazuaki Takabe
- Department of Surgery and the Massey Cancer Centre, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Beihua Kong
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, No.107, Jinan Culture Road, Jinan, Shandong, 250012, P. R. China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| |
Collapse
|
39
|
Smith S, Stone A, Oswalt H, Vaughan L, Ferdous F, Scott T, Dunn HW. Evaluation of early post-natal pig mammary gland development and human breast cancer gene expression. Dev Biol 2021; 481:95-103. [PMID: 34662538 DOI: 10.1016/j.ydbio.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer is the second leading cause of death in women after lung cancer, and only 5% of patients with metastatic breast cancer survive beyond ten years of diagnosis. Considering the heterogeneous subclasses of breast cancer, current cancer models have shortfalls due to copy number variants, and genetic differences of humans and immunocompromised animal models. Preclinical studies indicate stem cell activity in early post-natal mammary development may be reactivated in the human adult as a trigger to initiate cell proliferation leading to breast cancer. The goal of the work reported herein was to compare genetic expression of early development, post-natal pig mammary glands to the literature reported genes implicated in different subclasses of human breast cancer. Differentially expressed genes associated with breast cancer and present in early developing pig samples include NUCB2, ANGPTL4 and ACE. Histological staining confirmed E-cadherin, Vimentin, N-cadherin, and Claudin-1, which are all implicated in malignant cancer. Due to the homology of gene expression patterns in the developing pig mammary gland and reported genes in human breast cancer profiles, this research is worthy of further study to address a potential model using mammary development cues to unravel breast cancer biology.
Collapse
Affiliation(s)
- Shelby Smith
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Amber Stone
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| | - Hannah Oswalt
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lewis Vaughan
- University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Farzana Ferdous
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Tom Scott
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| | - Heather W Dunn
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
40
|
Genetic variations of DNA bindings of FOXA1 and co-factors in breast cancer susceptibility. Nat Commun 2021; 12:5318. [PMID: 34518541 PMCID: PMC8438084 DOI: 10.1038/s41467-021-25670-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Identifying transcription factors (TFs) whose DNA bindings are altered by genetic variants that regulate susceptibility genes is imperative to understand transcriptional dysregulation in disease etiology. Here, we develop a statistical framework to analyze extensive ChIP-seq and GWAS data and identify 22 breast cancer risk-associated TFs. We find that, by analyzing genetic variations of TF-DNA bindings, the interaction of FOXA1 with co-factors such as ESR1 and E2F1, and the interaction of TFs with chromatin features (i.e., enhancers) play a key role in breast cancer susceptibility. Using genetic variants occupied by the 22 TFs, transcriptome-wide association analyses identify 52 previously unreported breast cancer susceptibility genes, including seven with evidence of essentiality from functional screens in breast relevant cell lines. We show that FOXA1 and co-factors form a core TF-transcriptional network regulating the susceptibility genes. Our findings provide additional insights into genetic variations of TF-DNA bindings (particularly for FOXA1) underlying breast cancer susceptibility. The identification of transcription factors (TFs) whose binding sites are affected by risk genetic variants remains crucial. Here, the authors develop a statistical framework to analyse ChIP-seq and GWAS data, identify 22 breast cancer risk-associated TFs and a core TF-transcriptional network for FOXA1 and co-factors.
