1
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Lancaster MC, Chen HH, Shoemaker MB, Fleming MR, Strickland TL, Baker JT, Evans GF, Polikowsky HG, Samuels DC, Huff CD, Roden DM, Below JE. Detection of distant relatedness in biobanks to identify undiagnosed cases of Mendelian disease as applied to Long QT syndrome. Nat Commun 2024; 15:7507. [PMID: 39209900 PMCID: PMC11362435 DOI: 10.1038/s41467-024-51977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Rare genetic diseases are typically studied in referral populations, resulting in underdiagnosis and biased assessment of penetrance and phenotype. To address this, we develop a generalizable method of genotype inference based on distant relatedness and deploy this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. We identify 9 LQT5 families referred to a single specialty clinic, each carrying p.Asp76Asn, the most common LQT5 variant. We uncover recent common ancestry and a single shared haplotype among probands. Application to a non-referral population of 69,819 BioVU biobank subjects identifies 22 additional subjects sharing this haplotype, which we confirm to carry p.Asp76Asn. Referral and non-referral carriers have prolonged QT interval corrected for heart rate (QTc) compared to controls, and, among carriers, the QTc polygenic score is independently associated with QTc prolongation. Thus, our innovative analysis of shared chromosomal segments identifies undiagnosed cases of genetic disease and refines the understanding of LQT5 penetrance and phenotype.
Collapse
Affiliation(s)
- Megan C Lancaster
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hung-Hsin Chen
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11524, Taiwan
| | - M Benjamin Shoemaker
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Matthew R Fleming
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Teresa L Strickland
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James T Baker
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Grahame F Evans
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hannah G Polikowsky
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chad D Huff
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan M Roden
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jennifer E Below
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Muhammad A, Calandranis ME, Li B, Yang T, Blackwell DJ, Harvey ML, Smith JE, Daniel ZA, Chew AE, Capra JA, Matreyek KA, Fowler DM, Roden DM, Glazer AM. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. Genome Med 2024; 16:73. [PMID: 38816749 PMCID: PMC11138074 DOI: 10.1186/s13073-024-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. METHODS In this study, we leveraged the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein-coding KCNE1 variants. RESULTS We comprehensively assayed KCNE1 variant cell surface expression (2554/2709 possible single-amino-acid variants) and function (2534 variants). Our study identified 470 loss- or partial loss-of-surface expression and 574 loss- or partial loss-of-function variants. Of the 574 loss- or partial loss-of-function variants, 152 (26.5%) had reduced cell surface expression, indicating that most functionally deleterious variants affect channel gating. Nonsense variants at residues 56-104 generally had WT-like trafficking scores but decreased functional scores, indicating that the latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation (with > 70% loss-of-function variants) were in predicted close contact with binding partners KCNQ1 or calmodulin. Our functional assay data were consistent with gold standard electrophysiological data (ρ = - 0.64), population and patient cohorts (32/38 presumed benign or pathogenic variants with consistent scores), and computational predictors (ρ = - 0.62). Our data provide moderate-strength evidence for the American College of Medical Genetics/Association of Molecular Pathology functional criteria for benign and pathogenic variants. CONCLUSIONS Comprehensive variant effect maps of KCNE1 can both provide insight into I Ks channel biology and help reclassify variants of uncertain significance.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria E Calandranis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Lorena Harvey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeremy E Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zerubabell A Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ashli E Chew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94143, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Dan M Roden
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew M Glazer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Muhammad A, Calandranis ME, Li B, Yang T, Blackwell DJ, Harvey ML, Smith JE, Chew AE, Capra JA, Matreyek KA, Fowler DM, Roden DM, Glazer AM. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538612. [PMID: 37162834 PMCID: PMC10168370 DOI: 10.1101/2023.04.28.538612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. Results Here, we demonstrate the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein coding KCNE1 variants. We comprehensively assayed KCNE1 variant cell surface expression (2,554/2,709 possible single amino acid variants) and function (2,539 variants). We identified 470 loss-of-surface expression and 588 loss-of-function variants. Out of the 588 loss-of-function variants, only 155 had low cell surface expression. The latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation were in predicted close contact with binding partners KCNQ1 or calmodulin. Our data were highly concordant with gold standard electrophysiological data (ρ = -0.65), population and patient cohorts (32/38 concordant variants), and computational metrics (ρ = -0.55). Our data provide moderate-strength evidence for the ACMG/AMP functional criteria for benign and pathogenic variants. Conclusions Comprehensive variant effect maps of KCNE1 can both provide insight into IKs channel biology and help reclassify variants of uncertain significance.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Maria E. Calandranis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel J. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Lorena Harvey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremy E. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashli E. Chew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Douglas M. Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dan M. Roden
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew M. Glazer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Lancaster MC, Chen HH, Shoemaker MB, Fleming MR, Baker JT, Polikowsky HG, Samuels DC, Huff CD, Roden DM, Below JE. Detection of distant familial relatedness in biobanks for identification of undiagnosed carriers of a Mendelian disease variant: application to Long QT syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288831. [PMID: 37163006 PMCID: PMC10168417 DOI: 10.1101/2023.04.19.23288831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Importance The diagnosis and study of rare genetic disease is often limited to referral populations, leading to underdiagnosis and a biased assessment of penetrance and phenotype. Objective To develop a generalizable method of genotype inference based on distant relatedness and to deploy this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. Participants We identified 9 LQT5 probands and 3 first-degree relatives referred to a single Genetic Arrhythmia clinic, each carrying D76N (p.Asp76Asn), the most common variant implicated in LQT5. The non-referral population consisted of 69,879 ancestry-matched subjects in BioVU, a large biobank that links electronic health records to dense array data. Participants were enrolled from 2007-2022. Data analysis was performed in 2022. Exposures We developed and applied a novel approach to genotype inference (Distant Relatedness for Identification and Variant Evaluation, or DRIVE) to identify shared, identical-by-descent (IBD) large chromosomal segments in array data. Main Outcomes and Measures We sought to establish genetic relatedness among the probands and to use genomic segments underlying D76N to identify other potential carriers in BioVU. We then further studied the role of D76N in LQT5 pathogenesis. Results Genetic reconstruction of pedigrees and distant relatedness detection among clinic probands using DRIVE revealed shared recent common ancestry and identified a single long shared haplotype. Interrogation of the non-referral population in BioVU identified a further 23 subjects sharing this haplotype, and sequencing confirmed D76N carrier status in 22, all previously undiagnosed with LQT5. The QTc was prolonged in D76N carriers compared to BioVU controls, with 40% penetrance of QTc ≥ 480 msec. Among D76N carriers, a QTc polygenic score was additively associated with QTc prolongation. Conclusions and Relevance Detection of IBD shared chromosomal segments around D76N enabled identification of distantly related and previously undiagnosed rare-variant carriers, demonstrated the contribution of polygenic risk to monogenic disease penetrance, and further established LQT5 as a primary arrhythmia disorder. Analysis of shared chromosomal regions spanning disease-causing mutations can identify undiagnosed cases of genetic diseases.
