1
|
Amram AL, Whitmore SS, Wang C, Clavell C, Lyons LJ, Rusakevich AM, Han I, Folk J, Boldt HC, Stone EM, Russell SR, Lee K, Abramoff M, Wykoff C, Sohn EH. Progressive inner retinal neurodegeneration in non-proliferative macular telangiectasia type 2. Br J Ophthalmol 2025; 109:401-407. [PMID: 39288977 DOI: 10.1136/bjo-2023-325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Patients with non-proliferative macular telangiectasia type 2 (MacTel) have ganglion cell layer (GCL) and nerve fibre layer (NFL) loss, but it is unclear whether the thinning is progressive. We quantified the change in retinal layer thickness over time in MacTel with and without diabetes. METHODS In this retrospective, multicentre, comparative case series, subjects with MacTel with at least two optical coherence tomographic (OCT) scans separated by >9 months OCTs were segmented using the Iowa Reference Algorithms. Mean NFL and GCL thickness was computed across the total area of the early treatment diabetic retinopathy study grid and for the inner temporal region to determine the rate of thinning over time. Mixed effects models were fit to each layer and region to determine retinal thinning for each sublayer over time. RESULTS 115 patients with MacTel were included; 57 patients (50%) had diabetes and 21 (18%) had a history of carbonic anhydrase inhibitor (CAI) treatment. MacTel patients with and without diabetes had similar rates of thinning. In patients without diabetes and untreated with CAIs, the temporal parafoveal NFL thinned at a rate of -0.25±0.09 µm/year (95% CI [-0.42 to -0.09]; p=0.003). The GCL in subfield 4 thinned faster in the eyes treated with CAI (-1.23±0.21 µm/year; 95% CI [-1.64 to -0.82]) than in untreated eyes (-0.19±0.16; 95% CI [-0.50, 0.11]; p<0.001), an effect also seen for the inner nuclear layer. Progressive outer retinal thinning was observed. CONCLUSIONS Patients with MacTel sustain progressive inner retinal neurodegeneration similar to those with diabetes without diabetic retinopathy. Further research is needed to understand the consequences of retinal thinning in MacTel.
Collapse
Affiliation(s)
- Alec L Amram
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - S Scott Whitmore
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Cheryl Wang
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Christine Clavell
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | | | | | - Ian Han
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - James Folk
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - H Culver Boldt
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Edwin M Stone
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Stephen R Russell
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Kyungmoo Lee
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | - Michael Abramoff
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| | | | - Elliott H Sohn
- Department of Ophthalmology & Visual Sciences, University of Iowa Health Care, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Pan WW, Wubben TJ, Zacks DN. Promising therapeutic targets for neuroprotection in retinal disease. Curr Opin Ophthalmol 2025:00055735-990000000-00224. [PMID: 39927457 DOI: 10.1097/icu.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Neurodegeneration is a common endpoint of various blinding retinal diseases. Yet, despite exciting advances in disease treatment, there continues to exist a critical need for the development of neuroprotective strategies to prevent retinal cell death. Here, we summarize the recent advances in neuroprotective strategies. RECENT FINDINGS From laboratory deciphering of the mechanisms involved in disease, many novel neuroprotective strategies have emerged and are currently under investigation for the treatment of various retinal and ocular diseases such as inherited retinal degeneration, retinal detachment, diabetic retinopathy, age-related macular degeneration, macular telangiectasia type 2, and glaucoma. These strategies include gene therapies, Fas inhibition, and targeting inflammatory, metabolic and reduction-oxidation abnormalities. Interestingly, investigation of several treatments across different diseases suggests shared neuroprotection mechanisms that can be targeted regardless of the particular disease. SUMMARY Retinal neuroprotection can improve treatment of different retinal diseases. Fortunately, the current landscape, with a plethora of novel neuroprotective therapies, portends a better future for patients.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
3
|
Kunčič A, Urbančič M, Dobovšek Divjak D, Hudler P, Debeljak N. Genetic Background of Macular Telangiectasia Type 2. Int J Mol Sci 2025; 26:684. [PMID: 39859398 PMCID: PMC11765629 DOI: 10.3390/ijms26020684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Macular telangiectasia type 2 (MacTel) is a slowly progressive macular disorder that is often diagnosed late due to the gradual onset of vision loss. Recent advances in diagnostic techniques have facilitated earlier detection and have shown that MacTel is more common than initially thought. The disease is genetically complex, and multiple variants contribute incrementally to the overall risk. The familial occurrence of the disease prompted the investigation of the genetic background of MacTel. To better understand the molecular milieu of the disease, a literature review of the clinical reports and publications investigating the genetic factors of MacTel was performed. To date, disease-associated variants have been found in genes involved in amino acid (glycine/serine) metabolism and transport, urea cycle, lipid metabolism, and retinal vasculature and thickness. Variants in genes implicated in sphingolipid metabolism and fatty acid/steroid/retinol metabolism have been found in patients with neurological disorders who also have MacTel. Retinal metabolism involves complex biochemical processes that are essential for maintaining the high energy requirements of the retina. Genetic alterations can disrupt key metabolic pathways, leading to retinal cell degradation and the subsequent vision loss that characterizes several retinal disorders, including MacTel. This review article summarizes genetic findings that may allow MacTel to be further investigated as an inherited retinal disorder.
Collapse
Affiliation(s)
- Ajda Kunčič
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (P.H.)
| | - Mojca Urbančič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.U.); (D.D.D.)
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Darja Dobovšek Divjak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.U.); (D.D.D.)
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (P.H.)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (P.H.)
| |
Collapse
|
4
|
Sallo FB, Dysli C, Holzer FJ, Ranza E, Guipponi M, Antonarakis SE, Munier FL, Bird AC, Schorderet DF, Rossillion B, Vaclavik V. Characterization of the Retinal Phenotype Using Multimodal Imaging in Novel Compound Heterozygote Variants of CYP2U1. OPHTHALMOLOGY SCIENCE 2025; 5:100618. [PMID: 39605873 PMCID: PMC11599445 DOI: 10.1016/j.xops.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 11/29/2024]
Abstract
Purpose To report the retinal phenotype in 2 patients simulating type 2 macular telangiectasis with new variants in CYP2U1 implicated in hereditary spastic paraplegia type 56 (HSP 56). Design Cross sectional case series study. Participants Five members of a non-consanguineous family (parents and 3 male children) were investigated. Methods All family members underwent a full ophthalmic evaluation and multimodal retinal imaging. Two family members demonstrating retinal anomalies underwent additional OCT angiography, dual wavelength autofluorescence and fluorescence lifetime imaging ophthalmoscopy, kinetic perimetry, fundus-correlated microperimetry, electroretinography, and electro-oculography. Whole-exome sequencing was performed in all 5 family members. Main Outcome Measures To characterize the retinal phenotype in affected patients with variants in CYP2U1, using multimodal imaging: dual-wavelength autofluorescence, fluorescence lifetime, OCT angiography. Results The 2 siblings with compound heterozygous novel variants c.452C>T; p.(Pro151Leu), c.943C>T; p.(Gln315Ter) in CYP2U1 demonstrated parafoveal loss of retinal transparency and hyperreflectivity to blue light, redistribution of macular pigment to the parafoveal edge, photoreceptor loss, and fluorescence lifetime imaging ophthalmoscopy anomalies: a pattern compatible with that seen in macular telangiectasia type 2 (MacTel). One had manifest neurological abnormalities since early childhood; the second had no neurological abnormalities. Each parent and the third sibling were heterozygous for 1 variant and were neurologically and ophthalmically normal. Conclusions These CYP2U1 variants are associated with a retinal phenotype very similar to that otherwise specific for MacTel, suggestive of possible links in the etiology and pathogenesis of these diseases. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Ferenc B. Sallo
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| | - Franz Josef Holzer
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | - Francis L. Munier
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alan C. Bird
- Department Medical Retina, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel F. Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Faculty of Life Sciences, Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland
| | | | - Veronika Vaclavik
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
- Ophthalmology Department, Hôpital Cantonal de Fribourg, HFR, Fribourg, Switzerland
| |
Collapse
|
5
|
Grenell A, Singh C, Raju M, Wolk A, Dalvi S, Jang GF, Crabb JS, Hershberger CE, Manian KV, Hernandez K, Crabb JW, Singh R, Du J, Anand-Apte B. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells. Mol Metab 2024; 88:101995. [PMID: 39047907 PMCID: PMC11344013 DOI: 10.1016/j.molmet.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis. METHODS Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells. RESULTS Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity. CONCLUSIONS This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Allison Grenell
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Monisha Raju
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sonal Dalvi
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Geeng-Fu Jang
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John S Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney E Hershberger
- Cleveland Clinic Lerner Research Institute, Department of Quantitative Health Sciences, USA
| | - Kannan V Manian
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Karen Hernandez
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruchira Singh
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Jianhai Du
- West Virginia University, Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, Morgantown, WV, USA
| | - Bela Anand-Apte
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Dept. of Ophthalmology, Cleveland, OH, USA.
