1
|
Lantermans HC, Ma F, Kuil A, de Rooij MFM, Bergkamp ND, van der Meer W, van Buul JD, Smit MJ, Kersten MJ, Spaargaren M, Pals ST. Presentation of CXCL12γ by heparan sulfate proteoglycans activates CXCR4 without desensitization in normal and malignant B cells. Blood Adv 2025; 9:2307-2320. [PMID: 39969206 DOI: 10.1182/bloodadvances.2024014396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
ABSTRACT CXCL12-CXCR4 signaling is involved in a wide variety of homeostatic and pathologic processes, but the role of specific CXCL12 isoforms has remained largely unexplored. We have recently shown that the CXCL12γ isoform, which holds an exceptionally high affinity for heparan sulfate (HS), is produced by human bone marrow stromal cells (BMSCs) and remains cell surface immobilized by HS proteoglycans (HSPGs). This HS-bound CXCL12γ is critical for the adhesion of multiple myeloma cells to BMSCs and for BMSC-mediated drug resistance. In this study, we investigated how CXCL12γ activates and regulates CXCR4 by employing a variety of biosensors in HEK293T cells, endogenous CXCR4-expressing B-lymphoma and myeloma cell lines and primary B cells. We showed that CXCL12γ and CXCL12α bind CXCR4 with a similar affinity and that the cumulative activation of CXCR4 over time is equal for both ligands, although CXCL12α activates CXCR4 more rapidly. Although nonbound CXCL12γ and CXCL12α equally induce CXCR4 internalization, cell- or heparin-bound CXCL12γ hardly induces CXCR4 internalization or desensitization. CXCL12γ presented by HSPGs on the membrane of human bone marrow endothelial cells (HBMECs) induces potent cell adhesion to the endothelium under physiological flow, but cells retain the ability to migrate toward CXCL12α when they encounter HBMEC-bound CXCL12γ. Taken together, our data demonstrate that CXCL12γ and CXCL12α differentially modulate CXCR4 trafficking and that CXCL12γ, when immobilized and presented by HSPGs on the cell surface of HBMECs, can efficiently arrest circulating cells without causing CXCR4 internalization or desensitization, thus enabling subsequent cell migration toward a CXCL12α gradient.
Collapse
Affiliation(s)
- Hildo C Lantermans
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Fangxue Ma
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Annemieke Kuil
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Martin F M de Rooij
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Werner van der Meer
- Department of Medical Biochemistry, Vascular Cell Biology Laboratory, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Medical Biochemistry, Vascular Cell Biology Laboratory, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
3
|
Adhanom R, Kim C, Strong J, Martinez S, Kong HH, Brownell I, Murphy PM, McDermott DH, Castelo‐Soccio L. Cutaneous manifestations of WHIM syndrome. J Dermatol 2025; 52:917-921. [PMID: 40202253 PMCID: PMC12056281 DOI: 10.1111/1346-8138.17733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/28/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025]
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare immunodeficiency caused by gain-of-function mutations in the chemokine receptor CXCR4. While human papillomavirus (HPV) skin infection (warts) is the dermatological hallmark of the disease, individuals with WHIM have high rates of other skin manifestations that may aid early diagnosis and management. This study was a retrospective review of medical records from a United States National Institutes of Health natural history cohort of patients with WHIM syndrome seen between 2005 and 2024, including a cross-sectional analysis of cutaneous manifestations and CXCR4 variants. The cohort compromised 45 patients with genetically confirmed WHIM syndrome, 16 men and 29 women, with a mean age of 33.3 years (range, 0-69 years) and mean age at diagnosis of 20.4 years (range, 0-59 years). The cohort exhibited a range of skin manifestations which included cutaneous infections with HPV in 34 (76%) patients, bacteria in 32 (71%) patients, other viruses in 27 (60%) patients, and fungi in 25 (56%) patients. Inflammatory conditions included six (13%) patients with seborrheic dermatitis, five (11%) with contact dermatitis, four (9%) with psoriasis, three (7%) with nummular eczema, and 13 (29%) with other eczematous dermatitis. Despite the young median age, seven (16%) patients had skin cancer. All seven patients had CXCR4 truncation mutations, while those with a missense mutation (E343K) generally had fewer skin manifestations. Our study found that WHIM syndrome is associated with diverse infectious, inflammatory, and neoplastic skin conditions beyond HPV skin infection.
Collapse
Affiliation(s)
- Rutha Adhanom
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Caleb Kim
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer Strong
- Cutaneous Development and Carcinogenesis Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Sophia Martinez
- Laboratory of Molecular ImmunologyNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Isaac Brownell
- Cutaneous Development and Carcinogenesis Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Philip M. Murphy
- Laboratory of Molecular ImmunologyNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - David H. McDermott
- Laboratory of Molecular ImmunologyNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Leslie Castelo‐Soccio
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Strong J, Adhanom R, Kim CS, Saito Y, Meltzer JC, Hallaert P, Martinez S, Salancy A, Kong HH, Cowen EW, Castelo-Soccio L, Murphy PM, McDermott DH, Brownell I. Risk of Superficial Fungal Infections in WHIM Syndrome. Dermatol Ther (Heidelb) 2025; 15:1173-1179. [PMID: 40178760 PMCID: PMC12033133 DOI: 10.1007/s13555-025-01396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION WHIM syndrome is a rare autosomal dominant inborn error of immunity caused by gain-of-function mutations in the chemokine receptor CXCR4. Patients with WHIM syndrome frequently suffer from an increased risk for bacterial and viral infections, especially warts due to human papillomavirus. Associations between WHIM syndrome and fungal infections have not been previously identified. The objective of this study was to estimate the prevalence of superficial fungal infections in patients with WHIM syndrome. METHODS This retrospective single-institution cohort study assessed patients with genotype-confirmed WHIM syndrome evaluated between March 2007 and March 2024. RESULTS Of 45 patients with WHIM syndrome, 18 (40%) were diagnosed with at least one superficial fungal infection. These infections included dermatophytosis (n = 14, 78%), pityriasis versicolor (n = 6, 33%), and pityrosporum folliculitis (n = 1, 6%). No correlation was detected between superficial fungal infection risk and the degree of peripheral neutropenia, lymphopenia, or hypogammaglobulinemia. The median time to resolution of the longest episode of superficial dermatophytosis (skin or hair) was 171.5 (range 53-3650) days, and several patients experienced prolonged courses requiring serial retreatments. CONCLUSIONS These findings suggest that frequent or prolonged superficial fungal infections may be a useful clinical sign to prompt consideration of a WHIM syndrome diagnosis, especially in patients with numerous cutaneous warts or other history to suggest immunodeficiency. TRIAL REGISTRATION Participants were enrolled in a natural history trial registered with ClinicalTrials.gov (NCT00128973).