Collapse
Affiliation(s)
| | - Hung-Hsin Chen
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - James T Baker
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Chad D Huff
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dan M Roden
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
6
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
7
|
Erlandsdotter LM, Giammarino L, Halili A, Nikesjö J, Gréen H, Odening KE, Liin SI. Long-QT mutations in KCNE1 modulate the 17β-estradiol response of Kv7.1/KCNE1. SCIENCE ADVANCES 2023; 9:eade7109. [PMID: 36921038 PMCID: PMC10017040 DOI: 10.1126/sciadv.ade7109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Estradiol (17[Formula: see text]-E2) is implicated in higher arrhythmia risk of women with congenital or acquired long-QT syndrome (LQTS) compared to men. However, the underlying mechanisms remain poorly understood, and little is known about the impact of LQTS-associated mutations. We show that 17[Formula: see text]-E2 inhibits the human cardiac Kv7.1/KCNE1 channel expressed in Xenopus oocytes. We find that the 17[Formula: see text]-E2 effect depends on the Kv7.1 to KCNE1 stoichiometry, and we reveal a critical function of the KCNE1 carboxyl terminus for the effect. LQTS-associated mutations in the KCNE1 carboxyl terminus show a range of responses to 17[Formula: see text]-E2, from a wild-type like response to impaired or abolished response. Together, this study increases our understanding of the mechanistic basis for 17[Formula: see text]-E2 inhibition of Kv7.1/KCNE1 and demonstrates mutation-dependent responses to 17[Formula: see text]-E2. These findings suggest that the 17[Formula: see text]-E2 effect on Kv7.1/KCNE1 might contribute to the higher arrhythmia risk of women, particularly in carriers with specific LQTS-associated mutations.
Collapse
Affiliation(s)
| | - Lucilla Giammarino
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern and Department of Physiology, University of Bern, Bern, Switzerland
| | - Azemine Halili
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Gréen
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Katja E. Odening
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern and Department of Physiology, University of Bern, Bern, Switzerland
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
9
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
10
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
11
|
Systematic review of long QT syndrome identified during fetal life. Heart Rhythm 2022; 20:596-606. [PMID: 36566891 DOI: 10.1016/j.hrthm.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Fetal long QT syndrome (LQTS) may present with sinus bradycardia, functional 2:1 atrioventricular block (AVB), and ventricular arrhythmias (ventricular tachycardia [VT]/torsades de pointes [TdP]) and lead to fetal or postnatal death. We performed a systematic review and individual participant data meta-analysis of 83 studies reporting outcomes of 265 fetuses for which suspected LQTS was confirmed postnatally and determined risk of adverse perinatal and postnatal outcomes using logistic and stepwise logistic regression. A longer fetal QTc was more predictive of death than any other antenatal factor (receiver operating characteristic [ROC] area under the curve [AUC] 0.85; 95% confidence interval [CI] 0.66-1.00). Risk of death was significantly increased with fetal QTc >600 ms. Neither fetal heart rate nor heart rate z-score predicted death (ROC AUC 0.51; 95% CI 0.31-0.71; and ROC AUC 0.59; 95% CI 0.37-0.80, respectively). The combination of antenatal VT/TdP or functional 2:1 AVB and lack of family history of LQTS was also highly predictive of death (ROC AUC 0.82; 95% CI 0.76-0.88). Our data provide clinical screening tools to enable prediction and intervention for fetuses with LQTS at risk of death.
Collapse
|
12
|
A Possible Explanation for the Low Penetrance of Pathogenic KCNE1 Variants in Long QT Syndrome Type 5. Pharmaceuticals (Basel) 2022; 15:ph15121550. [PMID: 36559002 PMCID: PMC9782992 DOI: 10.3390/ph15121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium current IKs. While mutant LQT5 KCNE1 variants are known to inhibit IKs amplitudes in heterologous expression systems, cardiomyocytes from a transgenic rabbit LQT5 model displayed unchanged IKs amplitudes, pointing towards the critical role of additional factors in the development of the LQT5 phenotype in vivo. In this study, we demonstrate that KCNE3, a candidate regulatory subunit of IKs channels minimizes the inhibitory effects of LQT5 KCNE1 variants on IKs amplitudes, while current deactivation is accelerated. Such changes recapitulate IKs properties observed in LQT5 transgenic rabbits. We show that KCNE3 accomplishes this by displacing the KCNE1 subunit within the IKs ion channel complex, as evidenced by a dedicated biophysical assay. These findings depict KCNE3 as an integral part of the IKs channel complex that regulates IKs function in cardiomyocytes and modifies the development of the LQT5 phenotype.
Collapse
|
13
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
15
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
16
|
Chen L, Peng G, Comollo TW, Zou X, Sampson KJ, Larsson HP, Kass RS. Two small-molecule activators share similar effector sites in the KCNQ1 channel pore but have distinct effects on voltage sensor movements. Front Physiol 2022; 13:903050. [PMID: 35957984 PMCID: PMC9359618 DOI: 10.3389/fphys.2022.903050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
ML277 and R-L3 are two small-molecule activators of KCNQ1, the pore-forming subunit of the slowly activating potassium channel IKs. KCNQ1 loss-of-function mutations prolong cardiac action potential duration and are associated with long QT syndrome, which predispose patients to lethal ventricular arrhythmia. ML277 and R-L3 enhance KCNQ1 current amplitude and slow deactivation. However, the presence of KCNE1, an auxiliary subunit of IKs channels, renders the channel insensitive to both activators. We found that ML277 effects are dependent on several residues in the KCNQ1 pore domain. Some of these residues are also necessary for R-L3 effects. These residues form a putative hydrophobic pocket located between two adjacent KCNQ1 subunits, where KCNE1 subunits are thought to dwell, thus providing an explanation for how KCNE1 renders the IKs channel insensitive to these activators. Our experiments showed that the effect of R-L3 on voltage sensor movement during channel deactivation was much more prominent than that of ML277. Simulations using a KCNQ1 kinetic model showed that the effects of ML277 and R-L3 could be reproduced through two different effects on channel gating: ML277 enhances KCNQ1 channel function through a pore-dependent and voltage sensor-independent mechanism, while R-L3 affects both channel pore and voltage sensor.