| |
Collapse
|
6
|
Lim EW, Fallon RJ, Bates C, Ideguchi Y, Nagasaki T, Handzlik MK, Joulia E, Bonelli R, Green CR, Ansell BRE, Kitano M, Polis I, Roberts AJ, Furuya S, Allikmets R, Wallace M, Friedlander M, Metallo CM, Gantner ML. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. Cell Metab 2024; 36:2315-2328.e6. [PMID: 39191258 DOI: 10.1016/j.cmet.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Revised: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.
Collapse
Affiliation(s)
- Esther W Lim
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Regis J Fallon
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | - Caleb Bates
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emeline Joulia
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Roberto Bonelli
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brendan R E Ansell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maki Kitano
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University, Fukuoka 812-0053, Japan
| | | | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
7
|
Zöhrer B, Gómez C, Jaumot J, Idborg H, Torekov SS, Wheelock ÅM, Wheelock CE, Checa A. Cohort-based strategies as an in-house tool to evaluate and improve phenotyping robustness of LC-MS/MS lipidomics platforms. Anal Bioanal Chem 2024; 416:5485-5496. [PMID: 38940870 PMCID: PMC11427549 DOI: 10.1007/s00216-024-05404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
In recent years, instrumental improvements have enabled the spread of mass spectrometry-based lipidomics platforms in biomedical research. In mass spectrometry, the reliability of generated data varies for each compound, contingent on, among other factors, the availability of labeled internal standards. It is challenging to evaluate the data for lipids without specific labeled internal standards, especially when dozens to hundreds of lipids are measured simultaneously. Thus, evaluation of the performance of these platforms at the individual lipid level in interlaboratory studies is generally not feasible in a time-effective manner. Herein, using a focused subset of sphingolipids, we present an in-house validation methodology for individual lipid reliability assessment, tailored to the statistical analysis to be applied. Moreover, this approach enables the evaluation of various methodological aspects, including discerning coelutions sharing identical selected reaction monitoring transitions, pinpointing optimal labeled internal standards and their concentrations, and evaluating different extraction techniques. While the full validation according to analytical guidelines for all lipids included in a lipidomics method is currently not possible, this process shows areas to focus on for subsequent method development iterations as well as the robustness of data generated across diverse methodologies.
Collapse
Affiliation(s)
- Benedikt Zöhrer
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cristina Gómez
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034, Barcelona, Spain
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden.
| |
Collapse
|
8
|
Conger KO, Chidley C, Ozgurses ME, Zhao H, Kim Y, Semina SE, Burns P, Rawat V, Lietuvninkas L, Sheldon R, Ben-Sahra I, Frasor J, Sorger PK, DeNicola GM, Coloff JL. ASCT2 is a major contributor to serine uptake in cancer cells. Cell Rep 2024; 43:114552. [PMID: 39068660 PMCID: PMC11406281 DOI: 10.1016/j.celrep.2024.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2023] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic and therefore reliant on serine uptake. Importantly, despite several transporters being known to be capable of transporting serine, the transporters that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (SLC1A5) as a major contributor to serine uptake in cancer cells. ASCT2 is well known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that estrogen receptor α (ERα) promotes serine uptake by directly activating SLC1A5 transcription. Collectively, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yumi Kim
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Philippa Burns
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lina Lietuvninkas
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Issam Ben-Sahra
- Robert H. Lurie Cancer Center, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Gina M DeNicola
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. High-throughput ultrastructural analysis of macular telangiectasia type 2. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1428777. [PMID: 39140090 PMCID: PMC11319912 DOI: 10.3389/fopht.2024.1428777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Introduction Macular Telangiectasia type 2 (MacTel), is an uncommon form of late-onset, slowly-progressive macular degeneration. Associated with regional Müller glial cell loss in the retina and the amino acid serine synthesized by Müller cells, the disease is functionally confined to a central retinal region - the MacTel zone. Methods We have used high-throughput multi-resolution electron microscopy techniques, optimized for disease analysis, to study the retinas from two women, mother and daughter, aged 79 and 48 years respectively, suffering from MacTel. Results In both eyes, the principal observations made were changes specific to mitochondrial structure both outside and within the MacTel zone in all retinal cell types, with the exception of those in the retinal pigment epithelium (RPE). The lesion areas, which are a hallmark of MacTel, extend from Bruch's membrane and the choriocapillaris, through all depths of the retina, and include cells from the RPE, retinal vascular elements, and extensive hypertrophic basement membrane material. Where the Müller glial cells are lost, we have identified a significant population of microglial cells, exclusively within the Henle fiber layer, which appear to ensheathe the Henle fibers, similar to that seen normally by Müller cells. Discussion Since Müller cells synthesize retinal serine, whereas retinal neurons do not, we propose that serine deficiency, required for normal mitochondrial function, may relate to mitochondrial changes that underlie the development of MacTel. With mitochondrial changes occurring retina-wide, the question remains as to why the Müller cells are uniquely susceptible within the MacTel zone.
Collapse
Affiliation(s)
- Charles L. Zucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - John E. Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
10
|
Pauleikhoff L, Wingert V, Grünert SC, Lange C, Hannibal L, Bucher F. METHYLATION-ASSOCIATED PATHWAYS IN MACULAR TELANGIECTASIA TYPE 2 AND OPHTHALMOLOGIC FINDINGS IN PATIENTS WITH GENETIC METHYLATION DISORDERS. Retina 2024; 44:1052-1062. [PMID: 38261977 DOI: 10.1097/iae.0000000000004052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2024]
Abstract
PURPOSE Serine (Ser) and glycine (Gly) levels were reported to differ between patients with macular telangiectasia type 2 (MacTel) compared with healthy controls. Because they are closely related to methylation metabolism, this report investigates methylation-associated metabolite levels in patients with MacTel and retinal changes in monogenetic methylation disorders. METHODS Prospective, monocentric study on patients with MacTel and healthy controls underwent a standardized protocol including a blood draw. Methylation-associated metabolite levels in plasma were determined using targeted quantitative metabolomics. Furthermore, patient records of cystathionine beta-synthase, methylenetetrahydrofolate reductase, and methylmalonic aciduria and homocystinuria type C protein (MMACHC) deficiency were screened for reported retinal changes. RESULTS In total, 29 patients with MacTel and 27 healthy controls were included. Patients with MacTel showed lower plasma Ser ( P = 0.02 and P = 0.01) and Gly ( P = 0.11 and P = 0.11) levels than controls. Principal component analyses revealed that methylation-associated metabolite, especially homocysteine, contributed to a distinct clustering of patients with MacTel. No retinal changes were seen in cystathionine beta-synthase (n = 1) and methylenetetrahydrofolate reductase (n = 2) deficiency, while two patients with MMACHC (n = 4) deficiency displayed extensive macular dystrophy. CONCLUSION Patients with MacTel show distinct clustering of methylation-associated metabolite compared with controls. Of the three homocystinurias, only MMACHC resulted in macular dystrophy, possibly due to distinct compensatory pathways.