Collapse
Affiliation(s)
- Jennifer Strong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Rutha Adhanom
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Caleb S Kim
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Yoshine Saito
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Jasmine C Meltzer
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Patrick Hallaert
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Sophia Martinez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Abigail Salancy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N240C, Bethesda, MD, 20892-1908, USA.
| |
Collapse
|
5
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
6
|
McDermott DH, Majumdar S, Velez D, Cho E, Li Z, Gao JL, Grieco MC, Lawrence MG, Silva SL, Castelo-Soccio LA, Follmann D, Murphy PM. Continuous Infusion of the CXCR4 Antagonist Plerixafor for WHIM Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.19.25325865. [PMID: 40330596 PMCID: PMC12051493 DOI: 10.1101/2025.04.19.25325865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis) syndrome is an ultrarare inborn error of immunity caused by heterozygous, gain-of-function CXCR4 mutations that impede leukocyte egress from bone marrow, resulting in panleukopenia. The CXCR4 antagonist plerixafor (AMD3100, Mozobil) durably reverses panleukopenia and in most WHIM patients induces wart regression; however, its short half-life requires twice daily injection. To develop a simpler, cheaper and potentially more effective method of drug delivery, we conducted a Phase 1 study of WHIM patients given plerixafor 0.02-0.08 mg/kg/d by continuous subcutaneous infusion using an OmniPod insulin pump, and assessed compliance as well as effects on blood leukocyte counts, infections, chronic skin conditions and adverse events. Six patients were treated for a total of 6.3 patient-years; one patient dropped out early for personal reasons. The drug infusion rate was adjusted to achieve a normal absolute lymphocyte count and an absolute neutrophil count >500 cells/μl in all patients. An average of 2.1 infections/patient-year occurred (range 0-4). Treatment of two infections involved brief hospitalization. On plerixafor, partial wart regression occurred in 3 of 4 patients, a single molluscum contagiosum infection regressed and a chronic post-Mohs surgical wound epithelialized. There were 3 serious adverse events, but none was attributable to the treatment. All patients preferred pump administration over syringe injection. Thus, in WHIM patients a continuous infusion pump may be a convenient, safe and potentially cost-effective means of delivering plerixafor chronically to correct panleukopenia and to improve chronic skin conditions. Clinicaltrials.gov NCT00967785.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elena Cho
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhanzhou Li
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan C. Grieco
- Biostatics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Axle Informatics, Bethesda, MD, USA
| | - Monica G. Lawrence
- Division of Asthma, Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Susana L. Silva
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Leslie A. Castelo-Soccio
- Office of the Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean Follmann
- Biostatics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Kleist AB, Szpakowska M, Talbot LJ, Slodkowicz G, Malinverni D, Thomas MA, Crawford KS, McGrail DJ, Dishman AF, Wedemeyer MJ, Sluter M, Yi SS, Sahni N, Peterson FC, Chevigné A, Volkman BF, Babu MM. Encoding and decoding selectivity and promiscuity in the human chemokine-GPCR interaction network. Cell 2025:S0092-8674(25)00398-8. [PMID: 40273912 DOI: 10.1016/j.cell.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
In humans, selective and promiscuous interactions between 46 secreted chemokine ligands and 23 cell surface chemokine receptors of the G-protein-coupled receptor (GPCR) family form a complex network to coordinate cell migration. While chemokines and their GPCRs each share common structural scaffolds, the molecular principles driving selectivity and promiscuity remain elusive. Here, we identify conserved, semi-conserved, and variable determinants (i.e., recognition elements) that are encoded and decoded by chemokines and their receptors to mediate interactions. Selectivity and promiscuity emerge from an ensemble of generalized ("public/conserved") and specific ("private/variable") determinants distributed among structured and unstructured protein regions, with ligands and receptors recognizing these determinants combinatorially. We employ these principles to engineer a viral chemokine with altered GPCR coupling preferences and provide a web resource to facilitate sequence-structure-function studies and protein design efforts for developing immuno-therapeutics and cell therapies.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA; MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lindsay J Talbot
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel J McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Acacia F Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Madison Sluter
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Stephen Yi
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA; Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Protein Foundry, LLC, West Allis, WI, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Protein Foundry, LLC, West Allis, WI, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK; Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Asthana S, Verma A, Bhattacharya B, Nath A, Sajeev N, Maan K, Nair RR, Ayappa KG, Saini DK. Oxysterols Modulate Protein-Sterol Interactions to Impair CXCR4 Signaling in Aging Cells. Biochemistry 2025; 64:1606-1623. [PMID: 40099855 DOI: 10.1021/acs.biochem.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Organismal aging is accompanied by the accumulation of senescent cells in the body, which drives tissue dysfunction. Senescent cells have a distinctive profile, including proliferation arrest, resistance to apoptosis, altered gene expression, and high inflammation. Despite global signaling and metabolic dysregulation during senescence, the underlying reasons for changes in signaling remain unclear. GPCRs are pivotal in cellular signaling, dynamically mediating the complex interplay between cells and their surrounding environment to maintain cellular homeostasis. The chemokine receptor CXCR4 plays a crucial role in modulating immune responses and inflammation. It has been shown that the expression of CXCR4 increases in cells undergoing senescence, which enhances inflammation postactivation. Here, we examine CXCR4 signaling in deeply senescent cells (aged cells), where cholesterol and its oxidized derivatives, oxysterols, affect receptor function. We report elevated oxysterol levels in senescent cells, which altered classical CXCL12-mediated CXCR4 signaling. Tail-oxidized sterols disrupted signaling more than ring-oxidized counterparts. Molecular dynamics simulations revealed that 27-hydroxycholesterol displaces cholesterol and binds strongly to alter the conformation of critical signaling residues, modifying the sterol-CXCR4 interaction landscape. Our study provides a molecular view of the observed mitigated GPCR signaling in the presence of oxysterols, which switched G-protein signaling from Gαi/o to Gαs class. Overall, we present an altered paradigm of GPCR signaling, where cholesterol oxidation alters the signaling outcome in aged cells.
Collapse
Affiliation(s)
- Suramya Asthana
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
| | - Anant Verma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Raji R Nair
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
- Longevity India, Indian Institute of Science, Bengaluru 560012, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
9
|
Meltzer JC, Strong J, Martinez S, Salancy A, Adhanom R, Cowen EW, Castelo-Soccio L, Murphy PM, McDermott DH, Brownell I. Recalcitrant tinea capitis in WHIM syndrome. SKIN HEALTH AND DISEASE 2025; 5:41-44. [PMID: 40124996 PMCID: PMC11924356 DOI: 10.1093/skinhd/vzae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/25/2025]
Abstract
WHIM syndrome is a rare primary immunodeficiency typically caused by autosomal dominant activating mutations in the CXCR4 gene. WHIM refers to warts, hypogammaglobulinaemia, infections and myelokathexis, which are the primary phenotypes of the syndrome. Here we describe a case of tinea capitis in a patient with WHIM syndrome that was unresponsive to multiple systemic antifungal treatments for over 10 years. The patient's recalcitrant tinea infection was ultimately cured after treatment with posaconazole. These findings suggest that the CXCR4 defects in WHIM syndrome may confer susceptibility to dermatophyte infections.