Collapse
Affiliation(s)
- Lei Chen
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Gary Peng
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Thomas W. Comollo
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Xinle Zou
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States,*Correspondence: Robert S. Kass,
| |
Collapse
|
17
|
Johnsrude CL, Roberts JD, Roston TM, Russell B, Franciosi S, Sanatani S. One family’s clinical odyssey from evolving phenotypic and genotypic knowledge of catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. HeartRhythm Case Rep 2022; 8:679-683. [PMID: 36310723 PMCID: PMC9596362 DOI: 10.1016/j.hrcr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022] Open
|
18
|
Lopez-Medina AI, Chahal CAA, Luzum JA. The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants. Pharmacogenomics 2022; 23:543-557. [PMID: 35698903 DOI: 10.2217/pgs-2022-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-induced long QT syndrome (diLQTS) is an adverse effect of many commonly prescribed drugs, and it can increase the risk for lethal ventricular arrhythmias. Genetic variants in pharmacodynamic genes have been associated with diLQTS, but the strength of the evidence for each of those variants has not yet been evaluated. Therefore, the purpose of this review was to evaluate the strength of the evidence for pharmacodynamic genetic variants associated with diLQTS using a novel, semiquantitative scoring system modified from the approach used for congenital LQTS. KCNE1-D85N and KCNE2-T8A had definitive and strong evidence for diLQTS, respectively. The high level of evidence for these variants supports current consideration as risk factors for patients that will be prescribed a QT-prolonging drug.
Collapse
Affiliation(s)
- Ana I Lopez-Medina
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Choudhary Anwar A Chahal
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.,Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK.,WellSpan Health, Lancaster, PA 17607, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
20
|
Sanguinetti MC, Seebohm G. Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (K V7.1) Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:335-353. [PMID: 35138621 DOI: 10.1007/978-981-16-4254-8_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KCNQ1 (KV7.1) K+ channels are expressed in multiple tissues, including the heart, pancreas, colon, and inner ear. The gene encoding the KCNQ1 protein was discovered by a positional cloning effort to determine the genetic basis of long QT syndrome, an inherited ventricular arrhythmia that can cause sudden death. Mutations in KCNQ1 can also cause other types of arrhythmia (i.e., short QT syndrome, atrial fibrillation) and the gene may also have a role in diabetes and certain cancers. KCNQ1 α-subunits can partner with accessory β-subunits (KCNE1-KCNE5) to form K+-selective channels that have divergent biophysical properties. In the heart, KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct IKs, a very slowly activating delayed rectifier K+ current. KV7.1 channels are highly regulated by PIP2, calmodulin, and phosphorylation, and rich pharmacology includes blockers and gating modulators. Recent biophysical studies and a cryo-EM structure of the KCNQ1-calmodulin complex have provided new insights into KV7.1 channel function, and how interactions between KCNQ1 and KCNE subunits alter the gating properties of heteromultimeric channels.
Collapse
Affiliation(s)
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| |
Collapse
|
21
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
22
|
Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Handb Exp Pharmacol 2021; 267:445-480. [PMID: 34247280 DOI: 10.1007/164_2021_512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Potassium channels facilitate and regulate physiological processes as diverse as electrical signaling, ion, solute and hormone secretion, fluid homeostasis, hearing, pain sensation, muscular contraction, and the heartbeat. Potassium channels are each formed by either a tetramer or dimer of pore-forming α subunits that co-assemble to create a multimer with a K+-selective pore that in most cases is capable of functioning as a discrete unit to pass K+ ions across the cell membrane. The reality in vivo, however, is that the potassium channel α subunit multimers co-assemble with ancillary subunits to serve specific physiological functions. The ancillary subunits impart specific physiological properties that are often required for a particular activity in vivo; in addition, ancillary subunit interaction often alters the pharmacology of the resultant complex. In this chapter the modes of action of ancillary subunits on K+ channel physiology and pharmacology are described and categorized into various mechanistic classes.
Collapse
|
23
|
Beckmann BM, Scheiper-Welling S, Wilde AAM, Kääb S, Schulze-Bahr E, Kauferstein S. Clinical utility gene card for: Long-QT syndrome. Eur J Hum Genet 2021; 29:1825-1832. [PMID: 34031550 PMCID: PMC8633377 DOI: 10.1038/s41431-021-00904-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Britt M Beckmann
- Department of Legal Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany. .,Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
| | | | - Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu), Amsterdam, The Netherlands.,Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu), Amsterdam, The Netherlands.,Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Silke Kauferstein
- Department of Legal Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
25
|
A cryptic splice-altering KCNQ1 variant in trans with R259L leading to Jervell and Lange-Nielsen syndrome. NPJ Genom Med 2021; 6:21. [PMID: 33664273 PMCID: PMC7933243 DOI: 10.1038/s41525-021-00183-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Here we report an infant with clinical findings suggestive of Jervell and Lange-Nielsen syndrome (JLNS), including a prolonged QT interval (LQTS) and chronic bilateral sensorineural deafness. NGS analysis revealed one known heterozygous pathogenic missense variant, KCNQ1 p.R259L, previously associated with LQTS but insufficient to explain the cardioauditory disorder. In a screening of proximal intronic regions, we found a heterozygous variant, KCNQ1 c.1686−9 T > C, absent from controls and previously undescribed. Several splicing prediction tools returned low scores for this intronic variant. Driven by the proband’s phenotype rather than the neutral predictions, we have characterized this rare intronic variant. Family analysis has shown that the proband inherited the missense and the intronic variants from his mother and father, respectively. A minigene splicing assay revealed that the intronic variant induced an additional transcript, arising from skipping of exon 14, which was translated into a truncated protein in transfected cells. The splice-out of exon 14 creates a frameshift in exon 15 and a stop codon in exon 16, which is the last exon of KCNQ1. This mis-spliced transcript is expected to escape nonsense-mediated decay and predicted to encode a truncated loss-of-function protein, KCNQ1 p.L563Kfs*73. The analysis of endogenous KCNQ1 expression in the blood of the proband’s parents detected the aberrant transcript only in the patient’s father. Taken together, these analyses confirmed the proband’s diagnosis of JLNS1 and indicated that c.1686−9 T > C is a cryptic splice-altering variant, expanding the known genetic spectrum of biallelic KCNQ1 variant combinations leading to JLNS1.
