1
|
Dominici S, Donati N, Menabue S, Di Stefano M, Facioni MS. The impact of lactose intolerance diagnosis: costs, timing, and quality-of-life. Intern Emerg Med 2024:10.1007/s11739-024-03787-1. [PMID: 39495353 DOI: 10.1007/s11739-024-03787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Lactose intolerance (LI) is a very common condition but, despite many efforts of the Italian National Health Service to reduce diagnostic delay of chronic disorders and provide prompt treatments, its early diagnosis remains an unmet need. In addition, the COVID-19 pandemic has exacerbated this problem, due to the conversion of many public health services to COVID centers. This study aims to analyze the diagnostic journey of patients suffering from LI, taking into account the duration of the process, associated costs, and impact on quality of life. Anonymous surveys were designed and distributed to patients with LI as well as physicians involved in LI management. The data were analyzed to determine the time required for a reliable LI diagnosis and average costs. Diagnostic delay of LI proved to be longer than 2 years, its impact on quality of life proved to be moderate to high in most of participants, especially in their psychosocial domain, and average costs proved to be high. Further investigations are needed to determine the economic burden of maintaining an asymptomatic status in patients with LI.
Collapse
Affiliation(s)
- Simona Dominici
- ELLEFREE S.R.L., Polo Tecnologico Lucchese, 55100, Lucca, Italy
| | - Nico Donati
- Registered Dietitian, Centro Di Riferimento Regionale Per La Celiachia Dell'Adulto, Careggi, 50134, Firenze, Italy
| | - Sofia Menabue
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Michele Di Stefano
- Department of Internal Medicine, IRCCS S. Matteo Hospital Foundation, Pavia, Italy.
| | | |
Collapse
|
2
|
Lisi A, Campbell MC. AncestryGrapher toolkit: Python command-line pipelines to visualize global- and local- ancestry inferences from the RFMIX version 2 software. Bioinformatics 2024; 40:btae616. [PMID: 39412440 PMCID: PMC11534077 DOI: 10.1093/bioinformatics/btae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
SUMMARY Admixture is a fundamental process that has shaped levels and patterns of genetic variation in human populations. RFMIX version 2 (RFMIX2) utilizes a robust modeling approach to identify the genetic ancestries in admixed populations. However, this software does not have a built-in method to visually summarize the results of analyses. Here, we introduce the AncestryGrapher toolkit, which converts the numerical output of RFMIX2 into graphical representations of global and local ancestry (i.e. the per-individual ancestry components and the genetic ancestry along chromosomes, respectively). RESULTS To demonstrate the utility of our methods, we applied the AncestryGrapher toolkit to visualize the global and local ancestry of individuals in the North African Mozabite Berber population from the Human Genome Diversity Panel. Our results showed that the Mozabite Berbers derived their ancestry from the Middle East, Europe, and sub-Saharan Africa (global ancestry). We also found that the population origin of ancestry varied considerably along chromosomes (local ancestry). For example, we observed variance in local ancestry in the genomic region on Chromosome 2 containing the regulatory sequence in the MCM6 gene associated with lactase persistence, a human trait tied to the cultural development of adult milk consumption. Overall, the AncestryGrapher toolkit facilitates the exploration, interpretation, and reporting of ancestry patterns in human populations. AVAILABILITY AND IMPLEMENTATION The AncestryGrapher toolkit is free and open source on https://github.com/alisi1989/RFmix2-Pipeline-to-plot.
Collapse
Affiliation(s)
- Alessandro Lisi
- Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 90089, United States
| | - Michael C Campbell
- Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
3
|
Laval G, Patin E, Quintana-Murci L, Kerner G. Deep estimation of the intensity and timing of natural selection from ancient genomes. Mol Ecol Resour 2024; 24:e14015. [PMID: 39215552 DOI: 10.1111/1755-0998.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Leveraging past allele frequencies has proven to be key for identifying the impact of natural selection across time. However, this approach suffers from imprecise estimations of the intensity (s) and timing (T) of selection, particularly when ancient samples are scarce in specific epochs. Here, we aimed to bypass the computation of allele frequencies across arbitrarily defined past epochs and refine the estimations of selection parameters by implementing convolutional neural networks (CNNs) algorithms that directly use ancient genotypes sampled across time. Using computer simulations, we first show that genotype-based CNNs consistently outperform an approximate Bayesian computation (ABC) approach based on past allele frequency trajectories, regardless of the selection model assumed and the number of available ancient genotypes. When applying this method to empirical data from modern and ancient Europeans, we replicated the reported increased number of selection events in post-Neolithic Europe, independently of the continental subregion studied. Furthermore, we substantially refined the ABC-based estimations of s and T for a set of positively and negatively selected variants, including iconic cases of positive selection and experimentally validated disease-risk variants. Our CNN predictions support a history of recent positive and negative selection targeting variants associated with host defence against pathogens, aligning with previous work that highlights the significant impact of infectious diseases, such as tuberculosis, in Europe. These findings collectively demonstrate that detecting the footprints of natural selection on ancient genomes is crucial for unravelling the history of severe human diseases.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Chair of Human Genomics and Evolution, Collège de France, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| |
Collapse
|
4
|
Malyarchuk BA. Genetic aspects of lactase deficiency in indigenous populations of Siberia. Vavilovskii Zhurnal Genet Selektsii 2024; 28:650-658. [PMID: 39440313 PMCID: PMC11491482 DOI: 10.18699/vjgb-24-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/25/2024] Open
Abstract
The ability to metabolize lactose in adulthood is associated with the persistence of lactase enzyme activity. In European populations, lactase persistence is determined mainly by the presence of the rs4988235-T variant in the MCM6 gene, which increases the expression of the LCT gene, encoding lactase. The highest rates of lactase persistence are characteristic of Europeans, and the lowest rates are found in East Asian populations. Analysis of published data on the distribution of the hypolactasia-associated variant rs4988235-C in the populations of Central Asia and Siberia showed that the frequency of this variant increases in the northeastern direction. The frequency of this allele is 87 % in Central Asia, 90.6 % in Southern Siberia, and 92.9 % in Northeastern Siberia. Consequently, the ability of the population to metabolize lactose decreases in the same geographical direction. The analysis of paleogenomic data has shown that the higher frequency of the rs4988235-T allele in populations of Central Asia and Southern Siberia is associated with the eastward spread of ancient populations of the Eastern European steppes, starting from the Bronze Age. The results of polymorphism analysis of exons and adjacent introns of the MCM6 and LCT genes in indigenous populations of Siberia indicate the possibility that polymorphic variants may potentially be related to lactose metabolism exist in East Asian populations. In East Asian populations, including Siberian ethnic groups, a ~26.5 thousand nucleotide pairs long region of the MCM6 gene, including a combination of the rs4988285-A, rs2070069-G, rs3087353-T, and rs2070068-A alleles, was found. The rs4988285 and rs2070069 loci are located in the enhancer region that regulates the activity of the LCT gene. Analysis of paleogenomic sequences showed that the genomes of Denisovans and Neanderthals are characterized by the above combination of alleles of the MCM6 gene. Thus, the haplotype discovered appears to be archaic. It could have been inherited from a common ancestor of modern humans, Neanderthals, and Denisovans, or it could have been acquired by hybridization with Denisovans or Neanderthals. The data obtained indicate a possible functional significance of archaic variants of the MCM6 gene.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
5
|
Khan SD, Jørgensen HL, Mitchell NH. Diagnosis of lactose intolerance: concordance between 13910-C/T genotype and lactose tolerance test in a Danish population. Scand J Clin Lab Invest 2024; 84:416-420. [PMID: 39425916 DOI: 10.1080/00365513.2024.2417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The association between the MCM6-13910-C/T polymorphism and lactose intolerance in individuals of European descent is well known. However, the notion that having a single versus a double allelic mutation might influence one's phenotype has been hypothesized. This study investigated whether patients with the three genotypes C/C, C/T, T/T differed in response to a lactose tolerance test (LTT) in a Danish setting. Anonymized data on 603 individuals with results for both genetic test and LTT were investigated. Mean delta glucose values were plotted for the time points of the LTT (0, 15, 30, 45 and 60 min) for the C/C, C/T and T/T genotype, respectively. Further, the agreement between the three genotypes and the diagnostic interpretation of the LTT were examined using a cut-off of > 1.4 mmol/L rise in glucose. In subjects with the C/C genotype, mean glucose delta levels were markedly lower compared to both the C/T and T/T genotypes at all time points. Overall, a difference between mean glucose delta values among the C/T and T/T genotype could not be shown. Using a LTT cut-off of > 1.4 mmol/L, the proportions of lactose intolerant LTT results for each genotype were as follows: 58% among C/C, 5% among C/T, and 7% among T/T. In a Danish healthcare setting, the C/C genotype was on average associated with a smaller glucose response during a LTT when compared to the C/T and T/T genotypes. A marked difference in the LTT response among the C/T and T/T genotype was not observed.
