1
|
Woode RA, Strubberg AM, Liu J, Walker NM, Clarke LL. Increased activity of epithelial Cdc42 Rho GTPase and tight junction permeability in the Cftr knockout intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G545-G557. [PMID: 39104325 DOI: 10.1152/ajpgi.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/β-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/β-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.
Collapse
Affiliation(s)
- Rowena A Woode
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Heneghan M, Southern KW, Murphy J, Sinha IP, Nevitt SJ. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst Rev 2023; 11:CD010966. [PMID: 37983082 PMCID: PMC10659105 DOI: 10.1002/14651858.cd010966.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del is the commonest CF-causing variant (found in up to 90% of people with CF (pwCF)). The F508del variant lacks meaningful CFTR function - faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. Corrective therapy could benefit many pwCF. This review evaluates single correctors (monotherapy) and any combination of correctors (most commonly lumacaftor, tezacaftor, elexacaftor, VX-659, VX-440 or VX-152) and a potentiator (e.g. ivacaftor) (dual and triple therapies). OBJECTIVES To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del). SEARCH METHODS We searched the Cochrane CF Trials Register (28 November 2022), reference lists of relevant articles and online trials registries (3 December 2022). SELECTION CRITERIA Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations. DATA COLLECTION AND ANALYSIS Two authors independently extracted data, assessed risk of bias and judged evidence certainty (GRADE); we contacted investigators for additional data. MAIN RESULTS We included 34 RCTs (4781 participants), lasting between 1 day and 48 weeks; an extension of two lumacaftor-ivacaftor studies provided additional 96-week safety data (1029 participants). We assessed eight monotherapy RCTs (344 participants) (4PBA, CPX, lumacaftor, cavosonstat and FDL169), 16 dual-therapy RCTs (2627 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) and 11 triple-therapy RCTs (1804 participants) (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor). Participants in 21 RCTs had the genotype F508del/F508del, in seven RCTs they had F508del/minimal function (MF), in one RCT F508del/gating genotypes, in one RCT either F508del/F508del genotypes or F508del/residual function genotypes, in one RCT either F508del/gating or F508del/residual function genotypes, and in three RCTs either F508del/F508del genotypes or F508del/MF genotypes. Risk of bias judgements varied across different comparisons. Results from 16 RCTs may not be applicable to all pwCF due to age limits (e.g. adults only) or non-standard designs (converting from monotherapy to combination therapy). Monotherapy Investigators reported no deaths or clinically relevant improvements in quality of life (QoL). There was insufficient evidence to determine effects on lung function. No placebo-controlled monotherapy RCT demonstrated differences in mild, moderate or severe adverse effects (AEs); the clinical relevance of these events is difficult to assess due to their variety and few participants (all F508del/F508del). Dual therapy In a tezacaftor-ivacaftor group there was one death (deemed unrelated to the study drug). QoL scores (respiratory domain) favoured both lumacaftor-ivacaftor and tezacaftor-ivacaftor therapy compared to placebo at all time points (moderate-certainty evidence). At six months, relative change in forced expiratory volume in one second (FEV1) % predicted improved with all dual combination therapies compared to placebo (high- to moderate-certainty evidence). More pwCF reported early transient breathlessness with lumacaftor-ivacaftor (odds ratio (OR) 2.05, 99% confidence interval (CI) 1.10 to 3.83; I2 = 0%; 2 studies, 739 participants; high-certainty evidence). Over 120 weeks (initial study period and follow-up), systolic blood pressure rose by 5.1 mmHg and diastolic blood pressure by 4.1 mmHg with twice-daily 400 mg lumacaftor-ivacaftor (80 participants). The tezacaftor-ivacaftor RCTs did not report these adverse effects. Pulmonary exacerbation rates decreased in pwCF receiving additional therapies to ivacaftor compared to placebo (all moderate-certainty evidence): lumacaftor 600 mg (hazard ratio (HR) 0.70, 95% CI 0.57 to 0.87; I2 = 0%; 2 studies, 739 participants); lumacaftor 400 mg (HR 0.61, 95% CI 0.49 to 0.76; I2 = 0%; 2 studies, 740 participants); and tezacaftor (HR 0.64, 95% CI 0.46 to 0.89; 1 study, 506 participants). Triple therapy No study reported any deaths (high-certainty evidence). All other evidence was low- to moderate-certainty. QoL respiratory domain scores probably improved with triple therapy compared to control at six months (six studies). There was probably a greater relative and absolute change in FEV1 % predicted with triple therapy (four studies each across all combinations). The absolute change in FEV1 % predicted was probably greater for F508del/MF participants taking elexacaftor-tezacaftor-ivacaftor compared to placebo (mean difference 14.30, 95% CI 12.76 to 15.84; 1 study, 403 participants; moderate-certainty evidence), with similar results for other drug combinations and genotypes. There was little or no difference in adverse events between triple therapy and control (10 studies). No study reported time to next pulmonary exacerbation, but fewer F508del/F508del participants experienced a pulmonary exacerbation with elexacaftor-tezacaftor-ivacaftor at four weeks (OR 0.17, 99% CI 0.06 to 0.45; 1 study, 175 participants) and 24 weeks (OR 0.29, 95% CI 0.14 to 0.60; 1 study, 405 participants); similar results were seen across other triple therapy and genotype combinations. AUTHORS' CONCLUSIONS There is insufficient evidence of clinically important effects from corrector monotherapy in pwCF with F508del/F508del. Additional data in this review reduced the evidence for efficacy of dual therapy; these agents can no longer be considered as standard therapy. Their use may be appropriate in exceptional circumstances (e.g. if triple therapy is not tolerated or due to age). Both dual therapies (lumacaftor-ivacaftor, tezacaftor-ivacaftor) result in similar small improvements in QoL and respiratory function with lower pulmonary exacerbation rates. While the effect sizes for QoL and FEV1 still favour treatment, they have reduced compared to our previous findings. Lumacaftor-ivacaftor was associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (not observed for tezacaftor-ivacaftor). Tezacaftor-ivacaftor has a better safety profile, although data are lacking in children under 12 years. In this population, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the blood pressure increase and shortness of breath seen in longer-term adult data when considering lumacaftor-ivacaftor. Data from triple therapy trials demonstrate improvements in several key outcomes, including FEV1 and QoL. There is probably little or no difference in adverse events for triple therapy (elexacaftor-tezacaftor-ivacaftor/deutivacaftor; VX-659-tezacaftor-ivacaftor/deutivacaftor; VX-440-tezacaftor-ivacaftor; VX-152-tezacaftor-ivacaftor) in pwCF with one or two F508del variants aged 12 years or older (moderate-certainty evidence). Further RCTs are required in children under 12 years and those with more severe lung disease.