Collapse
Affiliation(s)
- Laurenz Pauleikhoff
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Augenzentrum am St. Franziskus Hospital, Muenster, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Wu L. Unraveling the mysteries of macular telangiectasia 2: the intersection of philanthropy, multimodal imaging and molecular genetics. The 2022 founders lecture of the pan American vitreoretinal society. Int J Retina Vitreous 2023; 9:69. [PMID: 37968753 PMCID: PMC10652610 DOI: 10.1186/s40942-023-00505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
PURPOSE Offer a personal perspective on the scientific advances on macular telangiectasia type 2 (MacTel2) since the launch of the MacTel Project in 2005. DESIGN Literature review and personal perspective. METHODS Critical review of the peer-reviewed literature and personal perspective. RESULTS Generous financial support from the Lowy Medical Research Institute laid the foundations of the MacTel Project. MacTel Project investigators used state of the art multimodal retinal imaging and advanced modern biological methods to unravel many of the mysteries surrounding MacTel2. Major accomplishments includes elucidation of the pathogenic role that low serine levels, elevated 1-deoxysphingolipids and other mechanisms induce mitochondrial dysfunction which lead to Müller cell and photoreceptor degeneration; the use of objective measures of retinal structures such as the area of ellipsoid zone disruption as an outcome measure in clinical trials; the demonstration that the ciliary neurotrophic factor slows down retinal degeneration and the development of a new severity scale classification based on multimodal imaging findings. CONCLUSIONS MacTel2 is a predominantly metabolic disease characterized by defects in energy metabolism. Despite relatively good visual acuities, MacTel2 patients experience significant visual disability. The Mac Tel Project has been instrumental in advancing MacTel2 knowledge in the past two decades.
Collapse
Affiliation(s)
- Lihteh Wu
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica.
- Illinois Eye and Ear Infirmary, University of Illinois School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Ocaña MC, Bernal M, Yang C, Caro C, Domínguez A, Vu HS, Cárdenas C, García-Martín ML, DeBerardinis RJ, Quesada AR, Martínez-Poveda B, Medina MÁ. New insights in the targets of action of dimethyl fumarate in endothelial cells: effects on energetic metabolism and serine synthesis in vitro and in vivo. Commun Biol 2023; 6:1084. [PMID: 37880317 PMCID: PMC10600195 DOI: 10.1038/s42003-023-05443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2022] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Dimethyl fumarate is an ester from the Krebs cycle intermediate fumarate. This drug is approved and currently used for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity was reported some years ago. Due to the current clinical relevance of this compound and the recently manifested importance of endothelial cell metabolism on the angiogenic switch, we wanted to elucidate whether dimethyl fumarate has an effect on energetic metabolism of endothelial cells. Different experimental approximations were performed in endothelial cells, including proteomics, isotope tracing and metabolomics experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis and diminishes cell respiration in endothelial cells, which could be a consequence of a down-regulation of serine and glycine synthesis through inhibition of PHGDH activity in these cells. Dimethyl fumarate alters the energetic metabolism of endothelial cells in vitro and in vivo through an unknown mechanism, which could be the cause or the consequence of its pharmacological activity. This new discovery on the targets of this compound could open a new field of study regarding the mechanism of action of dimethyl fumarate.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
| | - Manuel Bernal
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
| | - Chendong Yang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlos Caro
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Alejandro Domínguez
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
| | - Hieu S Vu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Casimiro Cárdenas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- Research Support Central Services (SCAI) of the University of Málaga, Málaga, Spain
| | - María Luisa García-Martín
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain.
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain.
- IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga and nano medicine Platform), E-29590, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
13
|
Conger KO, Chidley C, Ozgurses ME, Zhao H, Kim Y, Semina SE, Burns P, Rawat V, Sheldon R, Ben-Sahra I, Frasor J, Sorger PK, DeNicola GM, Coloff JL. ASCT2 is the primary serine transporter in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561530. [PMID: 37873453 PMCID: PMC10592681 DOI: 10.1101/2023.10.09.561530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2023]
Abstract
The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic for serine and therefore reliant on the uptake of exogenous serine. Importantly, however, the transporter(s) that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (coded for by the gene SLC1A5) as the primary serine transporter in cancer cells. ASCT2 is well-known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that ERα promotes serine uptake by directly activating SLC1A5 transcription. Together, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target in serine metabolism.
Collapse
Affiliation(s)
- Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yumi Kim
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Svetlana E. Semina
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Philippa Burns
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Issam Ben-Sahra
- Robert H. Lurie Cancer Center, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Gina M. DeNicola
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Xie MJ, Cromie GA, Owens K, Timour MS, Tang M, Kutz JN, El-Hattab AW, McLaughlin RN, Dudley AM. Constructing and interpreting a large-scale variant effect map for an ultrarare disease gene: Comprehensive prediction of the functional impact of PSAT1 genotypes. PLoS Genet 2023; 19:e1010972. [PMID: 37812589 PMCID: PMC10561871 DOI: 10.1371/journal.pgen.1010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.
Collapse
Affiliation(s)
- Michael J. Xie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular Engineering Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Katherine Owens
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Martin S. Timour
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Michelle Tang
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular Engineering Graduate Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
16
|
Green CR, Bonelli R, Ansell BRE, Tzaridis S, Handzlik MK, McGregor GH, Hart B, Trombley J, Reilly MM, Bernstein PS, Egan C, Fruttiger M, Wallace M, Bahlo M, Friedlander M, Metallo CM, Gantner ML. Divergent amino acid and sphingolipid metabolism in patients with inherited neuro-retinal disease. Mol Metab 2023; 72:101716. [PMID: 36997154 PMCID: PMC10114224 DOI: 10.1016/j.molmet.2023.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES The non-essential amino acids serine, glycine, and alanine, as well as diverse sphingolipid species, are implicated in inherited neuro-retinal disorders and are metabolically linked by serine palmitoyltransferase (SPT), a key enzyme in membrane lipid biogenesis. To gain insight into the pathophysiological mechanisms linking these pathways to neuro-retinal diseases we compared patients diagnosed with two metabolically intertwined diseases: macular telangiectasia type II (MacTel), hereditary sensory autonomic neuropathy type 1 (HSAN1), or both. METHODS We performed targeted metabolomic analyses of amino acids and broad sphingolipids in sera from a cohort of MacTel (205), HSAN1 (25) and Control (151) participants. RESULTS MacTel patients exhibited broad alterations of amino acids, including changes in serine, glycine, alanine, glutamate, and branched-chain amino acids reminiscent of diabetes. MacTel patients had elevated 1-deoxysphingolipids but reduced levels of complex sphingolipids in circulation. A mouse model of retinopathy indicates dietary serine and glycine restriction can drive this depletion in complex sphingolipids. HSAN1 patients exhibited elevated serine, lower alanine, and a reduction in canonical ceramides and sphingomyelins compared to controls. Those patients diagnosed with both HSAN1 and MacTel showed the most significant decrease in circulating sphingomyelins. CONCLUSIONS These results highlight metabolic distinctions between MacTel and HSAN1, emphasize the importance of membrane lipids in the progression of MacTel, and suggest distinct therapeutic approaches for these two neurodegenerative diseases.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Roberto Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Grace H McGregor
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Barbara Hart
- Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Catherine Egan
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; University College London Institute of Ophthalmology, London, UK
| | - Marcus Fruttiger
- University College London Institute of Ophthalmology, London, UK
| | | | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA.
| | | |
Collapse
|
17
|
Eade KT, Ansell BRE, Giles S, Fallon R, Harkins-Perry S, Nagasaki T, Tzaridis S, Wallace M, Mills EA, Farashi S, Johnson A, Sauer L, Hart B, Diaz-Rubio ME, Bahlo M, Metallo C, Allikmets R, Gantner ML, Bernstein PS, Friedlander M. iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. J Clin Invest 2023; 133:e163771. [PMID: 37115691 PMCID: PMC10145939 DOI: 10.1172/jci163771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.