Collapse
Affiliation(s)
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nikki H Mitchell
- Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
6
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin CS, Garrison E, Sudmant PH. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024; 634:617-625. [PMID: 39232174 PMCID: PMC11485256 DOI: 10.1038/s41586-024-07911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Campbell B. Recent Research on the Human Biology of Pastoralists. Am J Hum Biol 2024:e24156. [PMID: 39290108 DOI: 10.1002/ajhb.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Despite encroachment by agricultural systems and globalization, pastoral nomads maintain a robust presence in terms of numbers and subsistence activity. At the same time, increasing concern about climate change has promoted awareness that increased climatic fluctuation may push pastoral population past their capacity for resilience. The response of pastoralists to climate change has important implications for our evolutionary past and our increasingly problematic future. Yet, pastoralists have received less explicit attention than foragers as populations under consistent selective constraints including limited caloric intake, high levels of habitual activity, and high disease burdens. Additional factors include exposure to cold and high temperatures, as well as high altitude. Over the last 20 or so years, the use of new techniques for measuring energetics, including actigraphs and doubly labeled water have built on existing noninvasive sample collection for hormones, immune markers and genes to provide a more detailed picture of the human biology of pastoral populations. Here I consider recent work on pastoralists from Siberia and northern Europe, Africa, Asia, and South America. I survey what is known about maternal milk composition and infant health, childhood growth, lactase persistence, and adult energy expenditure and lactase persistence to build a picture of the pastoralist biological response to environmental conditions, including heat, cold, and high altitude. Where available I include information about population history because of its importance for selection. I end by outlining the impact of milk consumption and climate over the human life cycle and make suggestions for further research.
Collapse
Affiliation(s)
- Benjamin Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Górczyńska-Kosiorz S, Cichocka E, Niemiec P, Trautsolt W, Pluskiewicz W, Gumprecht J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients 2024; 16:3002. [PMID: 39275317 PMCID: PMC11397624 DOI: 10.3390/nu16173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Dairy products, a major source of calcium, demonstrate a number of beneficial effects, not only protecting against the development of osteoporosis (OP) but also suppressing the onset of type-2 diabetes (T2DM) and improving bone mineral density (BMD). Dairy consumption is closely linked to lactose tolerance. One of the genetic factors predisposing individuals to lactose intolerance is rs4988235 polymorphism of the MCM6 gene. The aim of this reported study was to analyse the relationship between the rs4988235 variant of the MCM6 gene and bone mineral density and the risk of type-2 diabetes in women after menopause. METHODS The study was conducted among 607 female patients in the postmenopausal period in whom bone densitometry and vitamin-D3 levels were assayed and genotyping of the rs4988235 polymorphism of MCM6 gene was performed. The obtained results were analysed for the presence of T2DM, obesity surrogates, medical data, and past medical history. RESULTS The distribution of genotype frequencies was consistent with the Hardy-Weinberg equilibrium (p > 0.050). Postmenopausal women with the GG homozygote of rs4988235 polymorphism consumed significantly less calcium (dairy), which was probably related to the observed lactose intolerance. The GG homozygote of women with rs4988235 polymorphism was significantly more likely to have T2DM relative to the A allele carriers (p = 0.023). GG homozygotes had significantly lower femoral-vertebral mineral density despite the significantly more frequent supplementation with calcium preparations (p = 0.010), vitamin D (p = 0.01), and anti-osteoporotic drugs (p = 0.040). The obtained results indicate a stronger loss of femoral-neck mineral density with age in the GG homozygotes relative to the A allele carriers (p = 0.038). CONCLUSIONS In the population of women after menopause, the carriage of the G allele of rs4988235 polymorphism of the MCM6 gene, i.e., among the patients with lactose intolerance, significantly increased the risk of developing T2DM and the loss of BMD.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Edyta Cichocka
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Pluskiewicz
- Metabolic Bone Diseases Unit, Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Cohen CE, Swallow DM, Walker C. The molecular basis of lactase persistence: Linking genetics and epigenetics. Ann Hum Genet 2024. [PMID: 39171584 DOI: 10.1111/ahg.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Lactase persistence (LP) - the genetic trait that determines the continued expression of the enzyme lactase into adulthood - has undergone recent, rapid positive selection since the advent of animal domestication and dairying in some human populations. While underlying evolutionary explanations have been widely posited and studied, the molecular basis of LP remains less so. This review considers the genetic and epigenetic bases of LP. Multiple single-nucleotide polymorphisms (SNPs) in an LCT enhancer in intron 13 of the neighbouring MCM6 gene are associated with LP. These SNPs alter binding of transcription factors (TFs) and likely prevent age-related increases in methylation in the enhancer, maintaining LCT expression into adulthood to cause LP. However, the complex relationship between the genetics and epigenetics of LP is not fully characterised, and the mode of action of methylation quantitative trait loci (meQTLs) (SNPs affecting methylation) generally remains poorly understood. Here, we examine published LP data to propose a model describing how methylation in the LCT enhancer is prevented in LP adults. We argue that this occurs through altered binding of the TF Oct-1 (encoded by the gene POU2F1) and neighbouring TFs GATA-6 (GATA6), HNF-3A (FOXA1) and c-Ets1 (ETS1) acting in concert. We therefore suggest a plausible new model for LCT downregulation in the context of LP, with wider relevance for future work on the mechanisms of other meQTLs.
Collapse
Affiliation(s)
- Céleste E Cohen
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Dallas M Swallow
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Catherine Walker
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Vaughn AH, Nielsen R. Fast and Accurate Estimation of Selection Coefficients and Allele Histories from Ancient and Modern DNA. Mol Biol Evol 2024; 41:msae156. [PMID: 39078618 PMCID: PMC11321360 DOI: 10.1093/molbev/msae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here present CLUES2, a full-likelihood method to infer natural selection from sequence data that is an extension of the method CLUES. We make several substantial improvements to the CLUES method that greatly increases both its applicability and its speed. We add the ability to use ancestral recombination graphs on ancient data as emissions to the underlying hidden Markov model, which enables CLUES2 to use both temporal and linkage information to make estimates of selection coefficients. We also fully implement the ability to estimate distinct selection coefficients in different epochs, which allows for the analysis of changes in selective pressures through time, as well as selection with dominance. In addition, we greatly increase the computational efficiency of CLUES2 over CLUES using several approximations to the forward-backward algorithms and develop a new way to reconstruct historic allele frequencies by integrating over the uncertainty in the estimation of the selection coefficients. We illustrate the accuracy of CLUES2 through extensive simulations and validate the importance sampling framework for integrating over the uncertainty in the inference of gene trees. We also show that CLUES2 is well-calibrated by showing that under the null hypothesis, the distribution of log-likelihood ratios follows a χ2 distribution with the appropriate degrees of freedom. We run CLUES2 on a set of recently published ancient human data from Western Eurasia and test for evidence of changing selection coefficients through time. We find significant evidence of changing selective pressures in several genes correlated with the introduction of agriculture to Europe and the ensuing dietary and demographic shifts of that time. In particular, our analysis supports previous hypotheses of strong selection on lactase persistence during periods of ancient famines and attenuated selection in more modern periods.