Collapse
Affiliation(s)
- Matthew Heneghan
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
3
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
4
|
Martinovich KM, Kicic A, Stick SM, Johnsen RD, Fletcher S, Wilton SD. Investigating the Implications of CFTR Exon Skipping Using a Cftr Exon 9 Deleted Mouse Model. Front Pharmacol 2022; 13:868863. [PMID: 35392567 PMCID: PMC8981082 DOI: 10.3389/fphar.2022.868863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Severity and disease progression in people with Cystic Fibrosis (CF) is typically dependent on their genotype. One potential therapeutic strategy for people with specific mutations is exon skipping with antisense oligonucleotides (AO). CFTR exon 9 is an in-frame exon and hence the exclusion of this exon would excise only 31 amino acids but not alter the reading frame of the remaining mRNA. Splice mutations 1209 + 1 G > C and 1209 + 2 T > G were documented to cause CFTR exon 9 skipping and these variants were reported to manifest as a milder CF disease, therefore exon 9 skipping could be beneficial for people with class I mutations that affect exon 9 such as p.Trp401X. While the impact of exon 9 skipping on gene expression and cellular pathways can be studied in cells in vitro, trace amount of full-length normal or mutated material could confound the evaluation. To overcome this limitation, the impact of CFTR exon 9 skipping on disease phenotype and severity is more effectively evaluated in a small animal model. It was hypothesised that antisense oligonucleotide-mediated skipping this particular exon could result in a "mild mouse CF phenotype". Methods: Cftr exon 9 deleted mice were generated using homologous recombination. Survival of homozygous (Cftr Δ9/Δ9 ) and heterozygous (Cftr Δ9/+ ) mice was compared to that of other CF mouse models, and lung and intestinal organ histology examined for any pathologies. Primary airway epithelial cells (pAECs) were harvested from Cftr Δ9/Δ9 mice and cultured at the Air Liquid Interface for CFTR functional assessment using Ussing Chamber analysis. Results: A Cftr Δ9/Δ9 mouse model presented with intestinal obstructions, and at time of weaning (21 days). Cftr Δ9/Δ9 mice had a survival rate of 83% that dropped to 38% by day 50. Histological sections of the small intestine from Cftr Δ9/Δ9 mice showed more goblet cells and mucus accumulation than samples from the Cftr Δ9/+ littermates. Airway epithelial cell cultures established from Cftr Δ9/Δ9 mice were not responsive to forskolin stimulation. Summary: The effect of Cftr exon 9 deletion on Cftr function was assessed and it was determined that the encoded Cftr isoform did not result in a milder "mouse CF disease phenotype," suggesting that Cftr exon 9 is not dispensable, although further investigation in human CF pAECs would be required to confirm this observation.
Collapse
Affiliation(s)
- Kelly M Martinovich
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Anthony Kicic
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Stephen M Stick
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia
| | - Russell D Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,PYC Therapeutics, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
5
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
6
|
Viotti Perisse I, Fan Z, Van Wettere A, Liu Y, Leir S, Keim J, Regouski M, Wilson MD, Cholewa KM, Mansbach SN, Kelley TJ, Wang Z, Harris A, White KL, Polejaeva IA. Sheep models of F508del and G542X cystic fibrosis mutations show cellular responses to human therapeutics. FASEB Bioadv 2021; 3:841-854. [PMID: 34632318 PMCID: PMC8493969 DOI: 10.1096/fba.2021-00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jacob Keim
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Michael D. Wilson
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kelly M. Cholewa
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sara N. Mansbach
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Thomas J. Kelley
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| |
Collapse
|
7
|
Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Sci Rep 2021; 11:17535. [PMID: 34475490 PMCID: PMC8413329 DOI: 10.1038/s41598-021-97033-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1β, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.
Collapse
|
8
|
Cystic Fibrosis Human Organs-on-a-Chip. MICROMACHINES 2021; 12:mi12070747. [PMID: 34202364 PMCID: PMC8305167 DOI: 10.3390/mi12070747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene: the gene product responsible for transporting chloride and bicarbonate ions through the apical membrane of most epithelial cells. Major clinical features of CF include respiratory failure, pancreatic exocrine insufficiency, and intestinal disease. Many CF animal models have been generated, but some models fail to fully capture the phenotypic manifestations of human CF disease. Other models that better capture the key characteristics of the human CF phenotype are cost prohibitive or require special care to maintain. Important differences have been reported between the pathophysiology seen in human CF patients and in animal models. These limitations present significant limitations to translational research. This review outlines the study of CF using patient-derived organs-on-a-chip to overcome some of these limitations. Recently developed microfluidic-based organs-on-a-chip provide a human experimental model that allows researchers to manipulate environmental factors and mimic in vivo conditions. These chips may be scaled to support pharmaceutical studies and may also be used to study organ systems and human disease. The use of these chips in CF discovery science enables researchers to avoid the barriers inherent in animal models and promote the advancement of personalized medicine.
Collapse
|
9
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Tan Q, di Stefano G, Tan X, Renjie X, Römermann D, Talbot SR, Seidler UE. Inhibition of Na + /H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br J Pharmacol 2021; 178:1018-1036. [PMID: 33179259 DOI: 10.1111/bph.15323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Constipation and intestinal obstructive episodes are major health problems in cystic fibrosis (CF) patients. Three FDA-approved drugs against constipation-prone irritable bowel syndrome were tested for their ability to increase luminal fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator (CFTR) null (cftr-/- ) and F508del mutant (F508delmut/mut ) murine intestine. EXPERIMENTAL APPROACH Guanylate cyclase C agonist linaclotide, PGE1 analogue lubiprostone and intestine-specific NHE3 inhibitor tenapanor were perfused through a ~3 cm jejunal, proximal or mid-distal colonic segment in anaesthetized cftr-/- , F508delmut/mut and WT mice. Net fluid balance was determined gravimetrically and alkaline output by pH-stat back titration. KEY RESULTS Basal jejunal fluid absorptive rates were significantly higher and basal HCO3 - output was significantly lower in cftr-/- and F508delmut/mut compared to WT mice. In cftr-/- and F508delmut/mut mice, all three drugs significantly inhibited the fluid absorptive rate and increased alkaline output in the jejunum and tenapanor and lubiprostone, but not linaclotide, in the colon. After tenapanor pre-incubation, linaclotide elicited a robust fluid secretory response in WT jejunum, while no further change in absorptive rates was observed in cftr-/- and F508delmut/mut jejunum, suggesting that the increase in gut fluidity and alkalinity by linaclotide in CF gut is mediated via NHE3 inhibition. Lubiprostone also inhibited fluid absorption in cftr-/- and F508delmut/mut jejunum via NHE3 inhibition but had a residual NHE3-independent effect. CONCLUSION AND IMPLICATIONS Linaclotide, lubiprostone and tenapanor reduced fluid absorption and increased alkaline output in the CF gut. Their application may ameliorate constipation and reduce obstructive episodes in CF patients.