Collapse
|
26
|
Abstract
Long QT syndrome (LQTS) is a cardiovascular disorder characterized by an abnormality in cardiac repolarization leading to a prolonged QT interval and T-wave irregularities on the surface electrocardiogram. It is commonly associated with syncope, seizures, susceptibility to torsades de pointes, and risk for sudden death. LQTS is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. The availability of therapy for this lethal disease emphasizes the importance of early and accurate diagnosis. Additionally, understanding of the molecular mechanisms underlying LQTS could help to optimize genotype-specific treatments to prevent deaths in LQTS patients. In this review, we briefly summarize current knowledge regarding molecular underpinning of LQTS, in particular focusing on LQT1, LQT2, and LQT3, and discuss novel strategies to study ion channel dysfunction and drug-specific therapies in LQT1, LQT2, and LQT3 syndromes.
Collapse
Affiliation(s)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
28
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
29
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
30
|
Lisewski U, Köhncke C, Schleussner L, Purfürst B, Lee SM, De Silva A, Manville RW, Abbott GW, Roepke TK. Hypochlorhydria reduces mortality in heart failure caused by Kcne2 gene deletion. FASEB J 2020; 34:10699-10719. [PMID: 32584506 DOI: 10.1096/fj.202000013rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel β subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.
Collapse
Affiliation(s)
| | - Clemens Köhncke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology, Campus Virchow - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Bettina Purfürst
- Electron Microscopy Core Facility, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Soo Min Lee
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Angele De Silva
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Torsten K Roepke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology and Angiology, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Zhang Y, Li H, Wang J, Wang G, Tan X, Lei M. Generation of three iPSC lines (XACHi007-A, XACHi008-A, XACHi009-A) from a Chinese family with long QT syndrome type 5 with heterozygous c.226G>A (p.D76N) mutation in KCNE1gene. Stem Cell Res 2020; 45:101798. [PMID: 32344329 DOI: 10.1016/j.scr.2020.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Induced pluripotent stem cell lines (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) isolated from the peripheral blood of an eight months-old boy and the parents. Long QT syndrome type 5 (LQT5) was diagnosed after identifying a heterozygous c.226G>A (p.D76N) variant in KCNE1 gene carried by the boy and inherited from his father who has a prolonged QT in ECG as well. PBMCs were reprogrammed using non-integrative Sendai viral vectors containing reprogramming factors OCT4, SOX2, KLF4 and C-MYC. iPSCs were shown to express pluripotent markers, have trilineage differentiation potential, carry KCNE1-D76N mutation, have a normal karyotype. Thus we established 2 new LQT5 iPSC lines and a related control line as useful tools for studying the pathophysiological mechanism of LQT5 and drug testing.
Collapse
Affiliation(s)
- Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases; Xi'an Key Laboratory of Children's Health and Diseases; Department of Cardiology, Xi'an Children's Hospital, No 69, Xijuyuan lane, Xi'an, 710003, China.
| | - Huan Li
- Department of Cardiology, Xi'an Children's Hospital, No 69, Xijuyuan lane, Xi'an, 710003, China
| | - Jie Wang
- Shaanxi Institute for Pediatric Diseases; Xi'an Key Laboratory of Children's Health and Diseases
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases; Xi'an Key Laboratory of Children's Health and Diseases
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
32
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Clinical and functional reappraisal of alleged type 5 long QT syndrome: Causative genetic variants in the KCNE1-encoded minK β-subunit. Heart Rhythm 2020; 17:937-944. [PMID: 32058015 DOI: 10.1016/j.hrthm.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND KCNE1 loss-of-function variants cause type 5 long QT syndrome (LQT5). However, most alleged LQT5-causative KCNE1 variants were identified before the true rate of background genetic variation was appreciated fully. OBJECTIVE The purpose of this study was to reassess the clinical and electrophysiological (EP) phenotypes associated with KCNE1 variants detected in a single-center LQTS cohort. METHODS Retrospective analysis of 1026 LQTS patients was used to identify those individuals with isolated KCNE1 ultra-rare variants (minor allele frequency [MAF] <0.0004 in the Genome Aggregation Database [gnomAD]). After classification according to American College of Medical Genetics (ACMG) guidelines, variants of uncertain significance (VUS) were characterized in vitro using whole-cell patch-clamp technique. Lastly, the clinical phenotype observed in ACMG pathogenic/likely pathogenic (P/LP) KCNE1-positive individuals was assessed. RESULTS Overall, 6 KCNE1 variants were identified in 38 of 1026 LQTS patients (3.7%). Based on existing data, 2 KCNE1 variants (p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1) were classified as P/LP. Whereas the p.Ser28Leu-KCNE1 VUS conferred a loss-of-function EP phenotype (72% reduction in IKs current) and was upgraded to an LP variant, the 3 remaining KCNE1 VUS (p.Arg67Cys-KCNE1, p.Arg67His-KCNE1, p.Ser74Leu-KCNE1) were indistinguishable from wild type. Collectively, the phenotype observed in p.Ser28Leu-KCNE1-, p.Asp76Asn-KCNE1-, and p.Arg98Trp-KCNE1-positive individuals (n = 22) was relatively weak (91% asymptomatic; average QTc 444 ± 19 ms; 27% with a maladaptive QTc response during exercise/recovery). CONCLUSION This study indicates that p.Ser28Leu-KCNE1 may be an LQT5-causative substrate analogous to p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1. However, the weak phenotype and cumulative gnomAD MAF (42/141,156) associated with these P/LP variants suggest LQT5/KCNE-LQTS may be a more common/weaker form of LQTS than anticipated previously.
