1
|
Chekroun I, Shenbagam S, Almarri MA, Mokrab Y, Uddin M, Alkhnbashi OS, Zaki MS, Najmabadi H, Kahrizi K, Fakhro KA, Almontashiri NAM, Ali FR, Özbek U, Reversade B, Alkuraya FS, Alsheikh-Ali A, Abou Tayoun AN. Genomics of rare diseases in the Greater Middle East. Nat Genet 2025:10.1038/s41588-025-02075-8. [PMID: 39901015 DOI: 10.1038/s41588-025-02075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
The Greater Middle East (GME) represents a concentrated region of unparalleled genetic diversity, characterized by an abundance of distinct alleles, founder mutations and extensive autozygosity driven by high consanguinity rates. These genetic hallmarks present a unique, yet vastly untapped resource for genomic research on Mendelian diseases. Despite this immense potential, the GME continues to face substantial challenges in comprehensive data collection and analysis. This Perspective highlights the region's unique position as a natural laboratory for genetic discovery and explores the challenges that have stifled progress thus far. Importantly, we propose strategic solutions, advocating for an all-inclusive research approach. With targeted investment and focused efforts, the latent genetic wealth in the GME can be transformed into a global hub for genomic research that will redefine and advance our understanding of the human genome.
Collapse
Affiliation(s)
- Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Younes Mokrab
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Omer S Alkhnbashi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Uğur Özbek
- Rare and Undiagnosed Disease Platform, IBG-Izmir Biomedicine and Genome Center, Izmir, Türkiye
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Lifera Omics, Riyadh, Kingdom of Saudi Arabia
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Ahmad N Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
2
|
Malomane D, Williams MP, Huber C, Mangul S, Abedalthagafi M, Chiang CWK. Patterns of population structure and genetic variation within the Saudi Arabian population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632500. [PMID: 39868174 PMCID: PMC11761371 DOI: 10.1101/2025.01.10.632500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Arabian Peninsula is considered the initial site of historic human migration out of Africa. The modern-day indigenous Arabians are believed to be the descendants who remained from the ancient split of the migrants into Eurasia. Here, we investigated how the population history and cultural practices such as endogamy have shaped the genetic variation of the Saudi Arabians. We genotyped 3,352 individuals and identified twelve genetic sub-clusters that corresponded to the geographical distribution of different tribal regions, differentiated by distinct components of ancestry based on comparisons to modern and ancient DNA references. These sub-clusters also showed variation across ranges of the genome covered in runs of homozygosity, as well as differences in population size changes over time. Using 25,488,981 variants found in whole genome sequencing data (WGS) from 302 individuals, we found that the Saudi tend to show proportionally more deleterious alleles than neutral alleles when compared to Africans/African Americans from gnomAD (e.g. a 13% increase of deleterious alleles annotated by AlphaMissense between 0.5 - 5% frequency in Saudi, compared to 7% decrease of the benign alleles; P < 0.001). Saudi sub-clusters with greater inbreeding and lower effective population sizes showed greater enrichment of deleterious alleles as well. Additionally, we found that approximately 10% of the variants discovered in our WGS data are not observed in gnomAD; these variants are also enriched with deleterious annotations. To accelerate studying the population-enriched deleterious alleles and their health consequences in this population, we made available the allele frequency estimates of 25,488,981 variants discovered in our samples. Taken together, our results suggest that Saudi's population history impacts its pattern of genetic variation with potential consequences to the population health. It further highlights the need to sequence diverse and unique populations so to provide a foundation on which to interpret medical- and pharmaco- genomic findings from these populations.
Collapse
Affiliation(s)
- D.K. Malomane
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - M. P. Williams
- Department of Biology, Pennsylvania State University, University Park, PA
| | - C.D. Huber
- Department of Biology, Pennsylvania State University, University Park, PA
| | - S. Mangul
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA
| | - M. Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - C. W. K. Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Sheikh Hassani M, Jain R, Ramaswamy S, Sinha S, El Naofal M, Halabi N, Alyafei S, Alfalasi R, Shenbagam S, Taylor A, Abou Tayoun A. Virtual Gene Panels Have a Superior Diagnostic Yield for Inherited Rare Diseases Relative to Static Panels. Clin Chem 2025; 71:169-184. [PMID: 39569808 DOI: 10.1093/clinchem/hvae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Exome- or genome-based panels-also known as slices or virtual panels-are now a popular approach that involves comprehensive genomic sequencing while restricting analysis to subsets of genes based on patients' phenotypes. This flexible strategy enables frequent gene updates based on novel disease associations as well as reflexing to analyzing other genes up to the whole exome or genome. With recent improvements addressing limitations associated with virtual panels, the advantages of this approach, relative to static custom-based panels, remain to be systematically characterized. METHODS Here we perform slice testing on 1014 patients (50.5% females; average age 17 years) referred from multiple pediatric clinics within a single center in the Middle East (83% Arab population). RESULTS Initial analysis uncovered molecular diagnoses for 235 patients for a diagnostic yield of 23% (235/1014). "On the fly" focused analysis in most negative cases (N = 779) identified clinically significant variants correlating with patients' presentations in genes outside the originally ordered panel for another 35 patients (3.5% or 35/1024) increasing the overall diagnostic yield to 27%. The pathogenic variants underlying the additional cases (13% of all positive cases) were excluded from the original "panel" gene list, mainly as result of issues related to panel selection, novel gene-disease associations, phenotype spectrum broadening, or gene lists variability. The additional findings led to changes in clinical management in most patients (94%). CONCLUSIONS Our findings support slice testing as an efficient and flexible platform that facilitates updates to gene lists to achieve high clinical sensitivity and utility.
Collapse
Affiliation(s)
- Massomeh Sheikh Hassani
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Ruchi Jain
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Sathishkumar Ramaswamy
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Sinha
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Maha El Naofal
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Nour Halabi
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Sawsan Alyafei
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Roudha Alfalasi
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Shenbagam
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Alan Taylor
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Şimşek L, Yıldırım MS, Ülkü ÇH, Zamani AG. Somatic genetic alterations of oncogenes and tumor suppressor genes in cholesteatoma. Acta Otolaryngol 2025; 145:16-22. [PMID: 39648208 DOI: 10.1080/00016489.2024.2433138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Cholesteatoma is a proliferative disease that affects the tympanic cavity and temporal bone. Despite many studies and various theories, the etiopathogenesis of cholesteatoma has not been fully elucidated. Features such as invasion, migration, uncontrolled proliferation, and lack of differentiation are observed in both cholesteatoma and neoplasia. AIMS/OBJECTIVES The aim of this study is to investigate somatic genetic alterations in known proto-oncogenes and tumor suppressor genes in cholesteatoma. MATERIAL AND METHODS 60 different known proto-oncogenes and tumor suppressor genes were comparatively analyzed in cholesteatoma and peripheric blood samples from 15 middle ear cholesteatoma patients using next-generation sequencing. RESULTS JAK3 c.2164G > A, TP53 c.284delC, and KRAS c.377A > T alterations were observed in cholesteatoma tissue but not in normal tissue. In addition, 12 different germline variants were also identified in 8 patients. CONCLUSIONS AND SIGNIFICANCE In this study, the presence of changes in cancer-related genes in cholesteatoma was determined and these changes were discussed in terms of possible clinical applications. We hope that the genetic alterations that emerged in this study, will be beneficial in guiding future research in this field.
Collapse
Affiliation(s)
- Levent Şimşek
- Department of Medical Genetics, Necmettin Erbakan University Meram Medical Faculty, Konya, Turkey
- Department of Medical Genetics, Sancaktepe Şehit Prof. Dr. İlhan Varank, Training and Research Hospital, İstanbul, Turkey
| | - M Selman Yıldırım
- Department of Medical Genetics, Necmettin Erbakan University Meram Medical Faculty, Konya, Turkey
| | - Çağatay Han Ülkü
- Department of Otorhinolaryngology, Necmettin Erbakan University Meram Medical Faculty, Konya, Turkey
- Department of Otorhinolaryngology, Istanbul Medipol University Faculty of Medicine, İstanbul, Turkey
| | - Ayşe Gül Zamani
- Department of Medical Genetics, Necmettin Erbakan University Meram Medical Faculty, Konya, Turkey
| |
Collapse
|
5
|
Petrazzini BO, Balick DJ, Forrest IS, Cho J, Rocheleau G, Jordan DM, Do R. Ensemble and consensus approaches to prediction of recessive inheritance for missense variants in human disease. CELL REPORTS METHODS 2024; 4:100914. [PMID: 39657681 PMCID: PMC11704621 DOI: 10.1016/j.crmeth.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Mode of inheritance (MOI) is necessary for clinical interpretation of pathogenic variants; however, the majority of variants lack this information. Furthermore, variant effect predictors are fundamentally insensitive to recessive-acting diseases. Here, we present MOI-Pred, a variant pathogenicity prediction tool that accounts for MOI, and ConMOI, a consensus method that integrates variant MOI predictions from three independent tools. MOI-Pred integrates evolutionary and functional annotations to produce variant-level predictions that are sensitive to both dominant-acting and recessive-acting pathogenic variants. Both MOI-Pred and ConMOI show state-of-the-art performance on standard benchmarks. Importantly, dominant and recessive predictions from both tools are enriched in individuals with pathogenic variants for dominant- and recessive-acting diseases, respectively, in a real-world electronic health record (EHR)-based validation approach of 29,981 individuals. ConMOI outperforms its component methods in benchmarking and validation, demonstrating the value of consensus among multiple prediction methods. Predictions for all possible missense variants are provided in the "Data and code availability" section.