Collapse
Affiliation(s)
- Andrew H Vaughn
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, CA 94720, USA
- Center for GeoGenetics, University of Copenhagen, Copenhagen DK-1350, Denmark
| |
Collapse
|
11
|
Alkaraki AK, Alfonso-Sánchez MA, Peña JA, Abuelezz AI. Lactase persistence in the Jordanian population: Potential effects of the Arabian Peninsula and Sahara's aridification. Heliyon 2024; 10:e33455. [PMID: 39027493 PMCID: PMC11255666 DOI: 10.1016/j.heliyon.2024.e33455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
The single nucleotide polymorphism (SNP) -13910 C > T has proved a good predictor of the incidence of lactase persistence in Europe and South Asia. Yet, this is not the case in the Near East, although this region is a passageway between the two continents. Lactase persistence is associated with cattle breeding, which originated in the Fertile Crescent of the Near East and spread later during the Middle Neolithic throughout Europe. Here we analyzed five SNPs (-13915 T > G (rs41380347), -13910 C > T (rs4988235), -13907 C > G (rs41525747), -14009 T > G (rs869051967), and -14010 G > C (rs145946881)) in three Jordanian human groups, namely the Bedouins, Jordan valley farmers, and Jordanian urban people. The SNPs -14009 T > G and -14010 G > C were not detected in the sample, -13907 C > G was virtually non-existent, -13910 C > T showed low frequencies, and -13915 T > G exhibited salient frequencies. The estimated incidence of lactase persistence was lower in the urban population (16 %), intermediate in the Jordan Valley's farmer population (30 %), and higher among the Bedouins (62 %). In explaining our findings, we postulated climatic change brought about by the aridification episode of the Arabian Peninsula and the Sahara 4200 years ago. This climatic milestone caused the collapse of the Akkadian Empire and the Old Kingdom in Egypt. Also, it could have led to a drastic decline of cattle in the region, being replaced by the domestication of camels. Loss of traditional crops and increasing dependence on camel milk might have triggered local selective pressures, mainly associated with -13915 T > G and differentiated from the ones in Europe, associated with -13910 C > T.
Collapse
Affiliation(s)
- Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163, Jordan
| | - Miguel A. Alfonso-Sánchez
- Departamento de Genética, Antropología Física y Fisiología Animal. Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU), Spain
| | - Jose A. Peña
- Departamento de Genética, Antropología Física y Fisiología Animal. Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU), Spain
| | - Alanoud I. Abuelezz
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163, Jordan
| |
Collapse
|
12
|
Balsiger LM, Houben E, Vanuytsel T, van Ranst M, Tack J, Verbeke K. Added Value of 13C Analysis in Breath Tests in H 2-Negative Subjects to Diagnose Lactose Malabsorption: A Proof of Concept Study. Dig Dis Sci 2024; 69:2147-2153. [PMID: 38499733 PMCID: PMC7616739 DOI: 10.1007/s10620-024-08304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/13/2023] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Diagnosing lactose malabsorption is usually based on hydrogen excretion in breath after a lactose challenge. However, a proportion of subjects with lactose malabsorption will not present a rise in hydrogen. Measuring excretion of methane or stable isotope labeled 13CO2 after ingestion of 13C-lactose has been proposed to mitigate this problem. OBJECTIVE The aim of the study was to assess the performance of measuring methane and 13CO2 in individuals with normal hydrogen excretion compared to a genetic lactase non-persistence test. METHODS Individuals referred for lactose breath testing and healthy controls were included. Participants received 13C-enriched lactose, performed breath testing, and underwent genotyping for a marker of lactase non-persistence (13910C*T). Using genotype as gold standard, the performance of measuring methane and 13CO2 excretion was assessed. RESULTS 151 subjects participated in the study, 50 of which presented a lactase non-persistent genotype. Of these, 72% were correctly diagnosed through hydrogen excretion of ≥ 20 ppm above baseline. In subjects with normal hydrogen excretion, cumulative 13C excretion had an area under the curve (AUC) of the receiver operating characteristics (ROC) curve of 0.852. Sensitivity was 93% and specificity was 51% for the current cutoff of 14.5%. The optimal cutoff was 12.65% (sensitivity 93%, specificity 70%). The ROC curve of peak methane had an AUC of 0.542 (sensitivity of 14%, specificity of 91% for cutoff ≥ 10 ppm). CONCLUSIONS In individuals with genetically demonstrated lactase non-persistence and negative hydrogen breath test, the use of 13C-lactose with measurement of 13CO2 excretion and hydrogen is a well-performing test to detect the lactose malabsorption and performs better than methane in our cohort.
Collapse
Affiliation(s)
- Lukas Michaja Balsiger
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Els Houben
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Laboratory Medicine Cosis, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc van Ranst
- Department of Laboratory Medicine Cosis, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
13
|
Fine AG, Steinrücken M. A novel expectation-maximization approach to infer general diploid selection from time-series genetic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593575. [PMID: 38798346 PMCID: PMC11118272 DOI: 10.1101/2024.05.10.593575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Detecting and quantifying the strength of selection is a main objective in population genetics. Since selection acts over multiple generations, many approaches have been developed to detect and quantify selection using genetic data sampled at multiple points in time. Such time series genetic data is commonly analyzed using Hidden Markov Models, but in most cases, under the assumption of additive selection. However, many examples of genetic variation exhibiting non-additive mechanisms exist, making it critical to develop methods that can characterize selection in more general scenarios. Thus, we extend a previously introduced expectation-maximization algorithm for the inference of additive selection coefficients to the case of general diploid selection, in which heterozygote and homozygote fitnesses are parameterized independently. We furthermore introduce a framework to identify bespoke modes of diploid selection from given data, as well as a procedure for aggregating data across linked loci to increase power and robustness. Using extensive simulation studies, we find that our method accurately and efficiently estimates selection coefficients for different modes of diploid selection across a wide range of scenarios; however, power to classify the mode of selection is low unless selection is very strong. We apply our method to ancient DNA samples from Great Britain in the last 4,450 years, and detect evidence for selection in six genomic regions, including the well-characterized LCT locus. Our work is the first genome-wide scan characterizing signals of general diploid selection.
Collapse
Affiliation(s)
- Adam G Fine
- Department of Ecology and Evolution, University of Chicago
- Graduate Program in Biophysical Sciences, University of Chicago
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago
- Department of Human Genetics, University of Chicago
| |
Collapse
|
14
|
Angima G, Qu Y, Park SH, Dallas DC. Prebiotic Strategies to Manage Lactose Intolerance Symptoms. Nutrients 2024; 16:1002. [PMID: 38613035 PMCID: PMC11013211 DOI: 10.3390/nu16071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.