Collapse
|
41
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
42
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
43
|
Wendt C, Muranen TA, Mielikäinen L, Thutkawkorapin J, Blomqvist C, Jiao X, Ehrencrona H, Tham E, Arver B, Melin B, Kuchinskaya E, Stenmark Askmalm M, Paulsson-Karlsson Y, Einbeigi Z, von Wachenfeldt Väppling A, Kalso E, Tasmuth T, Kallioniemi A, Aittomäki K, Nevanlinna H, Borg Å, Lindblom A. A search for modifying genetic factors in CHEK2:c.1100delC breast cancer patients. Sci Rep 2021; 11:14763. [PMID: 34285278 PMCID: PMC8292481 DOI: 10.1038/s41598-021-93926-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The risk of breast cancer associated with CHEK2:c.1100delC is 2-threefold but higher in carriers with a family history of breast cancer than without, suggesting that other genetic loci in combination with CHEK2:c.1100delC confer an increased risk in a polygenic model. Part of the excess familial risk has been associated with common low-penetrance variants. This study aimed to identify genetic loci that modify CHEK2:c.1100delC-associated breast cancer risk by searching for candidate risk alleles that are overrepresented in CHEK2:c.1100delC carriers with breast cancer compared with controls. We performed whole-exome sequencing in 28 breast cancer cases with germline CHEK2:c.1100delC, 28 familial breast cancer cases and 70 controls. Candidate alleles were selected for validation in larger cohorts. One recessive synonymous variant, rs16897117, was suggested, but no overrepresentation of homozygous CHEK2:c.1100delC carriers was found in the following validation. Furthermore, 11 non-synonymous candidate alleles were suggested for further testing, but no significant difference in allele frequency could be detected in the validation in CHEK2:c.1100delC cases compared with familial breast cancer, sporadic breast cancer and controls. With this method, we found no support for a CHEK2:c.1100delC-specific genetic modifier. Further studies of CHEK2:c.1100delC genetic modifiers are warranted to improve risk assessment in clinical practice.
Collapse
Affiliation(s)
- Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Lotta Mielikäinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Brita Arver
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Stenmark Askmalm
- Department of Clinical Genetics, Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, 41345, Göteborg, Sweden
| | | | - Eija Kalso
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Kallioniemi
- TAYS Cancer Centre and Faculty of Medicine and Health Technology, Tampere University; Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Åke Borg
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| |
Collapse
|
44
|
Baxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, Fachal L, Michailidou K, Bolla MK, Wang Q, Dennis J, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Brucker SY, Cai Q, Campa D, Canzian F, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Colonna S, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gao C, García-Closas M, García-Sáenz JA, Ghoussaini M, Giles GG, Goldberg MS, González-Neira A, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Hall P, Hamann U, Hartman M, Hatse S, Hauke J, Hollestelle A, Hoppe R, Hopper JL, Hou MF, Ito H, Iwasaki M, Jager A, Jakubowska A, Janni W, John EM, Joseph V, Jung A, Kaaks R, Kang D, Keeman R, Khusnutdinova E, Kim SW, Kosma VM, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Larson NL, Larsson SC, et alBaxter JS, Johnson N, Tomczyk K, Gillespie A, Maguire S, Brough R, Fachal L, Michailidou K, Bolla MK, Wang Q, Dennis J, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Becher H, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Brucker SY, Cai Q, Campa D, Canzian F, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Choi JY, Clarke CL, Colonna S, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gao C, García-Closas M, García-Sáenz JA, Ghoussaini M, Giles GG, Goldberg MS, González-Neira A, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Hall P, Hamann U, Hartman M, Hatse S, Hauke J, Hollestelle A, Hoppe R, Hopper JL, Hou MF, Ito H, Iwasaki M, Jager A, Jakubowska A, Janni W, John EM, Joseph V, Jung A, Kaaks R, Kang D, Keeman R, Khusnutdinova E, Kim SW, Kosma VM, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Larson NL, Larsson SC, Le Marchand L, Lejbkowicz F, Li J, Long J, Lophatananon A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Matsuo K, Mavroudis D, Mayes R, Menon U, Milne RL, Mohd Taib NA, Muir K, Muranen TA, Murphy RA, Nevanlinna H, O'Brien KM, Offit K, Olson JE, Olsson H, Park SK, Park-Simon TW, Patel AV, Peterlongo P, Peto J, Plaseska-Karanfilska D, Presneau N, Pylkäs K, Rack B, Rennert G, Romero A, Ruebner M, Rüdiger T, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Shah M, Shen CY, Shu XO, Simard J, Southey MC, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Terry MB, Toland AE, Tomlinson I, Truong T, Tseng CC, Untch M, Vachon CM, van den Ouweland AMW, Wang SS, Weinberg CR, Wendt C, Winham SJ, Winqvist R, Wolk A, Wu AH, Yamaji T, Zheng W, Ziogas A, Pharoah PDP, Dunning AM, Easton DF, Pettitt SJ, Lord CJ, Haider S, Orr N, Fletcher O. Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. Am J Hum Genet 2021; 108:1190-1203. [PMID: 34146516 PMCID: PMC8322933 DOI: 10.1016/j.ajhg.2021.05.013] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).
