1
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
2
|
Sarmiento-Mañús R, Fontcuberta-Cervera S, Kawade K, Oikawa A, Tsukaya H, Quesada V, Micol JL, Ponce MR. Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair. Heliyon 2025; 11:e41019. [PMID: 39801971 PMCID: PMC11720913 DOI: 10.1016/j.heliyon.2024.e41019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable Arabidopsis thaliana ortholog of SAMHD1, also functions in DSB repair by HR. The ven4 loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation. Hydroxyurea, which blocks DNA replication and generates DSBs, induced VEN4 expression. The ven4 mutants were hypersensitive to hydroxyurea, with decreased DSB repair by HR. Metabolomic analysis of the strong ven4-0 mutant revealed depletion of metabolites associated with DNA damage responses. In contrast to SAMHD1, VEN4 showed no evident involvement in preventing R-loop accumulation. Our study thus reveals functional conservation in DNA repair by VEN4 and SAMHD1.
Collapse
Affiliation(s)
- Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | | | - Kensuke Kawade
- Graduate School of Science and Engineering, Saitama University, Saitama City, 338-8570, Saitama, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
| | - Akira Oikawa
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Hirokazu Tsukaya
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
3
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Politano D, Tonduti D, Battini R, Fazzi E, Orcesi S. Exploring emerging JAK inhibitors in the treatment of Aicardi-Goutières syndrome. Expert Opin Emerg Drugs 2024:1-19. [PMID: 39704072 DOI: 10.1080/14728214.2024.2445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Aicardi-Goutières syndrome (AGS) is a genetically heterogeneous monogenic autoinflammatory disorder classified as an 'interferonopathy'. Nine genes have been implicated in AGS, encoding proteins involved in nucleic acid clearance, repair, sensing, or histone pre-mRNA processing. Dysregulation in these pathways leads to excessive type I interferon production, the primary driver of the disease. AGS typically presents with early-life neurological regression, followed by stabilization with varying degrees of neurological impairment and common extra-neurological features, such as chilblains. Advances in understanding AGS pathogenesis have enabled the development of new therapies, with JAK inhibitors emerging as the most studied option for reducing interferon-mediated effects. AREAS COVERED This review discusses the clinical features, genetic basis, and molecular pathways of AGS while tracing the evolution of its therapeutic strategies. Particular emphasis is placed on JAK inhibitors, which target proteins activated by type I interferons, providing a novel direction in treatment. EXPERT OPINION Inhibitors effectively reduce extra-neurological symptoms in AGS, though their impact on neurological outcomes remains unclear. The unknown natural history of AGS limits treatment evaluation. Despite growing insights, key aspects of pathogenesis and treatment optimization - including timing, administration, and long-term effects - remain unresolved, highlighting the need for further research.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
5
|
Luca D, Kato H. Mouse models of type I interferonopathies. Hum Mol Genet 2024:ddae187. [PMID: 39680957 DOI: 10.1093/hmg/ddae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Type I interferonopathies are severe monogenic diseases caused by mutations that result in chronically upregulated production of type I interferon. They present with a broad variety of symptoms, the mechanisms of which are being extensively studied. Mouse models of type I interferonopathies are an important resource for this purpose, and in this context, we review several key molecular and phenotypic findings that are advancing our understanding of the respective diseases. We focus on genotypes related to nucleic acid metabolism, sensing by cytosolic receptors and downstream signalling.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
6
|
Zhong Z, Ye Y, Xia L, Na N. Identification of RNA-binding protein genes associated with renal rejection and graft survival. Ren Fail 2024; 46:2360173. [PMID: 38874084 PMCID: PMC11182075 DOI: 10.1080/0886022x.2024.2360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Rejection is one of the major factors affecting the long-term prognosis of kidney transplantation, and timely recognition and aggressive treatment of rejection is essential to prevent disease progression. RBPs are proteins that bind to RNA to form ribonucleoprotein complexes, thereby affecting RNA stability, processing, splicing, localization, transport, and translation, which play a key role in post-transcriptional gene regulation. However, their role in renal transplant rejection and long-term graft survival is unclear. The aim of this study was to comprehensively analyze the expression of RPBs in renal rejection and use it to construct a robust prediction strategy for long-term graft survival. The microarray expression profiles used in this study were obtained from GEO database. In this study, a total of eight hub RBPs were identified, all of which were upregulated in renal rejection samples. Based on these RBPs, the renal rejection samples could be categorized into two different clusters (cluster A and cluster B). Inflammatory activation in cluster B and functional enrichment analysis showed a strong association with rejection-related pathways. The diagnostic prediction model had a high diagnostic accuracy for T cell mediated rejection (TCMR) in renal grafts (area under the curve = 0.86). The prognostic prediction model effectively predicts the prognosis and survival of renal grafts (p < .001) and applies to both rejection and non-rejection situations. Finally, we validated the expression of hub genes, and patient prognosis in clinical samples, respectively, and the results were consistent with the above analysis.