Collapse
Affiliation(s)
- Ben O Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel J Balick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard, Medical School, Boston, MA, USA
| | - Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel M Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Gogate A, Kaur K, Khalil R, Bashtawi M, Morris MA, Goodspeed K, Evans P, Chahrour MH. The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort. NPJ Genom Med 2024; 9:62. [PMID: 39632905 PMCID: PMC11618689 DOI: 10.1038/s41525-024-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals (222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5, CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds, highlighting convergence on nervous system development and signal transduction. These findings provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, University of Philadelphia, Amman, Jordan
| | - Mahmoud Bashtawi
- Department of Psychiatry, Jordan University of Science and Technology, King Abdullah University Hospital, Ramtha, Jordan
| | - Mary Ann Morris
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
| | - Kimberly Goodspeed
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patricia Evans
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maria H Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Vatsyayan A, Imran M, Bhardwaj J, Vr A, Agrawal SJ, Saikia BJ, Senthivel V, Pandhare K, Bhoyar RC, Divakar MK, Mishra A, Jolly B, Trehan S, Sivasubbu S, Scaria V. Understanding the variant landscape, and genetic epidemiology of Multiple Endocrine Neoplasia in India. Endocrine 2024; 86:1178-1187. [PMID: 39112918 DOI: 10.1007/s12020-024-03982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 11/12/2024]
Abstract
PURPOSE Multiple Endocrine Neoplasia (MEN) is a group of familial cancer syndromes that encompasses several types of endocrine tumors differentiated by genetic mutations in RET, MEN1 and CDKN1B genes. Accurate diagnosis of MEN subtypes can thus be performed through genetic testing. However, MEN variants remain largely understudied in Indian populations. Additionally, few dedicated resources to understand these disorders currently exist. METHODS Using the gold-standard ACMG/AMP guidelines, we systematically classified variants reported across the three genes in the IndiGen dataset, and established the genetic epidemiology of MEN in the Indian population. We further classified ClinVar and Mastermind variants and compiled all into a database. Finally, we designed a multiplex primer panel for rapid variant identification. RESULTS We have established the genetic prevalence of MEN as the following: 1 in 1026 individuals is likely to be afflicted with MEN linked with pathogenic RET mutations. We have further created the MAPVar database containing 3280 ACMG-classified variants freely accessible at: https://clingen.igib.res.in/MAPVar/ . Finally, our NGS primer panel covers 33 exonic regions across two pools through 38 amplicons with a total amplified region of 65 kb. CONCLUSION Our work establishes that MEN is a prevalent disorder in India. The rare nature of Indian variants underscores the need of genomic and functional studies to establish a more comprehensive variant landscape. Additionally, our panel offers a means of cost-effective genetic testing, and the MAPVar database a ready reference to aid in a better understanding of variant pathogenicity in clinical as well as research settings.
Collapse
Affiliation(s)
- Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srashti Jyoti Agrawal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suruchi Trehan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Vishwanath Cancer Care Foundation, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB) Mathura Road, Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India.
- Vishwanath Cancer Care Foundation, B 702, Neelkanth Business Park Kirol Village, Mumbai, 400086, India.
| |
Collapse
|
8
|
Kulmanov M, Tawfiq R, Liu Y, Al Ali H, Abdelhakim M, Alarawi M, Aldakhil H, Alhattab D, Alsolme EA, Althagafi A, Angelov A, Bougouffa S, Driguez P, Park C, Putra A, Reyes-Ramos AM, Hauser CAE, Cheung MS, Abedalthagafi MS, Hoehndorf R. A reference quality, fully annotated diploid genome from a Saudi individual. Sci Data 2024; 11:1278. [PMID: 39580486 PMCID: PMC11585617 DOI: 10.1038/s41597-024-04121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
We have used multiple sequencing approaches to sequence the genome of a volunteer from Saudi Arabia. We use the resulting data to generate a de novo assembly of the genome, and use different computational approaches to refine the assembly. As a consequence, we provide a contiguous assembly of the complete genome of an individual from Saudi Arabia for all chromosomes except chromosome Y, and label this assembly KSA001. We transferred genome annotations from reference genomes to fully annotate KSA001, and we make all primary sequencing data, the assembly, and the genome annotations freely available in public databases using the FAIR data principles. KSA001 is the first telomere-to-telomere-assembled genome from a Saudi individual that is freely available for any purpose.
Collapse
Affiliation(s)
- Maxat Kulmanov
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Generative AI, King Abdullah University of Sciene and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rund Tawfiq
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Generative AI, King Abdullah University of Sciene and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Generative AI, King Abdullah University of Sciene and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hatoon Al Ali
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marwa Abdelhakim
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hind Aldakhil
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dana Alhattab
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory for Nanomedicine, Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ebtehal A Alsolme
- Genomic and Precision Medicine Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Azza Althagafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computer Science Department, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Angel Angelov
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Changsook Park
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Alexander Putra
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Ana M Reyes-Ramos
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Charlotte A E Hauser
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Biological and Environmental Sciences & Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory for Nanomedicine, Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, 8010, Graz, Austria
| | - Ming Sin Cheung
- Core Labs, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, 23955, Thuwal, Makkah, Saudi Arabia
| | - Malak S Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA.
- King Salman Center for Disability Research, Riyadh, Saudi Arabia.
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia.
- KAUST Center of Excellence for Generative AI, King Abdullah University of Sciene and Technology, 4700 KAUST, 23955, Thuwal, Saudi Arabia.
- Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
10
|
AlAbdi L, Maddirevula S, Aljamal B, Hamid H, Almulhim A, Hashem MO, Algoos Y, Alqahtani M, Albaloshi S, Alghamdi M, Alduaylij M, Shamseldin HE, Nadeef S, Patel N, Abdulwahab F, Abouyousef O, Alshidi T, Jaafar A, Abouelhoda M, Alhazzani A, Alfares A, Qudair A, Alsulaiman A, Alhashem A, Khan AO, Chedrawi A, Alebdi B, AlAjlan F, Alotaibi F, Alzaidan H, Banjar H, Abdelraouf H, Alkuraya H, Abumansour I, Alfayez K, Tulbah M, Alowain M, Alqahtani M, El-Kalioby M, Shboul M, Sulaiman R, Al Tala S, Khan S, Coskun S, Mrouge S, Alenazi W, Rahbeeni Z, Alkuraya FS. Arab founder variants: Contributions to clinical genomics and precision medicine. MED 2024:100528. [PMID: 39504961 DOI: 10.1016/j.medj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Founder variants are ancestral variants shared by individuals who are not closely related. The large effect size of some of these variants in the context of Mendelian disorders offers numerous precision medicine opportunities. METHODS Using one of the largest datasets on Mendelian disorders in the Middle East, we identified 2,908 medically relevant founder variants derived from 18,360 exomes and genomes and investigated their contribution to the clinical annotation of the human genome. FINDINGS Strikingly, ∼34% of Arab founder variants are absent in gnomAD. We found a strong contribution of Arab founder variants to the identification of novel gene-disease links (n = 224) and the support/dispute (n = 81 support, n = 101 dispute) of previously reported candidate gene-disease links. The powerful segregation evidence generated by Arab founder variants allowed many ClinVar and Human Gene Mutation Database variants to be reclassified. Overall, 39.5% of diagnostic reports from our clinical lab are based on founder variants, and 19.41% of tested individuals carry at least one pathogenic founder variant. The presumptive loss-of-function mechanism that typically underlies autosomal recessive diseases means that Arab founder variants also offer unique opportunities in "druggable genome" research. Arab founder variants were also informative of migration patterns in the Middle East consistent with documented historical accounts. CONCLUSIONS We highlight the contribution of founder variants from an under-represented population group to precision medicine and inform future prevention programs. Our study also sheds light on the added value of these variants in supplementing other lines of research in tracing population history. FUNDING There is no funding for this work.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Shahad Albaloshi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alduaylij
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmed Alfares
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmad Qudair
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Seha Virtual Hospital, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic, Abu Dhabi, UAE; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Aziza Chedrawi
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basel Alebdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fahad AlAjlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fawaz Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanaa Banjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanem Abdelraouf
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh 13215, Saudi Arabia
| | - Iman Abumansour
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Khowlah Alfayez
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alqahtani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed El-Kalioby
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Raashda Sulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Sameena Khan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Riyadh 11564, Saudi Arabia
| | - Sobaihi Mrouge
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Walaa Alenazi
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia.
| |
Collapse
|
11
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
12
|
Boakye Serebour T, Cribbs AP, Baldwin MJ, Masimirembwa C, Chikwambi Z, Kerasidou A, Snelling SJB. Overcoming barriers to single-cell RNA sequencing adoption in low- and middle-income countries. Eur J Hum Genet 2024; 32:1206-1213. [PMID: 38565638 PMCID: PMC11499908 DOI: 10.1038/s41431-024-01564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The advent of single-cell resolution sequencing and spatial transcriptomics has enabled the delivery of cellular and molecular atlases of tissues and organs, providing new insights into tissue health and disease. However, if the full potential of these technologies is to be equitably realised, ancestrally inclusivity is paramount. Such a goal requires greater inclusion of both researchers and donors in low- and middle-income countries (LMICs). In this perspective, we describe the current landscape of ancestral inclusivity in genomic and single-cell transcriptomic studies. We discuss the collaborative efforts needed to scale the barriers to establishing, expanding, and adopting single-cell sequencing research in LMICs and to enable globally impactful outcomes of these technologies.