Collapse
Affiliation(s)
- Jasmine C Meltzer
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Strong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sophia Martinez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abigail Salancy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rutha Adhanom
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Khan MS, Azeem B, Kanwal A, Ahmed IE, Zehra A, Kabir A, Ahmed W, Nasir H, Khan M, Manzoor A, Hasanain M, Moeen W, Khan M, Ahmed G. Unveiling WHIM syndrome: Mavorixafor's emerging role in immune restoration and therapy. Clin Exp Immunol 2025; 219:uxaf014. [PMID: 40065526 PMCID: PMC12001236 DOI: 10.1093/cei/uxaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
WHIM syndrome is a rare autosomal dominant immunodeficiency disorder and is an abbreviation formed from the initial letters of its main clinical presentations: Warts, Hypogammaglobulinemia, Infections, and Myelokathexis. It stems mainly from mutations where there is a gain of function in the chemokine receptor CXCR4, which is extensively located on leukocytes and significantly affects the balance of the immune system. Many therapeutic strategies have been widely explored for several years for this immunodeficiency disorder. Mavorixafor, a CXCR4 antagonist, is a recently approved drug by the Food and Drug Administration (FDA) that is being studied for its longer half-life and oral drug route against WHIM syndrome. This review aims to investigate briefly the underlying mechanisms and pathogenesis of WHIM syndrome, and the current effective treatment approaches, for example CXCR4 antagonists or Hematopoietic Stem Cell Transplantation (HSCT), against it. The review also aims to thoroughly assess the efficacy and safety of Mavorixafor in managing WHIM syndrome, exploring its pharmacokinetics, pharmacodynamics, dosing regimens, and safety. Finally, we also investigate important additional therapeutic uses of Mavorixafor.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Bismah Azeem
- Department of Internal Medicine, Avicenna Medical College, Lahore, Pakistan
| | - Ashir Kanwal
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ifra Eeman Ahmed
- Department of Internal Medicine, Federal Medical and Dental College, Islamabad, Pakistan
| | - Anum Zehra
- Department of Internal Medicine, Ziauddin University, Karachi, Pakistan
| | - Aqsa Kabir
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | | | - Hania Nasir
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Momina Khan
- Department of Internal Medicine, Ruth Pfau Medical College, Karachi, Pakistan
| | - Aatika Manzoor
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Muhammad Hasanain
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Wania Moeen
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Muzamil Khan
- Department of Internal Medicine, The George Washington University School of Medicine and Health Sciences, Washington D.C, USA
| | - Gulrayz Ahmed
- Department of Medicine, Hematology Oncology Division, Hematology/Oncology Fellow, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
12
|
Sarkar B, Mondal MSA, Rahman T, Hosen MI, Rahman A. Comprehensive characterization of high-risk coding and non-coding single nucleotide polymorphisms of human CXCR4 gene. PLoS One 2024; 19:e0312733. [PMID: 39715225 DOI: 10.1371/journal.pone.0312733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/11/2024] [Indexed: 12/25/2024] Open
Abstract
CXCR4, a chemokine receptor known as Fusin or CD184, spans the outer membrane of various human cells, including leukocytes. This receptor is essential for HIV infection as well as for many vital cellular processes and is implicated to be associated with multiple pathologies, including cancers. This study employs various computational tools to investigate the molecular effects of disease-vulnerable germ-line missense and non-coding SNPs of the CXCR4 gene. In this investigation, the tools SIFT, PROVEAN, PolyPhen-2, PANTHER, SNAP 2.0, PhD-SNP, and SNPs&GO were used to predict potentially harmful and disease-causing nsSNPs in CXCR4. Additionally, their impact on protein stability was examined by I-mutant 3.0, MUpro, Consurf, and Netsurf 2.0, combined with conservation and solvent accessibility analyses. Structural analysis with normal and mutant residues of the protein harboring these disease-associated functional SNPs was conducted using TM-align and SWIS MODEL, with visualization aided by PyMOL and the BIOVINA Discovery Studio Visualizer. The functional impact of wild-type and mutated CXCR4 variants was evaluated through molecular docking with its natural ligand CXCR4-modulator 1, using the PyRx tool. Non-coding SNPs in the 3' -UTR were investigated for their regulatory effects on miRNA binding sites using PolymiRTS. Five non-coding SNPs were identified in the 3'-UTR that can disrupt existing miRNA binding sites or create new ones. Non-coding SNPs in the 5' and 3'-UTRs, as well as in intronic regions, were also examined for their potential roles in gene expression regulation. Furthermore, RegulomeDB databases were employed to assess the regulatory potential of these non-coding SNPs based on chromatin state and protein binding regulation. In the mostly annotated variant (ENSP00000241393) of the CXCR4 gene, we found 23 highly deleterious and pathogenic nsSNPs and these were selected for in-depth analysis. Among the 23 nsSNPs, five (G55V, H79P, L80P, H113P, and P299L) displayed notable structural alternation, with elevated RMSD values and reduced TM (TM-score) values. A molecular docking study revealed the significant impact of the H113P variant on the protein-ligand binding affinity, supported by MD simulation over 100 nanoseconds, which highlighted substantial stability differences between wild-type and H113P mutated proteins during ligand binding. This comprehensive analysis shed light on the potential functional consequences of genetic variation in the CXCR genes, offering valuable insights into the implications of disease susceptibility and may pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bonoshree Sarkar
- Infection Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Safiul Alam Mondal
- Infection Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Taibur Rahman
- Infection Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Ismail Hosen
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Atiqur Rahman
- Infection Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
13
|
Trotta AM, Mazzarella V, Roggia M, D'Aniello A, Del Bene A, Vetrei C, Di Maiolo G, Campagna E, Natale B, Rea G, Santagata S, D'Alterio C, Cutolo R, Mottola S, Merlino F, Benedetti R, Altucci L, Messere A, Cosconati S, Tomassi S, Scala S, Di Maro S. Comprehensive structural investigation of a potent and selective CXCR4 antagonist via crosslink modification. Eur J Med Chem 2024; 279:116911. [PMID: 39348763 DOI: 10.1016/j.ejmech.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.
Collapse
Affiliation(s)
- Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Michele Roggia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Cinzia Vetrei
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gaetana Di Maiolo
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Benito Natale
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy; Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Stefano Tomassi
- Department of Life Science, Health, and Health Professions, LINK Campus University, Via del Casale di San Pio V, 44, 00165, Rome, Italy.