Collapse
Affiliation(s)
- Qinghai Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | | | - Xinjie Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Xiu Renjie
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Steven R Talbot
- Institute of Veterinary Research, Hannover Medical School, Hanover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
12
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
14
|
Southern KW, Murphy J, Sinha IP, Nevitt SJ. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst Rev 2020; 12:CD010966. [PMID: 33331662 PMCID: PMC8094390 DOI: 10.1002/14651858.cd010966.pub3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del (found in up to 90% of people with CF (pwCF)) is the commonest CF-causing variant. The faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. The F508del variant lacks meaningful CFTR function and corrective therapy could benefit many pwCF. Therapies in this review include single correctors and any combination of correctors and potentiators. OBJECTIVES To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del). SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Cystic Fibrosis Trials Register, reference lists of relevant articles and online trials registries. Most recent search: 14 October 2020. SELECTION CRITERIA Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations. DATA COLLECTION AND ANALYSIS Two authors independently extracted data, assessed risk of bias and evidence quality (GRADE); we contacted investigators for additional data. MAIN RESULTS We included 19 RCTs (2959 participants), lasting between 1 day and 24 weeks; an extension of two lumacaftor-ivacaftor studies provided additional 96-week safety data (1029 participants). We assessed eight monotherapy RCTs (344 participants) (4PBA, CPX, lumacaftor, cavosonstat and FDL169), six dual-therapy RCTs (1840 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) and five triple-therapy RCTs (775 participants) (elexacaftor-tezacaftor-ivacaftor or VX-659-tezacaftor-ivacaftor); below we report only the data from elexacaftor-tezacaftor-ivacaftor combination which proceeded to Phase 3 trials. In 14 RCTs participants had F508del/F508del genotypes, in three RCTs F508del/minimal function (MF) genotypes and in two RCTs both genotypes. Risk of bias judgements varied across different comparisons. Results from 11 RCTs may not be applicable to all pwCF due to age limits (e.g. adults only) or non-standard design (converting from monotherapy to combination therapy). Monotherapy Investigators reported no deaths or clinically-relevant improvements in quality of life (QoL). There was insufficient evidence to determine any important effects on lung function. No placebo-controlled monotherapy RCT demonstrated differences in mild, moderate or severe adverse effects (AEs); the clinical relevance of these events is difficult to assess with their variety and small number of participants (all F508del/F508del). Dual therapy Investigators reported no deaths (moderate- to high-quality evidence). QoL scores (respiratory domain) favoured both lumacaftor-ivacaftor and tezacaftor-ivacaftor therapy compared to placebo at all time points. At six months lumacaftor 600 mg or 400 mg (both once daily) plus ivacaftor improved Cystic Fibrosis Questionnaire (CFQ) scores slightly compared with placebo (mean difference (MD) 2.62 points (95% confidence interval (CI) 0.64 to 4.59); 1061 participants; high-quality evidence). A similar effect was observed for twice-daily lumacaftor (200 mg) plus ivacaftor (250 mg), but with low-quality evidence (MD 2.50 points (95% CI 0.10 to 5.10)). The mean increase in CFQ scores with twice-daily tezacaftor (100 mg) and ivacaftor (150 mg) was approximately five points (95% CI 3.20 to 7.00; 504 participants; moderate-quality evidence). At six months, the relative change in forced expiratory volume in one second (FEV1) % predicted improved with combination therapies compared to placebo by: 5.21% with once-daily lumacaftor-ivacaftor (95% CI 3.61% to 6.80%; 504 participants; high-quality evidence); 2.40% with twice-daily lumacaftor-ivacaftor (95% CI 0.40% to 4.40%; 204 participants; low-quality evidence); and 6.80% with tezacaftor-ivacaftor (95% CI 5.30 to 8.30%; 520 participants; moderate-quality evidence). More pwCF reported early transient breathlessness with lumacaftor-ivacaftor, odds ratio 2.05 (99% CI 1.10 to 3.83; 739 participants; high-quality evidence). Over 120 weeks (initial study period and follow-up) systolic blood pressure rose by 5.1 mmHg and diastolic blood pressure by 4.1 mmHg with twice-daily 400 mg lumacaftor-ivacaftor (80 participants; high-quality evidence). The tezacaftor-ivacaftor RCTs did not report these adverse effects. Pulmonary exacerbation rates decreased in pwCF receiving additional therapies to ivacaftor compared to placebo: lumacaftor 600 mg hazard ratio (HR) 0.70 (95% CI 0.57 to 0.87; 739 participants); lumacaftor 400 mg, HR 0.61 (95% CI 0.49 to 0.76; 740 participants); and tezacaftor, HR 0.64 (95% CI, 0.46 to 0.89; 506 participants) (moderate-quality evidence). Triple therapy Three RCTs of elexacaftor to tezacaftor-ivacaftor in pwCF (aged 12 years and older with either one or two F508del variants) reported no deaths (high-quality evidence). All other evidence was graded as moderate quality. In 403 participants with F508del/minimal function (MF) elexacaftor-tezacaftor-ivacaftor improved QoL respiratory scores (MD 20.2 points (95% CI 16.2 to 24.2)) and absolute change in FEV1 (MD 14.3% predicted (95% CI 12.7 to 15.8)) compared to placebo at 24 weeks. At four weeks in 107 F508del/F508del participants, elexacaftor-tezacaftor-ivacaftor improved QoL respiratory scores (17.4 points (95% CI 11.9 to 22.9)) and absolute change in FEV1 (MD 10.0% predicted (95% CI 7.5 to 12.5)) compared to tezacaftor-ivacaftor. There was probably little or no difference in the number or severity of AEs between elexacaftor-tezacaftor-ivacaftor and placebo or control (moderate-quality evidence). In 403 F508del/F508del participants, there was a longer time to protocol-defined pulmonary exacerbation with elexacaftor-tezacaftor-ivacaftor over 24 weeks (moderate-quality evidence). AUTHORS' CONCLUSIONS There is insufficient evidence that corrector monotherapy has clinically important effects in pwCF with F508del/F508del. Both dual therapies (lumacaftor-ivacaftor, tezacaftor-ivacaftor) result in similar improvements in QoL and respiratory function with lower pulmonary exacerbation rates. Lumacaftor-ivacaftor was associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (not observed for tezacaftor-ivacaftor). Tezacaftor-ivacaftor has a better safety profile, although data are lacking in children under 12 years. In this population, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns; but this should be balanced against the blood pressure increase and shortness of breath seen in longer-term adult data when considering lumacaftor-ivacaftor. There is high-quality evidence of clinical efficacy with probably little or no difference in AEs for triple (elexacaftor-tezacaftor-ivacaftor) therapy in pwCF with one or two F508del variants aged 12 years or older. Further RCTs are required in children (under 12 years) and those with more severe respiratory function.
Collapse
Affiliation(s)
- Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Jared Murphy
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Sarah J Nevitt
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Brinkert K, Hedtfeld S, Burhop A, Gastmeier R, Gad P, Wedekind D, Kloth C, Rothschuh J, Lachmann N, Hetzel M, Jirmo AC, Lopez-Rodriguez E, Brandenberger C, Hansen G, Schambach A, Ackermann M, Tümmler B, Munder A. Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Mol Ther 2020; 29:1324-1334. [PMID: 33279724 DOI: 10.1016/j.ymthe.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.