Collapse
Affiliation(s)
- Tracy Boakye Serebour
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Collen Masimirembwa
- The African Institute of Biomedical Science and Technology, Harare, Zimbabwe
| | - Zedias Chikwambi
- The African Institute of Biomedical Science and Technology, Harare, Zimbabwe
| | - Angeliki Kerasidou
- The Ethox Centre and the Wellcome Centre for Ethics and Humanities, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute for Musculoskeletal Science, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, Lenardo MJ, Su HC. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024; 385:eadd8947. [PMID: 39298586 PMCID: PMC11811912 DOI: 10.1126/science.add8947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Ian T. Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Megan M. Kober
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
| | - Yamina A. Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH; Bethesda, MD 20892, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Carlos R. Ferreira
- Skeletal Genomics Unit, Metabolic Medicine Branch, DIR, National Human Genome Research Institute (NHGRI), NIH; Bethesda, MD, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Peter J. Mustillo
- Nationwide Children’s Hospital; Columbus, OH, USA
- The Ohio State University College of Medicine; Columbus, OH, USA
| | - Juliana Teo
- Department of Haematology, The Children’s Hospital Westmead; Sydney, New South Wales, Australia
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U12045 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders; FHU-G4 Génomique, F-76000, Rouen, France
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
- Pediatric Immunology, University of Zurich; Zurich, Switzerland
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU); Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University; Kuwait City, Kuwait
- Department of Pediatrics, Al-Sabah Hospital; Kuwait City, Kuwait
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine and Health; Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München; Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich; Munich, Germany
| | - Paulien A. Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht; 3584EA Utrecht, the Netherlands
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Vincent Barlogis
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, EA 3279 Research Unit; Marseille, France
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals, NHS Foundation Trust; Headington, Oxford OX3 7HE, UK
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Boris Keren
- Genetic Departement, Assistance Publique - Hôpitaux de Paris.Sorbonne University; Paris, France
- SeqOIA Laboratory, FMG2025, Paris; France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center; Nijmegen, The Netherlands
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Katharina Vill
- LMU University Hospital I Department of Pediatrics I Division of Pediatric Neurology I MUC iSPZ Hauner - Munich University Center for Children with Medical and Developmental Complexity I Dr. von Hauner Children’s Hospital; Munich, Germany
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, USA
- Texas Children’s Hospital; Houston, Texas, USA
| | - Kenneth N. Olivier
- Pulmonary Branch, Division of Intramural Research, DIR, National Heart Lung and Blood Institute (NHLBI), NIH; Bethesda, MD, USA
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
| | - Melanie Wong
- Department of Allergy and Immunology, The Children’s Hospital at Westmead; Sydney, New South Wales, Australia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Maud Tusseau
- Genetics Department, Lyon University Hospital; Lyon, France
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL; Lyon, France
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, DIR, National Institute of Dental and Craniofacial Research (NIDCR), NIH; Bethesda, MD, USA
| | - Helen F. Matthews
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney; Sydney, NSW, Australia
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience, University of Queensland; St. Lucia, Queensland, Australia
- Illumina, Inc, San Diego; CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), NIH; Bethesda, MD, USA
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney; Sydney, NSW, Australia
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH; Bethesda, MD, USA
| | - Robert Brink
- St Vincent’s Clinical School, UNSW; Sydney, NSW, Australia
- B cell Biology Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - Danielle L. Fink
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH; Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Woo Sung Kim
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Kazuyuki Meguro
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH; Bethesda, MD, USA
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust; Oxford, Oxfordshire, UK
| | - Maria Slack
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester Medical Center and Golisano Children’s Hospital; Rochester, NY, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne; Dijon, France
| | - Maarja Soomann
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
| | - Samuel Li
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University; West Lafayette, IN, USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | | | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Marita Lipsanen-Nyman
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
| | - Paul Saultier
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, INSERM; INRAe, C2VN, Marseille, France
| | - Rashmi Jain
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust; Oxford, OX3 9DU, UK
| | - Daphne Lehalle
- AP-HP Sorbonne Université, UF de Génétique Clinique, Centre de Référence Maladies Rares des anomalies du développement et syndromes malformatifs, Hôpital Trousseau; Paris, France
| | - Daniel Torres
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Sébastien Barbarot
- Nantes Université, Department of Dermatology, CHU Nantes, INRAE; UMR 1280, PhAN, F-44000 Nantes, France
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Yannis Duffourd
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Morgan Similuk
- Centralized Sequencing Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | | | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Raif S. Geha
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
- Howard Hughes Medical Institute; New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children; Paris, France
| | - Outi M. Makitie
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1; Lyon, France
| | - John Christodoulou
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne; Melbourne, Australia
- Specialty of Child & Adolescent Health, University of Sydney; Sydney, Australia
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Christopher C. Goodnow
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute; Sydney, NSW, Australia
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics; Stockholm, Sweden
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University; 690090 Vladivostok, Russia
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Michael J. Lenardo
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
14
|
Rodriguez-Flores JL, Khalid S, Parikshak N, Rasheed A, Ye B, Kapoor M, Backman J, Sepehrband F, Gioia SAD, Gelfman S, De T, Banerjee N, Sharma D, Martinez H, Castaneda S, D'Ambrosio D, Zhang XA, Xun P, Tsai E, Tsai IC, Khan MZ, Jahanzaib M, Mian MR, Liaqat MB, Mahmood K, Salam TU, Hussain M, Iqbal J, Aslam F, Cantor MN, Tzoneva G, Overton J, Marchini J, Reid JG, Baras A, Verweij N, Lotta LA, Coppola G, Karalis K, Economides A, Fazio S, Liedtke W, Danesh J, Kamal A, Frossard P, Coleman T, Shuldiner AR, Saleheen D. NOTCH3 p.Arg1231Cys is markedly enriched in South Asians and associated with stroke. Nat Commun 2024; 15:8029. [PMID: 39271666 PMCID: PMC11399414 DOI: 10.1038/s41467-024-51819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10-9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10-10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10-6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations.
Collapse
Affiliation(s)
| | - Shareef Khalid
- Columbia University, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Tanima De
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | - Ellen Tsai
- University of California at Los Angeles, Los Angeles, CA, USA
| | - I-Chun Tsai
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | | | | | | | | | - Khalid Mahmood
- Dow University of Health Sciences and Civil Hospital, Karachi, Pakistan
| | | | | | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Faizan Aslam
- Department of Neurology, Aziz Fatima Hospital, Faisalabad, Pakistan
| | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Sergio Fazio
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | | | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ayeesha Kamal
- Section of Neurology, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Danish Saleheen
- Columbia University, New York, NY, USA.
- Center for Non-Communicable Diseases, Karachi, Pakistan.
| |
Collapse
|
15
|
Hamdi Y, Trabelsi M, Ghedira K, Boujemaa M, Ben Ayed I, Charfeddine C, Souissi A, Rejeb I, Kammoun Rebai W, Hkimi C, Neifar F, Jandoubi N, Mkaouar R, Chaouch M, Bennour A, Kamoun S, Chaker Masmoudi H, Abid N, Mezghani Khemakhem M, Masmoudi S, Saad A, BenJemaa L, BenKahla A, Boubaker S, Mrad R, Kamoun H, Abdelhak S, Gribaa M, Belguith N, Kharrat N, Hmida D, Rebai A. Genome Tunisia Project: paving the way for precision medicine in North Africa. Genome Med 2024; 16:104. [PMID: 39187811 PMCID: PMC11348534 DOI: 10.1186/s13073-024-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients. METHODS A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system. RESULTS In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector. CONCLUSIONS Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia.
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Ikhlas Ben Ayed
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Rejeb
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Wafa Kammoun Rebai
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fadoua Neifar
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ayda Bennour
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hend Chaker Masmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Department of Histology and Cytogenetics, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, Monastir, 5000, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 1068, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ali Saad
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Lamia BenJemaa
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Alia BenKahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hassen Kamoun
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Communication, Science and Society Support Unit (UniSS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Moez Gribaa
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Neila Belguith
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Hmida
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
16
|
Najm R, Yavuz L, Jain R, El Naofal M, Ramaswamy S, Abuhammour W, Loney T, Nowotny N, Alsheikh-Ali A, Abou Tayoun A, Kandasamy RK. IFIH1 loss of function predisposes to inflammatory and SARS-CoV-2-related infectious diseases. Scand J Immunol 2024; 100:e13373. [PMID: 38757311 DOI: 10.1111/sji.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The IFIH1 gene, encoding melanoma differentiation-associated protein 5 (MDA5), is an indispensable innate immune regulator involved in the early detection of viral infections. Previous studies described MDA5 dysregulation in weakened immunological responses, and increased susceptibility to microbial infections and autoimmune disorders. Monoallelic gain-of-function of the IFIH1 gene has been associated with multisystem disorders, namely Aicardi-Goutieres and Singleton-Merten syndromes, while biallelic loss causes immunodeficiency. In this study, nine patients suffering from recurrent infections, inflammatory diseases, severe COVID-19 or multisystem inflammatory syndrome in children (MIS-C) were identified with putative loss-of-function IFIH1 variants by whole-exome sequencing. All patients revealed signs of lymphopaenia and an increase in inflammatory markers, including CRP, amyloid A, ferritin and IL-6. One patient with a pathogenic homozygous variant c.2807+1G>A was the most severe case showing immunodeficiency and glomerulonephritis. The c.1641+1G>C variant was identified in the heterozygous state in patients suffering from periodic fever, COVID-19 or MIS-C, while the c.2016delA variant was identified in two patients with inflammatory bowel disease or MIS-C. There was a significant association between IFIH1 monoallelic loss of function and susceptibility to infections in males. Expression analysis showed that PBMCs of one patient with a c.2016delA variant had a significant decrease in ISG15, IFNA and IFNG transcript levels, compared to normal PBMCs, upon stimulation with Poly(I:C), suggesting that MDA5 receptor truncation disrupts the immune response. Our findings accentuate the implication of rare monogenic IFIH1 loss-of-function variants in altering the immune response, and severely predisposing patients to inflammatory and infectious diseases, including SARS-CoV-2-related disorders.