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
14
|
Roland L, Nguyen CH, Zmajkovicova K, Khamyath M, Kalogeraki M, Schell B, Gourhand V, Rondeau V, Abou Nader Z, Monticelli H, Maierhofer B, Johnson R, Taveras A, Espéli M, Balabanian K. CXCR4 antagonism ameliorates leukocyte abnormalities in a preclinical model of WHIM syndrome. Front Immunol 2024; 15:1468823. [PMID: 39588369 PMCID: PMC11586337 DOI: 10.3389/fimmu.2024.1468823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Background WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome is an ultra-rare, combined primary immunodeficiency and chronic neutropenic disorder characterized by a range of clinical presentations, including peripheral neutropenia, lymphopenia, and recurrent infections. WHIM syndrome is most often caused by gain-of-function mutations in the gene encoding C-X-C chemokine receptor 4 (CXCR4). As such, inhibition of CXCR4 with XOLREMDI® (mavorixafor), an orally bioavailable CXCR4 antagonist, demonstrated clinically meaningful increases in absolute neutrophil and lymphocyte counts and concomitant reduction in infections in patients with WHIM syndrome, resulting in its recent U.S. Food and Drug Administration approval. The impact of CXCR4 antagonism on other aspects of the pathobiology in WHIM syndrome, such as lymphopoiesis and leukocyte trafficking between primary and secondary lymphoid organs, is less understood. Methods In the current study, the effects of CXCR4 antagonism on leukocyte trafficking and distribution in primary and secondary lymphoid organs were investigated in a mouse model of WHIM syndrome carrying the heterozygous Cxcr41013 mutation. Cxcr4+/1013 and Cxcr4 wild-type mice received the orally bioavailable CXCR4 antagonist X4-185. Blood, spleen and bone marrow samples were collected for numeration, flow cytometry, and functional studies. Results Cxcr4+/1013 mice exhibited profound peripheral blood leukopenia as seen in patients with WHIM syndrome. CXCR4 antagonism corrected circulating leukopenia and mobilized functional neutrophils without disrupting granulopoiesis in the bone marrow of Cxcr4+/1013 mice. Furthermore, Cxcr4+/1013 displayed aberrant splenic T and B-cell counts and frequency. Treatment with X4-185 normalized splenic T-cell abnormalities, correcting the reduced CD8+ T-cell numbers, restoring the CD4/CD8 T-cell ratio, and ameliorating peripheral blood T-cell lymphopenia. In addition, CXCR4 antagonism was able to correct the abnormal frequencies and numbers of splenic marginal zone and follicular B cells in Cxcr4+/1013 mice, and ultimately normalize B-cell lymphopenia in the peripheral circulation. Conclusions Our study provides comprehensive evidence that oral dosing with a CXCR4 antagonist can effectively correct WHIM-associated neutrophil and lymphocyte abnormalities in a mouse model of WHIM syndrome. These findings extend our understanding of how targeting the dysregulated CXCR4 signaling pathway can ameliorate the pathogenesis of WHIM syndrome.
Collapse
Affiliation(s)
- Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
15
|
Huang Y, Li L, Chen R, Yu L, Zhao S, Jia Y, Dou Y, Zhang Z, An Y, Tang X, Zhao X, Zhou L. Heterogeneous phenotype of a Chinese Familial WHIM syndrome with CXCR4 V340fs gain-of-function mutation. Front Immunol 2024; 15:1460990. [PMID: 39575248 PMCID: PMC11578956 DOI: 10.3389/fimmu.2024.1460990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Background WHIM syndrome is a rare, autosomal dominant inborn error of immunity characterized by warts, hypogammaglobulinemia, infection, and myelokathexis. It is caused mainly by heterozygous mutations at the C-terminus of the C-X-C chemokine receptor type 4 (CXCR4) gene. Methods We described the detailed clinical, genetic, immunological and treatment characteristic of four WHIM patients from a single Chinese family. Results Here, we report four patients from a family carrying a variant of CXCR4 (c.1016_1017dupCT), which introduces a frameshift at codon V340, resulting in an extension of 14 amino acids (p.V340L fs*27). We provide and in-depth analysis of their clinical, genetic, immunological and treatment characteristic, noting that these patients exhibited an atypical clinical phenotype when compared to reported CXCR4R334X patients. Additionally, the frameshift variant CXCR4V340fs led to impaired receptor downregulation in patients' PBMCs, and in HEK293T cells transfected with the variant plasmids. Conclusions Our study provided detailed clinical features of four CXCR4V340fs WHIM patients from one Chinese family who presented atypical phenotype and enrich the spectrum of WHIM syndrome.
Collapse
Affiliation(s)
- Yu Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkai Zhao
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Yanjun Jia
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatism and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
17
|
Trotta AM, Tomassi S, Di Maiolo G, Ieranò C, Vetrei C, D'Alterio C, Merlino F, Messere A, D'Aniello A, Del Bene A, Mazzarella V, Roggia M, Natale B, Cutolo R, Campagna E, Mottola S, Russo R, Chambery A, Benedetti R, Altucci L, Cosconati S, Scala S, Di Maro S. Disulfide bond replacement with non-reducible side chain to tail macrolactamization for the development of potent and selective CXCR4 peptide antagonists endowed with flanking binding sites. Eur J Med Chem 2024; 276:116669. [PMID: 39053189 DOI: 10.1016/j.ejmech.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The present study describes a small library of peptides derived from a potent and selective CXCR4 antagonist (3), wherein the native disulfide bond is replaced using a side-chain to tail macrolactamization technique to vary ring size and amino acid composition. The peptides were preliminary assessed for their ability to interfere with the interaction between the receptor and anti-CXCR4 PE-conjugated antibody clone 12G5. Two promising candidates (13 and 17) were identified and further evaluated in a125I-CXCL12 competition binding assay, exhibiting IC50 in the low-nanomolar range. Furthermore, both candidates displayed high selectivity towards CXCR4 with respect to the cognate receptor CXCR7, ability to block CXCL12-dependent cancer cell migration, and receptor internalization, albeit at a higher concentration compared to 3. Molecular modeling studies on 13 and 17 produced a theoretical model that may serve as a guide for future modifications, aiding in the development of analogs with improved affinity. Finally, the study provides valuable insights into developing therapeutic agents targeting CXCR4-mediated processes, demonstrating the adaptability of our lead peptide 3 to alternative cyclization approaches and offering prospects for comprehensive investigations into the receptor region's interaction with its C-terminal region.
Collapse
Affiliation(s)
- Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Gaetana Di Maiolo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Cinzia Vetrei
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Michele Roggia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Benito Natale
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy; Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", 80131 Naples, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
| |
Collapse
|
18
|
Soheili F, Delfan N, Masoudifar N, Ebrahimni S, Moshiri B, Glogauer M, Ghafar-Zadeh E. Toward Digital Periodontal Health: Recent Advances and Future Perspectives. Bioengineering (Basel) 2024; 11:937. [PMID: 39329678 PMCID: PMC11428937 DOI: 10.3390/bioengineering11090937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases affecting over 50% of the global population. These diseases arise from infections and inflammation of the gums and supporting bones, significantly impacting oral health. The established link between periodontal diseases and systemic diseases, such as cardiovascular diseases, underscores their importance as a public health concern. Consequently, the early detection and prevention of periodontal diseases have become critical objectives in healthcare, particularly through the integration of advanced artificial intelligence (AI) technologies. This paper aims to bridge the gap between clinical practices and cutting-edge technologies by providing a comprehensive review of current research. We examine the identification of causative factors, disease progression, and the role of AI in enhancing early detection and treatment. Our goal is to underscore the importance of early intervention in improving patient outcomes and to stimulate further interest among researchers, bioengineers, and AI specialists in the ongoing exploration of AI applications in periodontal disease diagnosis.