Collapse
Affiliation(s)
- Kerstin Brinkert
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Hedtfeld
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Annina Burhop
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Rena Gastmeier
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Pauline Gad
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Justin Rothschuh
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Adan Chari Jirmo
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Institute of Functional Anatomy, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Christina Brandenberger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Gesine Hansen
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
16
|
Da Silva Sanchez A, Paunovska K, Cristian A, Dahlman JE. Treating Cystic Fibrosis with mRNA and CRISPR. Hum Gene Ther 2020; 31:940-955. [PMID: 32799680 PMCID: PMC7495921 DOI: 10.1089/hum.2020.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Less than 20% of the protein coding genome is thought to be targetable using small molecules. mRNA therapies are not limited in the same way since in theory, they can silence or edit any gene by encoding CRISPR nucleases, or alternatively, produce any missing protein. Yet not all mRNA therapies are equally likely to succeed. Over the past several years, an increasing number of clinical trials with siRNA- and antisense oligonucleotide-based drugs have revealed three key concepts that will likely extend to mRNA therapies delivered by nonviral systems. First, scientists have come to understand that some genes make better targets for RNA therapies than others. Second, scientists have learned that the type and position of chemical modifications made to an RNA drug can alter its therapeutic window, toxicity, and bioavailability. Third, scientists have found that safe and targeted drug delivery vehicles are required to ferry mRNA therapies into diseased cells. In this study, we apply these learnings to cystic fibrosis (CF). We also describe lessons learned from a subset of CF gene therapies that have already been tested in patients. Finally, we highlight the scientific advances that are still required for nonviral mRNA- or CRISPR-based drugs to treat CF successfully in patients.
Collapse
Affiliation(s)
- Alejandro Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ana Cristian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James E. Dahlman
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
18
|
McCarron A, Cmielewski P, Reyne N, McIntyre C, Finnie J, Craig F, Rout-Pitt N, Delhove J, Schjenken JE, Chan HY, Boog B, Knight E, Gilmore RC, O'Neal WK, Boucher RC, Parsons D, Donnelley M. Phenotypic Characterization and Comparison of Cystic Fibrosis Rat Models Generated Using CRISPR/Cas9 Gene Editing. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:977-993. [PMID: 32084371 DOI: 10.1016/j.ajpath.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023]
Abstract
Animal models of cystic fibrosis (CF) are essential for investigating disease mechanisms and trialing potential therapeutics. This study generated two CF rat models using clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 gene editing. One rat model carries the common human Phe508del (ΔF508) CF transmembrane conductance regulator (CFTR) mutation, whereas the second is a CFTR knockout model. Phenotype was characterized using a range of functional and histologic assessments, including nasal potential difference to measure electrophysiological function in the upper airways, RNAscope in situ hybridization and quantitative PCR to assess CFTR mRNA expression in the lungs, immunohistochemistry to localize CFTR protein in the airways, and histopathologic assessments in a range of tissues. Both rat models revealed a range of CF manifestations, including reduced survival, intestinal obstruction, bioelectric defects in the nasal epithelium, histopathologic changes in the trachea, large intestine, and pancreas, and abnormalities in the development of the male reproductive tract. The CF rat models presented herein will prove useful for longitudinal assessments of pathophysiology and therapeutics.
Collapse
Affiliation(s)
- Alexandra McCarron
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
| | - Patricia Cmielewski
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole Reyne
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Chantelle McIntyre
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Division of Anatomical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Fiona Craig
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Nathan Rout-Pitt
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Juliette Delhove
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Hon Y Chan
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bernadette Boog
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma Knight
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Rodney C Gilmore
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Parsons
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Donnelley
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
19
|
Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019; 2019:2180409. [PMID: 31396541 PMCID: PMC6664684 DOI: 10.1155/2019/2180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
The primary purpose of pulmonary ventilation is to supply oxygen (O2) for sustained aerobic respiration in multicellular organisms. However, a plethora of abiotic insults and airborne pathogens present in the environment are occasionally introduced into the airspaces during inhalation, which could be detrimental to the structural integrity and functioning of the respiratory system. Multiple layers of host defense act in concert to eliminate unwanted constituents from the airspaces. In particular, the mucociliary escalator provides an effective mechanism for the continuous removal of inhaled insults including pathogens. Defects in the functioning of the mucociliary escalator compromise the mucociliary clearance (MCC) of inhaled pathogens, which favors microbial lung infection. Defective MCC is often associated with airway mucoobstruction, increased occurrence of respiratory infections, and progressive decrease in lung function in mucoobstructive lung diseases including cystic fibrosis (CF). In this disease, a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in dehydration of the airway surface liquid (ASL) layer. Several mice models of Cftr mutation have been developed; however, none of these models recapitulate human CF-like mucoobstructive lung disease. As an alternative, the Scnn1b transgenic (Scnn1b-Tg+) mouse model overexpressing a transgene encoding sodium channel nonvoltage-gated 1, beta subunit (Scnn1b) in airway club cells is available. The Scnn1b-Tg+ mouse model exhibits airway surface liquid (ASL) dehydration, impaired MCC, increased mucus production, and early spontaneous pulmonary bacterial infections. High morbidity and mortality among mucoobstructive disease patients, high economic and health burden, and lack of scientific understanding of the progression of mucoobstruction warrants in-depth investigation of the cause of mucoobstruction in mucoobstructive disease models. In this review, we will summarize published literature on the Scnn1b-Tg+ mouse and analyze various unanswered questions on the initiation and progression of mucobstruction and bacterial infections.
Collapse
|
20
|
Bose SJ, Bijvelds MJC, Wang Y, Liu J, Cai Z, Bot AGM, de Jonge HR, Sheppard DN. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR. Am J Physiol Lung Cell Mol Physiol 2019; 317:L71-L86. [PMID: 30969810 PMCID: PMC6689747 DOI: 10.1152/ajplung.00034.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cross-species comparative studies have highlighted differences between human and mouse cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial Cl- channel defective in cystic fibrosis (CF). Here, we compare the impact of the most common CF mutation F508del on the function of human and mouse CFTR heterologously expressed in mammalian cells and their response to CFTR modulators using the iodide efflux and patch-clamp techniques. Once delivered to the plasma membrane, human F508del-CFTR exhibited a severe gating defect characterized by infrequent channel openings and was thermally unstable, deactivating within minutes at 37°C. By contrast, the F508del mutation was without effect on the gating pattern of mouse CFTR, and channel activity demonstrated thermostability at 37°C. Strikingly, at all concentrations tested, the clinically approved CFTR potentiator ivacaftor was without effect on the mouse F508del-CFTR Cl- channel. Moreover, eight CFTR potentiators, including ivacaftor, failed to generate CFTR-mediated iodide efflux from CHO cells expressing mouse F508del-CFTR. However, they all produced CFTR-mediated iodide efflux with human F508del-CFTR-expressing CHO cells, while fifteen CFTR correctors rescued the plasma membrane expression of both human and mouse F508del-CFTR. Interestingly, the CFTR potentiator genistein enhanced CFTR-mediated iodide efflux from CHO cells expressing either human or mouse F508del-CFTR, whereas it only potentiated human F508del-CFTR Cl- channels in cell-free membrane patches, suggesting that its action on mouse F508del-CFTR is indirect. Thus, the F508del mutation has distinct effects on human and mouse CFTR Cl- channels.