Collapse
Affiliation(s)
- Joseph S Baxter
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK.
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Katarzyna Tomczyk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Andrea Gillespie
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Sarah Maguire
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland BT7 1NN, UK
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA 92617, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund 222 42, Sweden
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), Madrid 28029, Spain; Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk 223040, Belarus; Department of Radiation Oncology, Hannover Medical School, Hannover 30625, Germany; Gynaecology Research Unit, Hannover Medical School, Hannover 30625, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen 72076, Germany
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo 36312, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Sarah Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover 30625, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon 69372, France
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London W1B 2HW, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen 91054, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig 04107, Germany; LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig 04103, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany; David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA; Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh EH16 4UX, UK; Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela 15706, Spain; Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Chi Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20850, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28040, Spain
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Open Targets, Core Genetics Team, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC H4A 3J1, Canada
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif 94805, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 65, Sweden; Department of Oncology, Södersjukhuset, Stockholm 118 83, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore; Department of Surgery, National University Hospital, Singapore 119228, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven Cancer Institute, Leuven 3000, Belgium
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart 70376, Germany; University of Tübingen, Tübingen 72074, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Hidemi Ito
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm 89075, Germany
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vijai Joseph
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Renske Keeman
- Division of Molecular Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul 07442, Korea
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio 70210, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio 70210, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0450, Norway; Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0379, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje 1000, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven 3001, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Nicole L Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala 751 05, Sweden
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa 35254, Israel
| | - Jingmei Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio 70210, Finland; Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio 70210, Finland; Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan 20133, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm 118 83, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 118 83, Sweden
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion 711 10, Greece
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Usha Menon
- Institute of Clinical Trials & Methodology, University College London, London WC1V 6LJ, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki 00290, Finland
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Cancer Control Research, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki 00290, Finland
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund 222 42, Sweden
| | - Sue K Park
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; Convergence Graduate Program in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Korea
| | | | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje 1000, Republic of North Macedonia
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London W1B 2HW, UK
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu 90570, Finland; Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm 89075, Germany
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa 35254, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid 28222, Spain
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Thomas Rüdiger
- Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe 76133, Germany
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam 1066 CX, the Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany; National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg 69120, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC G1V 4G2, Canada
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA 6000, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg 69120, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - William J Tapper
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA; Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif 94805, France
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Clinics Berlin-Buch, Berlin 13125, Germany
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Sophia S Wang
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 118 83, Sweden
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu 90570, Finland; Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala 751 05, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA 92617, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Stephen J Pettitt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland BT7 1NN, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
45
|
Schcolnik-Cabrera A, Juárez-López D, Duenas-Gonzalez A. Perspectives on Drug Repurposing. Curr Med Chem 2021; 28:2085-2099. [PMID: 32867630 DOI: 10.2174/0929867327666200831141337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
Complex common diseases are a significant burden for our societies and demand not only preventive measures but also more effective, safer, and more affordable treatments. The whole process of the current model of drug discovery and development implies a high investment by the pharmaceutical industry, which ultimately impact in high drug prices. In this sense, drug repurposing would help meet the needs of patients to access useful and novel treatments. Unlike the traditional approach, drug repurposing enters both the preclinical evaluation and clinical trials of the compound of interest faster, budgeting research and development costs, and limiting potential biosafety risks. The participation of government, society, and private investors is needed to secure the funds for experimental design and clinical development of repurposing candidates to have affordable, effective, and safe repurposed drugs. Moreover, extensive advertising of repurposing as a concept in the health community, could reduce prescribing bias when enough clinical evidence exists, which will support the employment of cheaper and more accessible repurposed compounds for common conditions.