Collapse
Affiliation(s)
- Rania Najm
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Lemis Yavuz
- Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Ruchi Jain
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Maha El Naofal
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Sathishkumar Ramaswamy
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | | | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Dubai Health, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
| | - Richard K Kandasamy
- Departments of Laboratory Medicine and Pathology and Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
17
|
Bosman W, Butler KM, Chang CA, Ganapathi M, Guzman E, Latta F, Chung WK, Claverie-Martin F, Davis JM, Hoenderop JGJ, de Baaij JHF. Pathogenic heterozygous TRPM7 variants and hypomagnesemia with developmental delay. Clin Kidney J 2024; 17:sfae211. [PMID: 39099563 PMCID: PMC11295107 DOI: 10.1093/ckj/sfae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/06/2024] Open
Abstract
Background Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Caitlin A Chang
- Department of Medical Genetics, BC Women and Children's Hospital, Vancouver, British Columbia, Canada
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Femke Latta
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Claverie-Martin
- Unidad de Investigación, RenalTube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
18
|
Khalaf-Nazzal R, Dweikat I, Ubeyratna N, Fasham J, Alawneh M, Leslie J, Maree M, Gunning A, Zayed DZ, Voutsina N, McGavin L, Sawafta R, Owens M, Baker W, Turnpenny P, Al-Hijawi F, Baple EL, Crosby AH, Rawlins LE. TECPR2-related hereditary sensory and autonomic neuropathy in two siblings from Palestine. Am J Med Genet A 2024; 194:e63579. [PMID: 38436550 DOI: 10.1002/ajmg.a.63579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Due to the majority of currently available genome data deriving from individuals of European ancestry, the clinical interpretation of genomic variants in individuals from diverse ethnic backgrounds remains a major diagnostic challenge. Here, we investigated the genetic cause of a complex neurodevelopmental phenotype in two Palestinian siblings. Whole exome sequencing identified a homozygous missense TECPR2 variant (Chr14(GRCh38):g.102425085G>A; NM_014844.5:c.745G>A, p.(Gly249Arg)) absent in gnomAD, segregating appropriately with the inheritance pattern in the family. Variant assessment with in silico pathogenicity prediction and protein modeling tools alongside population database frequencies led to classification as a variant of uncertain significance. As pathogenic TECPR2 variants are associated with hereditary sensory and autonomic neuropathy with intellectual disability, we reviewed previously published candidate TECPR2 missense variants to clarify clinical outcomes and variant classification using current approved guidelines, classifying a number of published variants as of uncertain significance. This work highlights genomic healthcare inequalities and the challenges in interpreting rare genetic variants in populations underrepresented in genomic databases. It also improves understanding of the clinical and genetic spectrum of TECPR2-related neuropathy and contributes to addressing genomic data disparity and inequalities of the genomic architecture in Palestinian populations.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| | - Imad Dweikat
- Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| | - Nishanka Ubeyratna
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - James Fasham
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Maysa Alawneh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- Paediatric Department, An-Najah National University Hospital, Nablus, Palestine
| | - Joseph Leslie
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Mosab Maree
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Adam Gunning
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Deyala Z Zayed
- Paediatric Department, An-Najah National University Hospital, Nablus, Palestine
| | - Nikol Voutsina
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Lucy McGavin
- University Hospitals Plymouth NHS Trust, Plymouth, UK
- University of Plymouth, Plymouth, UK
| | - Reem Sawafta
- Paediatric Department, An-Najah National University Hospital, Nablus, Palestine
| | - Martina Owens
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Wisam Baker
- Paediatric Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Peter Turnpenny
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Fida' Al-Hijawi
- Paediatric Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, Royal Devon University Hospitals NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| |
Collapse
|
19
|
Ma M, Ganapathi M, Zheng Y, Tan KL, Kanca O, Bove KE, Quintanilla N, Sag SO, Temel SG, LeDuc CA, McPartland AJ, Pereira EM, Shen Y, Hagen J, Thomas CP, Nguyen Galván NT, Pan X, Lu S, Rosenfeld JA, Calame DG, Wangler MF, Lupski JR, Pehlivan D, Hertel PM, Chung WK, Bellen HJ. Homozygous missense variants in YKT6 result in loss of function and are associated with developmental delay, with or without severe infantile liver disease and risk for hepatocellular carcinoma. Genet Med 2024; 26:101125. [PMID: 38522068 PMCID: PMC11335040 DOI: 10.1016/j.gim.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
PURPOSE YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Kai-Li Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Kevin E Bove
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Norma Quintanilla
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Sebnem O Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | | | | | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY
| | - Jacob Hagen
- Department of Systems Biology, Columbia University Medical Center, New York, NY
| | - Christie P Thomas
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Paula M Hertel
- Texas Children's Hospital, Houston, TX; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX.
| |
Collapse
|
20
|
Lee NK, Uhler KM, Yoon PJ, Santos-Cortez RLP. Clinical Genetic Testing for Hearing Loss: Implications for Genetic Counseling and Gene-Based Therapies. Biomedicines 2024; 12:1427. [PMID: 39062005 PMCID: PMC11274279 DOI: 10.3390/biomedicines12071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Genetic factors contribute significantly to congenital hearing loss, with non-syndromic cases being more prevalent and genetically heterogeneous. Currently, 150 genes have been associated with non-syndromic hearing loss, and their identification has improved our understanding of auditory physiology and potential therapeutic targets. Hearing loss gene panels offer comprehensive genetic testing for hereditary hearing loss, and advancements in sequencing technology have made genetic testing more accessible and affordable. Currently, genetic panel tests available at a relatively lower cost are offered to patients who face financial barriers. In this study, clinical and audiometric data were collected from six pediatric patients who underwent genetic panel testing. Known pathogenic variants in MYO15A, GJB2, and USH2A were most likely to be causal of hearing loss. Novel pathogenic variants in the MYO7A and TECTA genes were also identified. Variable hearing phenotypes and inheritance patterns were observed amongst individuals with different pathogenic variants. The identification of these variants contributes to the continually expanding knowledge base on genetic hearing loss and lays the groundwork for personalized treatment options in the future.
Collapse
Affiliation(s)
- Nam K. Lee
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin M. Uhler
- Department of Physical Medicine and Rehabilitation, Children’s Hospital Colorado, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Patricia J. Yoon
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Laurent R, Gineau L, Utge J, Lafosse S, Phoeung CL, Hegay T, Olaso R, Boland A, Deleuze JF, Toupance B, Heyer E, Leutenegger AL, Chaix R. Measuring the Efficiency of Purging by non-random Mating in Human Populations. Mol Biol Evol 2024; 41:msae094. [PMID: 38839045 PMCID: PMC11184347 DOI: 10.1093/molbev/msae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Human populations harbor a high concentration of deleterious genetic variants. Here, we tested the hypothesis that non-random mating practices affect the distribution of these variants, through exposure in the homozygous state, leading to their purging from the population gene pool. To do so, we produced whole-genome sequencing data for two pairs of Asian populations exhibiting different alliance rules and rates of inbreeding, but with similar effective population sizes. The results show that populations with higher rates of inbred matings do not purge deleterious variants more efficiently. Purging therefore has a low efficiency in human populations, and different mating practices lead to a similar mutational load.
Collapse
Affiliation(s)
- Romain Laurent
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | - Laure Gineau
- IRD, MERIT, Université Paris Cité, 75006 Paris, France
| | - José Utge
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | - Sophie Lafosse
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | | | - Tatyana Hegay
- Laboratory of Genome-cell technology, Institute of Immunology and Human genomics, Academy of Sciences, Tashkent, Uzbekistan
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Université Paris-Saclay, 91057, Evry, France
| | - Bruno Toupance
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
- Eco-Anthropologie, Université Paris Cité, 75006 Paris, France
| | - Evelyne Heyer
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| | | | - Raphaëlle Chaix
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, 75016 Paris, France
| |
Collapse
|
22
|
Marafi D. Founder mutations and rare disease in the Arab world. Dis Model Mech 2024; 17:dmm050715. [PMID: 38922202 PMCID: PMC11225585 DOI: 10.1242/dmm.050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Founder mutations are disease-causing variants that occur frequently in geographically or culturally isolated groups whose shared ancestor(s) carried the pathogenic variant. While some disease alleles may vanish from the genetic pool due to natural selection, variants with weaker effects may survive for a long time, thereby enhancing the prevalence of some rare diseases. These are predominantly autosomal recessive diseases but can also be autosomal dominant traits with late-onset or mild phenotypes. Cultural practices, such as endogamy and consanguinity, in these isolated groups lead to higher prevalence of such rare diseases compared to the rest of the population and worldwide. In this Perspective, we define population isolates and the underlying genetic mechanisms for accumulating founder mutations. We also discuss the current and potential scientific, clinical and public-health implications of studying founder mutations in population isolates around the world, with a particular focus on the Arab population.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Pediatrics, College of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Section of Child Neurology, Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat 80901, Kuwait
| |
Collapse
|
23
|
Momenilandi M, Lévy R, Sobrino S, Li J, Lagresle-Peyrou C, Esmaeilzadeh H, Fayand A, Le Floc'h C, Guérin A, Della Mina E, Shearer D, Delmonte OM, Yatim A, Mulder K, Mancini M, Rinchai D, Denis A, Neehus AL, Balogh K, Brendle S, Rokni-Zadeh H, Changi-Ashtiani M, Seeleuthner Y, Deswarte C, Bessot B, Cremades C, Materna M, Cederholm A, Ogishi M, Philippot Q, Beganovic O, Ackermann M, Wuyts M, Khan T, Fouéré S, Herms F, Chanal J, Palterer B, Bruneau J, Molina TJ, Leclerc-Mercier S, Prétet JL, Youssefian L, Vahidnezhad H, Parvaneh N, Claeys KG, Schrijvers R, Luka M, Pérot P, Fourgeaud J, Nourrisson C, Poirier P, Jouanguy E, Boisson-Dupuis S, Bustamante J, Notarangelo LD, Christensen N, Landegren N, Abel L, Marr N, Six E, Langlais D, Waterboer T, Ginhoux F, Ma CS, Tangye SG, Meyts I, Lachmann N, Hu J, Shahrooei M, Bossuyt X, Casanova JL, Béziat V. FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice. Cell 2024; 187:2817-2837.e31. [PMID: 38701783 PMCID: PMC11149630 DOI: 10.1016/j.cell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.