Collapse
Affiliation(s)
- Zhaozhong Zhong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongrong Ye
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liubing Xia
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhang TY, Wang W, Gao SH, Yu ZX, Wang W, Zhou Y, Wang CY, Jian S, Wang L, Gou LJ, Li J, Ma MS, Song HM. LASSO-derived nomogram for early identification of pediatric monogenic lupus. World J Pediatr 2024; 20:1155-1167. [PMID: 38970732 PMCID: PMC11582177 DOI: 10.1007/s12519-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/06/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Monogenic lupus is defined as systemic lupus erythematosus (SLE)/SLE-like patients with either dominantly or recessively inherited pathogenic variants in a single gene with high penetrance. However, because the clinical phenotype of monogenic SLE is extensive and overlaps with that of classical SLE, it causes a delay in diagnosis and treatment. Currently, there is a lack of early identification models for clinical practitioners to provide early clues for recognition. Our goal was to create a clinical model for the early identification of pediatric monogenic lupus, thereby facilitating early and precise diagnosis and treatment for patients. METHODS This retrospective cohort study consisted of 41 cases of monogenic lupus treated at the Department of Pediatrics at Peking Union Medical College Hospital from June 2012 to December 2022. The control group consisted of classical SLE patients recruited at a 1:2 ratio. Patients were randomly divided into a training group and a validation group at a 7:3 ratio. A logistic regression model was established based on the least absolute shrinkage and selection operator to generate the coefficient plot. The predictive ability of the model was evaluated using receiver operator characteristic curves and the area under the curve (AUC) index. RESULTS A total of 41 cases of monogenic lupus patients and 82 cases of classical SLE patients were included. Among the monogenic lupus cases (with a male-to-female ratio of 1:1.05 and ages of onset ranging from birth to 15 years), a total of 18 gene mutations were identified. The variables included in the coefficient plot were age of onset, recurrent infections, intracranial calcifications, growth and developmental delay, abnormal muscle tone, lymphadenopathy/hepatosplenomegaly, and chilblain-like skin rash. Our model demonstrated satisfactory diagnostic performance through internal validation, with an AUC value of 0.97 (95% confidence interval = 0.92-0.97). CONCLUSIONS We summarized and analyzed the clinical characteristics of pediatric monogenic lupus and developed a predictive model for early identification by clinicians. Clinicians should exercise high vigilance for monogenic lupus when the score exceeds - 9.032299.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Hao Gao
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong-Xun Yu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Yan Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Juan Gou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Sheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Khalilian S, Fathi M, Miryounesi M, Ghafouri-Fard S. An overview of genetic mutations in Aicardi-Goutières syndrome in Iranian population. Neurol Sci 2024:10.1007/s10072-024-07824-x. [PMID: 39470906 DOI: 10.1007/s10072-024-07824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare neurodevelopmental disorder that can be misdiagnosed with infectious disorders. Molecular genetics tools and subsequent counseling have an important role in the estimation of recurrence risk and prevention of additional cases in the family. The current study provides an overview of genetic mutations in AGS in Iranian population. In a time period of 3 years, we assessed nine AGS cases and identified the underlying mutations using whole exome sequencing. Mutations were located in TREX1, IFIH1, RNASEH2B, RNASEH2A and SAMHD1 genes and inherited in either autosomal dominant or autosomal recessive manner. Since both modes of inheritance have been previously reported for AGS, appropriate genetic counseling is needed for estimation of recurrence risk in families.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Thomas R, Zaksauskaite R, Al-Kandari N, Hyde A, Abugable A, El-Khamisy S, van Eeden F. Second generation lethality in RNAseH2a knockout zebrafish. Nucleic Acids Res 2024; 52:11014-11028. [PMID: 39217460 PMCID: PMC11472149 DOI: 10.1093/nar/gkae725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Removal of ribonucleotides from DNA by RNaseH2 is essential for genome stability, and its impacted function causes the neurodegenerative disease, Aicardi Goutières Syndrome. We have created a zebrafish rnaseh2a mutant to model this process. Surprisingly, RNaseH2a knockouts show little phenotypic abnormality at adulthood in the first generation, unlike mouse knockout models, which are early embryonic lethal. However, the second generation offspring show reduced development, increased ribonucleotide incorporation and upregulation of key inflammatory markers, resulting in both maternal and paternal embryonic lethality. Thus, neither fathers or mothers can generate viable offspring even when crossed to wild-type partners. Despite their survival, rnaseh2a-/- adults show an accumulation of ribonucleotides in both the brain and testes that is not present in early development. Our data suggest that homozygotes possess RNaseH2 independent compensatory mechanisms that are inactive or overwhelmed by the inherited ribonucleotides in their offspring, or that zebrafish have a yet unknown tolerance mechanism. Additionally, we identify ribodysgenesis, the rapid removal of rNMPs and subsequently lethal fragmentation of DNA as responsible for maternal and paternal embryonic lethality.