Collapse
Affiliation(s)
- Fatemeh Soheili
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Niloufar Delfan
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
| | - Negin Masoudifar
- Department of Internal Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shahin Ebrahimni
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
19
|
Yang J, Tian E, Chen L, Liu Z, Ren Y, Mao W, Zhang Y, Zhang J. Development and therapeutic perspectives of CXCR4 antagonists for disease therapy. Eur J Med Chem 2024; 275:116594. [PMID: 38879970 DOI: 10.1016/j.ejmech.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Chemokine receptor 4 (CXCR4) is a subtype receptor protein of the GPCR family with a seven-transmembrane structure widely distributed in human tissues. CXCR4 is involved in diseases (e.g., HIV-1 infection), cancer proliferation and metastasis, inflammation signaling pathways, and leukemia, making it a promising drug target. Clinical trials on CXCR4 antagonists mainly focused on peptides and antibodies, with a few small molecule compounds, such as AMD11070 (2) and MSX-122 (3), showing promise in cancer treatment. This perspective discusses the structure-activity relationship (SAR) of CXCR4 and its role in diseases, mainly focusing on the SAR of CXCR4 antagonists. It also explores the standard structural features and target interactions of CXCR4 binding in different disease categories. Furthermore, it investigates various modification strategies to propose potential improvements in the effectiveness of CXCR4 drugs.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihang Liu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wuyu Mao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Mickey D, Camacho JV, Khan A, Kaufman D. Immunodeficiency: Quantitative and qualitative phagocytic cell defects. Allergy Asthma Proc 2024; 45:299-304. [PMID: 39294912 DOI: 10.2500/aap.2024.45.240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The immune system is divided into two major branches: innate and adaptive. The innate immune system is the body's first line of defense and rapidly responds in a nonspecific manner to various microorganisms, foreign materials, or injuries. Phagocytes, which include macrophages, monocytes, and neutrophils, are innate immune cells that can surround and kill microorganisms, ingest foreign material, and remove dead cells. They also indirectly boost both innate and adaptive immune responses through various activation signals. Phagocytic defects characteristically lead to fungal and bacterial infections of the respiratory tract, lymph nodes, skin, and other organ systems, and they are commonly associated with inflammatory bowel disease. This primer will review high-yield innate defects of phagocytic cells, including defects of respiratory (oxidative) burst, defects of neutrophil migration, cyclic and severe congenital neutropenias and associated disorders, and other phagocyte defect disorders.
Collapse
|
21
|
Wang W, Pope A, Ward-Shaw E, Buehler D, Bachelerie F, Lambert PF. Increased Susceptibility of WHIM Mice to Papillomavirus-induced Disease is Dependent upon Immune Cell Dysfunction. PLoS Pathog 2024; 20:e1012472. [PMID: 39226327 PMCID: PMC11398641 DOI: 10.1371/journal.ppat.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Francoise Bachelerie
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR-996, Université Paris-Saclay, Orsay, France
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
22
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
23
|
Zmajkovicova K, Pawar S, Sharapova SO, Geier CB, Wiest I, Nguyen C, Monticelli H, Maier-Munsa S, Chen K, Sleasman JW, Aleshkevich S, Polyakova E, Sakovich I, Warnatz K, Grimbacher B, Proietti M, Sondheimer N, Ujhazi B, Gordon S, Ellison M, Yilmaz M, Walter JE, Badarau A, Taveras AG, Neff JL, Bledsoe JR, Tarrant TK. A novel transmembrane CXCR4 variant that expands the WHIM genotype-phenotype paradigm. Blood Adv 2024; 8:3754-3759. [PMID: 38768429 PMCID: PMC11296240 DOI: 10.1182/bloodadvances.2023011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
| | - Sumit Pawar
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Christoph B. Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivana Wiest
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Chi Nguyen
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | | | - John W. Sleasman
- Division of Allergy, Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Svetlana Aleshkevich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Ekaterina Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Neal Sondheimer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Maryssa Ellison
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA
| | | | | | - Jadee L. Neff
- Division of Hematopathology, Department of Pathology, Duke University, Durham, NC
| | | | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
24
|
Nock SH, Blanco-Lopez MR, Stephenson-Deakin C, Jones S, Unsworth AJ. Pim Kinase Inhibition Disrupts CXCR4 Signalling in Megakaryocytes and Platelets by Reducing Receptor Availability at the Surface. Int J Mol Sci 2024; 25:7606. [PMID: 39062849 PMCID: PMC11276893 DOI: 10.3390/ijms25147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A key step in platelet production is the migration of megakaryocytes to the vascular sinusoids within the bone marrow. This homing is mediated by the chemokine CXCL12 and its receptor CXCR4. CXCR4 is also a positive regulator of platelet activation and thrombosis. Pim-1 kinase has been shown to regulate CXCR4 signalling in other cell types, and we have previously described how Pim kinase inhibitors attenuate platelet aggregation to CXCL12. However, the mechanism by which Pim-1 regulates CXCR4 signalling in platelets and megakaryocytes has yet to be elucidated. Using human platelets, murine bone marrow-derived megakaryocytes, and the megakaryocyte cell line MEG-01, we demonstrate that pharmacological Pim kinase inhibition leads to reduced megakaryocyte and platelet function responses to CXCL12, including reduced megakaryocyte migration and platelet granule secretion. Attenuation of CXCL12 signalling was found to be attributed to the reduced surface expression of CXCR4. The decrease in CXCR4 surface levels was found to be mediated by rapid receptor internalisation, in the absence of agonist stimulation. We demonstrate that pharmacological Pim kinase inhibition disrupts megakaryocyte and platelet function by reducing constitutive CXCR4 surface expression, decreasing the number of receptors available for agonist stimulation and signalling. These findings have implications for the development and use of Pim kinase inhibitors for the treatment of conditions associated with elevated circulating levels of CXCL12/SDF1α and increased thrombotic risk.
Collapse
Affiliation(s)
- Sophie H. Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Maria R. Blanco-Lopez
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Chloe Stephenson-Deakin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 3AA, UK
| |
Collapse
|
25
|
Zmajkovicova K, Nykamp K, Blair G, Yilmaz M, Walter JE. Expanding CXCR4 variant landscape in WHIM syndrome: integrating clinical and functional data for variant interpretation. Front Immunol 2024; 15:1411141. [PMID: 39040098 PMCID: PMC11260667 DOI: 10.3389/fimmu.2024.1411141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the CXCR4 gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic CXCR4 variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants. Understanding the genotypic-phenotypic associations in WHIM syndrome has the potential to improve time to diagnosis and guide appropriate clinical management, resulting in a true example of precision medicine. This article provides an overview of the spectrum of CXCR4 variants in WHIM syndrome and summarizes the various lines of clinical and functional evidence that can support interpretation of newly identified variants.