Collapse
|
34
|
Li LJ, Wang YB, Qu PF, Ma L, Liu K, Yang L, Nie SJ, Xi YM, Jia PL, Tang X, Sun ZC, Huang WL, Li YH, Dong Y, Lei PP. Genetic analysis of Yunnan sudden unexplained death by whole genome sequencing in Southwest of China. J Forensic Leg Med 2020; 70:101896. [PMID: 32090967 DOI: 10.1016/j.jflm.2020.101896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 12/03/2019] [Accepted: 01/05/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Lan-Jiang Li
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Yue-Bing Wang
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Peng-Fei Qu
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Lin Ma
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Kai Liu
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Lin Yang
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Sheng-Jie Nie
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Yan-Mei Xi
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Peng-Lin Jia
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Xue Tang
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Zhong-Chun Sun
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Wen-Li Huang
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Yu-Hua Li
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| | - Yi Dong
- Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Province, China.
| | - Pu-Ping Lei
- Department of Forensic Medicine, Kunming Medical University, Yunnan Province, China.
| |
Collapse
|
35
|
Huo J, Wei F, Cai C, Lyn-Cook B, Pang L. Sex-Related Differences in Drug-Induced QT Prolongation and Torsades de Pointes: A New Model System with Human iPSC-CMs. Toxicol Sci 2020; 167:360-374. [PMID: 30247688 DOI: 10.1093/toxsci/kfy239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous drugs have the potential to prolong the QT interval and may cause accidental cardiac arrest (torsades de pointes [TdP]). Women are at a higher risk than men for experiencing drug-induced TdP. Due to the lack of appropriate tools, few studies have investigated whether genetic differences between men and women have any effects on drug-induced proarrhythmia. Sex hormones are believed to play a predominant role in the induction of TdP. Recently, progress in induced pluripotent stem cell (iPSC) technologies has made it possible to utilize human iPSC-derived cardiomyocytes (hiPSC-CMs) to investigate the influence of both genetics and sex hormones on cardiac ion channel gene expression and cardiomyocyte function. In this study, we investigated genetic and hormonal effects on sex differences of drug-induced QT prolongation and TdP with hiPSC-CMs from healthy male and female donors. We found that despite batch variations in beating rates and field potential durations (FPD), female-derived hiPSC-CMs showed steeper slopes of FPD to interspike interval ratios and were more sensitive to IKr blocker-induced FPD prolongation. 17β-estradiol increased FPD and 5α-dihydrotestosterone shortened FPD, but the addition of sex hormones had limited effect on the responses of hiPSC-CMs to IKr blockades. The differential expression of KCNE1 gene and reduced repolarization reserve in female-derived hiPSC-CMs compared with male-derived hiPSC-CMs may partially explain why females are more susceptible to proarrhythmias. Human iPSC-CMs can be a useful new model to study mechanisms of sex differences in cardiomyocyte repolarization processes and aid in the prediction of drug-induced proarrhythmias in both men and women.
Collapse
Affiliation(s)
- Jianhua Huo
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079.,Department of Cardiovascular Medicine, First Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Feng Wei
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079.,Department of Cardiovascular Medicine, First Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chengzhong Cai
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| |
Collapse
|
36
|
Roberts JD, Asaki SY, Mazzanti A, Bos JM, Tuleta I, Muir AR, Crotti L, Krahn AD, Kutyifa V, Shoemaker MB, Johnsrude CL, Aiba T, Marcondes L, Baban A, Udupa S, Dechert B, Fischbach P, Knight LM, Vittinghoff E, Kukavica D, Stallmeyer B, Giudicessi JR, Spazzolini C, Shimamoto K, Tadros R, Cadrin-Tourigny J, Duff HJ, Simpson CS, Roston TM, Wijeyeratne YD, El Hajjaji I, Yousif MD, Gula LJ, Leong-Sit P, Chavali N, Landstrom AP, Marcus GM, Dittmann S, Wilde AAM, Behr ER, Tfelt-Hansen J, Scheinman MM, Perez MV, Kaski JP, Gow RM, Drago F, Aziz PF, Abrams DJ, Gollob MH, Skinner JR, Shimizu W, Kaufman ES, Roden DM, Zareba W, Schwartz PJ, Schulze-Bahr E, Etheridge SP, Priori SG, Ackerman MJ. An International Multicenter Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition. Circulation 2020; 141:429-439. [PMID: 31941373 DOI: 10.1161/circulationaha.119.043114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multicenter collaboration. METHODS Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc >460 ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. RESULTS A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 Type 2 Jervell and Lange-Nielsen syndrome patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9±38.6 ms) compared with genotype positive family members (441.8±30.9 ms, P<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR] 11.6 [95% CI, 2.6-52.2]; P=0.001). Event incidence did not differ significantly for Type 2 Jervell and Lange-Nielsen syndrome patients relative to the overall heterozygous cohort (10.5% [2/19]; HR 1.7 [95% CI, 0.3-10.8], P=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database, which is a human database of exome and genome sequencing data from now over 140 000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs 0.001%). CONCLUSIONS The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT prolongation, however, the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for Type 2 Jervell and Lange-Nielsen syndrome patients.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - S Yukiko Asaki
- Department of Pediatrics, University of Utah, and Primary Children's Hospital, Salt Lake City (S.Y.A., S.P.E.)
| | - Andrea Mazzanti
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | | | - Izabela Tuleta
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Department of Cardiology I (I.T.), University Hospital Muenster, Germany
| | - Alison R Muir
- Northern Ireland Inherited Cardiac Conditions Service, Belfast City Hospital, United Kingdom (A.R.M.)
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.).,Department of Medicine and Surgery, University of Milano-Bicocca, Italy (L.C.).,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy (L.C.)
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (A.D.K., T.M.R.)
| | - Valentina Kutyifa
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, NY (V.K., W.Z.)
| | - M Benjamin Shoemaker
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.).,Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Christopher L Johnsrude
- Division of Pediatric Cardiology, Department of Pediatrics, University of Louisville, KY (C.L.J.)
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.)
| | - Luciana Marcondes
- Cardiac Inherited Disease Group New Zealand, Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland (L.M., J.R.S.)
| | - Anwar Baban
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy (A.B., F.D.)
| | - Sharmila Udupa
- Children's Hospital of Eastern Ontario, Department of Pediatrics, University of Ottawa, Canada (S.U., R.M.G.)
| | - Brynn Dechert
- Division of Cardiology, Department of Pediatrics, University of Michigan Children's Hospital, University of Michigan, Ann Arbor (B.D.)
| | - Peter Fischbach
- Children's Healthcare of Atlanta, Sibley Heart Center Cardiology, GA (P.F., L.M.K.)
| | - Linda M Knight
- Children's Healthcare of Atlanta, Sibley Heart Center Cardiology, GA (P.F., L.M.K.)