Collapse
Affiliation(s)
- Ruth C Thomas
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Ringaile Zaksauskaite
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Norah Y Al-Kandari
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cathrine Hyde
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Arwa A Abugable
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Sherif F El-Khamisy
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, UK
| | - Freek J van Eeden
- Bateson Centre, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute, Sheffield Institute for Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
12
|
Zhang S, Zhang W, Ding C, Ren X, Fang F, Wu Y. Neurophenotype and genetic analysis of children with Aicardi-Goutières syndrome in China. Pediatr Investig 2024; 8:193-200. [PMID: 39347527 PMCID: PMC11427897 DOI: 10.1002/ped4.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/27/2024] [Indexed: 10/01/2024] Open
Abstract
Importance Aicardi-Goutières syndrome (AGS) is a rare genetic disorder mainly affecting the central nervous system and autoimmunity. However, research on AGS among Chinese patients is limited. Objective To summarize the neurologic phenotypes and genetic causes in pediatric AGS patients, providing insights for early recognition and diagnosis in the Chinese population. Methods Clinical features and neuroimaging results of the patients diagnosed with AGS from Beijing Children's Hospital between January 2018 and January 2022 were collected. Whole exome sequencing was used for genetic analysis. Results A total of 15 patients was included, all presenting with various neurological symptoms, including developmental delay (100%), motor skill impairment (100%), language disability (78.6%), dystonia (93.3%), microcephaly (73.3%), sleep disorders (26.7%), regression (20.0%), vessel disease (6.7%), and epilepsy (6.7%). Neuroimaging revealed intracranial calcification (86.7%), cerebral atrophy (73.3%), and leukodystrophy (73.3%). Seven genes were identified, with TREX1 being the most common (40.0%, 6/15), followed by IFIH1 (20.0%, 3/15). Variant c.294dupA (p.C99Mfs*3) was detected in four unrelated patients, accounting for 66.7% (4/6) patients with the TREX1 variant. A literature review showed that TREX1 gene mutations in 35.6% (21/59) of AGS patients among the Chinese population. Interpretation Neurological symptoms are the most prevalent and severe presentation of AGS. Diagnosis may be considered when symptoms such as developmental delay, dystonia, microcephaly, brain calcification, and leukodystrophy emerge. TREX1 mutations are predominant in the Chinese population.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Weihua Zhang
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Changhong Ding
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Xiaotun Ren
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Fang Fang
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Yun Wu
- Department of Neurology Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| |
Collapse
|
13
|
Stankovic S, Shekari S, Huang QQ, Gardner EJ, Ivarsdottir EV, Owens NDL, Mavaddat N, Azad A, Hawkes G, Kentistou KA, Beaumont RN, Day FR, Zhao Y, Jonsson H, Rafnar T, Tragante V, Sveinbjornsson G, Oddsson A, Styrkarsdottir U, Gudmundsson J, Stacey SN, Gudbjartsson DF, Kennedy K, Wood AR, Weedon MN, Ong KK, Wright CF, Hoffmann ER, Sulem P, Hurles ME, Ruth KS, Martin HC, Stefansson K, Perry JRB, Murray A. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 2024; 633:608-614. [PMID: 39261734 PMCID: PMC11410666 DOI: 10.1038/s41586-024-07931-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.
Collapse
Affiliation(s)
- Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Saleh Shekari
- University of Exeter Medical School, University of Exeter, Exeter, UK
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Nick D L Owens
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gareth Hawkes
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Felix R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - Kitale Kennedy
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Andrew R Wood
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Michael N Weedon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Caroline F Wright
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Katherine S Ruth
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
14
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
15
|
Guo H, Yang W, Li H, Yang J, Huang Y, Tang Y, Wang S, Ni F, Yang W, Yu XF, Wei W. The SAMHD1-MX2 axis restricts HIV-1 infection at postviral DNA synthesis. mBio 2024; 15:e0136324. [PMID: 38888311 PMCID: PMC11253599 DOI: 10.1128/mbio.01363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Shijin Wang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
17
|
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatr 2024; 20:653-668. [PMID: 38914753 PMCID: PMC11269505 DOI: 10.1007/s12519-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
18
|
Tasharrofi B, Karimzadeh P, Asadollahi M, Hasani S, Heidari M, Keramatipour M. Aicardi-Goutières Syndrome Type 1: A Novel Missense Variant and Review of the Mutational Spectrum. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:117-129. [PMID: 38988838 PMCID: PMC11231675 DOI: 10.22037/ijcn.v18i3.43274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 07/12/2024]
Abstract
Objectives Mutations in the TREX1 gene cause Aicardi-Goutières syndrome (AGS) 1, associated with a spectrum of autoimmune and neurodegenerative manifestations. AGS 1, the most severe neonatal type of AGS, is characterized by abnormal neurologic findings, visual inattention, hepatosplenomegaly, thrombocytopenia, skin rash, restlessness, and fever. Materials & Methods The present study described two affected siblings from an Iranian family whose phenotypes overlap with intrauterine infections. They had almost similar presentations, including developmental delay, microcephaly, no fix and follow epileptic seizures and the same pattern of brain CT scan involvements. Following clinical and paraclinical assessments, whole-exome sequencing was employed to determine the disease-causing variant, and subsequently, PCR-Sanger sequencing was performed to indicate the segregation pattern of the candidate variant in family members. Results Genetic analysis revealed a novel homozygous missense variant (c.461A>C; p.D154A) in the TREX1 gene in affected family members. Sanger sequencing of other family members showed the expected zygosities. Conclusion This study identifies a novel mutation in the TREX1 gene in this family and highlights the efficiency of next-generation sequencing-based techniques for obtaining a definite diagnosis in patients with early-onset encephalopathy.
Collapse
Affiliation(s)
- Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hasani
- Watson Genetic Laboratory, North Kargar Street, Tehran, Iran & Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children›s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Watson Genetic Laboratory, North Kargar Street, Tehran, Iran & Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Thapa G, Bhattacharya A, Bhattacharya S. Molecular dynamics investigation of DNA fragments bound to the anti-HIV protein SAMHD1 reveals alterations in allosteric communications. J Mol Graph Model 2024; 129:108748. [PMID: 38452417 DOI: 10.1016/j.jmgm.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.