Collapse
Affiliation(s)
- Kevin T. Eade
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Brendan Robert E. Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Giles
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Regis Fallon
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Sarah Harkins-Perry
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Simone Tzaridis
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Mills
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Samaneh Farashi
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec Johnson
- The Lowy Medical Research Institute, La Jolla, California, USA
| | - Lydia Sauer
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barbara Hart
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M. Elena Diaz-Rubio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rando Allikmets
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marin L. Gantner
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Paul S. Bernstein
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin Friedlander
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| |
Collapse
|
18
|
Bonelli R, Woods SM, Lockwood S, Bishop PN, Khan KN, Bahlo M, Ansell BRE, Fruttiger M. Spatial distribution of metabolites in the retina and its relevance to studies of metabolic retinal disorders. Metabolomics 2023; 19:10. [PMID: 36745234 PMCID: PMC9902429 DOI: 10.1007/s11306-022-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The primate retina has evolved regional specialisations for specific visual functions. The macula is specialised towards high acuity vision and is an area that contains an increased density of cone photoreceptors and signal processing neurons. Different regions in the retina display unique susceptibility to pathology, with many retinal diseases primarily affecting the macula. OBJECTIVES To better understand the properties of different retinal areas we studied the differential distribution of metabolites across the retina. METHODS We conducted an untargeted metabolomics analysis on full-thickness punches from three different regions (macula, temporal peri-macula and periphery) of healthy primate retina. RESULTS Nearly half of all metabolites identified showed differential abundance in at least one comparison between the three regions. Furthermore, mapping metabolomics results from macula-specific eye diseases onto our region-specific metabolite distributions revealed differential abundance defining systemic metabolic dysregulations that were region specific. CONCLUSIONS The unique metabolic phenotype of different retinal regions is likely due to the differential distribution of different cell types in these regions reflecting the specific metabolic requirements of each cell type. Our results may help to better understand the pathobiology of retinal diseases with region specificity.
Collapse
Affiliation(s)
- Roberto Bonelli
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sasha M Woods
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Sarah Lockwood
- UC Davis, CA National Primate Research Centre, Davis, CA, 95616, USA
| | - Paul N Bishop
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Kamron N Khan
- The Leeds Teaching Hospitals NHS Trust, St. James's Hospital, Leeds, LS9 7TF, UK
| | - Melanie Bahlo
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brendan R E Ansell
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK.
| |
Collapse
|
19
|
Handzlik MK, Gengatharan JM, Frizzi KE, McGregor GH, Martino C, Rahman G, Gonzalez A, Moreno AM, Green CR, Guernsey LS, Lin T, Tseng P, Ideguchi Y, Fallon RJ, Chaix A, Panda S, Mali P, Wallace M, Knight R, Gantner ML, Calcutt NA, Metallo CM. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 2023; 614:118-124. [PMID: 36697822 PMCID: PMC9891999 DOI: 10.1038/s41586-022-05637-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2021] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katie E Frizzi
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace H McGregor
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana M Moreno
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lucie S Guernsey
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Tseng
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Nigel A Calcutt
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Kaplan L, Drexler C, Pfaller AM, Brenna S, Wunderlich KA, Dimitracopoulos A, Merl-Pham J, Perez MT, Schlötzer-Schrehardt U, Enzmann V, Samardzija M, Puig B, Fuchs P, Franze K, Hauck SM, Grosche A. Retinal regions shape human and murine Müller cell proteome profile and functionality. Glia 2023; 71:391-414. [PMID: 36334068 DOI: 10.1002/glia.24283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
Collapse
Affiliation(s)
- Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria-Theresa Perez
- Department of Clinical Sciences, Division of Ophthalmology, Lund University, Lund, Sweden
- NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden
| | | | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Iwasaki T, Kamatani Y, Sonomura K, Kawaguchi S, Kawaguchi T, Takahashi M, Ohmura K, Sato TA, Matsuda F. Genetic influences on human blood metabolites in the Japanese population. iScience 2023; 26:105738. [PMID: 36582826 PMCID: PMC9792902 DOI: 10.1016/j.isci.2022.105738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2022] [Revised: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
An increase in ethnic diversity in genetic studies has the potential to provide unprecedented insights into how genetic variations influence human phenotypes. In this study, we conducted a quantitative trait locus (QTL) analysis of 121 metabolites measured using gas chromatography-mass spectrometry with plasma samples from 4,888 Japanese individuals. We found 60 metabolite-gene associations, of which 13 have not been previously reported. Meta-analyses with another Japanese and a European study identified six and two additional unreported loci, respectively. Genetic variants influencing metabolite levels were more enriched in protein-coding regions than in the regulatory regions while being associated with the risk of various diseases. Finally, we identified a signature of strong negative selection for uric acid ( S ˆ = -1.53, p = 6.2 × 10-18). Our study expanded the knowledge of genetic influences on human blood metabolites, providing valuable insights into their physiological, pathological, and selective properties.
Collapse
Affiliation(s)
- Takeshi Iwasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Life Science Research Center, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Shuji Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Li J, Li C, Huang Y, Guan P, Huang D, Yu H, Yang X, Liu L. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. J Transl Med 2022; 20:621. [PMID: 36572895 PMCID: PMC9793675 DOI: 10.1186/s12967-022-03822-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Ophthalmic epidemiology is concerned with the prevalence, distribution and other factors relating to human eye disease. While observational studies cannot avoid confounding factors from interventions, human eye composition and structure are unique, thus, eye disease pathogenesis, which greatly impairs quality of life and visual health, remains to be fully explored. Notwithstanding, inheritance has had a vital role in ophthalmic disease. Mendelian randomization (MR) is an emerging method that uses genetic variations as instrumental variables (IVs) to avoid confounders and reverse causality issues; it reveals causal relationships between exposure and a range of eyes disorders. Thus far, many MR studies have identified potentially causal associations between lifestyles or biological exposures and eye diseases, thus providing opportunities for further mechanistic research, and interventional development. However, MR results/data must be interpreted based on comprehensive evidence, whereas MR applications in ophthalmic epidemiology have some limitations worth exploring. Here, we review key principles, assumptions and MR methods, summarise contemporary evidence from MR studies on eye disease and provide new ideas uncovering aetiology in ophthalmology.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Cong Li
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Yu Huang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China ,grid.413405.70000 0004 1808 0686Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peng Guan
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Desheng Huang
- grid.412449.e0000 0000 9678 1884Department of Mathematics, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning China
| | - Honghua Yu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Xiaohong Yang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Lei Liu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| |
Collapse
|
23
|
Fu Z, Nilsson AK, Hellstrom A, Smith LEH. Retinopathy of prematurity: Metabolic risk factors. eLife 2022; 11:e80550. [PMID: 36420952 PMCID: PMC9691009 DOI: 10.7554/elife.80550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
At preterm birth, the retina is incompletely vascularized. Retinopathy of prematurity (ROP) is initiated by the postnatal suppression of physiological retinal vascular development that would normally occur in utero. As the neural retina slowly matures, increasing metabolic demand including in the peripheral avascular retina, leads to signals for compensatory but pathological neovascularization. Currently, only late neovascular ROP is treated. ROP could be prevented by promoting normal vascular growth. Early perinatal metabolic dysregulation is a strong but understudied risk factor for ROP and other long-term sequelae of preterm birth. We will discuss the metabolic and oxygen needs of retina, current treatments, and potential interventions to promote normal vessel growth including control of postnatal hyperglycemia, dyslipidemia and hyperoxia-induced retinal metabolic alterations. Early supplementation of missing nutrients and growth factors and control of supplemental oxygen promotes physiological retinal development. We will discuss the current knowledge gap in retinal metabolism after preterm birth.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
24
|
Kedarisetti KC, Narayanan R, Stewart MW, Reddy Gurram N, Khanani AM. Macular Telangiectasia Type 2: A Comprehensive Review. Clin Ophthalmol 2022; 16:3297-3309. [PMID: 36237488 PMCID: PMC9553319 DOI: 10.2147/opth.s373538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Macular telangiectasia Type 2 (MacTel) is a gradually progressive disease that affects the quality of life by impairing both distant and near vision. It had previously been considered a vascular condition, but recent evidence suggests a neurodegenerative etiology, with primary involvement of Muller cells. Retinal pigment epithelium (RPE) hyperplasia and subretinal neovascularization (SNV) are responsible for most of the vision loss in advanced cases. Neurotrophic factors in the non-proliferative phase and intravitreal anti-Vascular Endothelial growth factor (VEGF) in the proliferative phase have shown to retard the progression of the disease. This review will discuss the pathophysiology, clinical features, important diagnostic imaging studies and available treatment options for MacTel.