Collapse
Affiliation(s)
- Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Steicy Sobrino
- Laboratory of Chromatin and Gene Regulation During Development, Paris Cité University, UMR1163 INSERM, Imagine Institute, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Jingwei Li
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chantal Lagresle-Peyrou
- Paris Cité University, Imagine Institute, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Antoine Fayand
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Sorbonne University, AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Erika Della Mina
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Debra Shearer
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Ile-de-France, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Adeline Denis
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Karla Balogh
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sarah Brendle
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Boris Bessot
- Paris Cité University, Imagine Institute, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Cassandre Cremades
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Omer Beganovic
- Laboratoire d'Onco-hématologie, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Mania Ackermann
- Hannover Medical School, Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Margareta Wuyts
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Sébastien Fouéré
- Groupe Hospitalier Saint-Louis, Lariboisière, Fernand-Widal, CeGIDD, AP-HP, Paris, France
| | - Florian Herms
- Dermatology Department, Paris-Cité University, INSERM 976, Saint Louis Hospital, Paris, France
| | - Johan Chanal
- Dermatology Department, Cochin Hospital, INSERM U1016, AP-HP, Paris, France
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Bruneau
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Thierry J Molina
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Stéphanie Leclerc-Mercier
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Jean-Luc Prétet
- Papillomavirus National Reference Center, Besançon Hospital, Besançon, France
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hassan Vahidnezhad
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Marine Luka
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris Cité University, Paris, France
| | - Jacques Fourgeaud
- Paris Cité University, URP 7328 FETUS, Paris, France; Microbiology Department, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Céline Nourrisson
- Clermont Auvergne University, INSERM U1071, M2iSH, USC INRAE 1382, CHU Clermont-Ferrand, 3IHP, Department of Parasitology-Mycology, Clermont-Ferrand, France; National Reference Center for Cryptosporidiosis, Microsporidia and Other Digestive Protozoa, Clermont-Ferrand, France
| | - Philippe Poirier
- Clermont Auvergne University, INSERM U1071, M2iSH, USC INRAE 1382, CHU Clermont-Ferrand, 3IHP, Department of Parasitology-Mycology, Clermont-Ferrand, France; National Reference Center for Cryptosporidiosis, Microsporidia and Other Digestive Protozoa, Clermont-Ferrand, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neil Christensen
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Centre for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Emmanuelle Six
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Ile-de-France, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Nico Lachmann
- Hannover Medical School, Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Jiafen Hu
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium; Specialized Immunology Laboratory of Dr. Shahrooei, Tehran, Iran
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
24
|
Yee SW, Ferrández-Peral L, Alentorn-Moron P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Wolfreys FD, Yang J, Gestwicki JE, Capra JA, Artursson P, Newman JW, Marquès-Bonet T, Giacomini KM. Illuminating the function of the orphan transporter, SLC22A10, in humans and other primates. Nat Commun 2024; 15:4380. [PMID: 38782905 PMCID: PMC11116522 DOI: 10.1038/s41467-024-48569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17β-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Luis Ferrández-Peral
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Virginia M Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, US
| | - Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Finn D Wolfreys
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - John A Capra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Vatsyayan A, Kumar M, Saikia BJ, Scaria V, B K B. WilsonGenAI a deep learning approach to classify pathogenic variants in Wilson Disease. PLoS One 2024; 19:e0303787. [PMID: 38758754 PMCID: PMC11101024 DOI: 10.1371/journal.pone.0303787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Advances in Next Generation Sequencing have made rapid variant discovery and detection widely accessible. To facilitate a better understanding of the nature of these variants, American College of Medical Genetics and Genomics and the Association of Molecular Pathologists (ACMG-AMP) have issued a set of guidelines for variant classification. However, given the vast number of variants associated with any disorder, it is impossible to manually apply these guidelines to all known variants. Machine learning methodologies offer a rapid way to classify large numbers of variants, as well as variants of uncertain significance as either pathogenic or benign. Here we classify ATP7B genetic variants by employing ML and AI algorithms trained on our well-annotated WilsonGen dataset. METHODS We have trained and validated two algorithms: TabNet and XGBoost on a high-confidence dataset of manually annotated, ACMG & AMP classified variants of the ATP7B gene associated with Wilson's Disease. RESULTS Using an independent validation dataset of ACMG & AMP classified variants, as well as a patient set of functionally validated variants, we showed how both algorithms perform and can be used to classify large numbers of variants in clinical as well as research settings. CONCLUSION We have created a ready to deploy tool, that can classify variants linked with Wilson's disease as pathogenic or benign, which can be utilized by both clinicians and researchers to better understand the disease through the nature of genetic variants associated with it.
Collapse
Affiliation(s)
- Aastha Vatsyayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Binukumar B K
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
27
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
28
|
Ülgü M, Yilmaz S, Öztaş D, Göktaş B, Akünal A. Prevalence of the hematopoietic rare genetic diseases in Türkiye: A retrospective study. Transfus Clin Biol 2024; 31:81-86. [PMID: 38218341 DOI: 10.1016/j.tracli.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Rare genetic diseases are an important global public health problem. At present there are defined approximately 8120 genetic diseases in 15,465 epidemiological datasets and 70% of them start in childhood. Hematopoiesis is the production of all cellular components of blood and continues throughout life. OBJECTIVE This study aims to present prevalence of hematopoietic rare genetic diseases recorden in Turkey. METHODS The population of study consist of 84.680.273 people who received healthcare from the Turkish National Health Service (49.9% female, 50.1% male). TNHS collects and records electronic data which relates with illness or health information of Turkish population since 2018. All healthcare facilities utilize the Personal Electronic Health Record System (PHR), aligning with standards outlined in the Turkish National Health Data Dictionary and the Health Coding Reference Server (HCRS) established by the Ministry of Health in 2007. The data dictionary comprises essential packages such as patient application and examination records. RESULTS Diagnosed female population (53.04%) were higher than male (46.96%). Data shows that most of the people with rare genetic diseases were diagnosed in Marmara Region. The overall prevalence of Hematopoietic Rare Genetic Diseases higher in the years of 2021 and 2022. CONCLUSION The prevalence increased gradually from 2018 to 2022. The consanguinity marriage seems to be the main problem which resulted higher rate of rare genetic diseases in Türkiye.
Collapse
Affiliation(s)
- Mahir Ülgü
- Turkish Ministry of Health, Ankara, Türkiye
| | - Serkan Yilmaz
- Ankara University Faculty of Nursing, Ankara, Türkiye.
| | - Duygu Öztaş
- Ankara University Faculty of Nursing, Ankara, Türkiye
| | - Bayram Göktaş
- Ankara University Faculty of Health Sciences, Ankara, Türkiye
| | | |
Collapse
|
29
|
Aamer W, Al-Maraghi A, Syed N, Gandhi GD, Aliyev E, Al-Kurbi AA, Al-Saei O, Kohailan M, Krishnamoorthy N, Palaniswamy S, Al-Malki K, Abbasi S, Agrebi N, Abbaszadeh F, Akil ASAS, Badii R, Ben-Omran T, Lo B, Mokrab Y, Fakhro KA. Burden of Mendelian disorders in a large Middle Eastern biobank. Genome Med 2024; 16:46. [PMID: 38584274 PMCID: PMC11000384 DOI: 10.1186/s13073-024-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies. METHODS Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits. RESULTS We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region. CONCLUSIONS This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings.
Collapse
Affiliation(s)
- Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Najeeb Syed
- Applied Bioinformatics Core, Sidra Medicine, Doha, Qatar
| | | | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Omayma Al-Saei
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Saleha Abbasi
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Nourhen Agrebi
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | | | - Ramin Badii
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of pediatrics, Hamad Medical Corporation, Doha, Qatar
- Department of Pediatric, Weill Cornell Medical College, Doha, Qatar
- Division of Genetic & Genomics Medicine, Sidra Medicine, Doha, Qatar
| | - Bernice Lo
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Younes Mokrab
- Department of Human Genetics, Sidra Medicine, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
- College of Health Sciences, Qatar University, Doha, Qatar.
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
30
|
Safwat S, Flannery KP, El Beheiry AA, Mokhtar MM, Abdalla E, Manzini MC. Genetic blueprint of congenital muscular dystrophies with brain malformations in Egypt: A report of 11 families. Neurogenetics 2024; 25:93-102. [PMID: 38296890 PMCID: PMC11076401 DOI: 10.1007/s10048-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.
Collapse
Affiliation(s)
- Sylvia Safwat
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ahmed A El Beheiry
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed M Mokhtar
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
31
|
Rips J, Halstuk O, Fuchs A, Lang Z, Sido T, Gershon-Naamat S, Abu-Libdeh B, Edvardson S, Salah S, Breuer O, Hadhud M, Eden S, Simon I, Slae M, Damseh NS, Abu-Libdeh A, Eskin-Schwartz M, Birk OS, Varga J, Schueler-Furman O, Rosenbluh C, Elpeleg O, Yanovsky-Dagan S, Mor-Shaked H, Harel T. Unbiased phenotype and genotype matching maximizes gene discovery and diagnostic yield. Genet Med 2024; 26:101068. [PMID: 38193396 DOI: 10.1016/j.gim.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.