Collapse
Affiliation(s)
- Gauri Thapa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
20
|
Acton OJ, Sheppard D, Kunzelmann S, Caswell SJ, Nans A, Burgess AJO, Kelly G, Morris ER, Rosenthal PB, Taylor IA. Platform-directed allostery and quaternary structure dynamics of SAMHD1 catalysis. Nat Commun 2024; 15:3775. [PMID: 38710701 PMCID: PMC11074143 DOI: 10.1038/s41467-024-48237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.
Collapse
Affiliation(s)
- Oliver J Acton
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- AstraZeneca, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ailidh J O Burgess
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Biosciences, University of Durham, Durham, DH1 3LE, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
21
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
22
|
Ryckmans C, Donge M, Marchèse A, Mastouri M, Thomee C, Stouffs K, Lieser SL, Scalais E. TREX-1 related Aicardi-Goutières syndrome improved by Janus kinase inhibitor. Am J Med Genet A 2024; 194:e63510. [PMID: 38135344 DOI: 10.1002/ajmg.a.63510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.
Collapse
Affiliation(s)
- Claire Ryckmans
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
- Department of Pediatrics, General Pediatric Service, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Mylène Donge
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Antonia Marchèse
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Meriem Mastouri
- Department of Pediatrics, General Pediatric Service, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Caroline Thomee
- Department of Pediatrics, General Pediatric Service, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sandra-Lucile Lieser
- General Pediatric Service, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Emmanuel Scalais
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
23
|
Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57:718-730. [PMID: 38599167 PMCID: PMC11013568 DOI: 10.1016/j.immuni.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.
Collapse
Affiliation(s)
- Steve Dvorkin
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah E Volkman
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Rajawat D, Ghildiyal K, Sonejita Nayak S, Sharma A, Parida S, Kumar S, Ghosh AK, Singh U, Sivalingam J, Bhushan B, Dutt T, Panigrahi M. Genome-wide mining of diversity and evolutionary signatures revealed selective hotspots in Indian Sahiwal cattle. Gene 2024; 901:148178. [PMID: 38242377 DOI: 10.1016/j.gene.2024.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Pharmacology & Toxicology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shive Kumar
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Ghosh
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Umesh Singh
- ICAR Central Institute for Research on Cattle, Meerut, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
25
|
Zhang L, Wang W, Chen T, Cui J, Li X, Liu A, Liu R, Fang L, Jiang J, Yang L, Wu D, Ying S. SAMHD1 dysfunction induces IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. Mol Immunol 2024; 168:1-9. [PMID: 38367301 DOI: 10.1016/j.molimm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Dysfunctional mutations in SAMHD1 cause Aicardi-Goutières Syndrome, an autoinflammatory encephalopathy with elevated interferon-α levels in the cerebrospinal fluid. Whether loss of function mutations in SAMHD1 trigger the expression of other cytokines apart from type I interferons in Aicardi-Goutières Syndrome is largely unclear. This study aimed to explore whether SAMHD1 dysfunction regulated the expression of IL-34, a key cytokine controlling the development and maintenance of microglia, in SH-SY5Y neural cells. We found that downregulation of SAMHD1 in SH-SY5Y cells resulted in the upregulation of IL-34 expression. The protein and mRNA levels of NF-κB p65, the transactivating subunit of a transcription factor NF-κB, were also upregulated in SAMHD1-knockdown SH-SY5Y cells. It was further found SAMHD1 knockdown in SH-SY5Y cells induced an upregulation of IL-34 expression through the canonical NF-κB-dependent pathway in which NF-κB p65, IKKα/β and the NF-κB inhibitor IκBα were phosphorylated. Moreover, knockdown of SAMHD1 in SH-SY5Y cells led to the translocation of NF-κB p65 into the nucleus and promoted NF-κB transcriptional activity. In conclusion, we found SAMHD1 dysfunction induced IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. This finding could lay the foundation for exploring the role of IL-34-targeting microglia in the pathogenesis of Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wenjing Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jiuhao Cui
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xin Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Rumeng Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Liwei Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Junhong Jiang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Li Yang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - De Wu
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
26
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
27
|
Luca D, Lee S, Hirota K, Okabe Y, Uehori J, Izawa K, Lanz AL, Schütte V, Sivri B, Tsukamoto Y, Hauck F, Behrendt R, Roers A, Fujita T, Nishikomori R, Lee-Kirsch MA, Kato H. Aberrant RNA sensing in regulatory T cells causes systemic autoimmunity. SCIENCE ADVANCES 2024; 10:eadk0820. [PMID: 38427731 PMCID: PMC10906915 DOI: 10.1126/sciadv.adk0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sumin Lee
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Regulatory Information, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Junji Uehori
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anna-Lisa Lanz
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Verena Schütte
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Burcu Sivri
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Regulatory Information, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, University Hospital Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Li Y, Shen S, Guo H, Li H, Zhang L, Zhang B, Yu XF, Wei W. Pharmacological inhibition of neddylation impairs long interspersed element 1 retrotransposition. Cell Rep 2024; 43:113749. [PMID: 38329876 DOI: 10.1016/j.celrep.2024.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Siyu Shen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Haoran Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Huili Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lili Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
31
|
Zhang SM, Paulin CB, Shu H, Yagüe-Capilla M, Michel M, Marttila P, Ortis F, Bwanika HC, Dirks C, Venkatram RP, Wiita E, Jemth AS, Almlöf I, Loseva O, Hormann FM, Koolmeister T, Linde E, Lee S, Llona-Minguez S, Haraldsson M, Axelsson H, Strömberg K, Homan EJ, Scobie M, Lundbäck T, Helleday T, Rudd SG. Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1 via a comprehensive screening funnel. iScience 2024; 27:108907. [PMID: 38318365 PMCID: PMC10839966 DOI: 10.1016/j.isci.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low μM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Cynthia B.J. Paulin
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Huazhang Shu
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Miriam Yagüe-Capilla
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maurice Michel
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Henri Colyn Bwanika
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Christopher Dirks
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rajagopal Papagudi Venkatram
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Femke M. Hormann
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Erika Linde
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sun Lee
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Evert J. Homan
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory (SciLifeLab), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Sean G. Rudd
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
32
|
Vancura J, Boyd NK, Vogel BN, Nagesh D, Ho E, Santoro JD. Rapidly progressive moyamoya vasculopathy stabilized with immunotherapy in aicardi-goutières syndrome. J Neurol 2024; 271:1019-1022. [PMID: 37855872 DOI: 10.1007/s00415-023-12040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Affiliation(s)
- Jenae Vancura
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of the, University of Southern California, Los Angeles, CA, USA
| | - Eugenia Ho
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of the, University of Southern California, Los Angeles, CA, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, Keck School of Medicine of the, University of Southern California, Los Angeles, CA, USA.