Collapse
Affiliation(s)
- Gloria Angima
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
| | - Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Cavichio MWE, Quaio CRDC, Baratela WADR, Oliveira PMCD, Tahan S. EVALUATION OF AGREEMENT BETWEEN C/T-13910 POLYMORPHISM GENOTYPING RESULTS AND LACTOSE TOLERANCE TEST RESULTS: A RETROSPECTIVE POPULATION-BASED STUDY IN BRAZIL. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23104. [PMID: 38451663 DOI: 10.1590/s0004-2803.24612023-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND Lactose tolerant test (LTT) is the most broadly used diagnostic test for lactose intolerance in Brazil, is an indirect, minimally invasive and a low-cost test that is widely available in primary care and useful in clinical practice. The C/T-13910 polymorphism in lactase persistence has been well characterized in Caucasian populations, but there are no studies evaluating the concordance between C/T-13910 polymorphism genotyping results and LTT results in Brazil, where the population is highly mixed. OBJECTIVE We aimed to evaluate agreement between presence of C/T-13910 polymorphism genotyping and malabsorption in LTT results. METHODS This is a retrospective analysis of a Brazilian population whose data were collected from a single laboratory database present in several Brazilian states. Results of individuals who underwent both genetic testing for lactose intolerance (C/T-13910 polymorphism genotyping) and an LTT from April 2016 until February 2019 were analysed to evaluate agreement between tests. Groups were classified according to age (<10-year-old (yo), 10-17 yo, ≥18 yo groups) and state of residence (São Paulo or Rio Grande do Sul). Results: Among the 404 patients evaluated, there was agreement between the genotyping and LTT results in 325 (80.4%) patients and discordance in 79 (19.6%) patients (k=0.42 -moderate agreement). Regarding the genotype, 47 patients with genotype C/C (lactase nonpersistence) had normal LTT results, and 32 with genotype C/T or T/T (indicating lactase persistence) had abnormal LTT results. Neither age nor state of residence (Rio Grande do Sul or São Paulo) affected the agreement between test results. CONCLUSION Considering the moderate agreement between C/T-13910 polymorphism genotyping and LTT results (κ=0.42) in the Brazilian population, we hypothesize that an analysis of other polymorphisms could be a strategy to improve the agreement between genotyping and established tests and suggest that additional studies should focus on exploring this approach. BACKGROUND • Lactose intolerance is highly prevalent and may be implicated as a cofactor, or as a differential diagnosis, in many gastrointestinal conditions. BACKGROUND • The C/T-13910 polymorphism in lactase persistence is well characterized in Caucasian populations for lactase persistence. BACKGROUND • Concordance between genotyping and functional tests does not occur in all patients. BACKGROUND • Brazil has a highly mixed population and knowledge regarding presence of other polymorphisms is of importance in clarifying difficult cases.
Collapse
Affiliation(s)
| | | | | | | | - Soraia Tahan
- Grupo Fleury, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| |
Collapse
|
16
|
Jelenkovic A, Ibáñez-Zamacona ME, Rebato E. Human adaptations to diet: Biological and cultural coevolution. ADVANCES IN GENETICS 2024; 111:117-147. [PMID: 38908898 DOI: 10.1016/bs.adgen.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Modern humans evolved in Africa some 200,000 years ago, and since then, human populations have expanded and diversified to occupy a broad range of habitats and use different subsistence modes. This has resulted in different adaptations, such as differential responses to diseases and different abilities to digest or tolerate certain foods. The shift from a subsistence strategy based on hunting and gathering during the Palaeolithic to a lifestyle based on the consumption of domesticated animals and plants in the Neolithic can be considered one of the most important dietary transitions of Homo sapiens. In this text, we review four examples of gene-culture coevolution: (i) the persistence of the enzyme lactase after weaning, which allows the digestion of milk in adulthood, related to the emergence of dairy farming during the Neolithic; (ii) the population differences in alcohol susceptibility, in particular the ethanol intolerance of Asian populations due to the increased accumulation of the toxic acetaldehyde, related to the spread of rice domestication; (iii) the maintenance of gluten intolerance (celiac disease) with the subsequent reduced fitness of its sufferers, related to the emergence of agriculture and (iv) the considerable variation in the biosynthetic pathway of long-chain polyunsaturated fatty acids in native populations with extreme diets.
Collapse
Affiliation(s)
- Aline Jelenkovic
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - María Eugenia Ibáñez-Zamacona
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Esther Rebato
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
17
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Conceição M, Assunção H, Doria G, Coelho E, Clemente C, Gaspar C, Furtado T, Yamaguchi T, Santos A, Silva M, Rodriguez L, Rodrigues L, Flores O. A Genetic Lab-on-Phone Test for Point-of-Care Diagnostic of Lactose Intolerance near Patient and in less than 90 Minutes. J Appl Lab Med 2024; 9:4-13. [PMID: 37647590 DOI: 10.1093/jalm/jfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The -13910 C/T single nucleotide polymorphism located within the MCM6 gene, an enhancer region located upstream of the lactase-phlorizin hydrolase gene, is associated with lactase persistence/non-persistence traits among the Caucasian population. The performance of a new point-of-care CE-IVD (In Vitro Diagnostic) marked isothermal lab-on-phone lactose intolerance assay, using crude samples, was assessed in comparison with Sanger sequencing using purified DNA, as reference method. METHODS The study was conducted following a non-probability sampling using direct buccal swab (n = 63) and capillary blood (n = 43) clinical samples from a total of 63 volunteers. A 3 × 3 confusion matrix/contingency table was used to evaluate the performance of the isothermal lab-on-phone lactose intolerance assay. RESULTS The isothermal lab-on-phone lactose intolerance assay successfully detected the -13910 C/T variant with a limit of detection of 5 cells/assay and demonstrated an overall accuracy of 98.41% (95% CI, 91.47%-99.96%) for buccal swab samples and 100% (95% CI, 91.19%-100%) for capillary blood, taking just 90 min from sample to result, with only 2 min hands-on. CONCLUSIONS The lab-on-phone pocket-sized assay displayed good performance when using direct buccal swab and capillary blood samples, enabling a low-cost, real-time, and accurate genotyping of the -13910 C/T region for the rapid diagnosis of primary lactose intolerance at point-of-care, which enables a prompt implementation of appropriate diet habits and/or intolerance therapies. To our knowledge, this is the first point-of-care genetic test for lactose intolerance to be made available on the market.
Collapse
Affiliation(s)
| | | | | | | | | | - César Gaspar
- VisionVolt Lda - R&D department, Caparica, Portugal
| | | | - Takumi Yamaguchi
- STAB VIDA Lda - R&D Department, Caparica, Portugal
- Department of Information Technology, Faculty of Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan
| | | | - Mónica Silva
- STAB VIDA Lda - R&D Department, Caparica, Portugal
| | | | | | - Orfeu Flores
- STAB VIDA Lda - R&D Department, Caparica, Portugal
| |
Collapse
|
19
|
Irving-Pease EK, Refoyo-Martínez A, Barrie W, Ingason A, Pearson A, Fischer A, Sjögren KG, Halgren AS, Macleod R, Demeter F, Henriksen RA, Vimala T, McColl H, Vaughn AH, Speidel L, Stern AJ, Scorrano G, Ramsøe A, Schork AJ, Rosengren A, Zhao L, Kristiansen K, Iversen AKN, Fugger L, Sudmant PH, Lawson DJ, Durbin R, Korneliussen T, Werge T, Allentoft ME, Sikora M, Nielsen R, Racimo F, Willerslev E. The selection landscape and genetic legacy of ancient Eurasians. Nature 2024; 625:312-320. [PMID: 38200293 PMCID: PMC10781624 DOI: 10.1038/s41586-023-06705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2023] [Indexed: 01/12/2024]
Abstract
The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.