Collapse
Affiliation(s)
- Samuel J Bose
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Alice G M Bot
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
21
|
Li P, Singh J, Sun Y, Ma X, Yuan P. CFTR constrains the differentiation from mouse embryonic stem cells to intestine lineage cells. Biochem Biophys Res Commun 2019; 510:322-328. [PMID: 30704755 DOI: 10.1016/j.bbrc.2019.01.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a transmembrane Cl- and HCO3- transporter and its malfunction leads to cystic fibrosis (CF) and multiple congenital diseases. The most common mutation in CF patient is DF508 and the patients have increased risk in developing gastrointestinal tumors. To explore the etiology of high cancer risk in DF508-CF patients, we have derived mouse DF508-CFTR embryonic stem (ES) cells and use it as a novel in vitro model to study the role of CFTR from developmental angle. We found the self-renewal properties are intact in DF508-CFTR ES cells. Nevertheless, the differentiation of intestine lineage, the expression of intestine progenitor and major intestine differentiated cell markers is significantly upregulated in DF508-CFTR ES cell differentiated cells. Therefore, CFTR plays an important role in intestine lineage differentiation. Besides, DF508-CFTR ES cells formed teratomas demonstrated enhanced expressions of cell proliferation, migration and epithelial-mesenchymal transition associated marker genes, indicating the tumor suppressive role of CFTR. Taken together, our derived DF508-CFTR ES cells can serve as a new model to study the etiology of CF disease in vitro and malignant teratoma formation in vivo.
Collapse
Affiliation(s)
- Peng Li
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jyotsana Singh
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yifeng Sun
- Sing Loong Limited, Hong Kong, SAR, China
| | - Xin Ma
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
22
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Southern KW, Patel S, Sinha IP, Nevitt SJ. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst Rev 2018; 8:CD010966. [PMID: 30070364 PMCID: PMC6513216 DOI: 10.1002/14651858.cd010966.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common life-shortening condition caused by mutation in the gene that codes for that codes for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a salt transporter. F508del, the most common CFTR mutation that causes CF, is found in up to 80% to 90% of people with CF. In people with this mutation, a full length of protein is transcribed, but recognised as misfolded by the cell and degraded before reaching the cell membrane, where it needs to be positioned to effect transepithelial salt transport. This severe mutation is associated with no meaningful CFTR function. A corrective therapy for this mutation could positively impact on an important proportion of the CF population. OBJECTIVES To evaluate the effects of CFTR correctors on clinically important outcomes, both benefits and harms, in children and adults with CF and class II CFTR mutations (most commonly F508del). SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Cystic Fibrosis Trials Register. We also searched reference lists of relevant articles and online trials registries. Most recent search: 24 February 2018. SELECTION CRITERIA Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to placebo in people with CF with class II mutations. We also included RCTs comparing CFTR correctors combined with CFTR potentiators to placebo. DATA COLLECTION AND ANALYSIS Two authors independently extracted data, assessed risk of bias and quality of the evidence using the GRADE criteria. Study authors were contacted for additional data. MAIN RESULTS We included 13 RCTs (2215 participants), lasting between 1 day and 24 weeks. Additional safety data from an extension study of two lumacaftor-ivacaftor studies were available at 96 weeks (1029 participants). We assessed monotherapy in seven RCTs (317 participants) (4PBA (also known as Buphenyl), CPX, lumacaftor or cavosonstat) and combination therapy in six RCTs (1898 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) compared to placebo. Twelve RCTs recruited individuals homozygous for F508del, one RCT recruited participants with one F508del mutation and a second mutation with residual function.Risk of bias varied in its impact on the confidence we have in our results across different comparisons. Some findings were based on single RCTs that were too small to show important effects. For five RCTs, results may not be applicable to all individuals with CF due to age limits of recruited populations (i.e. adults only, children only) or non-standard design of converting from monotherapy to combination therapy.Monotherapy versus placeboNo deaths were reported and there were no clinically relevant improvements in quality of life in any RCT. There was insufficient evidence available from individual studies to determine the effect of any of the correctors examined on lung function outcomes.No placebo-controlled study of monotherapy demonstrated a difference in mild, moderate or severe adverse effects; however, it is difficult to assess the clinical relevance of these events with the variety of events and the small number of participants.Combination therapy versus placeboNo deaths were reported during any RCT (moderate- to high-quality evidence). The quality of life scores (respiratory domain) favoured combination therapy (both lumacaftor-ivacaftor and tezacaftor-ivacaftor) compared to placebo at all time points. At six months lumacaftor (600 mg once daily or 400 mg once daily) plus ivacaftor improved Cystic Fibrosis Questionnaire (CFQ) scores by a small amount compared with placebo (mean difference (MD) 2.62 points (95% confidence interval (CI) 0.64 to 4.59); 1061 participants; high-quality evidence). A similar effect size was observed for twice-daily lumacaftor (200 mg) plus ivacaftor (250 mg) although the quality of evidence was low (MD 2.50 points (95% CI 0.10 to 5.10)). The mean increase in CFQ scores with twice-daily tezacaftor (100 mg) and ivacaftor (150 mg) was approximately five points (95% CI 3.20 to 7.00; 504 participants; moderate-quality evidence). Lung function measured by relative change in forced expiratory volume in one second (FEV1) % predicted improved with both combination therapies compared to placebo at six months, by 5.21% with once daily lumacaftor-ivacaftor (95% CI 3.61% to 6.80%; 504 participants; high-quality evidence) and by 2.40% with twice-daily lumacaftor-ivacaftor (95% CI 0.40% to 4.40%; 204 participants; low-quality evidence). One study reported an increase in FEV1 with tezacaftor-ivacaftor of 6.80% (95% CI 5.30 to 8.30%; 520 participants; moderate-quality evidence).More participants receiving the lumacaftor-ivacaftor combination reported early transient breathlessness, odds ratio 2.05 (99% CI 1.10 to 3.83; 739 participants; high-quality evidence). In addition, participants allocated to the 400 mg twice-daily dose of lumacaftor-ivacaftor experienced a rise in blood pressure over the 120-week period of the initial studies and the follow-up study of 5.1 mmHg (systolic blood pressure) and 4.1 mmHg (diastolic blood pressure) (80 participants; high-quality evidence). These adverse effects were not reported in the tezacaftor-ivacaftor studies.The rate of pulmonary exacerbations decreased for participants receiving and additional therapies to ivacaftor compared to placebo: lumacaftor 600 mg hazard ratio (HR) 0.70 (95% CI 0.57 to 0.87; 739 participants); lumacaftor 400 mg, HR 0.61 (95% CI 0.49 to 0.76; 740 participants); and tezacaftor, HR 0.64 (95% CI, 0.46 to 0.89; 506 participants) (moderate-quality evidence). AUTHORS' CONCLUSIONS There is insufficient evidence that monotherapy with correctors has clinically important effects in people with CF who have two copies of the F508del mutation.Combination therapies (lumacaftor-ivacaftor and tezacaftor-ivacaftor) each result in similarly small improvements in clinical outcomes in people with CF; specifically improvements quality of life (moderate-quality evidence), in respiratory function (high-quality evidence) and lower pulmonary exacerbation rates (moderate-quality evidence). Lumacaftor-ivacaftor is associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (high-quality evidence). These adverse effects were not observed for tezacaftor-ivacaftor. Tezacaftor-ivacaftor has a better safety profile, although data are not available for children younger than 12 years. In this age group, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the increase in blood pressure and shortness of breath seen in longer-term data in adults when considering this combination for use in young people with CF.