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics (E.V.), University of California San Francisco
| | - Deni Kukavica
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | - Birgit Stallmeyer
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.)
| | - Carla Spazzolini
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.)
| | - Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.)
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Quebec, Canada (R.T., J., C.-T.)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Quebec, Canada (R.T., J., C.-T.)
| | - Henry J Duff
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Canada (H.J.D.)
| | | | - Thomas M Roston
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (A.D.K., T.M.R.)
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, and St. George's University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., E.R.B.)
| | - Imane El Hajjaji
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Maisoon D Yousif
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Lorne J Gula
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Peter Leong-Sit
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Nikhil Chavali
- Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Pediatric Cardiology, and Department of Cell Biology, Duke University School of Medicine, Durham, NC (A.P.L.)
| | - Gregory M Marcus
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, The Netherlands (G.M.M., A.A.M.W.)
| | - Sven Dittmann
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, The Netherlands (G.M.M., A.A.M.W.)
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, and St. George's University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., E.R.B.)
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (J.T.-H.)
| | - Melvin M Scheinman
- Department of Medicine, Division of Cardiology, Section of Cardiac Electrophysiology M.M.S.), University of California San Francisco
| | - Marco V Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (M.V.P.)
| | - Juan Pablo Kaski
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital and UCL Institute of Cardiovascular Science, London, United Kingdom (J.P.K.)
| | - Robert M Gow
- Children's Hospital of Eastern Ontario, Department of Pediatrics, University of Ottawa, Canada (S.U., R.M.G.)
| | - Fabrizio Drago
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy (A.B., F.D.)
| | - Peter F Aziz
- Department of Pediatric Cardiology, Cleveland Clinic, OH (P.F.A.)
| | - Dominic J Abrams
- Inherited Cardiac Arrhythmia Program, Boston Children's Hospital, Harvard Medical School, MA (D.J.A.)
| | - Michael H Gollob
- Department of Physiology and Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada (M.H.G.)
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group New Zealand, Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland (L.M., J.R.S.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.).,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (W.S.)
| | - Elizabeth S Kaufman
- The Heart and Vascular Research Center, Metro-Health Campus, Case Western Reserve University, Cleveland, OH (E.S.K.)
| | - Dan M Roden
- Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN.,Pharmacology (D.M.R.), Vanderbilt University Medical Center, Nashville, TN.,Biomedical Informatics (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, NY (V.K., W.Z.)
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.)
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - Susan P Etheridge
- Department of Pediatrics, University of Utah, and Primary Children's Hospital, Salt Lake City (S.Y.A., S.P.E.)
| | - Silvia G Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.)
| |
Collapse
|
37
|
Dai Q, Wang D, Zheng H. The Polymorphic Analysis of the Human Potassium Channel KCNE Gene Family in Meniere's Disease-A Preliminary Study. J Int Adv Otol 2020; 15:130-134. [PMID: 31058602 DOI: 10.5152/iao.2019.5076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To investigate the correlation between KCNE gene family and Meniere's disease (MD) in the Chinese population. MATERIALS AND METHODS This study analyzed the single-nucleotide polymorphism (SNP) of KCNE1 and KCNE3 genes between the MD group and the control group and between the familial Meniere's disease (FMD) group and the sporadic Meniere's disease (SMD) group. RESULTS A total of 653 C/T SNPs of KCNE1 had a statistical difference between the FMD and SMD groups (p=0.0082<0.05); 492 A/C SNPs of KCNE3 were statistically different between the FMD group and the control group (genotype p=0.037<0.05 and allele p=0.006<0.05). CONCLUSION SNPs of KCNE1 and KCNE3 gene mutations were, respectively, different between the SMD and FMD groups. KCNE3 gene polymorphism was key to FMD disease, whereas KCNE1 was more important to the onset of SMD.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Otolaryngology, Sichuan University, West China Hospital, Chengdu, Sichuan, China
| | - Dan Wang
- Department of Otolaryngology, Sichuan University, West China Hospital, Chengdu, Sichuan, China
| | - Hong Zheng
- Department of Otolaryngology, Sichuan University, West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Chen J, Liu Z, Creagh J, Zheng R, McDonald TV. Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Am J Physiol Heart Circ Physiol 2019; 318:H212-H222. [PMID: 31834838 DOI: 10.1152/ajpheart.00459.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cardiac potassium IKs current is carried by a channel complex formed from α-subunits encoded by KCNQ1 and β-subunits encoded by KCNE1. Deleterious mutations in either gene are associated with hereditary long QT syndrome. Interactions between the transmembrane domains of the α- and β-subunits determine the activation kinetics of IKs. A physical and functional interaction between COOH termini of the proteins has also been identified that impacts deactivation rate and voltage dependence of activation. We sought to explore the specific physical interactions between the COOH termini of the subunits that confer such control. Hydrogen/deuterium exchange coupled to mass spectrometry narrowed down the region of interaction to KCNQ1 residues 352-374 and KCNE1 residues 70-81, and provided evidence of secondary structure within these segments. Key mutations of residues in these regions tended to shift voltage dependence of activation toward more depolarizing voltages. Double-mutant cycle analysis then revealed energetic coupling between KCNQ1-I368 and KCNE1-D76 during channel activation. Our results suggest that the proximal COOH-terminal regions of KCNQ1 and KCNE1 participate in a physical and functional interaction during channel opening that is sensitive to perturbation and may explain the clustering of long QT mutations in the region.NEW & NOTEWORTHY Interacting ion channel subunits KCNQ1 and KCNE1 have received intense investigation due to their critical importance to human cardiovascular health. This work uses physical (hydrogen/deuterium exchange with mass spectrometry) and functional (double-mutant cycle analyses) studies to elucidate precise and important areas of interaction between the two proteins in an area that has eluded structural definition of the complex. It highlights the importance of pathogenic mutations in these regions.
