1
|
Ackerman SJ, Stacy NI. Considerations on the evolutionary biology and functions of eosinophils: what the "haeckel"? J Leukoc Biol 2024; 116:247-259. [PMID: 38736141 PMCID: PMC11288384 DOI: 10.1093/jleuko/qiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, MBRB2074, MC669, 900 S. Ashland Ave, Chicago, IL 60607, United States
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Li J, Kang X, Guidi I, Lu L, Fernández-Millán P, Prats-Ejarque G, Boix E. Structural determinants for tRNA selective cleavage by RNase 2/EDN. Structure 2024; 32:328-341.e4. [PMID: 38228145 DOI: 10.1016/j.str.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
tRNA-derived fragments (tRFs) have emerged as key players of immunoregulation. Some RNase A superfamily members participate in the shaping of the tRFs population. By comparing wild-type and knockout macrophage cell lines, our previous work revealed that RNase 2 can selectively cleave tRNAs. Here, we confirm the in vitro protein cleavage pattern by screening of synthetic tRNAs, single-mutant variants, and anticodon-loop DNA/RNA hairpins. By sequencing of tRF products, we identified the cleavage selectivity of recombinant RNase 2 with base specificity at B1 (U/C) and B2 (A) sites, consistent with a previous cellular study. Lastly, protein-hairpin complexes were predicted by MD simulations. Results reveal the contribution of the α1, loop 3 and loop 4, and β6 RNase 2 regions, where residues Arg36/Asn39/Gln40/Asn65/Arg68/Arg132 provide interactions, spanning from P-1 to P2 sites that are essential for anticodon loop recognition. Knowledge of RNase 2-specific tRFs generation might guide new therapeutic approaches for infectious and immune-related diseases.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xincheng Kang
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Irene Guidi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
3
|
Yang C, Li J, Deng Z, Luo S, Liu J, Fang W, Liu F, Liu T, Zhang X, Zhang Y, Meng Z, Zhang S, Luo J, Liu C, Yang D, Liu L, Sukhova GK, Sadybekov A, Katritch V, Libby P, Wang J, Guo J, Shi GP. Eosinophils protect pressure overload- and β-adrenoreceptor agonist-induced cardiac hypertrophy. Cardiovasc Res 2023; 119:195-212. [PMID: 35394031 PMCID: PMC10022866 DOI: 10.1093/cvr/cvac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Blood eosinophil (EOS) counts and EOS cationic protein (ECP) levels associate positively with major cardiovascular disease (CVD) risk factors and prevalence. This study investigates the role of EOS in cardiac hypertrophy. METHODS AND RESULTS A retrospective cross-section study of 644 consecutive inpatients with hypertension examined the association between blood EOS counts and cardiac hypertrophy. Pressure overload- and β-adrenoreceptor agonist isoproterenol-induced cardiac hypertrophy was produced in EOS-deficient ΔdblGATA mice. This study revealed positive correlations between blood EOS counts and left ventricular (LV) mass and mass index in humans. ΔdblGATA mice showed exacerbated cardiac hypertrophy and dysfunction, with increased LV wall thickness, reduced LV internal diameter, and increased myocardial cell size, death, and fibrosis. Repopulation of EOS from wild-type (WT) mice, but not those from IL4-deficient mice ameliorated cardiac hypertrophy and cardiac dysfunctions. In ΔdblGATA and WT mice, administration of ECP mEar1 improved cardiac hypertrophy and function. Mechanistic studies demonstrated that EOS expression of IL4, IL13, and mEar1 was essential to control mouse cardiomyocyte hypertrophy and death and cardiac fibroblast TGF-β signalling and fibrotic protein synthesis. The use of human cardiac cells yielded the same results. Human ECP, EOS-derived neurotoxin, human EOS, or murine recombinant mEar1 reduced human cardiomyocyte death and hypertrophy and human cardiac fibroblast TGF-β signalling. CONCLUSION Although blood EOS counts correlated positively with LV mass or LV mass index in humans, this study established a cardioprotective role for EOS IL4 and cationic proteins in cardiac hypertrophy and tested a therapeutic possibility of ECPs in this human CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqian Fang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Tianxiao Liu
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Xian Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Yuanyuan Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Zhaojie Meng
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Shuya Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Jianfang Luo
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou 510000, China
| | - Conglin Liu
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Dafeng Yang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Galina K Sukhova
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jing Wang
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| | - Junli Guo
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| | - Guo-Ping Shi
- Corresponding authors. Tel: +1 617 525 4358, E-mail: (G.-P.S.); Tel: +86 10 6915 6477, E-mail: (J.W.); Tel: +86 1868983 5101, E-mail: (J.G.)
| |
Collapse
|
4
|
Bernard DN, Narayanan C, Hempel T, Bafna K, Bhojane PP, Létourneau M, Howell EE, Agarwal PK, Doucet N. Conformational exchange divergence along the evolutionary pathway of eosinophil-associated ribonucleases. Structure 2023; 31:329-342.e4. [PMID: 36649708 PMCID: PMC9992247 DOI: 10.1016/j.str.2022.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The evolutionary role of conformational exchange in the emergence and preservation of function within structural homologs remains elusive. While protein engineering has revealed the importance of flexibility in function, productive modulation of atomic-scale dynamics has only been achieved on a finite number of distinct folds. Allosteric control of unique members within dynamically diverse structural families requires a better appreciation of exchange phenomena. Here, we examined the functional and structural role of conformational exchange within eosinophil-associated ribonucleases. Biological and catalytic activity of various EARs was performed in parallel to mapping their conformational behavior on multiple timescales using NMR and computational analyses. Despite functional conservation and conformational seclusion to a specific domain, we show that EARs can display similar or distinct motional profiles, implying divergence rather than conservation of flexibility. Comparing progressively more distant enzymes should unravel how this subfamily has evolved new functions and/or altered their behavior at the molecular level.
Collapse
Affiliation(s)
- David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Chitra Narayanan
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA
| | - Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Khushboo Bafna
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Purva Prashant Bhojane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines 2022; 10:biomedicines10020386. [PMID: 35203595 PMCID: PMC8962335 DOI: 10.3390/biomedicines10020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial peptides (AMPs) are alternative therapeutics to traditional antibiotics against bacterial resistance. Our previous work identified an antimicrobial region at the N-terminus of the eosinophil cationic protein (ECP). Following structure-based analysis, a 30mer peptide (ECPep-L) was designed that combines antimicrobial action against Gram-negative species with lipopolysaccharides (LPS) binding and endotoxin-neutralization activities. Next, analogues that contain non-natural amino acids were designed to increase serum stability. Here, two analogues were selected for in vivo assays: the all-D version (ECPep-D) and the Arg to Orn version that incorporates a D-amino acid at position 2 (ECPep-2D-Orn). The peptide analogues retained high LPS-binding and anti-endotoxin activities. The peptides efficacy was tested in a murine acute infection model of Acinetobacter baumannii. Results highlighted a survival rate above 70% following a 3-day supervision with a single administration of ECPep-D. Moreover, in both ECPep-D and ECPep-2D-Orn peptide-treated groups, clinical symptoms improved significantly and the tissue infection was reduced to equivalent levels to mice treated with colistin, used as a last resort in the clinics. Moreover, treatment drastically reduced serum levels of TNF-α inflammation marker within the first 8 h. The present results support ECP-derived peptides as alternative candidates for the treatment of acute infections caused by Gram-negative bacteria.