Collapse
Affiliation(s)
| | | | - Grace Blair
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
26
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
27
|
Badolato R, Alsina L, Azar A, Bertrand Y, Bolyard AA, Dale D, Deyà-Martínez À, Dickerson KE, Ezra N, Hasle H, Kang HJ, Kiani-Alikhan S, Kuijpers TW, Kulagin A, Langguth D, Levin C, Neth O, Olbrich P, Peake J, Rodina Y, Rutten CE, Shcherbina A, Tarrant TK, Vossen MG, Wysocki CA, Belschner A, Bridger GJ, Chen K, Dubuc S, Hu Y, Jiang H, Li S, MacLeod R, Stewart M, Taveras AG, Yan T, Donadieu J. A phase 3 randomized trial of mavorixafor, a CXCR4 antagonist, for WHIM syndrome. Blood 2024; 144:35-45. [PMID: 38643510 PMCID: PMC11251404 DOI: 10.1182/blood.2023022658] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT We investigated efficacy and safety of mavorixafor, an oral CXCR4 antagonist, in participants with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency caused by CXCR4 gain-of-function variants. This randomized (1:1), double-blind, placebo-controlled, phase 3 trial enrolled participants aged ≥12 years with WHIM syndrome and absolute neutrophil count (ANC) ≤0.4 × 103/μL. Participants received once-daily mavorixafor or placebo for 52 weeks. The primary end point was time (hours) above ANC threshold ≥0.5 × 103/μL (TATANC; over 24 hours). Secondary end points included TAT absolute lymphocyte count ≥1.0 × 103/μL (TATALC; over 24 hours); absolute changes in white blood cell (WBC), ANC, and absolute lymphocyte count (ALC) from baseline; annualized infection rate; infection duration; and total infection score (combined infection number/severity). In 31 participants (mavorixafor, n = 14; placebo, n = 17), mavorixafor least squares (LS) mean TATANC was 15.0 hours and 2.8 hours for placebo (P < .001). Mavorixafor LS mean TATALC was 15.8 hours and 4.6 hours for placebo (P < .001). Annualized infection rates were 60% lower with mavorixafor vs placebo (LS mean 1.7 vs 4.2; nominal P = .007), and total infection scores were 40% lower (7.4 [95% confidence interval [CI], 1.6-13.2] vs 12.3 [95% CI, 7.2-17.3]). Treatment with mavorixafor reduced infection frequency, severity, duration, and antibiotic use. No discontinuations occurred due to treatment-emergent adverse events (TEAEs); no related serious TEAEs were observed. Overall, mavorixafor treatment demonstrated significant increases in LS mean TATANC and TATALC, reduced infection frequency, severity/duration, and was well tolerated. The trial was registered at www.clinicaltrials.gov as #NCT03995108.
Collapse
Affiliation(s)
- Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD
| | - Yves Bertrand
- Pediatric Hematology and Oncology Institute, Hospices Civils de Lyon and Claude Bernard University, Lyon, France
| | | | - David Dale
- University of Washington Medical Center, Seattle, WA
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Navid Ezra
- California Dermatology Institute, Thousand Oaks, CA
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Sorena Kiani-Alikhan
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Daman Langguth
- Immunology Department, Sullivan Nicolaides Pathology Auchenflower, Wesley Medical Center, Auchenflower, QLD, Australia
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Olaf Neth
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Peter Olbrich
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
- Departmento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jane Peake
- Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Caroline E. Rutten
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
| | - Matthias G. Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Assistance Publique–Hôpitaux de Paris Sorbonne Université-Hôpital d’Enfants Armand-Trousseau, Paris, France
| |
Collapse
|
28
|
Geier CB. Mavorixafor: a new hope for WHIM syndrome. Blood 2024; 144:1-2. [PMID: 38963672 DOI: 10.1182/blood.2024024942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Affiliation(s)
- Christoph B Geier
- Carl von Ossietzky University Oldenburg and Medical Center University of Freiburg
| |
Collapse
|
29
|
Bibas M, Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia - A State-of-the-Art Review: Part 1: Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Risk Stratification, and Clinical Problems. Mediterr J Hematol Infect Dis 2024; 16:e2024061. [PMID: 38984103 PMCID: PMC11232678 DOI: 10.4084/mjhid.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is an infrequent variant of lymphoma, classified as a B-cell malignancy identified by the presence of IgM paraprotein, infiltration of clonal, small lymphoplasmacytic B cells in the bone marrow, and the MYD88 L265P mutation, which is observed in over 90% of cases. The direct invasion of the malignant cells into tissues like lymph nodes and spleen, along with the immune response related to IgM, can also lead to various health complications, such as cytopenias, hyperviscosity, peripheral neuropathy, amyloidosis, and Bing-Neel syndrome. Chemoimmunotherapy has historically been considered the preferred treatment for WM, wherein the combination of rituximab and nucleoside analogs, alkylating drugs, or proteasome inhibitors has exhibited notable efficacy in inhibiting tumor growth. Recent studies have provided evidence that Bruton Tyrosine Kinase inhibitors (BTKI), either used independently or in conjunction with other drugs, have been shown to be effective and safe in the treatment of WM. The disease is considered to be non-curable, with a median life expectancy of 10 to 12 years.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCSS Rome Italy
| | - Shayna Sarosiek
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Moles MW, Erdlei H, Menzel L, Massaro M, Fiori A, Bunse M, Schrimpf M, Gerlach K, Gudipati V, Reiser J, Mathavan K, Goodrich JP, Huppa JB, Krönke J, Valamehr B, Höpken UE, Rehm A. CXCR4 has a dual role in improving the efficacy of BCMA-redirected CAR-NK cells in multiple myeloma. Front Immunol 2024; 15:1383136. [PMID: 38979422 PMCID: PMC11228140 DOI: 10.3389/fimmu.2024.1383136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.
Collapse
MESH Headings
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Humans
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- B-Cell Maturation Antigen/immunology
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Chemokine CXCL12/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Michael W Moles
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Henry Erdlei
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Lutz Menzel
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Marialucia Massaro
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Agnese Fiori
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Mario Bunse
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Moritz Schrimpf
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Kerstin Gerlach
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - John Reiser
- Fate Therapeutics, San Diego, CA, United States
| | | | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Jan Krönke
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Armin Rehm
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| |
Collapse
|
31
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
32
|
Meng X, Zhang H, Dong L, Min Q, Yu M, Li Y, Liu L, Wang W, Ying W, Sun J, Wang JY, Hou J, Wang X. Impact of different genetic mutations on granulocyte development and G-CSF responsiveness in congenital neutropenia. Blood Adv 2024; 8:1667-1682. [PMID: 38286463 PMCID: PMC11006815 DOI: 10.1182/bloodadvances.2023012171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
ABSTRACT Congenital neutropenia (CN) is a genetic disorder characterized by persistent or intermittent low peripheral neutrophil counts, thus increasing susceptibility to bacterial and fungal infections. Various forms of CN, caused by distinct genetic mutations, exhibit differential responses to granulocyte colony-stimulating factor (G-CSF) therapy, with the underlying mechanisms not fully understood. This study presents an in-depth comparative analysis of clinical and immunological features in 5 CN patient groups (severe congenital neutropenia [SCN]1, SCN3, cyclic neutropenia [CyN], warts, hypogammaglobulinaemia, infections and myelokathexis [WHIM], and Shwachman-Bodian-Diamond Syndrome [SBDS]) associated with mutations in ELANE, HAX1, CXCR4, and SBDS genes. Our analysis led to the identification of 11 novel mutations in ELANE and 1 each in HAX1, CXCR4, and G6PC3 genes. Investigating bone marrow (BM) granulopoiesis and blood absolute neutrophil count after G-CSF treatment, we found that SCN1 and SCN3 presented with severe early-stage disruption between the promyelocyte and myelocyte, leading to a poor response to G-CSF. In contrast, CyN, affected at the late polymorphonuclear stage of neutrophil development, showed a strong G-CSF response. WHIM, displaying normal neutrophil development, responded robustly to G-CSF, whereas SBDS, with moderate disruption from the early myeloblast stage, exhibited a moderate response. Notably, SCN1 uniquely impeded neutrophil development, whereas SCN3, CyN, WHIM, and SBDS also affected eosinophils and basophils. In addition, SCN1, SCN3, and CyN presented with elevated serum immunoglobulins, increased BM plasma cells, and higher A Proliferation-Inducing Ligand levels. Our study reveals a strong correlation between the stage and severity of granulocyte development disruption and the efficacy of G-CSF therapy.