Collapse
Affiliation(s)
- Kevin W Southern
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolMerseysideUKL12 2AP
| | - Sanjay Patel
- Stepping Hill Hopsital, Stockport NHS Foundation TrustPoplar GroveHazel GroveStockportCheshireUKSK2 7JE
| | - Ian P Sinha
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolMerseysideUKL12 2AP
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | | |
Collapse
|
24
|
Adamson KI, Sheridan E, Grierson AJ. Use of zebrafish models to investigate rare human disease. J Med Genet 2018; 55:641-649. [PMID: 30065072 DOI: 10.1136/jmedgenet-2018-105358] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
Abstract
Rare diseases are collectively common and often extremely debilitating. Following the emergence of next-generation sequencing (NGS) technologies, the variants underpinning rare genetic disorders are being unearthed at an accelerating rate. However, many rare conditions lack effective treatments due to their poorly understood pathophysiology. There is therefore a growing demand for the development of novel experimental models of rare genetic diseases, so that potentially causative variants can be validated, pathogenic mechanisms can be investigated and therapeutic targets can be identified. Animal models of rare diseases need to be genetically and physiologically similar to humans, and well-suited to large-scale experimental manipulation, considering the vast number of novel variants that are being identified through NGS. The zebrafish has emerged as a popular model system for investigating these variants, combining conserved vertebrate characteristics with a capacity for large-scale phenotypic and therapeutic screening. In this review, we aim to highlight the unique advantages of the zebrafish over other in vivo model systems for the large-scale study of rare genetic variants. We will also consider the generation of zebrafish disease models from a practical standpoint, by discussing how genome editing technologies, particularly the recently developed clustered regularly interspaced repeat (CRISPR)/CRISPR-associated protein 9 system, can be used to model rare pathogenic variants in zebrafish. Finally, we will review examples in the literature where zebrafish models have played a pivotal role in confirming variant causality and revealing the underlying mechanisms of rare diseases, often with wider implications for our understanding of human biology.
Collapse
Affiliation(s)
- Kathryn Isabel Adamson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Andrew James Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Beka M, Leal T. Nasal Potential Difference to Quantify Trans-epithelial Ion Transport in Mice. J Vis Exp 2018. [PMID: 30035761 DOI: 10.3791/57934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nasal potential difference test has been used for almost three decades to assist in the diagnosis of cystic fibrosis (CF). It has proven to be helpful in cases of attenuated, oligo- or mono-symptomatic forms of CF usually diagnosed later in life, and of CF-related disorders such as congenital bilateral absence of vas deferens, idiopathic chronic pancreatitis, allergic bronchopulmonary aspergillosis, and bronchiectasis. In both clinical and preclinical settings, the test has been used as a biomarker to quantify responses to targeted therapeutic strategies for CF. Adapting the test to a mouse is challenging and can entail an associated mortality. This paper describes the adequate depth of anesthesia required to maintain a nasal catheter in situ for continuous perfusion. It lists measures to avoid broncho-aspiration of solutions perfused in the nose. It also describes the animal care at the end of the test, including administration of a combination of antidotes of the anesthetic drugs, leading to rapidly reversing the anesthesia with full recovery of the animals. Representative data obtained from a CF and a wild-type mouse show that the test discriminates between CF and non-CF. Altogether, the protocol described here allows reliable measurements of the functional status of trans-epithelial chloride and sodium transporters in spontaneously breathing mice, as well as multiple tests in the same animal while reducing test-related mortality.
Collapse
Affiliation(s)
- Mathilde Beka
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain;
| |
Collapse
|
26
|
Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2017; 6:rsob.160185. [PMID: 27906132 PMCID: PMC5133439 DOI: 10.1098/rsob.160185] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium responsible for pulmonary and cutaneous infections in immunocompetent patients and in patients with Mendelian disorders, such as cystic fibrosis (CF). Mycobacterium abscessus is known to transition from a smooth (S) morphotype with cell surface-associated glycopeptidolipids (GPL) to a rough (R) morphotype lacking GPL. Herein, we show that M. abscessus S and R variants are able to grow inside macrophages and are present in morphologically distinct phagosomes. The S forms are found mostly as single bacteria within phagosomes characterized by a tightly apposed phagosomal membrane and the presence of an electron translucent zone (ETZ) surrounding the bacilli. By contrast, infection with the R form leads to phagosomes often containing more than two bacilli, surrounded by a loose phagosomal membrane and lacking the ETZ. In contrast to the R variant, the S variant is capable of restricting intraphagosomal acidification and induces less apoptosis and autophagy. Importantly, the membrane of phagosomes enclosing the S forms showed signs of alteration, such as breaks or partial degradation. Although not frequently encountered, these events suggest that the S form is capable of provoking phagosome-cytosol communication. In conclusion, M. abscessus S exhibits traits inside macrophages that are reminiscent of slow-growing mycobacterial species.
Collapse
Affiliation(s)
- Anne-Laure Roux
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France.,Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aïcha Bah
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Roxane Simeone
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France
| | - Laura Laencina
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Therese Deramaudt
- UMR1179, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Martin Rottman
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Jean-Louis Gaillard
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Laleh Majlessi
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Roland Brosch
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Fabienne Girard-Misguich
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Isabelle Vergne
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France .,INSERM, CPBS, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| |
Collapse
|
27
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
28
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
29
|
Lan H, Li S, Guo Z, Men H, Wu Y, Li N, Bryda EC, Capecchi MR, Wu S. Efficient generation of selection-gene-free rat knockout models by homologous recombination in ES cells. FEBS Lett 2016; 590:3416-3424. [PMID: 27597178 PMCID: PMC5129459 DOI: 10.1002/1873-3468.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
Embryonic stem cell (ES cell)‐based rat knockout technology, although successfully developed in 2010, has seen very limited usage to date due to low targeting efficiency and a lack of optimized procedures. In this study, we performed gene targeting in ES cells from the Sprague–Dawley (SD) and the Fischer 344 (F344) rat strains using an optimized procedure and the self‐excising neomycin (neo)‐positive selection cassette ACN to successfully generate Leptin and Trp53 knockout rats that did not carry the selection gene. These results demonstrate that our simplified targeting strategy using ACN provides an efficient approach to knock out many other rat genes.
Collapse
Affiliation(s)
- He Lan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuping Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zihang Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongsheng Men
- Veterinary Pathobiology, Rat Resource and Research Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Yuanyuan Wu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Elizabeth C Bryda
- Veterinary Pathobiology, Rat Resource and Research Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Harrison PT, Sanz DJ, Hollywood JA. Impact of gene editing on the study of cystic fibrosis. Hum Genet 2016; 135:983-92. [PMID: 27325484 DOI: 10.1007/s00439-016-1693-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Cystic fibrosis (CF) is a chronic and progressive autosomal recessive disorder of secretory epithelial cells, which causes obstructions in the lung airways and pancreatic ducts of 70,000 people worldwide (for recent review see Cutting Nat Rev Genet 16(1):45-56, 2015). The finding that mutations in the CFTR gene cause CF (Kerem et al. Science 245(4922):1073-1080, 1989; Riordan et al. Science 245(4922):1066-1073, 1989; Rommens et al. Science 245(4922):1059-1065, 1989), was hailed as the very happy middle of a story whose end is a cure for a fatal disease (Koshland Science 245(4922):1029, 1989). However, despite two licensed drugs (Ramsey et al. N Engl J Med 365(18):1663-1672, 2011; Wainwright et al. N Engl J Med 373(3):220-231, 2015), and a formal demonstration that repeated administration of CFTR cDNA to patients is safe and effects a modest but significant stabilisation of disease (Alton et al. Lancet Respir Med 3(9):684-691, 2015), we are still a long way from a cure, with many patients taking over 100 tablets per day, and a mean age at death of 28 years. The aim of this review is to discuss the impact on the study of CF of gene-editing techniques as they have developed over the last 30 years, up to and including the possibility of editing as a therapeutic approach.