Collapse
Affiliation(s)
- Jonathan Rips
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Adina Fuchs
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ziv Lang
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sido
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Neurology Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Oded Breuer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mohamad Hadhud
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Eden
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Itamar Simon
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mordechai Slae
- Pediatric Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Nadirah S Damseh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine; Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Julia Varga
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
32
|
Bosman W, Franken GAC, de Las Heras J, Madariaga L, Barakat TS, Oostenbrink R, van Slegtenhorst M, Perdomo-Ramírez A, Claverie-Martín F, van Eerde AM, Vargas-Poussou R, Dubourg LD, González-Recio I, Martínez-Cruz LA, de Baaij JHF, Hoenderop JGJ. Hypomagnesaemia with varying degrees of extrarenal symptoms as a consequence of heterozygous CNNM2 variants. Sci Rep 2024; 14:6917. [PMID: 38519529 PMCID: PMC10959950 DOI: 10.1038/s41598-024-57061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Gijs A C Franken
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Javier de Las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, CIBER-ER, Metab-ERN, University of the Basque Country (UPV/EHU), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, CIBERDEM, CIBER-ER, Endo-ERN, Biocruces Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Tahsin Stefan Barakat
- Deparment of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of General Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Ana Perdomo-Ramírez
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Rosa Vargas-Poussou
- Service de medecine genomique des maladies rares, AP-HP, universite Paris Cité, Paris, France
- Centre de reference des maladies renales hereditaires de l'enfant et de l'adulte MARHEA, hopital Européen Georges Pompidou, Paris, France
- CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne universite, universite Paris Cité, Paris, France
| | - Laurence Derain Dubourg
- Hôpital Édouard Herriot, Hospices civils de Lyon, service de nephrologie, dialyse, hypertension et exploration fonctionnelle renale, Lyon, France
- Centre de reference des maladies renales rares et phosphocalciques, Nephrogones, Hôpital Femme-Mère-Enfant Bron, Bron, France
- Faculté de medecine Lyon est, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Irene González-Recio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | | | | |
Collapse
|
33
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
34
|
Sivadas A, Sahana S, Jolly B, Bhoyar RC, Jain A, Sharma D, Imran M, Senthivel V, Divakar MK, Mishra A, Mukhopadhyay A, Gibson G, Narayan KV, Sivasubbu S, Scaria V, Kurpad AV. Landscape of pharmacogenetic variants associated with non-insulin antidiabetic drugs in the Indian population. BMJ Open Diabetes Res Care 2024; 12:e003769. [PMID: 38471670 PMCID: PMC10936492 DOI: 10.1136/bmjdrc-2023-003769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Genetic variants contribute to differential responses to non-insulin antidiabetic drugs (NIADs), and consequently to variable plasma glucose control. Optimal control of plasma glucose is paramount to minimizing type 2 diabetes-related long-term complications. India's distinct genetic architecture and its exploding burden of type 2 diabetes warrants a population-specific survey of NIAD-associated pharmacogenetic (PGx) variants. The recent availability of large-scale whole genomes from the Indian population provides a unique opportunity to generate a population-specific map of NIAD-associated PGx variants. RESEARCH DESIGN AND METHODS We mined 1029 Indian whole genomes for PGx variants, drug-drug interaction (DDI) and drug-drug-gene interactions (DDGI) associated with 44 NIADs. Population-wise allele frequencies were estimated and compared using Fisher's exact test. RESULTS Overall, we found 76 known and 52 predicted deleterious common PGx variants associated with response to type 2 diabetes therapy among Indians. We report remarkable interethnic differences in the relative cumulative counts of decreased and increased response-associated alleles across NIAD classes. Indians and South Asians showed a significant excess of decreased metformin response-associated alleles compared with other global populations. Network analysis of shared PGx genes predicts high DDI risk during coadministration of NIADs with other metabolic disease drugs. We also predict an increased CYP2C19-mediated DDGI risk for CYP3A4/3A5-metabolized NIADs, saxagliptin, linagliptin and glyburide when coadministered with proton-pump inhibitors (PPIs). CONCLUSIONS Indians and South Asians have a distinct PGx profile for antidiabetes drugs, marked by an excess of poor treatment response-associated alleles for various NIAD classes. This suggests the possibility of a population-specific reduced drug response in atleast some NIADs. In addition, our findings provide an actionable resource for accelerating future diabetes PGx studies in Indians and South Asians and reconsidering NIAD dosing guidelines to ensure maximum efficacy and safety in the population.
Collapse
Affiliation(s)
- Ambily Sivadas
- St John's Research Institute, Bangalore, Karnataka, India
| | - S Sahana
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Disha Sharma
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Greg Gibson
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | |
Collapse
|
35
|
Binobaid L, As Sobeai HM, Alhazzani K, AlAbdi L, Alwazae MM, Alotaibi M, Parrington J, Alhoshani A. Whole-exome sequencing identifies cancer-associated variants of the endo-lysosomal ion transport channels in the Saudi population. Saudi Pharm J 2024; 32:101961. [PMID: 38313820 PMCID: PMC10832475 DOI: 10.1016/j.jsps.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Background Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.
Collapse
Affiliation(s)
- Lama Binobaid
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Homood M. As Sobeai
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Khalid Alhazzani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Meshari M. Alwazae
- Computational Sciences Department, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Moureq Alotaibi
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ali Alhoshani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| |
Collapse
|
36
|
Materna M, Delmonte OM, Bosticardo M, Momenilandi M, Conrey PE, Muylder BCD, Bravetti C, Bellworthy R, Cederholm A, Staels F, Ganoza CA, Darko S, Sayed S, Le Floc’h C, Ogishi M, Rinchai D, Guenoun A, Bolze A, Khan T, Gervais A, Krüger R, Völler M, Palterer B, Sadeghi-Shabestari M, de Septenville AL, Schramm CA, Shah S, Tello-Cajiao JJ, Pala F, Amini K, Campos JS, Lima NS, Eriksson D, Lévy R, Seeleuthner Y, Jyonouchi S, Ata M, Al Ali F, Deswarte C, Pereira A, Mégre t J, Le Voyer T, Bastard P, Berteloot L, Dussiot M, Vladikine N, Cardenas PP, Jouanguy E, Alqahtani M, Hasan A, Thanaraj TA, Rosain J, Al Qureshah F, Sabato V, Alyanakian MA, Leruez-Ville M, Rozenberg F, Haddad E, Regueiro JR, Toribio ML, Kelsen JR, Salehi M, Nasiri S, Torabizadeh M, Rokni-Zadeh H, Changi-Ashtiani M, Vatandoost N, Moravej H, Akrami SM, Mazloomrezaei M, Cobat A, Meyts I, Etsushi T, Nishimura M, Moriya K, Mizukami T, Imai K, Abel L, Malissen B, Al-Mulla F, Alkuraya FS, Parvaneh N, von Bernuth H, Beetz C, Davi F, Douek DC, Cheynier R, Langlais D, Landegren N, Marr N, Morio T, Shahrooei M, Schrijvers R, Henrickson SE, Luche H, Notarangelo LD, Casanova JL, Béziat V. The immunopathological landscape of human pre-TCRα deficiency: From rare to common variants. Science 2024; 383:eadh4059. [PMID: 38422122 PMCID: PMC10958617 DOI: 10.1126/science.adh4059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αβ T cell counts at birth persisted over time, with normal memory αβ and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αβ T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αβ T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αβ T cells, autoimmune conditions were more frequent in these patients compared with the general population.
Collapse
Affiliation(s)
- Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Peyton E. Conrey
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | | | - Clotilde Bravetti
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Rebecca Bellworthy
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Frederik Staels
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | | | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samir Sayed
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | | | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mahnaz Sadeghi-Shabestari
- Immunology Research Center, TB and Lung Disease Research Center, Mardaniazar children hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Anne Langlois de Septenville
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
| | - Chaim A. Schramm
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sanjana Shah
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. Tello-Cajiao
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jose S. Campos
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Noemia Santana Lima
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Section of Clinical Genetics, Uppsala, Sweden
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Soma Jyonouchi
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Manar Ata
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anaïs Pereira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Jérôme Mégre t
- Cytometry Core Facility, SFR Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Laureline Berteloot
- Department of Pediatric Radiology, University Hospital Necker-Enfants Malades, AP-HP, Paris, France
| | - Michaël Dussiot
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paula P. Cardenas
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Hasan
- Department of Translational Research, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, University of Antwerp, Antwerp University Hospital, Belgium
| | - Marie Alexandra Alyanakian
- Immunology Laboratory, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Flore Rozenberg
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Virology, Cochin Hospital, AP-HP, APHP-CUP, Paris, France
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Jose R. Regueiro
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Maria L. Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology and Nutrition at Children's Hospital of Philadelphia
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Nasiri
- Department of Pediatric Neurology, Children's Medical Center of Abuzar, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Nasimeh Vatandoost
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Akrami
- Medical Genetics Poursina St., Genetic Deptartment, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | | | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Toyofuku Etsushi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Bernard Malissen
- Immunology Center of Marseille-Luminy, Aix Marseille University, Inserm, CNRS, Marseille, France
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | | | - Frédéric Davi
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rémi Cheynier
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - David Langlais
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohammad Shahrooei
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Sarah E. Henrickson
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Institute for Immunology and Immune Health, University of Pennsylvania; Philadelphia, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| |
Collapse
|
37
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Rosain J, Kiykim A, Michev A, Kendir-Demirkol Y, Rinchai D, Peel JN, Li H, Ocak S, Ozdemir PG, Le Voyer T, Philippot Q, Khan T, Neehus AL, Migaud M, Soudée C, Boisson-Dupuis S, Marr N, Borghesi A, Casanova JL, Bustamante J. Recombinant IFN-γ1b Treatment in a Patient with Inherited IFN-γ Deficiency. J Clin Immunol 2024; 44:62. [PMID: 38363432 PMCID: PMC10873451 DOI: 10.1007/s10875-024-01661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France.