Collapse
Affiliation(s)
- Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lipin Liu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| |
Collapse
|
33
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|
34
|
Moulin C, Beaupain B, Suarez F, Bertrand Y, Beaussant SC, Fischer A, Durin J, Ranta D, Espéli M, Bachelerie F, Bellanné-Chantelot C, Molina T, Emile JF, Balabanian K, Deback C, Donadieu J. CXCR4 WHIM syndrome is a cancer predisposition condition for virus-induced malignancies. Br J Haematol 2024; 204:1383-1392. [PMID: 38442908 DOI: 10.1111/bjh.19373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome (WHIMS) is a rare combined primary immunodeficiency caused by the gain of function of the CXCR4 chemokine receptor. We present the prevalence of cancer in WHIMS patients based on data from the French Severe Chronic Neutropenia Registry and an exhaustive literature review. The median follow-up of the 14 WHIMS 'patients was 28.5 years. A central review and viral evaluation of pathological samples were organized, and we conducted a thorough literature review to identify all reports of WHIMS cases. Six French patients were diagnosed with cancer at a median age of 37.6 years. The 40-year risk of malignancy was 39% (95% confidence interval [CI]: 6%-74%). We observed two human papillomavirus (HPV)-induced vulvar carcinomas, three lymphomas (two Epstein-Barr virus [EBV]-related) and one basal cell carcinoma. Among the 155 WHIMS cases from the literature, 22 cancers were reported in 16 patients, with an overall cancer 40-year risk of 23% (95% CI: 13%-39%). Malignancies included EBV-associated lymphoproliferative disorders and HPV-positive genital and anal cancers as in the French cohort. Worldwide, nine cases of malignancy were associated with HPV and four with EBV. Immunocompromised WHIMS patients appear to be particularly susceptible to developing early malignancy, mainly HPV-induced carcinomas, followed by EBV-related lymphomas.
Collapse
Affiliation(s)
- Clémentine Moulin
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Blandine Beaupain
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Felipe Suarez
- Service d'hématologie, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Yves Bertrand
- Institut d'hémato oncologie Pédiatrique, Hospice Civil de Lyon, Paris, France
| | - Sarah Cohen Beaussant
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Alain Fischer
- Centre de référence des déficits immunitaires héréditaires, Unité d'Immuno-Hématologie Pédiatrique, Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Julie Durin
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| | - Dana Ranta
- Service d'hématologie, CHU Nancy, Nancy, France
| | - Marion Espéli
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | | | - Thierry Molina
- Service d'anatomie pathologique Hôpital Necker Enfants Malades, APHP, Paris, France
| | - Jean François Emile
- Service d'anatomie pathologique Hôpital Ambroise Paré, APHP, Boulogne-Billancourt, France
| | - Karl Balabanian
- Université Paris-Cité, INSERM U1160, Institut de Recherche Saint-Louis, Paris, France
| | - Claire Deback
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
- Laboratoire de Virologie, Hôpitaux Universitaires Paris-Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, France
| | - Jean Donadieu
- Centre de référence des neutropénies chroniques, Registre des neutropénies chroniques, APHP, Hôpital Trousseau Paris, Paris, France
| |
Collapse
|
35
|
Simons BD, Karin O. Tuning of plasma cell lifespan by competition explains the longevity and heterogeneity of antibody persistence. Immunity 2024; 57:600-611.e6. [PMID: 38447570 DOI: 10.1016/j.immuni.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.
Collapse
Affiliation(s)
- Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
37
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
39
|
McDermott DH, Velez D, Cho E, Cowen EW, DiGiovanna JJ, Pastrana DV, Buck CB, Calvo KR, Gardner PJ, Rosenzweig SD, Stratton P, Merideth MA, Kim HJ, Brewer C, Katz JD, Kuhns DB, Malech HL, Follmann D, Fay MP, Murphy PM. A phase III randomized crossover trial of plerixafor versus G-CSF for treatment of WHIM syndrome. J Clin Invest 2023; 133:e164918. [PMID: 37561579 PMCID: PMC10541188 DOI: 10.1172/jci164918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDWarts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a primary immunodeficiency disorder caused by heterozygous gain-of-function CXCR4 mutations. Myelokathexis is a kind of neutropenia caused by neutrophil retention in bone marrow and in WHIM syndrome is associated with lymphopenia and monocytopenia. The CXCR4 antagonist plerixafor mobilizes leukocytes to the blood; however, its safety and efficacy in WHIM syndrome are undefined.METHODSIn this investigator-initiated, single-center, quadruple-masked phase III crossover trial, we compared the total infection severity score (TISS) as the primary endpoint in an intent-to-treat manner in 19 patients with WHIM who each received 12 months treatment with plerixafor and 12 months treatment with granulocyte CSF (G-CSF, the standard of care for severe congenital neutropenia). The treatment order was randomized for each patient.RESULTSPlerixafor was nonsuperior to G-CSF for TISS (P = 0.54). In exploratory endpoints, plerixafor was noninferior to G-CSF for maintaining neutrophil counts of more than 500 cells/μL (P = 0.023) and was superior to G-CSF for maintaining lymphocyte counts above 1,000 cells/μL (P < 0.0001). Complete regression of a subset of large wart areas occurred on plerixafor in 5 of 7 patients with major wart burdens at baseline. Transient rash occurred on plerixafor, and bone pain was more common on G-CSF. There were no significant differences in drug preference or quality of life or the incidence of drug failure or serious adverse events.CONCLUSIONPlerixafor was not superior to G-CSF in patients with WHIM for TISS, the primary endpoint. Together with wart regression and hematologic improvement, the infection severity results support continued study of plerixafor as a potential treatment for WHIM syndrome.TRIAL REGISTRATIONClinicaltrials.gov NCT02231879.FUNDINGThis study was funded by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Elena Cho
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | | | | | | | | | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research
| | | | | | | | - H. Jeffrey Kim
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - Carmen Brewer
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - James D. Katz
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
40
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
41
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
42
|
Dale DC, Bolyard AA, Makaryan V. The promise of novel treatments for severe chronic neutropenia. Expert Rev Hematol 2023; 16:1025-1033. [PMID: 37978893 DOI: 10.1080/17474086.2023.2285987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Severe chronic neutropenia, i.e. absolute neutrophil count (ANC) less than 0.5 × 109/L, is a serious health problem because it predisposes patients to recurrent bacterial infections. Management radically changed with the discovery that granulocyte colony-stimulating factor (G-CSF) could be used to effectively treat most patients; therapy required regular subcutaneous injections. In the early days of G-CSF therapy, there were concerns that it might somehow overstimulate the bone marrow and cause myelodysplasia (MDS) or acute myeloid leukemia (AML). Detailed research records from the Severe Chronic Neutropenia International Registry (SCNIR) indicate that this is a relatively low-risk event. The research records suggest that certain patient groups are primarily at risk. Presently, allogeneic hematopoietic stem cell therapy serves as an alternate form of therapy. AREAS COVERED Due to these concerns and the desire for an easy-to-take oral alternative, several new treatments are under investigation. These treatments include neutrophil elastase inhibitors, SGLT-2 inhibitors, mavorixafor - an oral CXCR4 inhibitor, gene therapy, and gene editing. EXPERT OPINION All of these alternatives to G-CSF are promising. The risks, relative benefits, and costs are yet to be determined.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Majumdar S, Pontejo SM, Jaiswal H, Gao JL, Salancy A, Stassenko E, Yamane H, McDermott DH, Balabanian K, Bachelerie F, Murphy PM. Severe CD8+ T Lymphopenia in WHIM Syndrome Caused by Selective Sequestration in Primary Immune Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1913-1924. [PMID: 37133343 PMCID: PMC10247468 DOI: 10.4049/jimmunol.2200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.