Collapse
Affiliation(s)
- Evan K Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Alba Refoyo-Martínez
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - William Barrie
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anders Fischer
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Sealand Archaeology, Kalundborg, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Alma S Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ruairidh Macleod
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- UCL Genetics Institute, University College London, London, UK
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme, Paris, France
| | - Rasmus A Henriksen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew H Vaughn
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Leo Speidel
- UCL Genetics Institute, University College London, London, UK
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Aaron J Stern
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abigail Ramsøe
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Anders Rosengren
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Lei Zhao
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Astrid K N Iversen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Science, Curtin University, Perth, Western Australia, Australia
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Departments of Integrative Biology and Statistics, UC Berkeley, Berkeley, CA, USA.
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
20
|
Barreiro LB. The evolutionary tale of lactase persistence in humans. Nat Rev Genet 2024; 25:7. [PMID: 37749209 DOI: 10.1038/s41576-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Luis B Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Zingone F, Bertin L, Maniero D, Palo M, Lorenzon G, Barberio B, Ciacci C, Savarino EV. Myths and Facts about Food Intolerance: A Narrative Review. Nutrients 2023; 15:4969. [PMID: 38068827 PMCID: PMC10708184 DOI: 10.3390/nu15234969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Most adverse reactions to food are patient self-reported and not based on validated tests but nevertheless lead to dietary restrictions, with patients believing that these restrictions will improve their symptoms and quality of life. We aimed to clarify the myths and reality of common food intolerances, giving clinicians a guide on diagnosing and treating these cases. We performed a narrative review of the latest evidence on the widespread food intolerances reported by our patients, giving indications on the clinical presentations, possible tests, and dietary suggestions, and underlining the myths and reality. While lactose intolerance and hereditary fructose intolerance are based on well-defined mechanisms and have validated diagnostic tests, non-coeliac gluten sensitivity and fermentable oligosaccharide, disaccharide, monosaccharide, and polyol (FODMAP) intolerance are mainly based on patients' reports. Others, like non-hereditary fructose, sorbitol, and histamine intolerance, still need more evidence and often cause unnecessary dietary restrictions. Finally, the main outcome of the present review is that the medical community should work to reduce the spread of unvalidated tests, the leading cause of the problematic management of our patients.
Collapse
Affiliation(s)
- Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Carolina Ciacci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy;
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| |
Collapse
|
22
|
Tanpowpong P, Aekplakorn W, Chariyalertsak S, Kessomboon P, Assanangkornchai S, Taneepanichskul S, Neelapaichit N. Higher milk consumption is associated with a lower risk of diabetes mellitus: A case-control study. PLoS One 2023; 18:e0289762. [PMID: 37585412 PMCID: PMC10431601 DOI: 10.1371/journal.pone.0289762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND & AIMS Studies have determined that people with genetically defined lactase non-persistence have lower dairy intake that may lead to an increase risk of various non-communicable diseases. Furthermore, lactase non-persistence itself has been associated with insulin resistance. However, data on lactase non-persistence status and dairy intake in developing countries are sparse. We therefore aimed to define 1) the prevalence of lactase non-persistence among individuals with diabetes and non-diabetes in Thai population and 2) the links between lactase non-persistence, milk consumption, and risk of diabetes mellitus. METHODS We conducted a case-control study from participants of the National Health Examination Survey. DNA was isolated from the blood for LCT -13910C>T (rs4988235) polymorphism and processed using the Bio-rad c1000 touch thermal cycler and MALDI-TOF Mass Spectrometry MassARRAY Typer v4.0 (Agena Bioscience, San Diego, CA, USA) at the Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital. Cases were participants with previously diagnosed diabetes mellitus or fasting plasma glucose ≥126 mg/dL (n = 1,756) vs. the controls (n = 2,380). RESULTS We included 4,136 participants, 62% female, and 98.8% were > 30 years old. Homozygous CC genotype (i.e., lactase non-persistence) was noted in 98.6% and only 1.4% carried heterozygous CT. Most (76%) consumed milk <1 portion/month. Participants with either CC or CT genotype had comparable milk consumption and the risk of diabetes mellitus. Males, older adults, and lower education had a lower chance of consuming milk at least one portion per month. Besides various baseline variables, we found that higher milk consumption was associated with a lower DM risk (P = .01). CONCLUSION The prevalence of lactase non-persistence in Thai population is very high. A significant difference in milk consumption frequency in relation to the lactase non-persistence status was not found. However, higher milk consumption is associated with a lower risk of diabetes mellitus.
Collapse
Affiliation(s)
- Pornthep Tanpowpong
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailandand
| | - Wichai Aekplakorn
- Department of Community Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Nareemarn Neelapaichit
- Ramathibodi School of Nursing, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Lindberg G, Mohammadian G. Loose ends in the differential diagnosis of IBS-like symptoms. Front Med (Lausanne) 2023; 10:1141035. [PMID: 37484861 PMCID: PMC10357384 DOI: 10.3389/fmed.2023.1141035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Two thirds of the patients we believed to have IBS in the 1970's have since been possible to diagnose with treatable conditions like bile acid diarrhea, inflammatory bowel disease, microscopic colitis, celiac disease, disaccharide malabsorption, exocrine pancreatic insufficiency, or rare genetic variants. Despite advances in diagnostic techniques a substantial proportion of patients continue suffering from IBS-like symptoms that cannot be explained by current knowledge. Although it is likely that further research will reveal small but important subgroups of patients with treatable mechanisms for IBS-like symptoms, we propose that only two large groups remain for being addressed in the clinic: those with connective tissue disorders such as Ehlers-Danlos syndrome or hypermobility spectrum disorders and those with autism spectrum disorders. Patients with connective tissue disorders exhibit identifiable disturbances of gut motor function and possibly increased gut permeability as underlying mechanisms for IBS-like symptoms. Autism spectrum disorders pose a much more difficult problem in the clinic. Disturbances of perception combined with anxiety and excessive worry about signals from the gut can lead to an endless but futile search for something being wrong. The search can involve large numbers of care givers, no one understanding the patient's suffering. Others may try to change their diet to lessen symptoms, only to find that almost all foods may cause worrying perceptions from the gut. Early recognition of autism spectrum disorders is essential for finding better ways to help patients with gastrointestinal and, as is often the case, extraintestinal symptoms.
Collapse
Affiliation(s)
- Greger Lindberg
- Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
- Neurogastroenterology Unit, Division of Gastroenterology, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Ghazaleh Mohammadian
- Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
- Neurogastroenterology Unit, Division of Gastroenterology, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Kowalówka M, Kosewski G, Lipiński D, Przysławski J. A Comprehensive Look at the -13910 C>T LCT Gene Polymorphism as a Molecular Marker for Vitamin D and Calcium Levels in Young Adults in Central and Eastern Europe: A Preliminary Study. Int J Mol Sci 2023; 24:10191. [PMID: 37373338 DOI: 10.3390/ijms241210191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Intolerance to dairy products resulting from the abnormal digestion of milk sugar (lactose) is a common cause of human gastrointestinal disorders. The aim of this study was to show that the -13910 C>T LCT gene polymorphism, together with genotypes of selected VDR gene polymorphisms and diet and nutritional status parameters, can impact the prevalence of vitamin D and calcium deficiency in young adults. This study was conducted on a group of 63 people, which comprised 21 individuals with primary adult lactase deficiency, and a control group of 42 individuals with no hypolactasia. The LCT and VDR gene genotypes were assessed using PCR restriction fragment length polymorphism (PCR-RFLP) analysis. A validated HPLC method was used to determine serum concentrations of 25(OH)D2 and 25(OH)D3. Atomic absorption spectrometry was used to determine calcium levels. Their diets (self-reported 7-day estimated food record), estimated calcium intakes based on the ADOS-Ca questionnaire and basic anthropometric parameters were assessed. The CC genotype associated with hypolactasia was found in 33.3% of the subjects. The presence of the CC variant of the LCT gene polymorphism in the study group of young Polish adults was found to be associated with significantly lower milk (134.7 ± 66.7 g/d vs. 342.5 ± 176 g/d; p = 0.012) and dairy product consumption (78.50 ± 36.2 g/d vs. 216.3 ± 102 g/d; p = 0.008) compared with lactase persistence. At the same time, people with adult-type primary intolerance were found to have statistically significant lower serum levels of vitamin D and calcium (p < 0.05). There was a higher chance of vitamin D and calcium deficiency and a lower intake in the group exhibiting lactase non-persistence (OR > 1). The AA variant of the VDR gene's BsmI polymorphism present in people with hypolactasia may further contribute to an increased risk of vitamin D deficiency. Exclusion of lactose from the diet, combined with impaired vitamin D metabolism, may also lead to inhibited calcium absorption by the body. Further research should be carried out on a larger group of subjects to clarify the relationship between lactase activity and vitamin D and calcium levels in young adults.