- University of Paris Cité, Imagine Institute, Paris, France.
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Pediatric Clinic, IRCCS Policlinico "San Matteo" Foundation, University of Pavia, Pavia, Italy
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatric Genetics, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Suheyla Ocak
- Pediatric Hematology and Oncology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Clinical Immunology Department, Saint-Louis Hospital, AP-HP, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France.
- University of Paris Cité, Imagine Institute, Paris, France.
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
Coban-Akdemir Z, Song X, Ceballos FC, Pehlivan D, Karaca E, Bayram Y, Mitani T, Gambin T, Bozkurt-Yozgatli T, Jhangiani SN, Muzny DM, Lewis RA, Liu P, Boerwinkle E, Hamosh A, Gibbs RA, Sutton VR, Sobreira N, Carvalho CM, Shaw CA, Posey JE, Valle D, Lupski JR. The impact of the Turkish population variome on the genomic architecture of rare disease traits. GENETICS IN MEDICINE OPEN 2024; 2:101830. [PMID: 39669594 PMCID: PMC11613692 DOI: 10.1016/j.gimo.2024.101830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 12/14/2024]
Abstract
Purpose The variome of the Turkish (TK) population, a population with a considerable history of admixture and consanguinity, has not been deeply investigated for insights on the genomic architecture of disease. Methods We generated and analyzed a database of variants derived from exome sequencing data of 773 TK unrelated, clinically affected individuals with various suspected Mendelian disease traits and 643 unaffected relatives. Results Using uniform manifold approximation and projection, we showed that the TK genomes are more similar to those of Europeans and consist of 2 main subpopulations: clusters 1 and 2 (N = 235 and 1181, respectively), which differ in admixture proportion and variome (https://turkishvariomedb.shinyapps.io/tvdb/). Furthermore, the higher inbreeding coefficient values observed in the TK affected compared with unaffected individuals correlated with a larger median span of long-sized (>2.64 Mb) runs of homozygosity (ROH) regions (P value = 2.09e-18). We show that long-sized ROHs are more likely to be formed on recently configured haplotypes enriched for rare homozygous deleterious variants in the TK affected compared with TK unaffected individuals (P value = 3.35e-11). Analysis of genotype-phenotype correlations reveals that genes with rare homozygous deleterious variants in long-sized ROHs provide the most comprehensive set of molecular diagnoses for the observed disease traits with a systematic quantitative analysis of Human Phenotype Ontology terms. Conclusion Our findings support the notion that novel rare variants on newly configured haplotypes arising within the recent past generations of a family or clan contribute significantly to recessive disease traits in the TK population.
Collapse
Affiliation(s)
- Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor University Medical Center, Dallas, TX
- Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Tugce Bozkurt-Yozgatli
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pacific Northwest Research Institute, Seattle, WA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|
40
|
Agaoglu NB, Unal B, Hayes CP, Walker M, Ng OH, Doganay L, Can ND, Rana HQ, Ghazani AA. Genomic disparity impacts variant classification of cancer susceptibility genes in Turkish breast cancer patients. Cancer Med 2024; 13:e6852. [PMID: 38308423 PMCID: PMC10905328 DOI: 10.1002/cam4.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Turkish genome is underrepresented in large genomic databases. This study aims to evaluate the effect of allele frequency in the Turkish population in determining the clinical utility of germline findings in breast cancer, including invasive lobular carcinoma (ILC), mixed invasive ductal and lobular carcinoma (IDC-L), and ductal carcinoma (DC). METHODS Two clinic-based cohorts from the Umraniye Research and Training Hospital (URTH) were used in this study: a cohort consisting of 132 women with breast cancer and a non-cancer cohort consisting of 492 participants. The evaluation of the germline landscape was performed by analysis of 27 cancer genes. The frequency and type of variants in the breast cancer cohort were compared to those in the non-cancer cohort to investigate the effect of population genetics. The variant allele frequencies in Turkish Variome and gnomAD were statistically evaluated. RESULTS The genetic analysis identified 121 variants in the breast cancer cohort (actionable = 32, VUS = 89) and 223 variants in the non-cancer cohort (actionable = 25, VUS = 188). The occurrence of 21 variants in both suggested a possible genetic population effect. Evaluation of allele frequency of 121 variants from the breast cancer cohort showed 22% had a significantly higher value in Turkish Variome compared to gnomAD (p < 0.0001, 95% CI) with a mean difference of 60 times (ranging from 1.37-354.4). After adjusting for variant allele frequency using the ancestry-appropriate database, 6.7% (5/75) of VUS was reclassified to likely benign. CONCLUSION To our knowledge, this is the first study of population genetic effects in breast cancer subtypes in Turkish women. Our findings underscore the need for a large genomic database representing Turkish population-specific variants. It further highlights the significance of the ancestry-appropriate population database for accurate variant assessment in clinical settings.
Collapse
Affiliation(s)
- Nihat B. Agaoglu
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - Connor P. Hayes
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - McKenzie Walker
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of MedicineAcibadem UniversityIstanbulTurkey
| | - Levent Doganay
- Department of Medical Genetics, Division of Cancer GeneticsUmraniye Training and Research HospitalIstanbulTurkey
| | - Nisan D. Can
- Department of Molecular Biology Genetics and BiotechnologyIstanbul Technical UniversityIstanbulTurkey
| | - Huma Q. Rana
- Division of Cancer Genetics and PreventionDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Arezou A. Ghazani
- Division of GeneticsBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
41
|
Friedman JM, Bombard Y, Carleton B, Issa AM, Knoppers B, Plon SE, Rahimzadeh V, Relling MV, Williams MS, van Karnebeek C, Vears D, Cornel MC. Should secondary pharmacogenomic variants be actively screened and reported when diagnostic genome-wide sequencing is performed in a child? Genet Med 2024; 26:101033. [PMID: 38007624 DOI: 10.1016/j.gim.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Carleton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Amalia M Issa
- Personalized Precision Medicine & Targeted Therapeutics, Springfield, MA; Health Policy, University of the Sciences, Philadelphia, PA; Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA; Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sharon E Plon
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Clara van Karnebeek
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Radboud Center for Mitochondrial and Metabolic Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danya Vears
- University of Melbourne, Carlton, Melbourne, Australia; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martina C Cornel
- Department of Human Genetics and Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Allouba M, Walsh R, Afify A, Hosny M, Halawa S, Galal A, Fathy M, Theotokis PI, Boraey A, Ellithy A, Buchan R, Govind R, Whiffin N, Anwer S, ElGuindy A, Ware JS, Barton PJR, Yacoub M, Aguib Y. Ethnicity, consanguinity, and genetic architecture of hypertrophic cardiomyopathy. Eur Heart J 2023; 44:5146-5158. [PMID: 37431535 PMCID: PMC10733735 DOI: 10.1093/eurheartj/ehad372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.
Collapse
Affiliation(s)
- Mona Allouba
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Roddy Walsh
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Alaa Afify
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mohammed Hosny
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Sarah Halawa
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Aya Galal
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Mariam Fathy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Ahmed Boraey
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- Cardiology Department, Kasr Al Aini Medical School, Cairo University, Kasr Al Aini Street, Cairo 11562, Egypt
| | - Amany Ellithy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Rachel Buchan
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
| | - Risha Govind
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
- Present affiliation: National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Nicola Whiffin
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- Present affiliation: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | - Shehab Anwer
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - Ahmed ElGuindy
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, Sydney St, London SW3 6NP, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Rd, London W12 0NN, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
- Harefield Heart Science Centre, Hill End Rd, Harefield, Uxbridge UB9 6JH, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Kasr El Haggar Street, Aswan 81512, Egypt
- National Heart and Lung Institute, Imperial College London, London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
43
|
Elbagoury NM, Abdel-Aleem AF, Sharaf-Eldin WE, Ashaat EA, Esswai ML. A Novel Truncating Mutation in PAX1 Gene Causes Otofaciocervical Syndrome Without Immunodeficiency. J Mol Neurosci 2023; 73:976-982. [PMID: 37924468 PMCID: PMC10754723 DOI: 10.1007/s12031-023-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic area where the disorder was confined.
Collapse
Affiliation(s)
- Nagham M Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Asmaa F Abdel-Aleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Wessam E Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona L Esswai
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
44
|
Zhou Z, Kim J, Huang AY, Nolan M, Park J, Doan R, Shin T, Miller MB, Chhouk B, Morillo K, Yeh RC, Kenny C, Neil JE, Lee CZ, Ohkubo T, Ravits J, Ansorge O, Ostrow LW, Lagier-Tourenne C, Lee EA, Walsh CA. Somatic Mosaicism in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Reveals Widespread Degeneration from Focal Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569436. [PMID: 38077003 PMCID: PMC10705414 DOI: 10.1101/2023.11.30.569436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Nolan
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Chao-Zong Lee
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Takuya Ohkubo
- Department of Neurology, Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
45
|
Abou Tayoun AN, Alsheikh-Ali A. A rapid whole-genome sequencing service for infants with rare diseases in the United Arab Emirates. Nat Med 2023; 29:2979-2980. [PMID: 37872224 DOI: 10.1038/s41591-023-02596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Affiliation(s)
- Ahmad N Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Dubai Academic Health Corporation, Dubai, United Arab Emirates.