Collapse
Affiliation(s)
- Alejandro Schcolnik-Cabrera
- Departement de Biochimie et Medecine Moleculaire, Universite de Montreal, C.P. 6128, Succursale Centre- Ville, Montreal, QC, Canada
| | - Daniel Juárez-López
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico; Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Ciudad de Mexico, Mexico
| | - Alfonso Duenas-Gonzalez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Ciudad de Mexico 14080, Mexico
| |
Collapse
|
46
|
Zhu M, Fan J, Zhang C, Xu J, Yin R, Zhang E, Wang Y, Ji M, Sun Q, Dai J, Jin G, Chen L, Xu L, Hu Z, Ma H, Shen H. A cross-tissue transcriptome-wide association study identifies novel susceptibility genes for lung cancer in Chinese populations. Hum Mol Genet 2021; 30:1666-1676. [PMID: 33909040 DOI: 10.1093/hmg/ddab119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Although dozens of susceptibility loci have been identified for lung cancer in genome-wide association studies (GWASs), the susceptibility genes and underlying mechanisms remain unclear. In this study, we conducted a cross-tissue transcriptome-wide association study (TWAS) with UTMOST based on summary statistics from 13 327 lung cancer cases and 13 328 controls and the genetic-expression matrix over 44 human tissues in the Genotype-Tissue Expression (GTEx) project. After further evaluating the associations in each tissue, we revealed 6 susceptibility genes in known loci and identified 12 novel ones. Among those, five novel genes, including DCAF16 (Pcross-tissue = 2.57 × 10-5, PLung = 2.89 × 10-5), CBL (Pcross-tissue = 5.08 × 10-7, PLung = 1.82 × 10-4), ATR (Pcross-tissue = 1.45 × 10-5, PLung = 9.68 × 10-5), GYPE (Pcross-tissue = 1.45 × 10-5, PLung = 2.17 × 10-3) and PARD3 (Pcross-tissue = 5.79 × 10-6, PLung = 4.05 × 10-3), were significantly associated with the risk of lung cancer in both cross-tissue and lung tissue models. Further colocalization analysis indicated that rs7667864 (C > A) and rs2298650 (G > T) drove the GWAS association signals at 4p15.31-32 (OR = 1.09, 95%CI: 1.04-1.12, PGWAS = 5.54 × 10-5) and 11q23.3 (OR = 1.08, 95%CI: 1.04-1.13, PGWAS = 5.55 × 10-5), as well as the expression of DCAF16 (βGTEx = 0.24, PGTEx = 9.81 × 10-15; βNJLCC = 0.29, PNJLCC = 3.84 × 10-8) and CBL (βGTEx = -0.17, PGTEx = 2.82 × 10-8; βNJLCC = -0.32, PNJLCC = 2.61 × 10-7) in lung tissue. Functional annotations and phenotype assays supported the carcinogenic effect of these novel susceptibility genes in lung carcinogenesis.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China.,Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Epidemiology, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mengmeng Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Epidemiology, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qi Sun
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Liang Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
47
|
Maguire S, Perraki E, Tomczyk K, Jones ME, Fletcher O, Pugh M, Winter T, Thompson K, Cooke R, kConFab Consortium, Trainer A, James P, Bojesen S, Flyger H, Nevanlinna H, Mattson J, Friedman E, Laitman Y, Palli D, Masala G, Zanna I, Ottini L, Silvestri V, Hollestelle A, Hooning MJ, Novaković S, Krajc M, Gago-Dominguez M, Castelao JE, Olsson H, Hedenfalk I, Saloustros E, Georgoulias V, Easton DF, Pharoah P, Dunning AM, Bishop DT, Neuhausen SL, Steele L, Ashworth A, Garcia Closas M, Houlston R, Swerdlow A, Orr N. Common Susceptibility Loci for Male Breast Cancer. J Natl Cancer Inst 2021; 113:453-461. [PMID: 32785646 PMCID: PMC8023850 DOI: 10.1093/jnci/djaa101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The etiology of male breast cancer (MBC) is poorly understood. In particular, the extent to which the genetic basis of MBC differs from female breast cancer (FBC) is unknown. A previous genome-wide association study of MBC identified 2 predisposition loci for the disease, both of which were also associated with risk of FBC. METHODS We performed genome-wide single nucleotide polymorphism genotyping of European ancestry MBC case subjects and controls in 3 stages. Associations between directly genotyped and imputed single nucleotide polymorphisms with MBC were assessed using fixed-effects meta-analysis of 1380 cases and 3620 controls. Replication genotyping of 810 cases and 1026 controls was used to validate variants with P values less than 1 × 10-06. Genetic correlation with FBC was