Collapse
Affiliation(s)
- Jerri Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - John Creagh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Renjian Zheng
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
39
|
Downie L, Halliday J, Burt R, Lunke S, Lynch E, Martyn M, Poulakis Z, Gaff C, Sung V, Wake M, Hunter MF, Saunders K, Rose E, Lewis S, Jarmolowicz A, Phelan D, Rehm HL, Amor DJ. Exome sequencing in infants with congenital hearing impairment: a population-based cohort study. Eur J Hum Genet 2019; 28:587-596. [PMID: 31827275 DOI: 10.1038/s41431-019-0553-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Congenital hearing impairment (HI) is the most common sensory impairment and can be isolated or part of a syndrome. Diagnosis through newborn hearing screening and management through early intervention, hearing aids and cochlear implantation is well established in the Australian setting; however understanding the genetic basis of congenital HI has been missing. This population-derived cohort comprised infants with moderate-profound bilateral HI born in the 2016-2017 calendar years, detected through newborn hearing screening. Participants were recruited through an integrated paediatric, otolaryngology and genetics HI clinic and offered whole exome sequencing (WES) on a HiSeq4000 or NextSeq500 (Illumina) platform with a targeted average sequencing depth of 100x and chromosome microarray on the Illumina Infinium core exome-24v1.2 platform. Of those approached, 68% (106/156) consented to participate. The rate of genetic diagnosis was 56% (59/106), significantly higher than standard of care (GJB2/6 sequencing only), 21% (22/106). There were clinical implications for the 106 participants: 36% required no further screening, 9% had tailored screening initiated, 2% were offered treatment and 4% had informed care for a complex neurodevelopmental syndrome. WES in this cohort demonstrates the range of diagnoses associated with congenital HI and confirms the genetic heterogeneity of congenital HI. The high diagnostic yield and clinical implications emphasises the need for genomic sequencing to become standard of care.
Collapse
Affiliation(s)
- Lilian Downie
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Jane Halliday
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Burt
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Elly Lynch
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
| | - Zeffie Poulakis
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Clara Gaff
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
| | - Valerie Sung
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa Wake
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Monash Health, Melbourne, VIC, Australia.,Monash University, Melbourne, VIC, Australia
| | - Kerryn Saunders
- Monash Health, Melbourne, VIC, Australia.,Monash University, Melbourne, VIC, Australia
| | - Elizabeth Rose
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Lewis
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Anna Jarmolowicz
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Heidi L Rehm
- Massachusetts General Hospital and the Broad Institute of MIT and Harvard, Boston, MA, USA
| | | | - David J Amor
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia. .,Royal Children's Hospital, Melbourne, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
41
|
Affiliation(s)
- Dobromir Dobrev
- From the Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany (D.D.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), and Center for Space Medicine, Baylor College of Medicine, Houston, TX (X.H.T.W.).
| |
Collapse
|
42
|
Perissinotti L, Guo J, Kudaibergenova M, Lees-Miller J, Ol'khovich M, Sharapova A, Perlovich GL, Muruve DA, Gerull B, Noskov SY, Duff HJ. The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain. Mol Pharmacol 2019; 96:259-271. [PMID: 31182542 DOI: 10.1124/mol.118.115642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
Collapse
Affiliation(s)
- Laura Perissinotti
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Jiqing Guo
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Meruyert Kudaibergenova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - James Lees-Miller
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Marina Ol'khovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Angelica Sharapova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - German L Perlovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Daniel A Muruve
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Brenda Gerull
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Henry J Duff
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| |
Collapse
|
43
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
44
|
Faridi R, Tona R, Brofferio A, Hoa M, Olszewski R, Schrauwen I, Assir MZ, Bandesha AA, Khan AA, Rehman AU, Brewer C, Ahmed W, Leal SM, Riazuddin S, Boyden SE, Friedman TB. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum Mutat 2019; 40:162-176. [PMID: 30461122 PMCID: PMC6328321 DOI: 10.1002/humu.23689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 11/11/2022]
Abstract
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Brofferio
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad Z.K. Assir
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Akhtar A. Bandesha
- Cardiology Department, The Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Asma A. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Brewer
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Steven E. Boyden
- Section on Genetics of Communication Disorders, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Harkcom WT, Papanikolaou M, Kanda V, Crump SM, Abbott GW. KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity. J Cell Physiol 2019; 234:13361-13369. [PMID: 30613966 DOI: 10.1002/jcp.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023]
Abstract
Transmembrane channel-like protein isoform 1 (TMC1) is essential for the generation of mechano-electrical transducer currents in hair cells of the inner ear. TMC1 disruption causes hair cell degeneration and deafness in mice and humans. Although thought to be expressed at the cell surface in vivo, TMC1 remains in the endoplasmic reticulum when heterologously expressed in standard cell lines, precluding determination of its roles in mechanosensing and pore formation. Here, we report that the KCNQ1 Kv channel forms complexes with TMC1 and rescues its surface expression when coexpressed in Chinese Hamster Ovary cells. TMC1 rescue is specific for KCNQ1 within the KCNQ family, is prevented by a KCNQ1 trafficking-deficient mutation, and is influenced by KCNE β subunits and inhibition of KCNQ1 endocytosis. TMC1 lowers KCNQ1 and KCNQ1-KCNE1 K+ currents, and despite the surface expression, it does not detectably respond to mechanical stimulation or high salt. We conclude that TMC1 is not intrinsically mechano- or osmosensitive but has the capacity for cell surface expression, and requires partner protein(s) for surface expression and mechanosensitivity. We suggest that KCNQ1, expression of which is not thought to overlap with TMC1 in hair cells, is a proxy partner bearing structural elements or a sequence motif reminiscent of a true in vivo TMC1 hair cell partner. Discovery of the first reported strategy to rescue TMC1 surface expression should aid future studies of the TMC1 function and native partners.