Collapse
|
6
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Brunet TDP, Doolittle WF, Bielawski JP. The role of purifying selection in the origin and maintenance of complex function. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 87:125-135. [PMID: 34111815 DOI: 10.1016/j.shpsa.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Fitness contribution alone should not be the criterion of 'function' in molecular biology and genomics. Disagreement over the use of 'function' in molecular biology and genomics is still with us, almost eight years after publicity surrounding the Encyclopedia of DNA Elements project claimed that 80.4% of the human genome comprises "functional elements". Recent approaches attempt to resolve or reformulate this debate by redefining genomic 'function' in terms of current fitness contribution. In its favour, this redefinition for the genomic context is in apparent conformity with predominant experimental practices, especially in biomedical research, and with ascription of function by selective maintenance. We argue against approaches of this kind, however, on the grounds that they could be seen as non-Darwinian, and fail to properly account for the diversity of non-adaptive processes involved in the origin and maintenance of genomic complexity. We examine cases of molecular and organismal complexity that arise neutrally, showing how purifying selection maintains non-adaptive genomic complexity. Rather than lumping different sorts of genomic complexity together by defining 'function' as fitness contribution, we argue that it is best to separate the heterogeneous contributions of preaptation, exaptation and adaptation to the historical processes of origin and maintenance for complex features.
Collapse
Affiliation(s)
- Tyler D P Brunet
- Department of the History and Philosophy of Science, University of Cambridge, United Kingdom.
| | - W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Canada
| | - Joseph P Bielawski
- Departments of Biology and Mathematics and Statistics, Dalhousie University, Canada
| |
Collapse
|
8
|
Ostendorf T, Zillinger T, Andryka K, Schlee-Guimaraes TM, Schmitz S, Marx S, Bayrak K, Linke R, Salgert S, Wegner J, Grasser T, Bauersachs S, Soltesz L, Hübner MP, Nastaly M, Coch C, Kettwig M, Roehl I, Henneke M, Hoerauf A, Barchet W, Gärtner J, Schlee M, Hartmann G, Bartok E. Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2. Immunity 2020; 52:591-605.e6. [PMID: 32294405 DOI: 10.1016/j.immuni.2020.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/24/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023]
Abstract
Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.
Collapse
Affiliation(s)
- Thomas Ostendorf
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katarzyna Andryka
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Saskia Schmitz
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Samira Marx
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kübra Bayrak
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rebecca Linke
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Sarah Salgert
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Julia Wegner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Tatjana Grasser
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Sonja Bauersachs
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Leon Soltesz
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marc P Hübner
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Maximilian Nastaly
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christoph Coch
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Miltenyi Biotech, Biomedicine Division, Bergisch Gladbach, Germany
| | - Matthias Kettwig
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Ingo Roehl
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Winfried Barchet
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Martin Schlee
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Eva Bartok
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. Evolutionary Trends in RNA Base Selectivity Within the RNase A Superfamily. Front Pharmacol 2019; 10:1170. [PMID: 31649540 PMCID: PMC6794472 DOI: 10.3389/fphar.2019.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in the pharmaceutical industry to design novel tailored drugs for RNA targeting. The vertebrate-specific RNase A superfamily is nowadays one of the best characterized family of enzymes and comprises proteins involved in host defense with specific cytotoxic and immune-modulatory properties. We observe within the family a structural variability at the substrate-binding site associated to a diversification of biological properties. In this work, we have analyzed the enzyme specificity at the secondary base binding site. Towards this end, we have performed a kinetic characterization of the canonical RNase types together with a molecular dynamic simulation of selected representative family members. The RNases' catalytic activity and binding interactions have been compared using UpA, UpG and UpI dinucleotides. Our results highlight an evolutionary trend from lower to higher order vertebrates towards an enhanced discrimination power of selectivity for adenine respect to guanine at the secondary base binding site (B2). Interestingly, the shift from guanine to adenine preference is achieved in all the studied family members by equivalent residues through distinct interaction modes. We can identify specific polar and charged side chains that selectively interact with donor or acceptor purine groups. Overall, we observe selective bidentate polar and electrostatic interactions: Asn to N1/N6 and N6/N7 adenine groups in mammals versus Glu/Asp and Arg to N1/N2, N1/O6 and O6/N7 guanine groups in non-mammals. In addition, kinetic and molecular dynamics comparative results on UpG versus UpI emphasize the main contribution of Glu/Asp interactions to N1/N2 group for guanine selectivity in lower order vertebrates. A close inspection at the B2 binding pocket also highlights the principal contribution of the protein ß6 and L4 loop regions. Significant differences in the orientation and extension of the L4 loop could explain how the same residues can participate in alternative binding modes. The analysis suggests that within the RNase A superfamily an evolution pressure has taken place at the B2 secondary binding site to provide novel substrate-recognition patterns. We are confident that a better knowledge of the enzymes' nucleotide recognition pattern would contribute to identify their physiological substrate and eventually design applied therapies to modulate their biological functions.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Lang D, Lim BK, Gao Y, Wang X. Adaptive evolutionary expansion of the ribonuclease 6 in Rodentia. Integr Zool 2019; 14:306-317. [PMID: 30688011 DOI: 10.1111/1749-4877.12382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ribonuclease 6 (RNase6 or RNase K6) is a protein that belongs to a superfamily thought to be the sole verte-brate-specific enzyme known for a wide range of physiological functions, including digestion, cytotoxicity, angiogenesis, male reproduction and host defense. In our study, 51 functional genes and 11 pseudogenes were identified from 27 Rodentia species. Intriguingly, in the 3 main lineages of rodents there were multiple RNase6s identified in all species of Ctenohystrica, whereas only a single RNase6 was observed in other Rodentia species examined except for 2 species in the mouse-related clade. The evolutionary scenario of "birth (gene duplication) and death (gene deactivation)" and gene sorting have been demonstrated in Ctenohystrica. In addition, bursts of positive selection, diversification of isoelectric point and positive net charge have been identified in Ctenohystrica, especially at two key sites that are involved in antimicrobial function. Site Trp30 has undergone positive selection and Ile45 has changed into other residues in Group B and Group C of the Ctenohystrica. Our results demonstrated a complex and intriguing evolutionary pattern of rodent RNase6, and indicated that functional modification may have occurred, which establishes an important theoretical foundation for future functional assays in rodent RNase6.