evaluated using linkage disequilibrium score regression, by comprehensively examining the associations of published FBC risk loci with risk of MBC and by assessing associations between a FBC polygenic risk score and MBC. All statistical tests were 2-sided. RESULTS The genome-wide association study identified 3 novel MBC susceptibility loci that attained genome-wide statistical significance (P < 5 × 10-08). Genetic correlation analysis revealed a strong shared genetic basis with estrogen receptor-positive FBC. Men in the top quintile of genetic risk had a fourfold increased risk of breast cancer relative to those in the bottom quintile (odds ratio = 3.86, 95% confidence interval = 3.07 to 4.87, P = 2.08 × 10-30). CONCLUSIONS These findings advance our understanding of the genetic basis of MBC, providing support for an overlapping genetic etiology with FBC and identifying a fourfold high-risk group of susceptible men.
Collapse
Affiliation(s)
- Sarah Maguire
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Eleni Perraki
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Katarzyna Tomczyk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Matthew Pugh
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Timothy Winter
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Kyle Thompson
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - kConFab Consortium
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Trainer
- Parkville Familial Cancer Clinic, Sir Peter MacCallum Department of Oncology, University of Melbourne and Royal Melbourne Hospital, East Melbourne, Victoria, Australia
| | - Paul James
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stig Bojesen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Mattson
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Centre, Tel Aviv, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Centre, Tel Aviv, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Ines Zanna
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antoinette Hollestelle
- Department of Medical Oncology, Familial Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Familial Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Krajc
- Institute of Oncology Ljubljana, Cancer Genetics Clinic, Epidemiology and Cancer Registry, Ljubljana, Slovenia
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Jose Esteban Castelao
- Genetic Oncology Unit, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Hakan Olsson
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Vasilios Georgoulias
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - D Timothy Bishop
- Division of Immunology, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Centre, San Francisco, CA, USA
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nick Orr
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
48
|
Woodward ER, van Veen EM, Evans DG. From BRCA1 to Polygenic Risk Scores: Mutation-Associated Risks in Breast Cancer-Related Genes. Breast Care (Basel) 2021; 16:202-213. [PMID: 34248461 DOI: 10.1159/000515319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background There has been huge progress over the last 30 years in identifying the familial component of breast cancer. Summary Currently around 20% is explained by the high-risk genes BRCA1 and BRCA2, a further 2% by other high-penetrance genes, and around 5% by the moderate risk genes ATM and CHEK2. In contrast, the more than 300 low-penetrance single-nucleotide polymorphisms (SNP) now account for around 28% and they are predicted to account for most of the remaining 45% yet to be found. Even for high-risk genes which confer a 40-90% risk of breast cancer, these SNP can substantially affect the level of breast cancer risk. Indeed, the strength of family history and hormonal and reproductive factors is very important in assessing risk even for a BRCA carrier. The risks of contralateral breast cancer are also affected by SNP as well as by the presence of high or moderate risk genes. Genetic testing using gene panels is now commonplace. Key-Messages There is a need for a more parsimonious approach to panels only testing those genes with a definite 2-fold increased risk and only testing those genes with challenging management implications, such as CDH1 and TP53, when there is strong clinical indication to do so. Testing of SNP alongside genes is likely to provide a more accurate risk assessment.