Collapse
Affiliation(s)
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India,Indian Health Outcomes, Public Health and Economics Research Centre (IHOPE), Hyderabad, Telangana, India,Correspondence: Raja Narayanan, Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India, Tel +91-9177111975, Email
| | | | - Nikitha Reddy Gurram
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Arshad M Khanani
- Department of Clinical research, Sierra Eye Associates, Reno, NV, USA,Department of Ophthalmology, The University of Nevada, Reno, NV, USA
| |
Collapse
|
25
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Wang SK, Nair S, Li R, Kraft K, Pampari A, Patel A, Kang JB, Luong C, Kundaje A, Chang HY. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. CELL GENOMICS 2022; 2:100164. [PMID: 36277849 PMCID: PMC9584034 DOI: 10.1016/j.xgen.2022.100164] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.
Collapse
Affiliation(s)
- Sean K. Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Aman Patel
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joyce B. Kang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Gomes Rodrigues F, Pipis M, Heeren TFC, Fruttiger M, Gantner M, Vermeirsch S, Okada M, Friedlander M, Reilly MM, Egan C. Description of a patient cohort with Hereditary Sensory Neuropathy Type 1 without retinal disease Macular Telangiectasia type 2 - implications for retinal screening in HSN1. J Peripher Nerv Syst 2022; 27:215-224. [PMID: 35837722 DOI: 10.1111/jns.12508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Pathogenic variants in the genes encoding serine palmitoyl transferase (SPTLC1 or SPTLC2) are the most common causes of the rare peripheral nerve disorder Hereditary Sensory Neuropathy Type 1 (HSN1). Macular telangiectasia type 2 (MacTel), a retinal disorder associated with disordered serine-glycine metabolism and has been described in some patients with HSN1. This study aims to further investigate this association in a cohort of people with HSN1. METHODS Fourteen patients with a clinically and genetically confirmed diagnosis of HSN1 from the National Hospital for Neurology and Neurosurgery (NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom) were recruited to the MacTel Registry, between July 2018 and April 2019. Two additional patients were identified from the dataset of the international clinical registry study (www.lmri.net). Ocular examination included fundus autofluorescence, blue light and infrared reflectance, macular pigment optical density mapping, and optical coherence tomography. RESULTS Twelve patients had a pathogenic variant in the SPTLC1 gene, with p.Cys133Trp in eleven cases (92%) and p.Cys133Tyr in one case (8%). Four patients had a variant in the SPTLC2 gene. None of the patients showed clinical evidence of MacTel. INTERPRETATION The link between HSN1 and MacTel seems more complex than can solely be explained by the genetic variants. An extension of the spectrum of SPTLC1/2-related disease with phenotypic pleiotropy is proposed. HSN1 patients should be screened for visual symptoms and referred for specialist retinal screening, but the association of the two diseases is likely to be variable and remains unexplained. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Filipa Gomes Rodrigues
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University College London Institute of Ophthalmology, London, UK.,Ophthalmology Department, Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| | - Menelaos Pipis
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Tjebo F C Heeren
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Marcus Fruttiger
- University College London Institute of Ophthalmology, London, UK
| | | | - Sandra Vermeirsch
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK.,Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, Université de Lausanne, Switzerland
| | - Mali Okada
- Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | | | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Egan
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
28
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Heng JS, Arevalo JF, Handa JT. Visual acuity after cataract surgery in Macular Telangiectasia Type 2 Stage 3 to 5. Int J Retina Vitreous 2022; 8:38. [PMID: 35690847 PMCID: PMC9188048 DOI: 10.1186/s40942-022-00386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate visual acuity after cataract surgery in eyes with Macular Telangiectasia (MacTel) Type 2. METHODS Single-center retrospective cohort study of patients with MacTel Type 2 who underwent cataract surgery and were managed at the same institution. Patients underwent pre-operative assessment by a retinal specialist with examination and optical coherence tomography (OCT) at the same institution. The main outcome measure was the post-operative change in best corrected visual acuity (BCVA). Secondary study outcomes were achieving post-operative BCVA better than Snellen acuity of 20/40 and time to BCVA loss by two lines or more (10 or more ETDRS letters). RESULTS A total of 20 eyes (11 patients) underwent cataract surgery and were followed for a median of 25.5 months (IQR 17.5-44.2 months). The median post-operative BCVA improvement was 10.5 letters (IQR 3.50-20.25). Nuclear sclerosis severity [β = 8.99 (95% CI 3.35, 14.6), p = 0.00177] was associated with post-operative change in BCVA and central foveal ellipsoid zone (EZ) breaks [OR 1.33 × 10-9 (95% CI 5.12 × 10-10-3.43 × 10-9), p < 0.001] on OCT was inversely correlated with post-operative BCVA > 20/40 using a multivariate generalized linear model. Central foveal EZ breaks [HR 1.77 × 109 (95% CI 3.86 × 108, 8.11 × 109), p < 0.001] and MacTel Type 2 disease stage [HR 2.83, (95% CI 1.12, 7.12), p = 0.027] were independently associated with shorter time to vision loss of two lines or more in a multivariate Cox regression model. CONCLUSIONS Visual acuity significant improved after cataract surgery in eyes with MacTel Type 2 regardless of disease severity. The presence of central foveal EZ breaks may predict poorer post-operative visual acuity and subsequent vision loss from disease progression.
Collapse
Affiliation(s)
- Jacob S Heng
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Wilmer Eye Institute, The Johns Hopkins Hospital, 400 N. Broadway, Smith 3015, Baltimore, USA
| | - J Fernando Arevalo
- Wilmer Eye Institute, The Johns Hopkins Hospital, 400 N. Broadway, Smith 3015, Baltimore, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins Hospital, 400 N. Broadway, Smith 3015, Baltimore, USA.
| |
Collapse
|
30
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
31
|
VandenBosch LS, Luu K, Timms AE, Challam S, Wu Y, Lee AY, Cherry TJ. Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal cis-Regulatory Elements. Transl Vis Sci Technol 2022; 11:16. [PMID: 35435921 PMCID: PMC9034719 DOI: 10.1167/tvst.11.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2021] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Prior studies have demonstrated the significance of specific cis-regulatory variants in retinal disease; however, determining the functional impact of regulatory variants remains a major challenge. In this study, we utilized a machine learning approach, trained on epigenomic data from the adult human retina, to systematically quantify the predicted impact of cis-regulatory variants. Methods We used human retinal DNA accessibility data (ATAC-seq) to determine a set of 18.9k high-confidence, putative cis-regulatory elements. Eighty percent of these elements were used to train a machine learning model utilizing a gapped k-mer support vector machine-based approach. In silico saturation mutagenesis and variant scoring was applied to predict the functional impact of all potential single nucleotide variants within cis-regulatory elements. Impact scores were tested in a 20% hold-out dataset and compared to allele population frequency, phylogenetic conservation, transcription factor (TF) binding motifs, and existing massively parallel reporter assay data. Results We generated a model that distinguishes between human retinal regulatory elements and negative test sequences with 95% accuracy. Among a hold-out test set of 3.7k human retinal CREs, all possible single nucleotide variants were scored. Variants with negative impact scores correlated with higher phylogenetic conservation of the reference allele, disruption of predicted TF binding motifs, and massively parallel reporter expression. Conclusions We demonstrated the utility of human retinal epigenomic data to train a machine learning model for the purpose of predicting the impact of non-coding regulatory sequence variants. Our model accurately scored sequences and predicted putative transcription factor binding motifs. This approach has the potential to expedite the characterization of pathogenic non-coding sequence variants in the context of unexplained retinal disease. Translational Relevance This workflow and resulting dataset serve as a promising genomic tool to facilitate the clinical prioritization of functionally disruptive non-coding mutations in the retina.