- Division of Neuroimmunology, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 82, Los Angeles, CA, 90027, USA.
| |
Collapse
|
33
|
Trenaman A, Tinti M, Atrih A, Horn D. Genome-wide screens connect HD82 loss-of-function to purine analog resistance in African trypanosomes. mSphere 2024; 9:e0036323. [PMID: 38126788 PMCID: PMC10826343 DOI: 10.1128/msphere.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Nucleoside analogs have been used extensively as anti-infective agents, particularly against viral infections, and have long been considered promising anti-parasitic agents. These pro-drugs are metabolized by host-cell, viral, or parasite enzymes prior to incorporation into DNA, thereby inhibiting DNA replication. Here, we report genes that sensitize African trypanosomes to nucleoside analogs, including the guanosine analog, ganciclovir. We applied ganciclovir selective pressure to a trypanosome genome-wide knockdown library, which yielded nucleoside mono- and diphosphate kinases as hits, validating the approach. The two most dominant hits to emerge, however, were Tb927.6.2800 and Tb927.6.2900, which both encode nuclear proteins; the latter of which is HD82, a SAMHD1-related protein and a putative dNTP triphosphohydrolase. We independently confirmed that HD82, which is conserved among the trypanosomatids, can sensitize Trypanosoma brucei to ganciclovir. Since ganciclovir activity depends upon phosphorylation by ectopically expressed viral thymidine kinase, we also tested the adenosine analog, ara-A, that may be fully phosphorylated by native T. brucei kinase(s). Both Tb927.6.2800 and HD82 knockdowns were resistant to this analog. Tb927.6.2800 knockdown increased sensitivity to hydroxyurea, while dNTP analysis indicated that HD82 is indeed a triphosphohydrolase with dATP as the preferred substrate. Our results provide insights into nucleoside/nucleotide metabolism and nucleoside analog metabolism and resistance in trypanosomatids. We suggest that the product of 6.2800 sensitizes cells to purine analogs through DNA repair, while HD82 does so by reducing the native purine pool.IMPORTANCEThere is substantial interest in developing nucleoside analogs as anti-parasitic agents. We used genome-scale genetic screening and discovered two proteins linked to purine analog resistance in African trypanosomes. Our screens also identified two nucleoside kinases required for pro-drug activation, further validating the approach. The top novel hit, HD82, is related to SAMHD1, a mammalian nuclear viral restriction factor. We validated HD82 and localized the protein to the trypanosome nucleus. HD82 appears to sensitize trypanosomes to nucleoside analogs by reducing native pools of nucleotides, providing insights into both nucleoside/nucleotide metabolism and nucleoside analog resistance in trypanosomatids.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Abdelmadjid Atrih
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
Livingston JH. Childhood-inherited white matter disorders with calcification. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:95-109. [PMID: 39322397 DOI: 10.1016/b978-0-323-99209-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Intracranial calcification (ICC) occurs in many neurologic disorders both acquired and genetic. In some inherited white matter disorders, it is a common or even invariable feature where the presence and pattern of calcification provides an important pointer to the specific diagnosis. This is particularly the case for the Aicardi-Goutières syndrome (AGS) and for Coats plus (CP) and leukoencephalopathy with calcifications and cysts (LCC), which are discussed in detail in this chapter. AGS is a genetic disorder of type 1 interferon regulation, caused by mutations in any of the nine genes identified to date. In its classic form, AGS has very characteristic clinical and neuroimaging features which will be discussed here. LCC is a purely neurologic disorder caused by mutations in the SNORD118 gene, whereas CP is a multisystem disorder of telomere function that may result from mutations in the CTC1, POT1, or STN genes. In spite of the different pathogenetic basis for LCC and CP, they share remarkably similar neuroimaging and neuropathologic features. Cockayne syndrome, in which ICC is usually present, is discussed elsewhere in this volume. ICC may occur as an occasional feature of many other white matter diseases, including Alexander disease, Krabbe disease, X-ALD, and occulodentodigital dysplasia.