Collapse
Affiliation(s)
- Datian Lang
- Agronomy and Life Science Department, Zhaotong University, Zhaotong, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, China
| | - Xiaoping Wang
- School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, China.,Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
11
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
12
|
The Immunomodulatory and Antimicrobial Properties of the Vertebrate Ribonuclease A Superfamily. Vaccines (Basel) 2018; 6:vaccines6040076. [PMID: 30463297 PMCID: PMC6313885 DOI: 10.3390/vaccines6040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023] Open
Abstract
The Ribonuclease A Superfamily is composed of cationic peptides that are secreted by immune cells and epithelial tissues. Although their physiological roles are unclear, several members of the vertebrate Ribonuclease A Superfamily demonstrate antimicrobial and immune modulation activities. The objective of this review is to provide an overview of the published literature on the Ribonuclease A Superfamily with an emphasis on each peptide’s regulation, antimicrobial properties, and immunomodulatory functions. As additional insights emerge regarding the mechanisms in which these ribonucleases eradicate invading pathogens and modulate immune function, these ribonucleases may have the potential to be developed as a novel class of therapeutics for some human diseases.
Collapse
|
13
|
Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate-binding site arrangement favors the endonuclease cleavage of polymeric substrates. Biochim Biophys Acta Gen Subj 2018; 1863:105-117. [PMID: 30287244 DOI: 10.1016/j.bbagen.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Human RNase6 is a small cationic antimicrobial protein that belongs to the vertebrate RNaseA superfamily. All members share a common catalytic mechanism, which involves a conserved catalytic triad, constituted by two histidines and a lysine (His15/His122/Lys38 in RNase6 corresponding to His12/His119/Lys41 in RNaseA). Recently, our first crystal structure of human RNase6 identified an additional His pair (His36/His39) and suggested the presence of a secondary active site. METHODS In this work we have explored RNase6 and RNaseA subsite architecture by X-ray crystallography, site-directed mutagenesis and kinetic characterization. RESULTS The analysis of two novel crystal structures of RNase6 in complex with phosphate anions at atomic resolution locates a total of nine binding sites and reveals the contribution of Lys87 to phosphate-binding at the secondary active center. Contribution of the second catalytic triad residues to the enzyme activity is confirmed by mutagenesis. RNase6 catalytic site architecture has been compared with an RNaseA engineered variant where a phosphate-binding subsite is converted into a secondary catalytic center (RNaseA-K7H/R10H). CONCLUSIONS We have identified the residues that participate in RNase6 second catalytic triad (His36/His39/Lys87) and secondary phosphate-binding sites. To note, residues His39 and Lys87 are unique within higher primates. The RNaseA/RNase6 side-by-side comparison correlates the presence of a dual active site in RNase6 with a favored endonuclease-type cleavage pattern. GENERAL SIGNIFICANCE An RNase dual catalytic and extended binding site arrangement facilitates the cleavage of polymeric substrates. This is the first report of the presence of two catalytic centers in a single monomer within the RNaseA superfamily.
Collapse
|
14
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
Insights into the Antimicrobial Mechanism of Action of Human RNase6: Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation. Int J Mol Sci 2016; 17:552. [PMID: 27089320 PMCID: PMC4849008 DOI: 10.3390/ijms17040552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Human Ribonuclease 6 is a secreted protein belonging to the ribonuclease A (RNaseA) superfamily, a vertebrate specific family suggested to arise with an ancestral host defense role. Tissue distribution analysis revealed its expression in innate cell types, showing abundance in monocytes and neutrophils. Recent evidence of induction of the protein expression by bacterial infection suggested an antipathogen function in vivo. In our laboratory, the antimicrobial properties of the protein have been evaluated against Gram-negative and Gram-positive species and its mechanism of action was characterized using a membrane model. Interestingly, our results indicate that RNase6, as previously reported for RNase3, is able to specifically agglutinate Gram-negative bacteria as a main trait of its antimicrobial activity. Moreover, a side by side comparative analysis with the RN6(1-45) derived peptide highlights that the antimicrobial activity is mostly retained at the protein N-terminus. Further work by site directed mutagenesis and structural analysis has identified two residues involved in the protein antimicrobial action (Trp1 and Ile13) that are essential for the cell agglutination properties. This is the first structure-functional characterization of RNase6 antimicrobial properties, supporting its contribution to the infection focus clearance.
Collapse
|
16
|
Shukla A, Mishra A, Venkateshaiah SU, Manohar M, Mahadevappa CP, Mishra A. Elements Involved In Promoting Eosinophilic Gastrointestinal Disorders. ACTA ACUST UNITED AC 2015; 6. [PMID: 27840774 PMCID: PMC5102338 DOI: 10.4172/2157-7412.1000265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eosinophilic gastrointestinal disorders (EGID) are food allergen-induced allergic gastrointestinal disorders, characterized by accumulation of highly induced eosinophils in different segments of gastrointestinal tract along with eosinophil microabssess and extracellular eosinophilic granules in the epithelial layer. EGID are both IgE- and cell-mediated group of diseases that include eosinophilic esophagitis (EoE), eosinophilic gastritis (EG), eosinophilic gastroenteritis (EGE) and eosinophilic colitis (EC). Despite the increased incidences and considerable progress made in understanding EGID pathogenesis. The mechanism is still not well understood. It has been shown that IL-4, IL-5, IL-13, IL-15, IL-18, eotaxin-1, eotaxin-2 and eotaxin-3 play a critical role in EGID pathogenesis. Currently, the only criterion for diagnosing EoE, EGE and EC are repetitive endoscopic and histopathological evaluation of biopsies along with other clinical characteristics/manifestations. Antigen elimination and corticosteroid therapies are the most effective therapies currently in practice for the treatment of EGID. The cytokines (anti-IL-5 and anti-IL-13) therapy trials were not very successful in case of EoE. Most recently, a clinical trial using anti-IL-13 reported only 60% reduced esophageal eosinophilia without achieving primary endpoint. This clinical finding is not surprising and is in accordance with our earlier report indicating that IL-13 is not critical in the initiation of EoE. Notably, EGID still has no reliable noninvasive diagnostic biomarkers. Hence, there is a great necessity to identify novel noninvasive diagnostic biomarkers that can easily diagnose EGID and provide an effective therapy. Now, the attention is required to target cell types like iNKT cells that produce eosinophil active cytokines and is found induced in the pathogenesis of both experimental and human EoE. iNKT cell neutralization is shown to protect allergen-induced EoE in experimental model. In this review, we have discussed the key elements that are critical in the disease initiation, progression, pathogenesis and important for future diagnostic and therapeutic interventions for EGID.