Collapse
Affiliation(s)
- Leah S. VandenBosch
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew E. Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shriya Challam
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Yue Wu
- University of Washington Department of Ophthalmology, Seattle, WA, USA
| | - Aaron Y. Lee
- University of Washington Department of Ophthalmology, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Timothy J. Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, WA, USA
| |
Collapse
|
32
|
Thomas ED, Timms AE, Giles S, Harkins-Perry S, Lyu P, Hoang T, Qian J, Jackson VE, Bahlo M, Blackshaw S, Friedlander M, Eade K, Cherry TJ. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57:820-836.e6. [PMID: 35303433 PMCID: PMC9126240 DOI: 10.1016/j.devcel.2022.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.
Collapse
Affiliation(s)
- Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pin Lyu
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Hamano M, Esaki K, Moriyasu K, Yasuda T, Mohri S, Tashiro K, Hirabayashi Y, Furuya S. Hepatocyte-Specific Phgdh-Deficient Mice Culminate in Mild Obesity, Insulin Resistance, and Enhanced Vulnerability to Protein Starvation. Nutrients 2021; 13:nu13103468. [PMID: 34684470 PMCID: PMC8537398 DOI: 10.3390/nu13103468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
l-Serine (Ser) is synthesized de novo from 3-phosphoglycerate via the phosphorylated pathway committed by phosphoglycerate dehydrogenase (Phgdh). A previous study reported that feeding a protein-free diet increased the enzymatic activity of Phgdh in the liver and enhanced Ser synthesis in the rat liver. However, the nutritional and physiological functions of Ser synthesis in the liver remain unclear. To clarify the physiological significance of de novo Ser synthesis in the liver, we generated liver hepatocyte-specific Phgdh KO (LKO) mice using an albumin-Cre driver. The LKO mice exhibited a significant gain in body weight compared to Floxed controls at 23 weeks of age and impaired systemic glucose metabolism, which was accompanied by diminished insulin/IGF signaling. Although LKO mice had no apparent defects in steatosis, the molecular signatures of inflammation and stress responses were evident in the liver of LKO mice. Moreover, LKO mice were more vulnerable to protein starvation than the Floxed mice. These observations demonstrate that Phgdh-dependent de novo Ser synthesis in liver hepatocytes contributes to the maintenance of systemic glucose tolerance, suppression of inflammatory response, and resistance to protein starvation.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (M.H.); (S.F.)
| | - Kayoko Esaki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Wako 351-0198, Japan;
| | - Kazuki Moriyasu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (K.M.); (T.Y.); (S.M.); (K.T.)
| | - Tokio Yasuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (K.M.); (T.Y.); (S.M.); (K.T.)
| | - Sinya Mohri
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (K.M.); (T.Y.); (S.M.); (K.T.)
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (K.M.); (T.Y.); (S.M.); (K.T.)
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Japan;
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba 279-0021, Japan
| | - Shigeki Furuya
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (K.M.); (T.Y.); (S.M.); (K.T.)
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (M.H.); (S.F.)
| |
Collapse
|
34
|
Pauleikhoff L, Heeren TFC, Gliem M, Lim E, Pauleikhoff D, Holz FG, Clemons T, Balaskas K, Egan CA, Charbel Issa P. Fundus Autofluorescence Imaging in Macular Telangiectasia Type 2: MacTel Study Report Number 9. Am J Ophthalmol 2021; 228:27-34. [PMID: 33775659 DOI: 10.1016/j.ajo.2021.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the role of fundus autofluorescence (FAF) imaging in the diagnosis of macular telangiectasia type 2 (MacTel) and to describe disease-associated FAF patterns and their origin. DESIGN Cross-sectional multicenter study METHODS: FAF images were collected from the multicenter MacTel Natural History Observation and Registry Study. In a first qualitative approach, common FAF phenotypes were defined and correlated with multimodal imaging. We then evaluated how many eyes showed FAF changes, and temporal vs nasal asymmetry of FAF changes was graded. Finally, 100 eyes of MacTel patients and 100 control eyes (50 normal eyes and 50 eyes with other macular diseases) were combined and 2 masked graders assessed the presence of MacTel based on FAF images alone. RESULTS The study included 807 eyes of 420 patients (33 eyes were excluded owing to poor image quality). Loss of macular pigment, cystoid spaces, pigment plaques, neovascular membranes, and ectatic vascular changes commonly caused characteristic changes on FAF images. All MacTel patients had macular FAF changes in at least 1 eye. In 95% of eyes, these changes were more pronounced temporally than nasally. Common FAF patterns were increased (60%) and mixed/decreased FAF (38%) and/or visibility of vascular changes such as blunted vessels or ectatic capillaries (79%). Based on those features, high diagnostic performance was achieved for detection of the disease based on FAF alone (Youden index up to 0.91). CONCLUSIONS The study demonstrates that MacTel is consistently associated with disease-specific changes on FAF imaging. Those changes are typically more pronounced in the temporal parafovea.
Collapse
Affiliation(s)
- Laurenz Pauleikhoff
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Eye Center, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tjebo F C Heeren
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Martin Gliem
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ernest Lim
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | | | - Catherine A Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Charbel Issa
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
35
|
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Issa PC. Mitochondrial Retinopathy. Ophthalmol Retina 2021; 6:65-79. [PMID: 34257060 DOI: 10.1016/j.oret.2021.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN Retrospective case series. PARTICIPANTS Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES Phenotypic characteristics of mitochondrial retinopathy. RESULTS Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christina von Landenberg
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carla Gliem
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Department of Epileptology, Life & Brain Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Richard Caswell
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, United Kingdom
| | - Victoria Nesbitt
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Nuffield Department of Women's & Reproductive Health, The Churchill Hospital, Oxford, United Kingdom
| | - Cornelia Kornblum
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
36
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
37
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med 2021; 13:83. [PMID: 34001247 PMCID: PMC8127495 DOI: 10.1186/s13073-021-00904-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Thomas J Balmat
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Florica J Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ephraim L Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Mark R DeLong
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC, 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, 27705, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
38
|
Bonelli R, Ansell BRE, Lotta L, Scerri T, Clemons TE, Leung I, Peto T, Bird AC, Sallo FB, Langenberg C, Bahlo M. Genetic disruption of serine biosynthesis is a key driver of macular telangiectasia type 2 aetiology and progression. Genome Med 2021; 13:39. [PMID: 33750426 PMCID: PMC7945323 DOI: 10.1186/s13073-021-00848-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
Background Macular telangiectasia type 2 (MacTel) is a rare, heritable and largely untreatable retinal disorder, often comorbid with diabetes. Genetic risk loci subtend retinal vascular calibre and glycine/serine/threonine metabolism genes. Serine deficiency may contribute to MacTel via neurotoxic deoxysphingolipid production; however, an independent vascular contribution is also suspected. Here, we use statistical genetics to dissect the causal mechanisms underpinning this complex disease. Methods We integrated genetic markers for MacTel, vascular and metabolic traits, and applied Mendelian randomisation and conditional and interaction genome-wide association analyses to discover the causal contributors to both disease and spatial retinal imaging sub-phenotypes. Results Genetically induced serine deficiency is the primary causal metabolic driver of disease occurrence and progression, with a lesser, but significant, causal contribution of type 2 diabetes genetic risk. Conversely, glycine, threonine and retinal vascular traits are unlikely to be causal for MacTel. Conditional regression analysis identified three novel disease loci independent of endogenous serine biosynthetic capacity. By aggregating spatial retinal phenotypes into endophenotypes, we demonstrate that SNPs constituting independent risk loci act via related endophenotypes. Conclusions Follow-up studies after GWAS integrating publicly available data with deep phenotyping are still rare. Here, we describe such analysis, where we integrated retinal imaging data with MacTel and other traits genomics data to identify biochemical mechanisms likely causing this disorder. Our findings will aid in early diagnosis and accurate prognosis of MacTel and improve prospects for effective therapeutic intervention. Our integrative genetics approach also serves as a useful template for post-GWAS analyses in other disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00848-4.