Collapse
Affiliation(s)
| | | | - Jennifer A Hollywood
- University College Cork, Cork, Ireland.,The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
32
|
Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5258727. [PMID: 27340661 PMCID: PMC4908263 DOI: 10.1155/2016/5258727] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.
Collapse
Affiliation(s)
- Gillian M. Lavelle
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Michelle M. White
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Niall Browne
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G. McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
33
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
34
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
35
|
Gianotti A, Ferrera L, Philp AR, Caci E, Zegarra-Moran O, Galietta LJV, Flores CA. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways. Eur J Pharmacol 2016; 781:100-8. [PMID: 27063443 DOI: 10.1016/j.ejphar.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022]
Abstract
Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.
Collapse
Affiliation(s)
| | | | - Amber R Philp
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | | | | | | | | |
Collapse
|
36
|
Animal Models in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Clin Rev Allergy Immunol 2014; 48:207-17. [DOI: 10.1007/s12016-014-8442-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Sinha IP, Southern KW, Dwan K, Patel S. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd010966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ian P Sinha
- University of Liverpool; Department of Women's and Children's Health; Alder Hey Children's Foundation Trust Eaton Road Liverpool Merseyside UK L12 2AP
| | - Kevin W Southern
- University of Liverpool; Department of Women's and Children's Health; Alder Hey Children's Foundation Trust Eaton Road Liverpool Merseyside UK L12 2AP
| | - Kerry Dwan
- University of Liverpool; Department of Biostatistics; Alder Hey Children's NHS Foundation Trust Eaton Road Liverpool England UK L12 2AP
| | - Sanjay Patel
- University of Liverpool; Department of Women's and Children's Health; Alder Hey Children's Foundation Trust Eaton Road Liverpool Merseyside UK L12 2AP
| |
Collapse
|
38
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Lung inflammation in cystic fibrosis: pathogenesis and novel therapies. Clin Biochem 2013; 47:539-46. [PMID: 24380764 DOI: 10.1016/j.clinbiochem.2013.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/24/2022]
Abstract
Despite remarkable progress following the identification of the causing gene, the final outcome of cystic fibrosis (CF) remains determined mainly by the progressive reduction of lung function. Inflammation of the airways is one of the key elements of the pathogenesis of the disease: it is responsible for the destruction of lung architecture, resulting in progressive loss of respiratory function. Bronchial infection induces an intense inflammatory reaction characterized by a massive invasion of neutrophils, the properties of which seems altered in CF. Moreover, the inflammatory process is also marked by a profuse release of soluble pro-inflammatory mediators, such as interleukin (IL)-6, IL-1β and IL-8 cytokines. In contrast, release of the anti-inflammatory mediator IL-10 is reduced, thus reflecting a pro-/anti-inflammatory imbalance. The inflammation/infection pair seems hard to dissociate, and the origin of the baneful consequences of the persisting excessive inflammatory responses remains to be cleared up: does inflammation follow or rather precede infection? Recent data suggest that uncontrolled inflammation is constitutive in CF. Countering it at early stages of the disease in order to prevent irretrievable damages in lungs remains a major priority in treating patients with CF. In this review, we discuss the usefulness and limitations of mouse models of CF to study the pathogenesis of human lung inflammatory disease, and the development of new potential strategies to reduce the inflammatory burden in the airways.
Collapse
|
40
|
Zhang S, Ranganath NK, Skinner D, Bedwell DM, Buckley-Lanier JA, Sorscher EJ, Woodworth BA. Marked repression of CFTR mRNA in the transgenic Cftr(tm1kth) mouse model. J Cyst Fibros 2013; 13:351-2. [PMID: 24378376 DOI: 10.1016/j.jcf.2013.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Shaoyan Zhang
- Department of Surgery, Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neel K Ranganath
- Department of Surgery, Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel Skinner
- Department of Surgery, Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David M Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica A Buckley-Lanier
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric J Sorscher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradford A Woodworth
- Department of Surgery, Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
41
|
Abstract
The nonneoplastic diseases of the human pancreas generally comprise the inflammatory and degenerative conditions that include acute and chronic pancreatitis, with cystic fibrosis being arguably one of the most important diseases that induce the condition. Both acute and chronic conditions vary in severity, but both can be life threatening; and because of this fact, the study of their progression, and their responsiveness to therapy, is largely conducted by indirect means using serum markers of damage and repair such as amylase and lipase activities that normally occur at very low levels in the circulation but can be significantly increased during inflammatory episodes. Progress in the understanding the pathogenesis of both conditions has therefore been largely due to time course studies in animal models of pancreatitis, and it is in this context that animal model development has been so significant. In general terms, the animal models can be divided into the invasive, surgical procedures, and those induced by the administration of chemical secretagogues that induce hypersecretion of the pancreatic enzymes. The former include ligation and/or cannulation of the biliopancreatic ducts with infusion of solutions of various kinds, or the formation of closed duodenal loops. Secretagogue administration includes administration of caerulein or l-arginine in various protocols. An additional model involves administration of dibutyltin dichloride, which induces a partial blockage of the pancreatic ducts to induce pancreatic disease through enzymic reflux into the gland. The models have been invaluable in generating testable hypotheses for the human diseases. These hypotheses for the production of cellular damage as the initiating events in the disease include (1) intracellular chemical activation, (2) pancreatic secretion reflux, (3) intracellular production of reactive oxygen species, and (4) intracellular production of free radicals.
Collapse
Affiliation(s)
- John R Foster
- 1AstraZeneca Pharmaceuticals, Cheshire, United Kingdom
| |
Collapse
|
42
|
Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 2013; 591:4377-87. [PMID: 23878362 DOI: 10.1113/jphysiol.2012.240861] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Airway epithelia absorb Na+ through the epithelial Na+ channel (ENaC) and secrete Cl- through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. This balance maintains sufficient airway surface liquid hydration to permit efficient mucus clearance, which is needed to maintain sterility of the lung. Cystic fibrosis (CF) is a common autosomal recessive inherited disease caused by mutations in the CFTR gene that lead to the reduction or elimination of the CFTR protein. CF is a multi-organ disease that affects epithelia lining the intestines, lungs, pancreas, sweat ducts and vas deferens, among others. CF lungs are characterized by viscous, dehydrated mucus, persistent neutrophilia and chronic infections. ENaC is negatively regulated by CFTR and, in patients with CF, the absence of CFTR results in a double hit of reduced Cl-/HCO3- and H2O secretion as well as ENaC hyperactivity and increased Na+ and H2O absorption. Together, these effects are hypothesized to trigger mucus dehydration, resulting in a failure to clear mucus. Rehydrating CF mucus has become a recent clinical focus and yields important end-points for clinical trials. However, while ENaC hyperactivity in CF airways has been detected in vivo and in vitro, recent data have brought the role of ENaC in CF lung disease pathogenesis into question. This review will focus on our current understanding of the contribution of ENaC to CF pathogenesis.