Collapse
Affiliation(s)
- John H Livingston
- Professor of Paediatric Neurology, University of Leeds, Leeds, United Kingdom; Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, United Kingdom.
| |
Collapse
|
35
|
Shih HY, Raas Q, Bonkowsky JL. Progress in leukodystrophies with zebrafish. Dev Growth Differ 2024; 66:21-34. [PMID: 38239149 DOI: 10.1111/dgd.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.
Collapse
Affiliation(s)
- Hung-Yu Shih
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biological Sciences, Utah Tech University, Saint George, Utah, USA
- Center for Precision & Functional Genomics, Utah Tech University, Saint George, Utah, USA
| | - Quentin Raas
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
36
|
Sasaki I, Kato T, Kanazawa N, Kaisho T. Autoinflammatory Diseases Due to Defects in Degradation or Transport of Intracellular Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:83-95. [PMID: 38467974 DOI: 10.1007/978-981-99-9781-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The number of human inborn errors of immunity has now gone beyond 430. The responsible gene variants themselves are apparently the cause for the disorders, but the underlying molecular or cellular mechanisms for the pathogenesis are often unclear. In order to clarify the pathogenesis, the mutant mice carrying the gene variants are apparently useful and important. Extensive analysis of those mice should contribute to the clarification of novel immunoregulatory mechanisms or development of novel therapeutic maneuvers critical not only for the rare monogenic diseases themselves but also for related common polygenic diseases. We have recently generated novel model mice in which complicated manifestations of human inborn errors of immunity affecting degradation or transport of intracellular proteins were recapitulated. Here, we review outline of these disorders, mainly based on the phenotype of the mutant mice we have generated.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
37
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Effects of neddylation on viral infection: an overview. Arch Virol 2023; 169:6. [PMID: 38081982 DOI: 10.1007/s00705-023-05930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
Neddylation is a post-translational modification that plays an important role not only in cancer development but also in regulating viral infection and replication. Upregulation of neddylation occurs in viral infections, and inhibition of neddylation can suppress viral replication. Neddylation is thought to enhance viral protein stability and replication. Neddylation has been reported to enhance the stability of the regulatory hepatitis B virus (HBV) X protein, modulate viral replication, and enhance hepatocarcinogenesis. Inhibition of neddylation using the NEDD8-activating enzyme E1 inhibitor MLN4924 inhibits viral replication, including that of HBV. Understanding of the role of neddylation in viral infections is critical for developing new therapeutic targets and potential treatment strategies. In this review, we discuss recent progress in the understanding of the effects of neddylation during viral infection, particularly in HBV infection, and strategies for curing viral infection by targeting the neddylation pathway.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
38
|
Buerki SE, Haas C, Neubauer J. Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death. Seizure 2023; 113:66-75. [PMID: 37995443 DOI: 10.1016/j.seizure.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20-35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. METHODS Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. RESULTS In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. CONCLUSION Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.
Collapse
Affiliation(s)
- Sarah E Buerki
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | | |
Collapse
|
39
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
40
|
Markovic I, Jocic-Jakubi B, Milenkovic Z. Early arteriopathy in Aicardi-Goutières syndrome 5. Case report and review of literature. Neuroradiol J 2023; 36:740-745. [PMID: 36722173 PMCID: PMC10649525 DOI: 10.1177/19714009231154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) is an autosomal recessive disease that mimics congenital viral infection and mainly affects the brain, immune system, and skin. The dominant clinical symptom is the subacute onset of severe encephalopathy, which manifests as irritability, loss of ability, slowing of head growth, and poor nutrition. Arteriopathy in AGS is an uncommon manifestation usually associated with mutations in the SAMHD1 gene. We present a rare case of a 3-year-old male due to failure to thrive, global developmental delay, microcephaly, poor vision, upper and lower limbs spasticity, and gastroesophageal reflux disease (GERD), who harbored early stenotic lesions of the large and medium intracranial arteries with ischemic sequelae in the early postnatal life. Performed genetic testing confirmed homozygous gene mutation, SAMHD1 associated with AGS type 5. By reviewing the available literature, we were able to find only one patient whose arterial lesions were diagnosed after 6 months.
Collapse
Affiliation(s)
- Ivana Markovic
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | |
Collapse
|
41
|
Zhang J, Lee PY, Aksentijevich I, Zhou Q. How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annu Rev Genet 2023; 57:245-274. [PMID: 37562411 DOI: 10.1146/annurev-genet-030123-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
42
|
Bernal-Bermúdez B, Martínez-López A, Martínez-Morcillo FJ, Tyrkalska SD, Martínez-Menchón T, Mesa-del-Castillo P, Cayuela ML, Mulero V, García-Moreno D. A zebrafish model of Ifih1-driven Aicardi-Goutières syndrome reproduces the interferon signature and the exacerbated inflammation of patients. Front Immunol 2023; 14:1294766. [PMID: 38077314 PMCID: PMC10704509 DOI: 10.3389/fimmu.2023.1294766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Type I interferonopathies are a heterogenic group of rare diseases associated with an increase in type I interferon (IFN). The main challenge for the study of Type I interferonopathies is the lack of a well-founded animal model to better characterize the phenotype as well as to perform fast and large drug screenings to offer the best treatment options. In this study, we report the development of a transgenic zebrafish model of Type I interferonopathy overexpressing ifih1 carrying the mutation p.Arg742His (Tg(ifih1_mut)), corresponding to the human mutation p.Arg779His. RNA sequence analysis from Tg(ifih1_mut) larvae revealed a systemic inflammation and IFN signature upon a suboptimal poly I:C induction compared with wild-type larvae, confirming the phenotype observed in patients suffering from Type I interferonopathies. More interestingly, the phenotype was manifested in the zebrafish inflammation and Type I IFN reporters nfkb:eGFP and isg15:eGFP, respectively, making this zebrafish model suitable for future high-throughput chemical screening (HTS). Using the unique advantages of the zebrafish model for gene editing, we have generated Tg(ifih1_mut) knocked down for mavs and ikbke, which completely abrogated the Poly I:C induction and activation of the GFP of the reporters. Finally, we used an FDA-approved drug, Baricitinib (Jak1/Jak2 inhibitor), which was able to reduce the inflammation and the ISG expression. Our results demonstrate the potential of this model to further understand AGS pathological mechanisms and to identify novel therapeutic drugs by HTS.