Collapse
Affiliation(s)
- Roberto Bonelli
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Luca Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Thomas Scerri
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | | | - Irene Leung
- Department of Research and Development, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Tunde Peto
- Department of Ophthalmology, Queen's University, Belfast, BT7 1NN, UK
| | - Alan C Bird
- Inherited Eye Disease, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Ferenc B Sallo
- Department of Ophthalmology, Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | | | - Melanie Bahlo
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. .,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
39
|
Bonelli R, Jackson VE, Prasad A, Munro JE, Farashi S, Heeren TFC, Pontikos N, Scheppke L, Friedlander M, Egan CA, Allikmets R, Ansell BRE, Bahlo M. Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Commun Biol 2021; 4:274. [PMID: 33654266 PMCID: PMC7925591 DOI: 10.1038/s42003-021-01788-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Macular Telangiectasia Type 2 (MacTel) is a rare degenerative retinal disease with complex genetic architecture. We performed a genome-wide association study on 1,067 MacTel patients and 3,799 controls, which identified eight novel genome-wide significant loci (p < 5 × 10-8), and confirmed all three previously reported loci. Using MAGMA, eQTL and transcriptome-wide association analysis, we prioritised 48 genes implicated in serine-glycine biosynthesis, metabolite transport, and retinal vasculature and thickness. Mendelian randomization indicated a likely causative role of serine (FDR = 3.9 × 10-47) and glycine depletion (FDR = 0.006) as well as alanine abundance (FDR = 0.009). Polygenic risk scoring achieved an accuracy of 0.74 and was associated in UKBiobank with retinal damage (p = 0.009). This represents the largest genetic study on MacTel to date and further highlights genetically-induced systemic and tissue-specific metabolic dysregulation in MacTel patients, which impinges on retinal health.
Collapse
Affiliation(s)
- Roberto Bonelli
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Victoria E. Jackson
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Aravind Prasad
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Jacob E. Munro
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Samaneh Farashi
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Tjebo F. C. Heeren
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK ,grid.83440.3b0000000121901201University College London Institute of Ophthalmology, London, UK
| | - Nikolas Pontikos
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK ,grid.83440.3b0000000121901201University College London Institute of Ophthalmology, London, UK
| | - Lea Scheppke
- grid.489357.4The Lowy Medical Research Institute, La Jolla, CA USA
| | - Martin Friedlander
- grid.489357.4The Lowy Medical Research Institute, La Jolla, CA USA ,grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | | | - Catherine A. Egan
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Rando Allikmets
- grid.21729.3f0000000419368729Department of Ophthalmology, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Department of Pathology and Cell Biology, Columbia University, New York, NY USA
| | - Brendan R. E. Ansell
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Melanie Bahlo
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
40
|
Eade K, Gantner ML, Hostyk JA, Nagasaki T, Giles S, Fallon R, Harkins-Perry S, Baldini M, Lim EW, Scheppke L, Dorrell MI, Cai C, Baugh EH, Wolock CJ, Wallace M, Berlow RB, Goldstein DB, Metallo CM, Friedlander M, Allikmets R. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat Metab 2021; 3:366-377. [PMID: 33758422 PMCID: PMC8084205 DOI: 10.1038/s42255-021-00361-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/07/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.2 × 10-13) with variants explaining ~3.2% of affected individuals. We further show that the resulting functional defects in PHGDH cause decreased serine biosynthesis and accumulation of deoxySLs in retinal pigmented epithelial cells. PHGDH is a significant locus for MacTel that explains the typical disease phenotype and suggests a number of potential treatment options.
Collapse
Affiliation(s)
- Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Joseph A Hostyk
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Regis Fallon
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle Baldini
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Lea Scheppke
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Carolyn Cai
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Charles J Wolock
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
- Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
43
|
Fu Z, Kern TS, Hellström A, Smith LEH. Fatty acid oxidation and photoreceptor metabolic needs. J Lipid Res 2021; 62:100035. [PMID: 32094231 PMCID: PMC7905050 DOI: 10.1194/jlr.tr120000618] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2020] [Revised: 02/14/2020] [Indexed: 01/31/2023] Open
Abstract
Photoreceptors have high energy demands and a high density of mitochondria that produce ATP through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for CNS brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the cross-talk among retinal cells to provide energy to photoreceptors is not fully understood. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Abstract
PURPOSE Type 2 idiopathic macular telangiectasia (MacTel) is a rare bilateral neurodegenerative disease characterized by alterations in the macular capillary network leading to central vision loss. The purpose of this study was to quantify disease-specific retinal fluorescence lifetime patterns in patients with MacTel using fluorescence lifetime imaging ophthalmoscopy. PARTICIPANTS Both eyes of 14 patients (mean age ± SEM, 67.8 ± 6.4 years) with a clinical diagnosis of MacTel Type 2 and 14 healthy age-matched controls (age 69.8 ± 6.4 years) were included in this study. METHODS All participants were imaged with a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Germany). Mean retinal fluorescence lifetimes (Tm) were obtained in the short spectral channels (498-560 nm) and long spectral channels (560-720 nm). Clinical features, fundus images, fundus autofluorescence intensity images, spectral domain optical coherence tomography, and corresponding macular pigment optical density measurements using a modified confocal scanning laser ophthalmoscope (mpHRA) were further analyzed. Patients were classified into five phenotypic subgroups using the Gass and Blodi classification. RESULTS Mean fluorescence lifetimes were significantly prolonged temporal to the fovea in patients with MacTel compared with healthy controls (mean ± SEM: short spectral channels 543 ± 61 ps vs. 304 ± 9 ps; P < 0.0001; long spectral channels: 447 ± 26 ps vs. 348 ± 11 ps; P < 0.0001), and appeared as a crescent or ring-shaped pattern. Prolonged lifetime patterns correlated with decreased macular pigment density on macular pigment optical density measurements. Follow-up examinations were performed in four MacTel patients, which revealed an increase of short spectral channel Tm of 22% over 2.1 years in the temporal fovea. CONCLUSION This study confirms that fundus autofluorescence lifetimes display characteristic patterns in patients with MacTel Type 2 disease and provide information about macular pigment and possibly photoreceptor loss. Fluorescence lifetime prolongation correlates with disease severity and may therefore be a useful addition to other imaging modalities for assessing disease progression in MacTel Type 2.