Collapse
Affiliation(s)
- Emma R Woodward
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elke M van Veen
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,PREVENT Breast Cancer Prevention Centre, Nightingale Centre, Manchester Universities Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom.,Manchester Breast Centre, Manchester Cancer Research Centre, The Christie, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, et alCoignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, Hunter DJ, Imyanitov EN, Jager A, Jakubowska A, James PA, Jensen UB, John EM, Jones ME, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khusnutdinova E, Kiiski JI, Ko YD, Kosma VM, Kraft P, Kurian AW, Laitman Y, Lambrechts D, Le Marchand L, Lester J, Lesueur F, Lindstrom T, Lopez-Fernández A, Loud JT, Luccarini C, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Mebirouk N, Meindl A, Miller A, Milne RL, Montagna M, Nathanson KL, Neuhausen SL, Nevanlinna H, Nielsen FC, O'Brien KM, Olopade OI, Olson JE, Olsson H, Osorio A, Ottini L, Park-Simon TW, Parsons MT, Pedersen IS, Peshkin B, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Polley EC, Poppe B, Presneau N, Pujana MA, Punie K, Radice P, Rantala J, Rashid MU, Rennert G, Rennert HS, Robson M, Romero A, Rossing M, Saloustros E, Sandler DP, Santella R, Scheuner MT, Schmidt MK, Schmidt G, Scott C, Sharma P, Soucy P, Southey MC, Spinelli JJ, Steinsnyder Z, Stone J, Stoppa-Lyonnet D, Swerdlow A, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Teulé A, Thull DL, Tischkowitz M, Toland AE, Torres D, Trainer AH, Truong T, Tung N, Vachon CM, Vega A, Vijai J, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wolk A, Yadav S, Yang XR, Yannoukakos D, Zheng W, Ziogas A, Zorn KK, Park SK, Thomassen M, Offit K, Schmutzler RK, Couch FJ, Simard J, Chenevix-Trench G, Easton DF, Andrieu N, Antoniou AC. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021; 12:1078. [PMID: 33990587 PMCID: PMC7890067 DOI: 10.1038/s41467-020-20496-3] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juliette Coignard
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- PSL University Paris, Paris, France
- Paris Sud University, Orsay, France
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Beesley
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute Queen's University, Kingston, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Heiko Becher
- Institute for Medical Biometrics and Epidemiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Leslie Bernstein
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katarzyna Białkowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
- Department of Oncology Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology Lund University and Skåne University Hospital, Lund, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence University of Tübingen, Tübingen, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080 German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare University Hospital, Pisa, Italy
| | - Daniele Campa
- Department of Biology University of Pisa, Pisa, Italy
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brian D Carter
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Clinical and Molecular Genetics Area University Hospital Vall d'Hebron, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology University of California at Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center University of California, San Diego La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Judy Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanesa Garcia-Barberan
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics University Würzburg, Würzburg, Germany
| | | | - Graham G Giles
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital McGill University Montréal, Montréal, QC, Canada
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darling J Horcasitas
- New Mexico Oncology Hematology Consultants, University of New Mexico, Albuquerque, NM, USA
| | - Peter J Hulick
- Center for Medical Genetics NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine Chicago, Chicago, IL, USA
| | - David J Hunter
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
- Nuffield Department of Population Health University of Oxford, Oxford, UK
| | | | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Uffe Birk Jensen
- Department of Clinical Genetics Aarhus, University Hospital, Aarhus, Denmark
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Beth Y Karlan
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Renske Keeman
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Division of Molecular Pathology The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Johanna I Kiiski
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Obstetrics and Gynecology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Veli-Matti Kosma
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | - Allison W Kurian
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jenny Lester
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adria Lopez-Fernández