Collapse
Affiliation(s)
- Anshi Shukla
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Akanksha Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | | | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | | | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, 1430 Tulane Avenue, New Orleans, LA 70112
| |
Collapse
|
17
|
Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. Int J Mol Sci 2015; 16:15442-55. [PMID: 26184157 PMCID: PMC4519907 DOI: 10.3390/ijms160715442] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.
Collapse
|
18
|
Yamada KJ, Barker T, Dyer KD, Rice TA, Percopo CM, Garcia-Crespo KE, Cho S, Lee JJ, Druey KM, Rosenberg HF. Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J Biol Chem 2015; 290:8863-75. [PMID: 25713137 PMCID: PMC4423678 DOI: 10.1074/jbc.m114.626648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/16/2015] [Indexed: 12/14/2022] Open
Abstract
RNase A is the prototype of an extensive family of divergent proteins whose members share a unique disulfide-bonded tertiary structure, conserved catalytic motifs, and the ability to hydrolyze polymeric RNA. Several members of this family maintain independent roles as ribonucleases and modulators of innate immunity. Here we characterize mouse eosinophil-associated RNase (Ear) 11, a divergent member of the eosinophil ribonuclease cluster, and the only known RNase A ribonuclease expressed specifically in response to Th2 cytokine stimulation. Mouse Ear 11 is differentially expressed in somatic tissues at baseline (brain ≪ liver < lung < spleen); systemic stimulation with IL-33 results in 10-5000-fold increased expression in lung and spleen, respectively. Ear 11 is also expressed in response to protective priming of the respiratory mucosa with Lactobacillus plantarum; transcripts are detected both locally in lung as well as systemically in bone marrow and spleen. Mouse Ear 11 is enzymatically active, although substantially less so than mEar 1 and mEar 2; the relative catalytic efficiency (kcat/Km) of mEar 11 is diminished ∼1000-1500-fold. However, in contrast to RNase 2/EDN and mEar 2, which have been characterized as selective chemoattractants for CD11c(+) dendritic cells, mEar 11 has prominent chemoattractant activity for F4/80(+)CD11c(-) tissue macrophages. Chemoattractant activity is not dependent on full enzymatic activity, and requires no interaction with the pattern recognition receptor, Toll-like receptor 2 (TLR2). Taken together, this work characterizes a divergent RNase A ribonuclease with a unique expression pattern and function, and highlights the versatility of this family in promoting innate immunity.
Collapse
Affiliation(s)
| | - Tolga Barker
- Molecular Signal Transduction Sections, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | - Soochin Cho
- the Department of Biology, Creighton University, Omaha, Nebraska 68178, and
| | - James J Lee
- the Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic, Scottsdale, Arizona 85259
| | - Kirk M Druey
- Molecular Signal Transduction Sections, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
19
|
Green MD, Sabatinos SA, Forsburg SL. Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 2015; 1300:13-41. [PMID: 25916703 DOI: 10.1007/978-1-4939-2596-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole-cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for co-localization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We also suggest a mounting procedure for live fission yeast with fluorescent proteins. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.
Collapse
Affiliation(s)
- Marc D Green
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA, 90089-2910, USA,
| | | | | |
Collapse
|
20
|
Mucosal Eosinophils. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Goo SM, Cho S. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biol Evol 2014; 5:2124-40. [PMID: 24162010 PMCID: PMC3845642 DOI: 10.1093/gbe/evt161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ribonuclease (RNase) A superfamily is a vertebrate-specific gene family. Because of a massive expansion that occurred during the early mammalian evolution, extant mammals in general have much more RNase genes than nonmammalian vertebrates. Mammalian RNases have been associated with diverse physiological functions including digestion, cytotoxicity, angiogenesis, male reproduction, and host defense. However, it is still uncertain when their expansion occurred and how a wide array of functions arose during their evolution. To answer these questions, we generate a compendium of all RNase genes identified in 20 complete mammalian genomes including the platypus, Ornithorhynchus anatinus. Using this, we delineate 13 ancient RNase gene lineages that arose before the divergence between the monotreme and the other mammals (∼220 Ma). These 13 ancient gene lineages are differentially retained in the 20 mammals, and the rate of protein sequence evolution is highly variable among them, which suggest that they have undergone extensive functional diversification. In addition, we identify 22 episodes of recent expansion of RNase genes, many of which have signatures of adaptive functional differentiation. Exemplifying this, bursts of gene duplication occurred for the RNase1, RNase4, and RNase5 genes of the little brown bat (Myotis lucifugus), which might have contributed to the species’ effective defense against heavier pathogen loads caused by its communal roosting behavior. Our study illustrates how host-defense systems can generate new functions efficiently by employing a multigene family, which is crucial for a host organism to adapt to its ever-changing pathogen environment.
Collapse
|
22
|
Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int 2014; 87:151-61. [PMID: 25075772 PMCID: PMC4281292 DOI: 10.1038/ki.2014.268] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/23/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Recent evidence suggests antimicrobial peptides protect the urinary tract from infection. Ribonuclease 7 (RNase 7), a member of the RNase A superfamily, is a potent epithelial-derived protein that maintains human urinary tract sterility. RNase 7 expression is restricted to primates, limiting evaluation of its antimicrobial activity in vivo. Here we identified Ribonuclease 6 (RNase 6) as the RNase A Superfamily member present in humans and mice that is most conserved at the amino acid level relative to RNase 7. Like RNase 7, recombinant human and murine RNase 6 has potent antimicrobial activity against uropathogens. Quantitative real-time PCR and immunoblot analysis indicate that RNase 6 mRNA and protein are up-regulated in the human and murine urinary tract during infection. Immunostaining located RNase 6 to resident and infiltrating monocytes, macrophages, and neutrophils. Uropathogenic E. coli induces RNase 6 peptide expression in human CD14+ monocytes and murine bone marrow derived macrophages. Thus, RNase 6 is an inducible, myeloid-derived protein with markedly different expression from the epithelial-derived RNase 7 but with equally potent antimicrobial activity. Our studies suggest RNase 6 serves as an evolutionarily conserved antimicrobial peptide that participates in the maintenance of urinary tract sterility.