Collapse
Affiliation(s)
- Beatriz Bernal-Bermúdez
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Martínez-Morcillo
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
44
|
Keegan LP, Hajji K, O’Connell MA. Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous. Acc Chem Res 2023; 56:3165-3174. [PMID: 37906879 PMCID: PMC10666284 DOI: 10.1021/acs.accounts.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 11/02/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes that catalyze the conversion of adenosine to inosine in double-stranded (ds)RNA are evolutionarily conserved and are essential for many biological functions including nervous system function, hematopoiesis, and innate immunity. Initially it was assumed that the wide-ranging biological roles of ADARs are due to inosine in mRNA being read as guanosine by the translational machinery, allowing incomplete RNA editing in a target codon to generate two different proteins from the same primary transcript. In humans, there are approximately seventy-six positions that undergo site-specific editing in tissues at greater than 20% efficiency that result in recoding. Many of these transcripts are expressed in the central nervous system (CNS) and edited by ADAR2. Exploiting mouse genetic models revealed that transgenic mice lacking the gene encoding Adar2 die within 3 weeks of birth. Therefore, the role of ADAR2 in generating protein diversity in the nervous system is clear, but why is ADAR RNA editing activity essential in other biological processes, particularly editing mainly involving ADAR1? ADAR1 edits human transcripts having embedded Alu element inverted repeats (AluIRs), but the link from this activity to innate immunity activation was elusive. Mice lacking the gene encoding Adar1 are embryonically lethal, and a major breakthrough was the discovery that the role of Adar1 in innate immunity is due to its ability to edit such repetitive element inverted repeats which have the ability to form dsRNA in transcripts. The presence of inosine prevents activation of the dsRNA sensor melanoma differentiation-associated protein 5 (Mda5). Thus, inosine helps the cell discriminate self from non-self RNA, acting like a barcode on mRNA. As innate immunity is key to many different biological processes, the basis for this widespread biological role of the ADAR1 enzyme became evident.Our group has been studying ADARs from the outset of research on these enzymes. In this Account, we give a historical perspective, moving from the initial purification of ADAR1 and ADAR2 and cloning of their encoding genes up to the current research focus in the field and what questions still remain to be addressed. We discuss the characterizations of the proteins, their localizations, posttranslational modifications, and dimerization, and how all of these affect their biological activities. Another aspect we explore is the use of mouse and Drosophila genetic models to study ADAR functions and how these were crucial in determining the biological functions of the ADAR proteins. Finally, we describe the severe consequences of rare mutations found in the human genes encoding ADAR1 and ADAR2.
Collapse
Affiliation(s)
- Liam P. Keegan
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| | - Khadija Hajji
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| | - Mary A. O’Connell
- CEITEC, Masaryk
University, Kamenice 735/5, E35, Brno 62500, Czechia
| |
Collapse
|
45
|
Egleston M, Dong L, Howlader AH, Bhat S, Orris B, Bianchet MA, Greenberg MM, Stivers JT. Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding. ACS Chem Biol 2023; 18:2200-2210. [PMID: 37233733 PMCID: PMC10596003 DOI: 10.1021/acschembio.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.
Collapse
Affiliation(s)
- Matthew Egleston
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Linghao Dong
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - A. Hasan Howlader
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shridhar Bhat
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Benjamin Orris
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mario A. Bianchet
- Department
of Neurology and Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Marc M. Greenberg
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - James T. Stivers
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
46
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Maehigashi T, Lim C, Wade LR, Bowen NE, Knecht KM, Alvarez NN, Kelly WG, Schinazi RF, Kim DH, Xiong Y, Kim B. Biochemical functions and structure of Caenorhabditis elegans ZK177.8 protein: Aicardi-Goutières syndrome SAMHD1 dNTPase ortholog. J Biol Chem 2023; 299:105148. [PMID: 37567474 PMCID: PMC10485159 DOI: 10.1016/j.jbc.2023.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) are found in a neurodevelopmental disorder, Aicardi-Goutières syndrome, and cancers, and SAMHD1, which is a deoxynucleoside triphosphate (dNTP) triphosphorylase, was identified as a myeloid-specific HIV-1 restriction factor. Here, we characterized the enzymology and structure of an SAMHD1 ortholog of Caenorhabditis elegans, ZK177.8, which also reportedly induces developmental defects upon gene knockdown. We found ZK177.8 protein is a dNTPase allosterically regulated by dGTP. The active site of ZK177.8 recognizes both 2' OH and triphosphate moieties of dNTPs but not base moiety. The dGTP activator induces the formation of the enzymatically active ZK177.8 tetramers, and ZK177.8 protein lowers cellular dNTP levels in a human monocytic cell line. Finally, ZK177.8 tetramers display very similar X-ray crystal structure with human and mouse SAMHD1s except that its lack of the canonical sterile alpha motif domain. This striking conservation in structure, function, and allosteric regulatory mechanism for the hydrolysis of the DNA building blocks supports their host developmental roles.