Collapse
Affiliation(s)
- Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hemant Jaiswal
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Abigail Salancy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Stassenko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Karl Balabanian
- Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
44
|
Anginot A, Nguyen J, Abou Nader Z, Rondeau V, Bonaud A, Kalogeraki M, Boutin A, Lemos JP, Bisio V, Koenen J, Hanna Doumit Sakr L, Picart A, Coudert A, Provot S, Dulphy N, Aurrand-Lions M, Mancini SJC, Lazennec G, McDermott DH, Guidez F, Blin-Wakkach C, Murphy PM, Cohen-Solal M, Espéli M, Rouleau M, Balabanian K. WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nat Commun 2023; 14:2058. [PMID: 37045841 PMCID: PMC10097661 DOI: 10.1038/s41467-023-37791-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.
Collapse
Affiliation(s)
- Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julie Nguyen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Julia P Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Valeria Bisio
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Joyce Koenen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Lea Hanna Doumit Sakr
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amandine Picart
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amélie Coudert
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Sylvain Provot
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Michel Aurrand-Lions
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane J C Mancini
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Gwendal Lazennec
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Fabien Guidez
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1131, Paris, France
| | | | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martine Cohen-Solal
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France.
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
45
|
Awata-Shiraiwa M, Yokohama A, Kanai Y, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Murakami H, Hirato J, Ikota H, Tsukamoto N. Waldenström Macroglobulinemia and Non-IgM-Type Lymphoplasmacytic Lymphoma Are Genetically Similar. Acta Haematol 2023; 146:384-390. [PMID: 36917966 DOI: 10.1159/000530100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Waldenström macroglobulinemia (WM) represents a subset of lymphoplasmacytic lymphoma (LPL) with the immunoglobulin (Ig)M paraprotein. MYD88 L265P and CXCR4 mutations are common mutations in WM patients, and mutations in ARID1A and KMT2D (MLL2) have also been reported. However, little information has been accumulated on genetic changes in LPL with other paraproteins like IgG. METHODS We therefore aimed to evaluate genetic differences between WM and LPL with non-IgM paraprotein (non-IgM-type LPL) using targeted next-generation sequencing (NGS) in 20 Japanese patients (10 with WM, 10 with non-IgM-type LPL). RESULTS Mutations were detected in ARID1A (10%), CXCR4 (20%), MYD88 (90%), and KMT2D (0%) for WM patients and in ARID1A (10%), CXCR4 (20%), MYD88 (70%), and KMT2D (10%) for non-IgM-type LPL patients. No significant differences were identified. No mutations were detected in NOTCH2, PRDM1, CD274 (PD-L1), PDCD1LG2 (PD-L2), RAG2, MYBBP1A, TP53, or CD79B. DISCUSSION Mutant allele frequency in MYD88 L265P did not differ significantly between WM and non-IgM-type LPL. Most mutations detected by NGS were subclonal following MYD88 L265P, although one non-IgM-type LPL patient harbored only CXCR4 S338X mutation. Our NGS analyses reveal genetic characteristics in LPL patients and suggest genetic similarities between these two subsets of LPL, WM and non-IgM-type.
Collapse
Affiliation(s)
- Maaya Awata-Shiraiwa
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Gunma University of Health and Welfare, Maebashi, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Japan
| | - Yukihiro Kanai
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Gunma University of Health and Welfare, Maebashi, Japan
| | - Junko Hirato
- Clinical Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | | |
Collapse
|
46
|
Kumar R, Milanesi S, Szpakowska M, Dotta L, Di Silvestre D, Trotta AM, Bello AM, Giacomelli M, Benedito M, Azevedo J, Pereira A, Cortesao E, Vacchini A, Castagna A, Pinelli M, Moratto D, Bonecchi R, Locati M, Scala S, Chevigné A, Borroni EM, Badolato R. Reduced G protein signaling despite impaired internalization and β-arrestin recruitment in patients carrying a CXCR4Leu317fsX3 mutation causing WHIM syndrome. JCI Insight 2023; 8:145688. [PMID: 36883568 PMCID: PMC10077478 DOI: 10.1172/jci.insight.145688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and β-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.
Collapse
Affiliation(s)
- Rajesh Kumar
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Samantha Milanesi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Laura Dotta
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Department of Pediatrics, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Mauro Giacomelli
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Manuela Benedito
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joana Azevedo
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Alexandra Pereira
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Emilia Cortesao
- Department of Clinical Hematology, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | | | - Marinella Pinelli
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Daniele Moratto
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Bonecchi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Elena M Borroni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaele Badolato
- "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Brescia, Italy.,Department of Pediatrics, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
47
|
Khamyath M, Bonaud A, Balabanian K, Espéli M. [CXCR4 as a rheostat of humoral response]. Med Sci (Paris) 2023; 39:23-30. [PMID: 36692314 DOI: 10.1051/medsci/2022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CXCR4 is a chemokine receptor that plays a central role in cell migration but also in other essential processes such as the development of the immune system. Together with its ligand, the chemokine CXCL12, this signalling axis plays an important role in B lymphocyte biology from their early differentiation in the bone marrow to their activation and differentiation into antibody secreting cells, also called plasma cells. Gain-of-function mutations of CXCR4 are found in a rare immunodeficiency, the WHIM Syndrome. These mutations affect the desensitization of the receptor and lead to a gain of function in response to CXCL12. This review summarizes the role of CXCR4 in the humoral immune responses and using the WHIM Syndrome as a paradigm, highlights the critical regulatory role of CXCR4 desensitization in these processes. Indeed, recent works report that fine-tuning of CXCR4 signalling is essential to limit the extra-follicular immune response and support long term antibody-mediated protection.
Collapse
Affiliation(s)
- Mélanie Khamyath
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université Paris-Cité, Institut de recherche Saint-Louis, Inserm U1160, Paris, France - OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
48
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
49
|
Donadieu J. Genetics of severe congenital neutropenia as a gateway to personalized therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:658-665. [PMID: 36485107 PMCID: PMC9821599 DOI: 10.1182/hematology.2022000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Registre National des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
50
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|