Collapse
|
23
|
Hung TJ, Tomiya N, Chang TH, Cheng WC, Kuo PH, Ng SK, Lien PC, Lee YC, Chang MDT. Functional characterization of ECP-heparin interaction: a novel molecular model. PLoS One 2013; 8:e82585. [PMID: 24349317 PMCID: PMC3859622 DOI: 10.1371/journal.pone.0082585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
Human eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) are two ribonuclease A (RNaseA) family members secreted by activated eosinophils. They share conserved catalytic triad and similar three dimensional structures. ECP and EDN are heparin binding proteins with diverse biological functions. We predicted a novel molecular model for ECP binding of heparin hexasaccharide (Hep6), [GlcNS(6S)-IdoA(2S)]3, and residues Gln(40), His(64) and Arg(105) were indicated as major contributions for the interaction. Interestingly, Gln(40) and His(64) on ECP formed a clamp-like structure to stabilize Hep6 in our model, which was not observed in the corresponding residues on EDN. To validate our prediction, mutant ECPs including ECP Q40A, H64A, R105A, and double mutant ECP Q40A/H64A were generated, and their binding affinity for heparins were measured by isothermal titration calorimetry (ITC). Weaker binding of ECP Q40A/H64A of all heparin variants suggested that Gln(40)-His(64) clamp contributed to ECP-heparin interaction significantly. Our in silico and in vitro data together demonstrate that ECP uses not only major heparin binding region but also use other surrounding residues to interact with heparin. Such correlation in sequence, structure, and function is a unique feature of only higher primate ECP, but not EDN.
Collapse
Affiliation(s)
- Ta-Jen Hung
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Noboru Tomiya
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tse-Hao Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Wen-Chi Cheng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Ping-Hsueh Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Sim-Kun Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Pei-Chun Lien
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yuan-Chuan Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
24
|
Pulido D, Moussaoui M, Nogués MV, Torrent M, Boix E. Towards the rational design of antimicrobial proteins. FEBS J 2013; 280:5841-52. [DOI: 10.1111/febs.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
Affiliation(s)
- David Pulido
- Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - M. Victòria Nogués
- Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
- Medical Research Council Laboratory of Molecular Biology; Francis Crick Avenue; Cambridge CB2 0QH UK
| | - Ester Boix
- Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| |
Collapse
|
25
|
Boix E, Salazar VA, Torrent M, Pulido D, Nogués MV, Moussaoui M. Structural determinants of the eosinophil cationic protein antimicrobial activity. Biol Chem 2013; 393:801-15. [PMID: 22944682 DOI: 10.1515/hsz-2012-0160] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/17/2012] [Indexed: 11/15/2022]
Abstract
Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.
Collapse
Affiliation(s)
- Ester Boix
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
In silico prediction and in vitro characterization of multifunctional human RNase3. BIOMED RESEARCH INTERNATIONAL 2013; 2013:170398. [PMID: 23484086 PMCID: PMC3581242 DOI: 10.1155/2013/170398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/02/2012] [Indexed: 12/18/2022]
Abstract
Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, 34RWRCK38 (HBR1), 75RSRFR79 (HBR2), and 101RPGRR105 (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members.
Collapse
|
27
|
Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin Immunol 2012; 130:572-84. [PMID: 22935586 DOI: 10.1016/j.jaci.2012.07.025] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients.
Collapse
Affiliation(s)
- James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Oliveira PCR, de Lima PO, Oliveira DT, Pereira MC. Eosinophil cationic protein: overview of biological and genetic features. DNA Cell Biol 2012; 31:1442-6. [PMID: 22845733 DOI: 10.1089/dna.2012.1729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The eosinophil cationic protein (ECP) is a small polypeptide that originates from activated eosinophil granulocytes. A wide range of stimuli has been shown to induce the secretion of ECP. The gene that encodes the human ECP is located on chromosome 14, and the protein shares the overall three-dimensional structure and the RNase active-site residues with other proteins in the RNase A superfamily. Several single-nucleotide polymorphisms in the human ECP gene have been currently described. ECP has many biological functions, including an immunoregulatory function, the regulation of fibroblast activity, and the induction of mucus secretion in the airway. Additionally, the protein is a potent cytotoxic molecule and has the capacity to kill mammalian and nonmammalian cells. The purpose of this article was to review the known biological and genetic characteristics of ECP that contribute to the understanding of this protein's role in the development and progression of a wide variety of diseases.
Collapse
|
29
|
The sulfate-binding site structure of the human eosinophil cationic protein as revealed by a new crystal form. J Struct Biol 2012; 179:1-9. [DOI: 10.1016/j.jsb.2012.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/05/2023]
|
30
|
Gupta SK, Haigh BJ, Griffin FJ, Wheeler TT. The mammalian secreted RNases: Mechanisms of action in host defence. Innate Immun 2012; 19:86-97. [DOI: 10.1177/1753425912446955] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mammalian ribonucleaseA family comprises a large group of structurally similar proteins which are secreted by a range of tissues and immune cells. Their physiological role is unclear. It has been suggested that some of these RNases contribute to host defence, notably eosinophil-derived neurotoxin, eosinophil cationic protein, eosinophil-associated RNases, RNase4, angiogenin (RNase5), RNase7, RNase8 and bovine seminal RNase. This review summarises data supporting the involvement of these proteins in host defence, focusing on their antimicrobial, cytotoxic and immunomodulatory activities. The extent to which the data support possible mechanisms of action for these proteins is discussed. This compilation of findings and current hypotheses on the physiological role of these RNases will provide a stimulus for further research and development of ideas on the contribution of the RNases to host defence.
Collapse
Affiliation(s)
- Sandeep K Gupta
- AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Brendan J Haigh
- AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand
| | - Frank J Griffin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
31
|
Chan CC, Moser JM, Dyer KD, Percopo CM, Rosenberg HF. Genetic diversity of human RNase 8. BMC Genomics 2012; 13:40. [PMID: 22272736 PMCID: PMC3295680 DOI: 10.1186/1471-2164-13-40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity) in non-human primate genomes. RESULTS RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site) was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE) and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. CONCLUSIONS These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.
Collapse
Affiliation(s)
- Calvin C Chan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer M Moser
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Current address: Health Science Specialist, Genome Medicine Program, Department of Veterans Affairs, 810 Vermont Avenue, NW, Washington, D.C
| | - Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline M Percopo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Building 10, Room 11C215, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892
| |
Collapse
|
32
|
|
33
|
Bystrom J, Amin K, Bishop-Bailey D. Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respir Res 2011; 12:10. [PMID: 21235798 PMCID: PMC3030543 DOI: 10.1186/1465-9921-12-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/14/2011] [Indexed: 02/06/2023] Open
Abstract
Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil.