Collapse
Affiliation(s)
- Magdalena Kowalówka
- Department of Bromatology, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| | - Grzegorz Kosewski
- Department of Bromatology, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11 Street, 60-647 Poznań, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| |
Collapse
|
25
|
Gaudin RGN, Figueiro G, Flores-Gutiérrez S, Mut P, Vega-Requena Y, Luna-Andrada L, Ackermann E, Hidalgo PC, Carracedo A, Torres M, Sans M. DNA polymorphisms associated with lactase persistence, self-perceived symptoms of lactose intolerance, milk and dairy consumption, and ancestry, in the Uruguayan population. Am J Hum Biol 2023; 35:e23868. [PMID: 36695417 DOI: 10.1002/ajhb.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Uruguay has one of the highest per capita milk intakes worldwide, even with a limited supply of lactose-free products; furthermore, the admixed nature of its population is well known, and various frequencies of lactase persistence (LP) are observed in the source populations. We aimed to contribute to the understanding of the relation between allelic variants associated with LP, milk consumption, digestive symptoms, and genetic ancestry in the Uruguayan population. Samples of saliva or peripheral blood were collected from 190 unrelated individuals from two regions of Uruguay, genotypes for polymorphic sites in a fragment within the LCT enhancer were determined and allelic frequencies calculated in all of them. Data were collected on frequency of milk and dairy consumption and self-reported symptoms in a subsample of 153 individuals. Biparental and maternal ancestry was determined by analyzing individual ancestry markers and mitochondrial DNA. Twenty-nine percentage of individuals reported symptoms attributed to the ingestion of fresh milk, with abdominal pain, bloating and flatulence being the most frequent. European LP-associated allele T-13910 showed a frequency of 33%, while other LP-associated alleles like G-13915 and T-14011 were observed in very low frequencies. Associations between self-reported symptoms, fresh milk intake, and C/T-13910 genotype were statistically significant. No evidence of association between genetic ancestry and C/T-13910 was found, although individuals carrying one T-13910 allele appeared to have more European ancestry. In conclusion, the main polymorphism capable of predicting lactose intolerance in Uruguayans is C/T-13910, although more studies are required to unravel the relation between genotype and lactase activity, especially in heterozygotes.
Collapse
Affiliation(s)
- Raúl Germán Negro Gaudin
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Figueiro
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Sara Flores-Gutiérrez
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Patricia Mut
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Yasser Vega-Requena
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Lorena Luna-Andrada
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth Ackermann
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Pedro C Hidalgo
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Centro en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Torres
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
26
|
Liu H, Ling W, Hua X, Moon JY, Williams-Nguyen JS, Zhan X, Plantinga AM, Zhao N, Zhang A, Knight R, Qi Q, Burk RD, Kaplan RC, Wu MC. Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity. MICROBIOME 2023; 11:80. [PMID: 37081571 PMCID: PMC10116795 DOI: 10.1186/s40168-023-01530-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Understanding human genetic influences on the gut microbiota helps elucidate the mechanisms by which genetics may influence health outcomes. Typical microbiome genome-wide association studies (GWAS) marginally assess the association between individual genetic variants and individual microbial taxa. We propose a novel approach, the covariate-adjusted kernel RV (KRV) framework, to map genetic variants associated with microbiome beta-diversity, which focuses on overall shifts in the microbiota. The KRV framework evaluates the association between genetics and microbes by comparing similarity in genetic profiles, based on groups of variants at the gene level, to similarity in microbiome profiles, based on the overall microbiome composition, across all pairs of individuals. By reducing the multiple-testing burden and capturing intrinsic structure within the genetic and microbiome data, the KRV framework has the potential of improving statistical power in microbiome GWAS. RESULTS We apply the covariate-adjusted KRV to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) in a two-stage (first gene-level, then variant-level) genome-wide association analysis for gut microbiome beta-diversity. We have identified an immunity-related gene, IL23R, reported in a previous microbiome genetic association study and discovered 3 other novel genes, 2 of which are involved in immune functions or autoimmune disorders. In addition, simulation studies show that the covariate-adjusted KRV has a greater power than other microbiome GWAS methods that rely on univariate microbiome phenotypes across a range of scenarios. CONCLUSIONS Our findings highlight the value of the covariate-adjusted KRV as a powerful microbiome GWAS approach and support an important role of immunity-related genes in shaping the gut microbiome composition. Video Abstract.
Collapse
Affiliation(s)
- Hongjiao Liu
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Wodan Ling
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xing Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jessica S Williams-Nguyen
- Institute for Research and Education to Advance Community Health, Washington State University, Seattle, WA, 98101, USA
| | - Xiang Zhan
- Department of Biostatistics and Beijing International Center for Mathematical Research, Peking University, Beijing, 100191, China
| | - Anna M Plantinga
- Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Angela Zhang
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science & Engineering, and Bioengineering; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Departments of Pediatrics; Microbiology & Immunology; and, Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Robert C Kaplan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael C Wu
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
27
|
Ning Z, Tan X, Yuan Y, Huang K, Pan Y, Tian L, Lu Y, Wang X, Qi R, Lu D, Yang Y, Guan Y, Mamatyusupu D, Xu S. Expression profiles of east-west highly differentiated genes in Uyghur genomes. Natl Sci Rev 2023; 10:nwad077. [PMID: 37138773 PMCID: PMC10150800 DOI: 10.1093/nsr/nwad077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
It remains unknown and debatable how European-Asian-differentiated alleles affect individual phenotypes. Here, we made the first effort to analyze the expression profiles of highly differentiated genes with eastern and western origins in 90 Uyghurs using whole-genome (30× to 60×) and transcriptome data. We screened 921 872 east-west highly differentiated genetic variants, of which ∼4.32% were expression quantitative trait loci (eQTLs), ∼0.12% were alternative splicing quantitative trait loci (sQTLs), and ∼0.12% showed allele-specific expression (ASE). The 8305 highly differentiated eQTLs of strong effects appear to have undergone natural selection, associated with immunity and metabolism. European-origin alleles tend to be more biasedly expressed; highly differentiated ASEs were enriched in diabetes-associated genes, likely affecting the diabetes susceptibility in the Uyghurs. We proposed an admixture-induced expression model to dissect the highly differentiated expression profiles. We provide new insights into the genetic basis of phenotypic differentiation between Western and Eastern populations, advancing our understanding of the impact of genetic admixture.