Collapse
Affiliation(s)
- William T Harkcom
- Pharmacology Department, Weill Medical College of Cornell University, New York, New York
| | - Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Vikram Kanda
- Pharmacology Department, Weill Medical College of Cornell University, New York, New York
| | - Shawn M Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
46
|
Moss R, Sachse FB, Moreno-Galindo EG, Navarro-Polanco RA, Tristani-Firouzi M, Seemann G. Modeling effects of voltage dependent properties of the cardiac muscarinic receptor on human sinus node function. PLoS Comput Biol 2018; 14:e1006438. [PMID: 30303952 PMCID: PMC6197694 DOI: 10.1371/journal.pcbi.1006438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 10/22/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022] Open
Abstract
The cardiac muscarinic receptor (M2R) regulates heart rate, in part, by modulating the acetylcholine (ACh) activated K+ current IK,ACh through dissociation of G-proteins, that in turn activate KACh channels. Recently, M2Rs were noted to exhibit intrinsic voltage sensitivity, i.e. their affinity for ligands varies in a voltage dependent manner. The voltage sensitivity of M2R implies that the affinity for ACh (and thus the ACh effect) varies throughout the time course of a cardiac electrical cycle. The aim of this study was to investigate the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potentials in physiological and pathophysiological conditions. We developed a Markovian model of the IK,ACh modulation by voltage and integrated it into a computational model of human sinus node. We performed simulations with the integrated model varying ACh concentration and voltage sensitivity. Low ACh exerted a larger effect on IK,ACh at hyperpolarized versus depolarized membrane voltages. This led to a slowing of the pacemaker rate due to an attenuated slope of phase 4 depolarization with only marginal effect on action potential duration and amplitude. We also simulated the theoretical effects of genetic variants that alter the voltage sensitivity of M2R. Modest negative shifts in voltage sensitivity, predicted to increase the affinity of the receptor for ACh, slowed the rate of phase 4 depolarization and slowed heart rate, while modest positive shifts increased heart rate. These simulations support our hypothesis that altered M2R voltage sensitivity contributes to disease and provide a novel mechanistic foundation to study clinical disorders such as atrial fibrillation and inappropriate sinus tachycardia. Heart rate regulation is dependent upon a delicate interplay between parasympathetic and sympathetic nerve activity at the level of the sinus node. Acetylcholine slows the heart rate by activating the M2 muscarinic receptor (M2R) that, in turn, opens the acetylcholine-activated potassium channel (IK,ACh) to slow the firing of the sinus node. Surprisingly, the M2R is sensitive to membrane potential and undergoes conformational changes throughout the cardiac action potential that alter the affinity for acetylcholine, with secondary consequences for IK,ACh activity. Here, we investigated the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potential in physiological and pathophysiological conditions, using a Markovian model of the IK,ACh channel integrated into a computational model of human sinus node. The computational model allowed us to assess the effects of potential genetic variants that alter specific properties of voltage sensitivity. Our results indicate that alterations in the M2R voltage sensitivity play a significant role in the physiology and pathophysiology of the human sinus node and atria. Our computational model is relevant for future studies aimed at the design and development of anti-arrhythmic agents that specifically target the unique voltage-sensitive properties of M2R.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University of Freiburg, Freiburg, Germany
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University of Freiburg, Freiburg, Germany
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
47
|
Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. Sci Rep 2018; 8:8258. [PMID: 29844497 PMCID: PMC5974354 DOI: 10.1038/s41598-018-26599-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Sudden cardiac death (SCD) is associated with both electrical and ischemic substrates, and is a major cause of ischemic heart disease mortality worldwide. Male sex predisposes to SCD but the underlying mechanisms are incompletely understood. KCNE4, a cardiac arrhythmia-associated potassium channel β-subunit, is upregulated by 5α-dihydrotestosterone (DHT). Thus, ventricular Kcne4 expression is low in young adult female mice, but high in males and postmenopausal (12+ months) females. Despite causing a sex-independent electrical substrate at 13 months of age (22% QT prolongation in both males and females; P < 0.01), Kcne4 deletion preferentially predisposed aged male mice to ischemia/reperfusion (IR)-provoked ventricular tachyarrhythmias. Interestingly, Kcne4 deletion caused baseline induction of cardioprotective RISK and SAFE pathways in 13-m-old female, but not male, mice. IR-invoked RISK/SAFE induction was also deficient in male but not female Kcne4-/- mice. Pharmacological inhibition of RISK/SAFE pathways in Kcne4-/- females eliminated sex-specific differences in IR-invoked tachyarrhythmia predisposition. Furthermore, castration of Kcne4-/- males eliminated sex-specific differences in both baseline and post-IR RISK/SAFE pathway induction, and tachyarrhythmia predisposition. Our results demonstrate for the first time that male sex can predispose in aged mice to dangerous ventricular tachyarrhythmias despite sex-independent electrical and ischemic substrates, because of testosterone-dependent impairment of RISK/SAFE pathway induction.
Collapse
|
48
|
Bruyneel AAN, McKeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018; 20:57. [DOI: 10.1007/s11886-018-1000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Heart Rhythm 2018; 15:1223-1230. [PMID: 29625280 DOI: 10.1016/j.hrthm.2018.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) genetic test reports commonly exclude potentially proarrhythmic common variants such as p.Asp85Asn-KCNE1. OBJECTIVE The purpose of this study was to determine whether a discernible phenotype is associated with p.Asp85Asn-KCNE1 and whether relatively common KCNE1 variants underlie transient QT prolongation pedigrees with negative commercial LQTS genetic tests. METHODS Retrospective review was used to compare demographics, symptomatology, and QT parameters of individuals with p.Asp85Asn-KCNE1 in the absence of other rare/ultra-rare variants in LQTS-susceptibility genes and those who underwent comprehensive LQTS genetic testing. RESULTS Compared to the Genome Aggregation Database, p.Asp85Asn-KCNE1 was more prevalent in individuals undergoing LQTS genetic testing (33/1248 [2.6%] vs 1552/126,652 [1.2%]; P = .0001). In 19 of 33 patients (58%), only p.Asp85Asn-KCNE1 was observed. These patients were predominantly female (90% vs 62%; P = .01) and were less likely to experience syncope (0% vs 34%; P = .0007), receive β-blockers (53% vs 85%; P = .001), or require an implantable cardioverter-defibrillator (5.3% vs 33%; P = .01). However, they exhibited a similar degree of QT prolongation (QTc 460 ms vs 467 ms; P = NS). Whole exome sequencing of 2 commercially genotype-negative pedigrees revealed that p.Asp85Asn-KCNE1 and p.Arg36His-KCNE1 traced with a transient QT prolongation phenotype. Functional characterization of p.Arg36His-KCNE1 demonstrated loss of function, with a 47% reduction in peak IKs current density in the heterozygous state. CONCLUSION We provide further evidence that relatively common variants in KCNE1 may result in a mild QT phenotype designated as "LQT5-Lite" to distinguish such potentially proarrhythmic common variants (ie, functional risk alleles) from rare pathogenic variants that truly confer monogenic disease susceptibility, albeit with incomplete penetrance.
Collapse
|
50
|
Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc Med 2018; 28:453-464. [PMID: 29661707 DOI: 10.1016/j.tcm.2018.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing.
Collapse
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine (Cardiovascular Diseases Fellowship and Clinician-Investigator Training Programs), Mayo Clinic, Rochester, MN, United States
| | - Arthur A M Wilde
- Department of Medicine (Division of Cardiology), Columbia University Irving Medical Center, New York, NY, United States; Department of Clinical & Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|