Collapse
Affiliation(s)
- Jonas Bystrom
- Translational Medicine and Therapeutics, William Harvey Research Institute, Bart's and the London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kawa Amin
- Respiratory Medicine and Allergology, Department of Medical Science, Uppsala University Hospital, Uppsala, Sweden
- College of Medicine, Sulaimani University, Sulaimani, Iraq
| | - David Bishop-Bailey
- Translational Medicine and Therapeutics, William Harvey Research Institute, Bart's and the London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
34
|
Siegel SJ, Percopo CM, Dyer KD, Zhao W, Roth VL, Mercer JM, Rosenberg HF. RNase 1 genes from the family Sciuridae define a novel rodent ribonuclease cluster. Mamm Genome 2009; 20:749-57. [PMID: 19771477 DOI: 10.1007/s00335-009-9215-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The RNase A ribonucleases are a complex group of functionally diverse secretory proteins with conserved enzymatic activity. We have identified novel RNase 1 genes from four species of squirrel (order Rodentia, family Sciuridae). Squirrel RNase 1 genes encode typical RNase A ribonucleases, each with eight cysteines, a conserved CKXXNTF signature motif, and a canonical His(12)-Lys(41)-His(119) catalytic triad. Two alleles encode Callosciurus prevostii RNase 1, which include a Ser(18)<-->Pro, analogous to the sequence polymorphisms found among the RNase 1 duplications in the genome of Rattus exulans. Interestingly, although the squirrel RNase 1 genes are closely related to one another (77-95% amino acid sequence identity), the cluster as a whole is distinct and divergent from the clusters including RNase 1 genes from other rodent species. We examined the specific sites at which Sciuridae RNase 1s diverge from Muridae/Cricetidae RNase 1s and determined that the divergent sites are located on the external surface, with complete sparing of the catalytic crevice. The full significance of these findings awaits a more complete understanding of biological role of mammalian RNase 1s.
Collapse
Affiliation(s)
- Steven J Siegel
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Identification of polymorphisms in the RNase3 gene and the association with allergic rhinitis. Eur Arch Otorhinolaryngol 2009; 267:391-5. [PMID: 19760211 DOI: 10.1007/s00405-009-1103-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Eosinophil cationic protein (ECP), a potent cytotoxic molecule, is released by activated eosinophils. ECP has been suggested to be involved in tissue remodeling of allergic diseases. The ECP (RNase3) gene is a candidate gene in atopic diseases. RNase3 polymorphisms have been reported to have an association with atopy. We determined whether polymorphisms in the RNase3 gene are associated with allergic rhinitis in a Korean population. The Taqman assay, restriction fragment length polymorphism (PCR-RFLP), and high-resolution melt (HRM) were used for genotyping. Three single nucleotide polymorphisms (SNPs; g.-550A>G, g.371G>C, and g.499G>C) were identified. The genotype of the SNPs was analyzed in patients with allergic rhinitis and controls without allergic rhinitis. The genotype and allele frequencies were compared between both groups. The genotype frequencies of the g.-550A>G and g.371G>C SNPs were not significantly different between patients with allergic rhinitis and controls (P > 0.05). However, in patients with allergic rhinitis, the genotype and allele frequencies of the g.499G>C SNP of RNase 3 were significantly different from those of the control group (P < 001, P = 0.034, respectively). Haplotype analysis demonstrated the presence of the following five different (-550)-(+371)-(+499) major haplotypes: A-G-G, G-C-C, G-G-G, G-C-G, and A-G-C. The G-C-G haplotype was positively associated with allergic rhinitis (P = 0.048), while the G-G-G haplotype was negatively associated with allergic rhinitis (P = 0.004). Our study suggests that RNase3 polymorphisms are potentially associated with susceptibility to allergic rhinitis.
Collapse
|
36
|
Abstract
Eosinophils are implicated in the pathophysiology of respiratory virus infection, most typically in negative roles, such as promoting wheezing and bronchoconstriction in conjunction with virus-induced exacerbations of reactive airways disease and in association with aberrant hypersensitivity responses to viral vaccines. However, experiments carried out in vitro and in vivo suggest positive roles for eosinophils, as they have been shown to reduce virus infectivity in tissue culture and promote clearance of the human pathogen, respiratory syncytial virus in a mouse challenge model. The related natural rodent pathogen, pneumonia virus of mice (PVM), is highly virulent in mice, and is not readily cleared by eosinophils in vivo. Interestingly, PVM replicates in eosinophils and promotes cytokine release. The molecular basis of virus infection in eosinophils and its relationship to disease outcome is currently under study.
Collapse
|
37
|
Qiu Z, Dyer KD, Xie Z, Rådinger M, Rosenberg HF. GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J Biol Chem 2009; 284:13099-109. [PMID: 19279013 DOI: 10.1074/jbc.m807307200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factors GATA-1 and GATA-2 have been implicated in promoting differentiation of eosinophilic leukocytes. In this study, we examined the roles of GATA-1 and GATA-2 in activating transcription of the secretory ribonuclease, the eosinophil-derived neurotoxin (EDN/RNase 2). Augmented expression of both GATA-1 and GATA-2 was detected in eosinophil promyelocyte HL-60 clone 15 cells in response to biochemical differentiation with butyric acid. Deletion or mutation of one or both of the two consensus GATA-binding sites in the extended 1000-bp 5' promoter of the EDN gene resulted in profound reduction in reporter gene activity. Antibody-augmented electrophoretic mobility shift and chromatin immunoprecipitation analyses indicate that GATA-1 and GATA-2 proteins bind to both functional GATA consensus sequences in the EDN promoter. Interestingly, RNA silencing of GATA-1 alone had no impact on EDN expression; silencing of GATA-2 resulted in diminished expression of EDN, and also diminished expression of GATA-1 in both butyric acid-induced HL-60 clone 15 cells and in differentiating human eosinophils derived from CD34(+) hematopoietic progenitors. Likewise, overexpression of GATA-2 in uninduced HL-60 clone 15 cells resulted in augmented transcription of both EDN and GATA-1. Taken together, our data suggest that GATA-2 functions directly via interactions with the EDN promoter and also indirectly, via its ability to regulate the expression of GATA-1 in differentiating eosinophils and eosinophil cell lines.
Collapse
Affiliation(s)
- Zhijun Qiu
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Green MD, Sabatinos SA, Forsburg SL. Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 2009; 521:463-82. [PMID: 19563123 DOI: 10.1007/978-1-60327-815-7_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for colocalization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.