Collapse
Affiliation(s)
- Carey A Hobbs
- R. Tarran: 7125 Thurston Bowles Building, UNC, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
43
|
Begrow F, Verspohl EJ. Effect of Ap<sub>4</sub>A, UTP and Salbutamol on Mucociliary Clearance in a Mouse Model of Cystic Fibrosis (<i>in Situ</i>). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.42025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Sinn PL, Cooney AL, Oakland M, Dylla DE, Wallen TJ, Pezzulo AA, Chang EH, McCray PB. Lentiviral vector gene transfer to porcine airways. MOLECULAR THERAPY-NUCLEIC ACIDS 2012. [PMID: 23187455 PMCID: PMC3511674 DOI: 10.1038/mtna.2012.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF).
Collapse
Affiliation(s)
- Patrick L Sinn
- Department of Pediatrics, Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
46
|
Henderson LB, Doshi VK, Blackman SM, Naughton KM, Pace RG, Moskovitz J, Knowles MR, Durie PR, Drumm ML, Cutting GR. Variation in MSRA modifies risk of neonatal intestinal obstruction in cystic fibrosis. PLoS Genet 2012; 8:e1002580. [PMID: 22438829 PMCID: PMC3305406 DOI: 10.1371/journal.pgen.1002580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 01/19/2012] [Indexed: 12/23/2022] Open
Abstract
Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5' to and within the MSRA gene were associated with MI (P = 1.99 × 10(-5) to 1.08 × 10(-6); Bonferroni P = 0.057 to 3.1 × 10(-3)). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53-0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2 × 10(-4)). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr(-/-) and Cftr(-/-)Msra(-/-) mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function.
Collapse
Affiliation(s)
- Lindsay B. Henderson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vishal K. Doshi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scott M. Blackman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen M. Naughton
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rhonda G. Pace
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael R. Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter R. Durie
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Mitchell L. Drumm
- Departments of Pediatrics and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Pollheimer MJ, Halilbasic E, Fickert P, Trauner M. Pathogenesis of primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2011; 25:727-39. [PMID: 22117638 PMCID: PMC3236286 DOI: 10.1016/j.bpg.2011.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/25/2011] [Indexed: 01/31/2023]
Abstract
Primary sclerosing cholangitis (PSC) represents a chronic cholestatic liver disease with fibroobliterative sclerosis of intra- and/or extrahepatic bile ducts, eventually leading to biliary cirrhosis. The association with human leukocyte antigen (HLA) and non-HLA haplotypes and the presence of autoantibodies in sera of PSC patients support a crucial role for immune-mediated mechanisms in the initiation and progression of PSC. The strong clinical association between PSC and inflammatory bowel diseases led to intriguing pathogenetic concepts, in which the inflamed gut with translocation of bacterial products and homing of gut-primed memory T lymphocytes via aberrantly expressed adhesion molecules plays a fundamental role. Genetically or chemically modified bile composition was shown to induce sclerosing cholangitis and liver fibrosis in a number of animal models ("toxic bile concept"). The potential role of vascular injury with ischemia of bile duct epithelium cells in the development of sclerosing cholangitis is supported by animal models of endothelial cell injury showing close morphological similarities with human PSC.
Collapse
Affiliation(s)
- Marion J. Pollheimer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria,Corresponding author. Tel.:+43 (0) 1 40400 4741; fax: +43 (0) 1 40400 4735.
| |
Collapse
|
48
|
Pollheimer MJ, Trauner M, Fickert P. Will we ever model PSC? - "it's hard to be a PSC model!". Clin Res Hepatol Gastroenterol 2011; 35:792-804. [PMID: 21703962 DOI: 10.1016/j.clinre.2011.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/14/2011] [Indexed: 02/04/2023]
Abstract
Cholangiopathies such as primary sclerosing cholangitis (PSC) represent an important group of liver diseases of the intra- and extrahepatic bile ducts frequently causing end-stage liver disease with significant morbidity and mortality due to limited treatment options. The relatively low incidence of PSC and the difficult accessibility of the human bile duct system for longitudinal studies may represent some of the critical reasons for the lack of profound knowledge in regard to PSC pathophysiology. Therefore, there is an urgent need for reliable, well-defined and easily reproducible animal models to learn more about the pathophysiology of PSC and to test novel treatment modalities. In an ideal world, immunogenetically predisposed animals would develop fibrous-obliterative cholangitis of the intra- and extrahepatic bile ducts in association with inflammation of the gut (especially colitis) in a highly reproducible manner allowing to test new drugs. To date, however, no such animal model is available. We aimed to provide a systematic overview of current available rodent models for sclerosing cholangitis and biliary fibrosis and therefore critically analyzed the characteristics of models for chemically-induced cholangitis, knock-out mouse models with cholangitis, cholangitis induced by infectious agents, models of experimental biliary obstruction, models involving enteric bacterial cell-wall components or colitis, and models of primary biliary epithelial and endothelial cell injury.
Collapse
Affiliation(s)
- Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
49
|
Hodges CA, Grady BR, Mishra K, Cotton CU, Drumm ML. Cystic fibrosis growth retardation is not correlated with loss of Cftr in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2011; 301:G528-36. [PMID: 21659619 PMCID: PMC3174541 DOI: 10.1152/ajpgi.00052.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Maldigestion due to exocrine pancreatic insufficiency leads to intestinal malabsorption and consequent malnutrition, a mechanism proposed to cause growth retardation associated with cystic fibrosis (CF). However, although enzyme replacement therapy combined with increased caloric intake improves weight gain, the effect on stature is not significant, suggesting that growth retardation has a more complex etiology. Mouse models of CF support this, since these animals do not experience exocrine pancreatic insufficiency yet are growth impaired. Cftr absence from the intestinal epithelium has been suggested as a primary source of growth retardation in CF mice, a concept we directly tested by generating mouse models with Cftr selectively inactivated or restored in intestinal epithelium. The relationship between growth and functional characteristics of the intestines, including transepithelial electrophysiology, incidence of intestinal obstruction, and histopathology, were assessed. Absence of Cftr exclusively from intestinal epithelium resulted in loss of cAMP-stimulated short-circuit current, goblet cell hyperplasia, and occurrence of intestinal obstructions but only slight and transient impaired growth. In contrast, specifically restoring Cftr to the intestinal epithelium resulted in restoration of ion transport and completely protected against obstruction and histopathological anomalies, but growth was indistinguishable from CF mice. These results indicate that absence of Cftr in the intestinal epithelium is an important contributor to the intestinal obstruction phenotype in CF but does not correlate with the observed growth reduction in CF.
Collapse
Affiliation(s)
| | | | | | | | - Mitchell L. Drumm
- Departments of 1Pediatrics, ,3Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
50
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|