Collapse
|
45
|
van Romunde SHM, van der Sommen CM, Martinez Ciriano JP, Vingerling JR, Yzer S. Prevalence and Severity of Diabetic Retinopathy in Patients with Macular Telangiectasia Type 2. Ophthalmol Retina 2021; 5:999-1004. [PMID: 33444807 DOI: 10.1016/j.oret.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To study the prevalence and severity of diabetic retinopathy (DR) in patients with macular telangiectasia type 2 (MacTel 2). DESIGN Retrospective case series. PARTICIPANTS Patients with a diagnosis of MacTel 2 treated at the Rotterdam Eye Hospital or Erasmus Medical Center between 2014 and 2018 were included. METHODS The following information was retrieved from patient files: demographics, history of diabetes mellitus and hypertension, presence of DR, and severity of DR, that is, mild, moderate, severe, or proliferative. Presence of diabetic macular edema (DME) was assessed using OCT. MAIN OUTCOME MEASURES Presence and severity of DR. RESULTS Two hundred six eyes of 103 patients were included. At the onset of MacTel 2, the mean age was 61 years (standard deviation [SD], 9.8 years) and 64 (62%) were women. Mean follow-up was 71 months (SD, 60 months). Diabetes mellitus type 2 was present in 50 patients (49%) and hypertension was present in 47 patients (46%). Mild DR was present in 22 eyes (11%), of which 14 eyes (7%) showed signs at baseline and 8 eyes (4%) showed signs at a later time during follow-up. Ten eyes (5%) demonstrated remission of mild DR during follow-up. Both eyes (1%) in 1 patient progressed to moderate DR. Severe DR, proliferative DR, and DME did not occur. CONCLUSIONS Although diabetes mellitus was highly prevalent among MacTel 2 patients, no patients showed severe or proliferative DR or DME. These findings suggest that MacTel 2 could have a protective effect on the progression of DR. We hypothesize that our results may be explained by the role of Müller cells in the development of MacTel 2 and DR, and therefore a link between both diseases warrants additional studies.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne Yzer
- Rotterdam Eye Hospital, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Lotta LA, Pietzner M, Stewart ID, Wittemans LB, Li C, Bonelli R, Raffler J, Biggs EK, Oliver-Williams C, Auyeung VP, Luan J, Wheeler E, Paige E, Surendran P, Michelotti GA, Scott RA, Burgess S, Zuber V, Sanderson E, Koulman A, Imamura F, Forouhi NG, Khaw KT, Griffin JL, Wood AM, Kastenmüller G, Danesh J, Butterworth AS, Gribble FM, Reimann F, Bahlo M, Fauman E, Wareham NJ, Langenberg C. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat Genet 2021; 53:54-64. [PMID: 33414548 PMCID: PMC7612925 DOI: 10.1038/s41588-020-00751-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10-10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
Collapse
Affiliation(s)
- Luca A. Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Laura B.L. Wittemans
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK,The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford
| | - Chen Li
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Roberto Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Emma K. Biggs
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Clare Oliver-Williams
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK,Homerton College, University of Cambridge, Cambridge, UK
| | | | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ellie Paige
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK,Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, UK
| | | | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom,Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Verena Zuber
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom,Department of Epidemiology and Biostatistics, Imperial College London, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, UK
| | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK,Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany,NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Julian L. Griffin
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK,The Alan Turing Institute, London, UK
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK,Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Fiona M. Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Eric Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA 02142, USA
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK. .,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK. .,Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany.
| |
Collapse
|
47
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.20.20248572. [PMID: 33398303 PMCID: PMC7781346 DOI: 10.1101/2020.12.20.20248572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Florica J. Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Micah T. McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ephraim L. Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark R. DeLong
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center Durham, NC 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Lead contact
| |
Collapse
|
48
|
Shinkai A, Saito W, Hashimoto Y, Saito M, Kase S, Noda K, Ishida S. Morphological features of macular telangiectasia type 2 in Japanese patients. Graefes Arch Clin Exp Ophthalmol 2020; 259:1179-1189. [PMID: 33146833 DOI: 10.1007/s00417-020-04989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study aimed to demonstrate the clinical course of Japanese patients with macular telangiectasia type 2 (MacTel-2). METHODS This retrospective observational case series included 16 eyes of 8 Japanese patients (3 men and 5 women) with MacTel-2. The mean age and follow-up duration was 66.9 years and 42.8 months, respectively. Differences in best-corrected visual acuity (BCVA), funduscopic macular findings, central macular thickness (CMT), and the length of macular ellipsoid zone (EZ) loss were compared between the initial/baseline and final visits. Optical coherence tomographic changes in CMT by ≥ 20% and in EZ loss by ≥ 20% or ≥ 100 μm were defined as improved or worsened. RESULTS Numerical changes in BCVA and EZ loss during follow-up were not statistically significant. However, the mean CMT at baseline, which was lower than that of healthy control eyes (P < 0.001), significantly increased during follow-up (P = 0.041). A certain proportion of eyes showed improvement in several parameters: funduscopic findings (both parafoveal retinal graying and foveal retinal pigment epithelium depigmentation) in 29% of eyes, CMT in 21% of eyes, and EZ loss in 43% of eyes. CONCLUSIONS The non-negligible proportion of eyes with improved parameters, marked especially by macular EZ loss, suggests that Japanese patients with MacTel-2 have milder clinical features than Caucasian patients reported in the literature.
Collapse
Affiliation(s)
- Akihiro Shinkai
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Wataru Saito
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan.
- Kaimeido Eye and Dental Clinic, Sapporo, Japan.
| | - Yuki Hashimoto
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Michiyuki Saito
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoru Kase
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kousuke Noda
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Susumu Ishida
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
49
|
Zandi R, Song J, Micevych PS, Fawzi AA. Topographic Relationship between Telangiectasia and Cone Mosaic Disruption in Macular Telangiectasia Type 2. J Clin Med 2020; 9:jcm9103149. [PMID: 33003381 PMCID: PMC7601362 DOI: 10.3390/jcm9103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
In this cross-sectional observational study, we investigated the relationship between photoreceptor layer disruption and telangiectasia in patients diagnosed with early stage macular telangiectasia type 2 (MacTel). A total of 31 eyes (17 patients) with MacTel were imaged with adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography angiography (OCTA). Confocal AOSLO was used to visualize dark regions of nonwaveguiding outer segments, which we refer to as “photoreceptor lesions”. En-face OCTA images of the deep capillary plexus (DCP) were used in conjunction with confocal AOSLO to evaluate the topographic relationship between areas of capillary telangiectasias and photoreceptor lesions. Among seven eyes with early stage MacTel (stage 0–2 based on OCT), we identified ten photoreceptor lesions, all of which were located within parafoveal quadrants containing DCP telangiectasia on OCTA. Seven of the lesions corresponded to the intact ellipsoid zone on spectral-domain OCT (SD-OCT), and three of these also corresponded to the intact interdigitation zone. This work demonstrates a topographic relationship between AOSLO photoreceptor lesions and DCP telangiectasias, and it also suggests that these lesions with normal SD-OCT appearance may represent areas of photoreceptors at risk for dysfunction. Thus, confocal AOSLO may have a meaningful role in detecting early photoreceptor abnormalities in eyes with MacTel.
Collapse
|
50
|
Litts KM, Okada M, Heeren TFC, Kalitzeos A, Rocco V, Mastey RR, Singh N, Kane T, Kasilian M, Fruttiger M, Michaelides M, Carroll J, Egan C. Longitudinal Assessment of Remnant Foveal Cone Structure in a Case Series of Early Macular Telangiectasia Type 2. Transl Vis Sci Technol 2020; 9:27. [PMID: 32818114 PMCID: PMC7396184 DOI: 10.1167/tvst.9.4.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the extent of remnant cone structure within early foveal ellipsoid zone (EZ) lesions in macular telangiectasia type 2 longitudinally using both confocal and split detector adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Spectral domain optical coherence tomography (SDOCT), confocal and split detector AOSLO were acquired from seven patients (10 eyes) with small (early) EZ lesions on SDOCT secondary to macular telangiectasia type 2 at baseline, 6 months, and 12 months. The presence of cone structure on AOSLO in areas of EZ loss as well as cones at 1° eccentricity, and their change over time were quantified. Results By split detector AOSLO, remnant cone structure was identified within and on the borders of all foveal EZ lesions. Within the extent of these lesions, cone spacing ranged from 4.97 to 9.95 µm at baseline, 5.30 to 6.10 µm at 6 months, and 4.99 to 7.12 µm at 12 months. Four eyes with significantly smaller EZ lesions showed evidence of recovery of EZ reflectivity on SDOCT B-scans. Remnant cone structure was identified in some areas where EZ reflectivity recovered at the following time point. Eyes that showed recovery of EZ reflectivity had a continuous external limiting membrane. Conclusions Remnant cone structure can persist within small SDOCT-defined EZ lesions, which can wax and wane in appearance over time. AOSLO can help to inform the interpretation of SDOCT imaging. Translational Relevance The absence of EZ in early macular telangiectasia type 2 and other retinal conditions needs careful interpretation because it does not always indicate an absence of underlying cone structure. The integrity of the external limiting membrane may better predict the presence of remnant cone structure and recovery of EZ reflectivity.
Collapse
Affiliation(s)
- Katie M Litts
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mali Okada
- Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Tjebo F C Heeren
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Angelos Kalitzeos
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Vincent Rocco
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Rebecca R Mastey
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navjit Singh
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Thomas Kane
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Melissa Kasilian
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Marcus Fruttiger
- University College London Institute of Ophthalmology, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Catherine Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University College London Institute of Ophthalmology, London, UK
| |
Collapse
|