Collapse
Affiliation(s)
- Marc D Green
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
39
|
Rosenberg HF. Eosinophil-derived neurotoxin / RNase 2: connecting the past, the present and the future. Curr Pharm Biotechnol 2008; 9:135-40. [PMID: 18673278 PMCID: PMC2680432 DOI: 10.2174/138920108784567236] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The eosinophil-derived neurotoxin (EDN, also known as eosinophil protein-X) is best-known as one of the four major proteins found in the large specific granules of human eosinophilic leukocytes. Although it was named for its discovery and initial characterization as a neurotoxin, it is also expressed constitutively in human liver tissue and its expression can be induced in macrophages by proinflammatory stimuli. EDN and its divergent orthologs in rodents have ribonuclease activity, and are members of the extensive RNase A superfamily, although the relationship between the characterized physiologic functions and enzymatic activity remains poorly understood. Recent explorations into potential physiologic functions for EDN have provided us with some insights into its role in antiviral host defense, as a chemoattractant for human dendritic cells, and most recently, as an endogenous ligand for toll-like receptor (TLR)2.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
40
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 563] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|
41
|
Torrent M, Navarro S, Moussaoui M, Nogués MV, Boix E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 2008; 47:3544-55. [PMID: 18293932 DOI: 10.1021/bi702065b] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eosinophil cationic protein (ECP) is an eosinophil-secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. The protein displays antimicrobial activity against both Gram-negative and Gram-positive strains. The protein can destabilize lipid bilayers, although the action at the membrane level can only partially account for its bactericidal activity. We have now shown that ECP can bind with high affinity to the bacteria-wall components. We have analyzed its specific association to lipopolysaccharides (LPSs), its lipid A component, and peptidoglycans (PGNs). ECP high-affinity binding capacity to LPSs and lipid A has been analyzed by a fluorescent displacement assay, and the corresponding dissociation constants were calculated using the protein labeled with a fluorophor. The protein also binds in vivo to bacteria cells. Ultrastructural analysis of cell bacteria wall and morphology have been visualized by scanning and transmission electron microscopy in both Escherichia coli and Staphylococcus aureus strains. The protein damages the bacteria surface and induces the cell population aggregation on E. coli cultures. Although both bacteria strain cells retain their shape and no cell lysis is patent, the protein can induce in E. coli the outer membrane detachment. ECP also activates the cytoplasmic membrane depolarization in both strains. Moreover, the depolarization activity on E. coli does not require any pretreatment to overcome the outer membrane barrier. The protein binding to the bacteria-wall surface would represent a first encounter step key in its antimicrobial mechanism of action.
Collapse
Affiliation(s)
- Marc Torrent
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valles, Spain
| | | | | | | | | |
Collapse
|
42
|
Abstract
RNase A (bovine pancreatic RNase) is the founding member an extensive family of divergent proteins that share specific elements of sequence homology, a unique disulfide-bonded tertiary structure, and the ability to hydrolyze polymeric RNA. Among the more intriguing and perhaps counterintuitive findings, at the current state of the art, the connection between RNase activity and characterized host defense functions is quite weak; whether this is a scientific reality or more a reflection of what has been chosen for study remains to be determined. Several of the RNase A family RNases are highly cationic and have cytotoxic and bactericidal properties that are clearly (eosinophil cationic protein, leukocyte RNase A-2) or are probably (RNase 7) unrelated to their enzymatic activity. Interestingly, peptides derived from the leukocyte RNase A-2 sequence are nearly as bactericidal as the entire protein, suggesting that among other functions, the RNase A superfamily may be serving as a source of gene scaffolds for the generation of novel cytotoxic peptides. Other RNase A ribonucleases are somewhat less cationic (mouse angiogenin 4, zebrafish RNases) and have moderate bactericidal activities that have not yet been explored mechanistically. Additional host defense functions characterized specifically for the RNase eosinophil-derived neurotoxin include reducing infectivity of RNA viruses for target cells in culture, which does require RNase activity, chemoattraction of immature human dendritic cells via a G-protein-coupled receptor-dependent mechanism, and activation of TLR2. The properties of individual RNase A ribonucleases, recent experimental findings, and important questions for the near and distant future will be reviewed.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Blanchard C, Rothenberg ME. Basic pathogenesis of eosinophilic esophagitis. Gastrointest Endosc Clin N Am 2008; 18:133-43; x. [PMID: 18061107 PMCID: PMC2194642 DOI: 10.1016/j.giec.2007.09.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eosinophilic esophagitis (EE) is a newly recognized disease, which has largely been called idiopathic EE, emphasizing the poor understanding of its pathogenesis. EE is a severe disease of the esophagus characterized by an accumulation of eosinophils in the esophageal mucosa, and is highly associated with atopic disease. Nevertheless, the nomenclature "eosinophilic esophagitis" describes only the tip of the iceberg of a complex disorder, as the pathogenesis of EE involves multiple tissues, cell types, and genes, and derives from complex genetic and environmental factors. This article defines the fundamental knowledge available to date that characterizes the mechanisms by which certain etiological factors cause EE, reviewing human studies, murine models, and recent knowledge regarding the involvement of environmental, cellular, molecular, and genetic factors in the development of EE.
Collapse
Affiliation(s)
- Carine Blanchard
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
44
|
Wang HY, Chang HT, Pai TW, Wu CI, Lee YH, Chang YH, Tai HL, Tang CY, Chou WY, Chang MDT. Transcriptional regulation of human eosinophil RNases by an evolutionary- conserved sequence motif in primate genome. BMC Mol Biol 2007; 8:89. [PMID: 17927842 PMCID: PMC2174947 DOI: 10.1186/1471-2199-8-89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 10/11/2007] [Indexed: 11/24/2022] Open
Abstract
Background Human eosinophil-derived neurotoxin (edn) and eosinophil cationic protein (ecp) are members of a subfamily of primate ribonuclease (rnase) genes. Although they are generated by gene duplication event, distinct edn and ecp expression profile in various tissues have been reported. Results In this study, we obtained the upstream promoter sequences of several representative primate eosinophil rnases. Bioinformatic analysis revealed the presence of a shared 34-nucleotide (nt) sequence stretch located at -81 to -48 in all edn promoters and macaque ecp promoter. Such a unique sequence motif constituted a region essential for transactivation of human edn in hepatocellular carcinoma cells. Gel electrophoretic mobility shift assay, transient transfection and scanning mutagenesis experiments allowed us to identify binding sites for two transcription factors, Myc-associated zinc finger protein (MAZ) and SV-40 protein-1 (Sp1), within the 34-nt segment. Subsequent in vitro and in vivo binding assays demonstrated a direct molecular interaction between this 34-nt region and MAZ and Sp1. Interestingly, overexpression of MAZ and Sp1 respectively repressed and enhanced edn promoter activity. The regulatory transactivation motif was mapped to the evolutionarily conserved -74/-65 region of the edn promoter, which was guanidine-rich and critical for recognition by both transcription factors. Conclusion Our results provide the first direct evidence that MAZ and Sp1 play important roles on the transcriptional activation of the human edn promoter through specific binding to a 34-nt segment present in representative primate eosinophil rnase promoters.