Collapse
Affiliation(s)
| | | | | | - Ke Huang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Tian
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruicheng Qi
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | | |
Collapse
|
28
|
Oh CS, Kim MJ, Kim YS, Min S, Oh KT, Lee SD, Shin DH. Revealing Joseon period People's single nucleotide polymorphism associated with lactase gene by ancient DNA analysis of human remains from archaeological sites in Korea. Anat Cell Biol 2023; 56:54-60. [PMID: 36450657 PMCID: PMC9989794 DOI: 10.5115/acb.22.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Lactase non-persistence (LNP), one of the causes of lactose intolerance, is related to lactase gene associated single nucleotide polymorphisms (SNPs). Since the frequency of LNP varies by ethnic group and country, the research to reveal the presence or absence of LNP for specific people has been conducted worldwide. However, in East Asia, the study of lactase gene associated SNPs have not been sufficiently examined so far using ancient human specimens from archaeological sites. In our study of Joseon period human remains (n=14), we successfully revealed genetic information of lactase gene associated SNPs (rs1679771596, rs41525747, rs4988236, rs4988235, rs41380347, rs869051967, rs145946881 and rs182549), further confirming that as for eight SNPs, the pre-modern Korean people had a lactase non-persistent genotype. Our report contributes to the establishment of LNP associated SNP analysis technique that can be useful in forthcoming studies on human bones and mummy samples from East Asian archaeological sites.
Collapse
Affiliation(s)
- Chang Seok Oh
- Department of Mortuary Science, College of Bio-Convergence, Eulji University, Seongnam, Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, Cheonan, Korea
| | - Yi-Suk Kim
- Catholic Institute for Applied Anatomy, Department of Anatomy, Colllege of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sori Min
- Nuri Institute of Archaeology, Gongju, Korea
| | | | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hoon Shin
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Weil PP, Reincke S, Hirsch CA, Giachero F, Aydin M, Scholz J, Jönsson F, Hagedorn C, Nguyen DN, Thymann T, Pembaur A, Orth V, Wünsche V, Jiang PP, Wirth S, Jenke ACW, Sangild PT, Kreppel F, Postberg J. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr 2023:S0002-9165(23)46299-5. [PMID: 36963568 DOI: 10.1016/j.ajcnut.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiation of enteral nutrition. However, this requires that relevant milk miRNA amounts survive gastrointestinal passage, are taken up by cells, and become available to the RNA interference (RNAi) machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and gastrointestinal passage. OBJECTIVE Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. DESIGN We performed cross-species profiling of miRNAs via deep-sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells (HIEC-6) using Ad5-mediated miRNA-gene transfer. RESULTS Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula-nutrition in human preterm stool and 9 days after onset of enteral feeding in intestinal cells of preterm piglets. Thereafter, several xenomiRs accumulated in the intestinal cells. Moreover, few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in AGO2-immunocomplexes from intestinal biopsies. CONCLUSIONS Milk-derived miRNAs survived gastrointestinal passage in human and porcine neonates. Bovine-specific miRNAs accumulated in intestinal cells of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood levels of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in intestinal cells. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.
Collapse
Affiliation(s)
- Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Susanna Reincke
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Christian Alexander Hirsch
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Federica Giachero
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Malik Aydin
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany; HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Jonas Scholz
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Franziska Jönsson
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anton Pembaur
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Valerie Orth
- HELIOS University Hospital Wuppertal, Department of Surgery II, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Victoria Wünsche
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Ping-Ping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark; School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Stefan Wirth
- HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Andreas C W Jenke
- Klinikum Kassel, Zentrum für Kinder- und Jugendmedizin, Neonatologie und allgemeine Pädiatrie, Mönchebergstr. 41-43, 34125 Kassel, Germany.
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| |
Collapse
|
30
|
Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, Ding M, Wu X, Li S, Tashi N, Yang T, Yang F, Tong Y, Chen Z, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang Z, Gao Y, Zhang M, Wang X, Zhang C, Yuan K, Ko AMS, Aldenderfer M, Gao X, Xu S, Fu Q. Human genetic history on the Tibetan Plateau in the past 5100 years. SCIENCE ADVANCES 2023; 9:eadd5582. [PMID: 36930720 PMCID: PMC10022901 DOI: 10.1126/sciadv.add5582] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.
Collapse
Affiliation(s)
- Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Melinda A. Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Hongliang Lu
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Haibing Yuan
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Shuai Li
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Feng Yang
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Yuanhong He
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhaoxia Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA 95343, USA
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| |
Collapse
|
31
|
Begg TJA, Schmidt A, Kocher A, Larmuseau MHD, Runfeldt G, Maier PA, Wilson JD, Barquera R, Maj C, Szolek A, Sager M, Clayton S, Peltzer A, Hui R, Ronge J, Reiter E, Freund C, Burri M, Aron F, Tiliakou A, Osborn J, Behar DM, Boecker M, Brandt G, Cleynen I, Strassburg C, Prüfer K, Kühnert D, Meredith WR, Nöthen MM, Attenborough RD, Kivisild T, Krause J. Genomic analyses of hair from Ludwig van Beethoven. Curr Biol 2023; 33:1431-1447.e22. [PMID: 36958333 DOI: 10.1016/j.cub.2023.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 02/13/2023] [Indexed: 03/25/2023]
Abstract
Ludwig van Beethoven (1770-1827) remains among the most influential and popular classical music composers. Health problems significantly impacted his career as a composer and pianist, including progressive hearing loss, recurring gastrointestinal complaints, and liver disease. In 1802, Beethoven requested that following his death, his disease be described and made public. Medical biographers have since proposed numerous hypotheses, including many substantially heritable conditions. Here we attempt a genomic analysis of Beethoven in order to elucidate potential underlying genetic and infectious causes of his illnesses. We incorporated improvements in ancient DNA methods into existing protocols for ancient hair samples, enabling the sequencing of high-coverage genomes from small quantities of historical hair. We analyzed eight independently sourced locks of hair attributed to Beethoven, five of which originated from a single European male. We deemed these matching samples to be almost certainly authentic and sequenced Beethoven's genome to 24-fold genomic coverage. Although we could not identify a genetic explanation for Beethoven's hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease. Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven's severe liver disease, which culminated in his death. Unexpectedly, an analysis of Y chromosomes sequenced from five living members of the Van Beethoven patrilineage revealed the occurrence of an extra-pair paternity event in Ludwig van Beethoven's patrilineal ancestry.
Collapse
Affiliation(s)
- Tristan James Alexander Begg
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK; Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany.
| | - Axel Schmidt
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany
| | - Arthur Kocher
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Maarten H D Larmuseau
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Laboratory of Human Genetic Genealogy, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; ARCHES - Antwerp Cultural Heritage Sciences, Faculty of Design Sciences, University of Antwerp, 2000 Antwerp, Belgium; Histories vzw, 9000 Gent, Belgium
| | | | | | - John D Wilson
- Austrian Academy of Sciences, 1030 Vienna, Austria; University of Vienna, 1010 Vienna, Austria
| | - Rodrigo Barquera
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Carlo Maj
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany; Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany; Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Stephen Clayton
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Alexander Peltzer
- Quantitative Biology Center (QBiC) University of Tübingen, Tübingen, Germany
| | - Ruoyun Hui
- MacDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK; Alan Turing Institute, 2QR, John Dodson House, London NW1 2DB, UK
| | | | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany
| | - Cäcilia Freund
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Marta Burri
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Franziska Aron
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Anthi Tiliakou
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Joanna Osborn
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Guido Brandt
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Isabelle Cleynen
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - William Rhea Meredith
- American Beethoven Society, San Jose State University, San Jose, CA 95192, USA; Ira F. Brilliant Center for Beethoven Studies, San Jose State University, San Jose, CA 95192, USA; School of Music and Dance, San Jose State University, San Jose, CA 95192, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany
| | - Robert David Attenborough
- MacDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK; School of Archaeology & Anthropology, Australian National University, Canberra, ACT 0200, Australia
| | - Toomas Kivisild
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK; Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany.