| | - Alawi Alsheikh-Ali
- Dubai Academic Health Corporation, Dubai, United Arab Emirates
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
46
|
Bu R, Siraj AK, Al-Rasheed M, Iqbal K, Azam S, Qadri Z, Haqawi W, Tulbah A, Al-Dayel F, Almalik O, Al-Kuraya KS. Identification and characterization of ATM founder mutation in BRCA-negative breast cancer patients of Arab ethnicity. Sci Rep 2023; 13:20924. [PMID: 38017116 PMCID: PMC10684510 DOI: 10.1038/s41598-023-48231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women worldwide with germline pathogenic variants/likely pathogenic variants (PVs/LPVs) in BRCA1/2 accounting for a large portion of hereditary cases. Recently, heterozygous PVs/LPVs in the ATM serine/threonine kinase or Ataxia-telangiectasia mutated gene (ATM) has been identified as a moderate susceptibility factor for BC in diverse ethnicities. However, the prevalence of ATM PVs/LPVs in BC susceptibility in Arab populations remains largely unexplored. This study investigated the prevalence of ATM PVs/LPVs among BC patients from Saudi Arabia, employing capture-sequencing technology for ATM PVs/LPVs screening in a cohort of 715 unselected BC patients without BRCA1/2 PVs/LPVs. In addition, founder mutation analysis was conducted using the PHASE program. In our entire cohort, four unique PVs/LPVs in the ATM gene were identified in six cases (0.8%). Notably, one recurrent LPV, c.6115G > A:p.Glu2039Lys was identified in three cases, for which haplotype analysis confirmed as a novel putative founder mutation traced back to 13 generations on average. This founder mutation accounted for half of all identified mutant cases and 0.4% of total screened cases. This study further reveals a significant correlation between the presence of ATM mutation and family history of BC (p = 0.0127). These findings underscore an approximate 0.8% prevalence of ATM germline PVs/LPVs in Arab BC patients without BRCA1/2 PVs/LPVs and suggest a founder effect of specific recurrent ATM mutation. These insights can help in the design of a genetic testing strategy tailored to the local population in Saudi Arabia, thereby, enabling more accurate clinical management and risk prediction.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Osama Almalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia.
- Research Centre at KFNCCC, Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
47
|
Badla BA, Hanifa MS, Jain R, Naofal ME, Halabi N, Yaslam S, Ramaswamy S, Taylor A, Alfalasi R, Shenbagam S, Khansaheb H, Al Suwaidi H, Nowotny N, Popatia R, Al Khayat A, Alsheikh-Ali A, Loney T, AlDabal LM, Abou Tayoun A. Genetic determinants of severe COVID-19 in young Asian and Middle Eastern patients: a case series. Sci Rep 2023; 13:20294. [PMID: 37985737 PMCID: PMC10661561 DOI: 10.1038/s41598-023-47718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Studies of genetic factors associated with severe COVID-19 in young adults have been limited in non-Caucasian populations. Here, we clinically characterize a case series of patients with COVID-19, who were otherwise healthy, young adults (N = 55; mean age 34.1 ± SD 5.0 years) from 16 Asian, Middle Eastern, and North African countries. Using whole exome sequencing, we identify rare, likely deleterious variants affecting 16 immune-related genes in 17 out of 55 patients (31%), including 7 patients (41% of all carriers or 12.7% of all patients) who harbored multiple such variants mainly in interferon and toll-like receptor genes. Protein network analysis as well as transcriptomic analysis of nasopharyngeal swabs from an independent COVID-19 cohort (N = 50; 42% Asians and 22% Arabs) revealed that most of the altered genes, as identified by whole exome sequencing, and the associated molecular pathways were significantly altered in COVID-19 patients. Genetic variants tended to be associated with mortality, intensive care admission, and ventilation support. Our clinical cases series, genomic and transcriptomic findings suggest a possible role for interferon pathway genes in severe COVID-19 and highlight the importance of extending genetic studies to diverse populations to better understand the human genetics of disease.
Collapse
Affiliation(s)
- Beshr Abdulaziz Badla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Mohamed Samer Hanifa
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Ruchi Jain
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Maha El Naofal
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Nour Halabi
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Sawsan Yaslam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Sathishkumar Ramaswamy
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Alan Taylor
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Roudha Alfalasi
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Hamda Khansaheb
- Medical Education and Research Department, Dubai Health, Dubai, UAE
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rizwana Popatia
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
48
|
Bilal M, Khan H, Khan MJ, Haack TB, Buchert R, Liaqat K, Ullah K, Ahmed S, Bharadwaj T, Acharya A, Peralta S, Najumuddin, Ali H, Hasni MS, Schrauwen I, Ullah A, Ahmad W, Leal SM. Variants in EFCAB7 underlie nonsyndromic postaxial polydactyly. Eur J Hum Genet 2023; 31:1270-1274. [PMID: 37684519 PMCID: PMC10620185 DOI: 10.1038/s41431-023-01450-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Polydactyly is the most common limb malformation that occurs in 1.6-10.6 per one thousand live births, with incidence varying with ancestry. The underlying gene has been identified for many of the ~100 syndromes that include polydactyly. While for the more common form, nonsydromic polydactyly, eleven candidate genes have been reported. We investigated the underlying genetic cause of autosomal recessive nonsyndromic postaxial polydactyly in four consanguineous Pakistani families. Some family members with postaxial polydactyly also present with syndactyly, camptodactyly, or clinodactyly. Analysis of the exome sequence data revealed two novel homozygous frameshift deletions in EFCAB7: [c.830delG;p.(Gly277Valfs*5)]; in three families and [c.1350_1351delGA;p.(Asn451Phefs*2)] in one family. Sanger sequencing confirmed that these variants segregated with postaxial polydactyly, i.e., family members with postaxial polydactyly were found to be homozygous while unaffected members were heterozygous or wild type. EFCAB7 displays expressions in the skeletal muscle and on the cellular level in cilia. IQCE-EFCAB7 and EVC-EVC2 are part of the heterotetramer EvC complex, which is a positive regulator of the Hedgehog (Hh) pathway, that plays a key role in limb formation. Depletion of either EFCAB7 or IQCE inhibits induction of Gli1, a direct Hh target gene. Variants in IQCE and GLI1 have been shown to cause nonsyndromic postaxial polydactyly, while variants in EVC and EVC2 underlie Ellis van Creveld and Weyers syndromes, which include postaxial polydactyly as a phenotype. This is the first report of the involvement of EFCAB7 in human disease etiology.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Tobias B Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rebecca Buchert
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Khurram Liaqat
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kifayat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sohail Ahmed
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Susana Peralta
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Najumuddin
- National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Yee SW, Ferrández-Peral L, Alentorn P, Fontsere C, Ceylan M, Koleske ML, Handin N, Artegoitia VM, Lara G, Chien HC, Zhou X, Dainat J, Zalevsky A, Sali A, Brand CM, Capra JA, Artursson P, Newman JW, Marques-Bonet T, Giacomini KM. Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates. RESEARCH SQUARE 2023:rs.3.rs-3263845. [PMID: 37790518 PMCID: PMC10543398 DOI: 10.21203/rs.3.rs-3263845/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Pol Alentorn
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Merve Ceylan
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Niklas Handin
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Jacques Dainat
- Joint Research Unit for Infectious Diseases and Vectors Ecology Genetics Evolution and Control (MIVEGEC), University of Montpellier, French National Center for Scientific Research (CNRS 5290), French National Research Institute for Sustainable Development (IRD 224), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, UCSF Box 0775 1700 4th St, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, UCSF Box 2880 600 16th St, San Francisco, CA 94143, United States; Quantitative Biosciences Institute (QBI), University of California, San Francisco, 1700 4th St, San Francisco, CA, United States
| | - Colin M. Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA; UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain; Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain; CNAG, Centro Nacional de Analisis Genomico, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Al-Jumaan M, Chu H, Alsulaiman A, Camp SY, Han S, Gillani R, Al Marzooq Y, Almulhim F, Vatte C, Al Nemer A, Almuhanna A, Van Allen EM, Al-Ali A, AlDubayan SH. Interplay of Mendelian and polygenic risk factors in Arab breast cancer patients. Genome Med 2023; 15:65. [PMID: 37658461 PMCID: PMC10474689 DOI: 10.1186/s13073-023-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Breast cancer patients from the indigenous Arab population present much earlier than patients from Western countries and have traditionally been underrepresented in cancer genomics studies. The contribution of polygenic and Mendelian risk toward the earlier onset of breast cancer in the population remains elusive. METHODS We performed low-pass whole genome sequencing (lpWGS) and whole-exome sequencing (WES) from 220 female breast cancer patients unselected for positive family history from the indigenous Arab population. Using publicly available resources, we imputed population-specific variants and calculated breast cancer burden-sensitive polygenic risk scores (PRS). Variant pathogenicity was also evaluated on exome variants with high coverage. RESULTS Variants imputed from lpWGS showed high concordance with paired exome (median dosage correlation: 0.9459, Interquartile range: 0.9410-0.9490). After adjusting the PRS to the Arab population, we found significant associations between PRS performance in risk prediction and first-degree relative breast cancer history prediction (Spearman rho=0.43, p = 0.03), where breast cancer patients in the top PRS decile are 5.53 (95% CI 1.76-17.97, p = 0.003) times more likely also to have a first-degree relative diagnosed with breast cancer compared to those in the middle deciles. In addition, we found evidence for the genetic liability threshold model of breast cancer where among patients with a family history of breast cancer, pathogenic rare variant carriers had significantly lower PRS than non-carriers (p = 0.0205, Mann-Whitney U test) while for non-carriers every standard deviation increase in PRS corresponded to 4.52 years (95% CI 8.88-0.17, p = 0.042) earlier age of presentation. CONCLUSIONS Overall, our study provides a framework to assess polygenic risk in an understudied population using lpWGS and identifies common variant risk as a factor independent of pathogenic variant carrier status for earlier age of onset of breast cancer among indigenous Arab breast cancer patients.
Collapse
Affiliation(s)
- Mohammed Al-Jumaan
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Hoyin Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abdullah Alsulaiman
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seunghun Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Riaz Gillani
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Yousef Al Marzooq
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Fatmah Almulhim
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Chittibabu Vatte
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Areej Al Nemer
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Afnan Almuhanna
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Amein Al-Ali
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|