Collapse
Affiliation(s)
- Hsiu-Yu Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Gastrointestinal eosinophilia, a broad term for abnormal eosinophil accumulation in the gastrointestinal tract, involves many different disease identities. These diseases include primary eosinophil associated gastrointestinal diseases, gastrointestinal eosinophilia in hypereosinophilic syndrome, and all gastrointestinal eosinophilic states associated with known causes. Each of these diseases has its unique features but there is no absolute boundary between them. All three groups of gastrointestinal eosinophila are described in this article, although the focus is on primary gastrointestinal eosinophilia.
Collapse
Affiliation(s)
- Li Zuo
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
46
|
Boix E, Nogués MV. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. MOLECULAR BIOSYSTEMS 2007; 3:317-35. [PMID: 17460791 DOI: 10.1039/b617527a] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review starts with a general outlook of the main mechanisms of action of antimicrobial proteins and peptides, with the final aim of understanding the biological function of antimicrobial RNases, and identifying the key events that account for their selective properties. Although most antibacterial proteins and peptides do display a wide-range spectrum of action, with a cytotoxic activity against bacteria, fungi, eukaryotic parasites and viruses, we have only focused on their bactericidal activity. We start with a detailed description of the main distinctive structural features of the bacteria target and on the polypeptides, which act as selective host defence weapons.Following, we include an overview of all the current available information on the mammalian RNases which display an antimicrobial activity. There is a wealth of information on the structural, catalytic mechanism and evolutionary relationships of the RNase A superfamily. The bovine pancreatic RNase A (RNase A), the reference member of the mammalian RNase family, has been the main research object of several Nobel laureates in the 60s, 70s and 80s. A potential antimicrobial function was only recently suggested for several members of this family. In fact, the recent evolutionary studies indicate that this protein family may have started off with a host defence function. Antimicrobial RNases constitute an interesting example of proteins involved in the mammalian innate immune defence system. Besides, there is wealth of available information on the mechanism of action of short antimicrobial peptides, but little is known on larger polypeptides, that is, on proteins. Therefore, the identification of the mechanisms of action of antimicrobial RNases would contribute to the understanding of the proteins involved in the innate immunity.
Collapse
Affiliation(s)
- Ester Boix
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
47
|
Cho S, Zhang J. Zebrafish Ribonucleases Are Bactericidal: Implications for the Origin of the Vertebrate RNase A Superfamily. Mol Biol Evol 2007; 24:1259-68. [PMID: 17347156 DOI: 10.1093/molbev/msm047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the evolutionary origin of the ribonuclease (RNase) A superfamily is of great interest because the superfamily is the sole vertebrate-specific enzyme family known to date. Although mammalian RNases have a diverse array of biochemical and physiological functions, the original function of the superfamily at its birth is enigmatic. Such information may be obtained by studying basal lineages of the vertebrate phylogeny and is necessary for discerning how and why this superfamily originated. Here, we clone and characterize 3 RNase genes from the zebrafish, the most basal vertebrate examined for RNases. We report 1) that all the 3 zebrafish RNases are ribonucleolytically active, with one of them having an RNase activity comparable to that of bovine RNase A, the prototype of the superfamily; 2) that 2 zebrafish RNases have prominent expressions in adult liver and gut, whereas the 3rd is expressed in adult eye and heart; and 3) that all 3 RNases have antibacterial activities in vitro. These results, together with the presence of antibacterial and/or antiviral activities in multiple distantly related mammalian RNases, strongly suggest that the superfamily started as a host-defense mechanism in vertebrate evolution.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
48
|
Johnson RJ, McCoy JG, Bingman CA, Phillips GN, Raines RT. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 2007; 368:434-49. [PMID: 17350650 PMCID: PMC1993901 DOI: 10.1016/j.jmb.2007.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/27/2007] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.
Collapse
Affiliation(s)
- R Jeremy Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The Ribonuclease A superfamily includes an extensive network of distinct and divergent gene lineages. Although all ribonucleases of this superfamily share invariant structural and catalytic elements and some degree of enzymatic activity, the primary sequences have diverged significantly, ostensibly to promote novel function. We will review the literature on the evolution and biology of the RNase A ribonuclease lineages that have been characterized specifically as involved in host defense including: (1) RNases 2 and RNases 3, also known as the eosinophil ribonucleases, which are rapidly-evolving cationic proteins released from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen ribonuclease identified in human skin, and (3) RNase 5, also known as angiogenin, another rapidly-evolving ribonuclease known to promote blood vessel growth with recently-discovered antibacterial activity. Interestingly, some of the characterized anti-pathogen activities do not depend on ribonuclease activity per se. We discuss the ways in which the anti-pathogen activities characterized in vitro might translate into experimental confirmation in vivo. We will also consider the possibility that other ribonucleases, such as the dimeric bovine seminal ribonuclease and the frog oocyte ribonucleases, may have host defense functions and therapeutic value that remain to be explored. (190 words).
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
50
|
Nitto T, Dyer KD, Czapiga M, Rosenberg HF. Evolution and Function of Leukocyte RNase A Ribonucleases of the Avian Species, Gallus gallus. J Biol Chem 2006; 281:25622-34. [PMID: 16803891 DOI: 10.1074/jbc.m604313200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we explore the evolution and function of two closely related RNase A ribonucleases from the chicken, Gallus gallus. Separated by approximately 10 kb on chromosome 6, the coding sequences of RNases A-1 and A-2 are diverging under positive selection pressure (dN > dS) but remain similar to one another (81% amino acid identity) and to the mammalian angiogenins. Immunoreactive RNases A-1 and A-2 (both approximately 16 kDa) were detected in peripheral blood granulocytes and bone marrow. Recombinant proteins are ribonucleolytically active (kcat = 2.6 and 0.056 s(-1), respectively), and surprisingly, both interact with human placental ribonuclease inhibitor. RNase A-2, the more cationic (pI 11.0), is both angiogenic and bactericidal; RNase A-1 (pI 10.2) has neither activity. We demonstrated via point mutation of the catalytic His110 that ablation of ribonuclease activity has no impact on the bactericidal activity of RNase A-2. We determined that the divergent domains II (amino acids 71-76) and III (amino acids 89-104) of RNase A-2 are both important for bactericidal activity. Furthermore, we demonstrated that these cationic domains can function as independent bactericidal peptides without the tertiary structure imposed by the RNase A backbone. These results suggest that ribonucleolytic activity may not be a crucial constraint limiting the ongoing evolution of this gene family and that the ribonuclease backbone may be merely serving as a scaffold to support the evolution of novel, nonribonucleolytic proteins.
Collapse
Affiliation(s)
- Takeaki Nitto
- Laboratory of Allergic Diseases and Research Technologies Branch, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|