Collapse
Affiliation(s)
- Tatsuya Maehigashi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Christopher Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Lydia R Wade
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Natalie N Alvarez
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - William G Kelly
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
49
|
Gagne S, Sivaraman V, Akoghlanian S. Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Front Pediatr 2023; 11:1169638. [PMID: 37622085 PMCID: PMC10445166 DOI: 10.3389/fped.2023.1169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Type I interferonopathies are a broad category of conditions associated with increased type I interferon gene expression and include monogenic autoinflammatory diseases and non-Mendelian autoimmune diseases such as dermatomyositis and systemic lupus erythematosus. While a wide range of clinical presentations among type I interferonopathies exists, these conditions often share several clinical manifestations and implications for treatment. Presenting symptoms may mimic non-Mendelian autoimmune diseases, including vasculitis and systemic lupus erythematosus, leading to delayed or missed diagnosis. This review aims to raise awareness about the varied presentations of monogenic interferonopathies to provide early recognition and appropriate treatment to prevent irreversible damage and improve quality of life and outcomes in this unique patient population.
Collapse
Affiliation(s)
- Samuel Gagne
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Shoghik Akoghlanian
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Peixoto de Barcelos I, Bueno C, S. Godoy LF, Pessoa A, A. Costa L, C. Monti F, Souza-Cabral K, Listik C, Castro D, Della-Ripa B, Freua F, C. Pires L, T. Krüger L, D. Gherpelli JL, B. Piazzon F, P. Monteiro F, T. Lucato L, Kok F. Subacute Partially Reversible Leukoencephalopathy Expands the Aicardi-Goutières Syndrome Phenotype. Brain Sci 2023; 13:1169. [PMID: 37626525 PMCID: PMC10452434 DOI: 10.3390/brainsci13081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To report a series of atypical presentations of Aicardi-Goutières syndrome. METHODS Clinical, neuroimaging, and genetic data. RESULTS We report a series of six unrelated patients (five males) with a subacute loss of developmental milestones, pyramidal signs, and regression of communication abilities, with onset at ages ranging from 7 to 20 months, reaching a nadir after 4 to 24 weeks. A remarkable improvement of lost abilities occurred in the follow-up, and they remained with residual spasticity and dysarthria but preserved cognitive function. Immunization or febrile illness occurred before disease onset in all patients. CSF was normal in two patients, and in four, borderline or mild lymphocytosis was present. A brain CT scan disclosed a subtle basal ganglia calcification in one of six patients. Brain MRI showed asymmetric signal abnormalities of white matter with centrum semi-ovale involvement in five patients and a diffuse white matter abnormality with contrast enhancement in one. Four patients were diagnosed and treated for acute demyelinating encephalomyelitis (ADEM). Brain imaging was markedly improved with one year or more of follow-up (average of 7 years), but patients remained with residual spasticity and dysarthria without cognitive impairment. Demyelination relapse occurred in a single patient four years after the first event. Whole-exome sequencing (WES) was performed in all patients: four of them disclosed biallelic pathogenic variants in RNASEH2B (three homozygous p.Ala177Thr and one compound heterozygous p.Ala177Thr/p.Gln58*) and in two of them the same homozygous deleterious variants in RNASEH2A (p.Ala249Val). CONCLUSIONS This report expands the phenotype of AGS to include subacute developmental regression with partial clinical and neuroimaging improvement. Those clinical features might be misdiagnosed as ADEM.
Collapse
Affiliation(s)
- Isabella Peixoto de Barcelos
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Clarissa Bueno
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Luís Filipe S. Godoy
- Department of Radiology, University of São Paulo School of Medicine, São Paulo 05403-000, SP, Brazil; (L.F.S.G.)
| | - André Pessoa
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Albert Sabin Children’s Hospital, Ceara State University, Fortaleza 60714-903, CE, Brazil
| | - Larissa A. Costa
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| | - Fernanda C. Monti
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Katiane Souza-Cabral
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Clarice Listik
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Diego Castro
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Bruno Della-Ripa
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Fernando Freua
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Laís C. Pires
- Paulo Niemeyer State Institute of Brain, Rio de Janeiro 20230-024, RJ, Brazil; (L.C.P.); (L.T.K.)
| | - Lia T. Krüger
- Paulo Niemeyer State Institute of Brain, Rio de Janeiro 20230-024, RJ, Brazil; (L.C.P.); (L.T.K.)
| | - José Luiz D. Gherpelli
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Flavia B. Piazzon
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Fabiola P. Monteiro
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| | - Leandro T. Lucato
- Department of Radiology, University of São Paulo School of Medicine, São Paulo 05403-000, SP, Brazil; (L.F.S.G.)
| | - Fernando Kok
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| |
Collapse
|