- High Risk and Cancer Prevention Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics University of Munich, Campus Grosshadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roger L Milne
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Marco Montagna
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Finn C Nielsen
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katie M O'Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Ana Osorio
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Ottini
- Department of Molecular Medicine University La Sapienza, Rome, Italy
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine Aalborg University, Aalborg, Denmark
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kelly-Anne Phillips
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bruce Poppe
- Centre for Medical Genetics Ghent University, Gent, Belgium
| | - Nadege Presneau
- School of Life Sciences University of Westminster, London, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Kevin Punie
- Leuven Multidisciplinary Breast Center, Department of Oncology Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Regina Santella
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program University of California San Francisco, San Francisco, CA, USA
| | - Marjanka K Schmidt
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Gunnar Schmidt
- Institute of Human Genetics Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology University of Kansas Medical Center, Westwood, KS, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health University of British Columbia, Vancouver, BC, Canada
| | - Zoe Steinsnyder
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Institut Curie, Paris, France
- Department of Tumour Biology INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Anthony Swerdlow
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Breast Cancer Research Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | | | - Jack A Taylor
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
- Epigenetic and Stem Cell Biology Laboratory National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics The Ohio State University, Columbus, OH, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics Pontificia Universidad Javeriana, Bogota, Colombia
| | - Alison H Trainer
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Department of medicine University Of Melbourne, Melbourne, VIC, Australia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Nadine Tung
- Department of Medical Oncology Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria Santiago de Compostela (IDIS); CIBERER, Santiago de Compostela, Spain
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| | | | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Kristin K Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue K Park
- Department of Preventive Medicine Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute Seoul National University, Seoul, Korea
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital, Odence C, Denmark
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France.
- Institut Curie Paris, Paris, France.
- Mines ParisTech Fontainebleau, Paris, France.
- PSL University Paris, Paris, France.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Overcoming disparities: Multidisciplinary breast cancer care at a public safety net hospital. Breast Cancer Res Treat 2021; 187:197-206. [PMID: 33495917 DOI: 10.1007/s10549-020-06044-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Public safety net hospitals (SNH) serve a disparate patient population; however, little is known about long-term oncologic outcomes of patients receiving care at these facilities. This study is the first to examine overall survival (OS) and the initiation of treatment in breast cancer patients treated at a SNH. METHODS Patients presenting to a SNH with stage I-IV breast cancer from 2005 to 2017 were identified from the local tumor registry. The hospital has a weekly breast tumor board and a multidisciplinary approach to breast cancer care. Kaplan-Meier survival analysis was performed to identify patient, tumor, and treatment characteristics associated with OS. Factors with a p < 0.1 were included in the Cox proportional hazards model. RESULTS 2709 breast cancer patients were evaluated from 2005 to 2017. The patient demographics, tumor characteristics, and treatments received were analyzed. Five-year OS was 78.4% (93.9%, 87.4%, 70.9%, and 23.5% for stages I, II, III, and IV, respectively). On multivariable analysis, higher stage, age > 70 years, higher grade, and non-Hispanic ethnicity were associated with worse OS. Patients receiving surgery (HR = 0.33, p < 0.0001), chemotherapy (HR = 0.71, p = 0.006), and endocrine therapy (HR = 0.61, p < 0.0001) had better OS compared to those who did not receive these treatments. CONCLUSION Despite serving a vulnerable minority population that is largely poor, uninsured, and presenting with more advanced disease, OS at our SNH approaches national averages. This novel finding indicates that in the setting of multidisciplinary cancer care and with appropriate initiation of treatment, SNHs can overcome socioeconomic barriers to achieve equitable outcomes in breast cancer care.
Collapse
|