| |
Collapse
|
32
|
Stouten K, Wolfhagen F, Castel R, van de Werken M, Klerks J, Verheijen F, Vermeer HJ. Testing for lactase non-persistence in a Dutch population: Genotyping versus the hydrogen breath test. Ann Clin Biochem 2023:45632231159288. [PMID: 36750424 DOI: 10.1177/00045632231159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Lactose intolerance is defined as the presence of gastrointestinal symptoms, such as bloating, abdominal pain or diarrhoea, after consumption of lactose in individuals with lactose malabsorption. Most cases involve primary lactose intolerance, caused by a loss of activity of the enzyme lactase, needed for digestion of lactose. A traditional method of establishing lactose intolerance is the hydrogen breath test (HBT), accompanied by a questionnaire to document complaints experienced by the patient during the test. Due to knowledge on lactase-persistent alleles, DNA genotyping has become available for the diagnostic work-up for lactose intolerance. Both methods are currently in use. The aim of this study is to provide a definite diagnostic approach for patients suspected of lactose intolerance in a Dutch population. METHODS In this retrospective, observational study, patients aged 15 years or older were included after presenting to their treating physician with symptoms suggestive of lactose intolerance. HBT, including a questionnaire to document complaints and DNA genotyping of LCT-13,910 C/T was performed for each patient as part of a routine diagnostic work-up. RESULTS 1101 patients were included (29% men). Positive and negative predictive value, sensitivity and specificity of HBT versus DNA genotyping were 80% (CI 75-84), 97% (CI 96-98), 89% (CI 84-92) and 94% (92-96) respectively. The use of the questionnaire added little diagnostic value. CONCLUSIONS In a population with a high prevalence of lactase-persistent alleles, we advise to exclude HBT from the diagnostic route for suspected lactose intolerance, and replace it with genotyping of lactase-persistent alleles.
Collapse
Affiliation(s)
- Karlijn Stouten
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, 2998Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Frank Wolfhagen
- Department of Gastroenterology, 2998Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Rob Castel
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, 2998Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Marjan van de Werken
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Johan Klerks
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - François Verheijen
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, 2998Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Henricus J Vermeer
- Result Laboratory and the department of Clinical Chemistry and Haematology of the Albert Schweitzer Hospital, Dordrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, 2998Albert Schweitzer Hospital, Dordrecht, The Netherlands
| |
Collapse
|
33
|
Kelly DE, Ramdas S, Ma R, Rawlings-Goss RA, Grant GR, Ranciaro A, Hirbo JB, Beggs W, Yeager M, Chanock S, Nyambo TB, Omar SA, Woldemeskel D, Belay G, Li H, Brown CD, Tishkoff SA. The genetic and evolutionary basis of gene expression variation in East Africans. Genome Biol 2023; 24:35. [PMID: 36829244 PMCID: PMC9951478 DOI: 10.1186/s13059-023-02874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.
Collapse
Affiliation(s)
- Derek E Kelly
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Ramdas
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Ma
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jibril B Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Beggs
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith Yeager
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, MD, USA
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, Dar Es Salaam, Tanzania
| | - Sabah A Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dawit Woldemeskel
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hongzhe Li
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Brown
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah A Tishkoff
- Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
34
|
Opinion: Increased calorie gain from lactose digestion could contribute to selection for lactase persistence. PLoS Genet 2023; 19:e1010612. [PMID: 36757941 PMCID: PMC9910737 DOI: 10.1371/journal.pgen.1010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
35
|
Zhang S, Li H, Engström G, Niu K, Qi L, Borné Y, Sonestedt E. Milk intake, lactase persistence genotype, plasma proteins and risks of cardiovascular events in the Swedish general population. Eur J Epidemiol 2023; 38:211-224. [PMID: 36604367 PMCID: PMC9905175 DOI: 10.1007/s10654-022-00937-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/16/2022] [Indexed: 01/07/2023]
Abstract
To investigate the associations of milk intake (non-fermented and fermented milk), lactase persistence (LCT-13910 C/T) genotype (a proxy for long-term non-fermented milk intake), and gene-milk interaction with risks of cardiovascular disease (CVD) and CVD mortality. Also, to identify the CVD-related plasma proteins and lipoprotein subfractions associated with milk intake and LCT-13910 C/T genotype. The prospective cohort study included 20,499 participants who were followed up for a mean of 21 years. Dietary intake was assessed using a modified diet history method. Cox proportional hazards regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). After adjusting for sociodemographic and lifestyle factors, higher non-fermented milk intake was significantly associated with higher risks of coronary heart disease (CHD) and CVD mortality, whereas higher fermented milk intake was significantly associated with lower risks of CVD and CVD mortality. The genotype associated with higher milk (mainly non-fermented) intake was positively associated with CHD (CT/TT vs. CC HR = 1.27; 95% CI: 1.03, 1.55) and CVD (HR = 1.22; 95% CI: 1.05, 1.42). The association between rs4988235 genotype and CVD mortality was stronger in participants with higher milk intake than among participants with lower intake (P for interaction < 0.05). Furthermore, leptin, HDL, and large HDL were associated with non-fermented milk intake, while no plasma proteins or lipoprotein subfractions associated with fermented milk intake and LCT-13910 C/T genotype were identified. In conclusion, non-fermented milk intake was associated with higher risks of CHD and CVD mortality, as well as leptin and HDL, whereas fermented milk intake was associated with lower risks of CVD and CVD mortality.
Collapse
Affiliation(s)
- Shunming Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35, 21428, Malmö, Sweden.
| | - Huiping Li
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35, 21428, Malmö, Sweden
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Gunnar Engström
- Cardiovascular Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Kaijun Niu
- Nutritional Epidemiology Institute, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Borné
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35, 21428, Malmö, Sweden
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35, 21428, Malmö, Sweden
| |
Collapse
|
36
|
Coral DE, Fernandez-Tajes J, Tsereteli N, Pomares-Millan H, Fitipaldi H, Mutie PM, Atabaki-Pasdar N, Kalamajski S, Poveda A, Miller-Fleming TW, Zhong X, Giordano GN, Pearson ER, Cox NJ, Franks PW. A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes. Nat Metab 2023; 5:237-247. [PMID: 36703017 PMCID: PMC9970876 DOI: 10.1038/s42255-022-00731-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.
Collapse
Affiliation(s)
- Daniel E Coral
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Juan Fernandez-Tajes
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Neli Tsereteli
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hugo Pomares-Millan
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hugo Fitipaldi
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pascal M Mutie
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Naeimeh Atabaki-Pasdar
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Sebastian Kalamajski
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tyne W Miller-Fleming
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ewan R Pearson
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden
- Population Health and Genomics, University of Dundee, Dundee, UK
| | - Nancy J Cox
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Skåne University Hospital, Malmö, Sweden.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
37
|
Lea AJ, Garcia A, Arevalo J, Ayroles JF, Buetow K, Cole SW, Eid Rodriguez D, Gutierrez M, Highland HM, Hooper PL, Justice A, Kraft T, North KE, Stieglitz J, Kaplan H, Trumble BC, Gurven MD. Natural selection of immune and metabolic genes associated with health in two lowland Bolivian populations. Proc Natl Acad Sci U S A 2023; 120:e2207544120. [PMID: 36574663 PMCID: PMC9910614 DOI: 10.1073/pnas.2207544120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/21/2022] [Indexed: 12/28/2022] Open
Abstract
A growing body of work has addressed human adaptations to diverse environments using genomic data, but few studies have connected putatively selected alleles to phenotypes, much less among underrepresented populations such as Amerindians. Studies of natural selection and genotype-phenotype relationships in underrepresented populations hold potential to uncover previously undescribed loci underlying evolutionarily and biomedically relevant traits. Here, we worked with the Tsimane and the Moseten, two Amerindian populations inhabiting the Bolivian lowlands. We focused most intensively on the Tsimane, because long-term anthropological work with this group has shown that they have a high burden of both macro and microparasites, as well as minimal cardiometabolic disease or dementia. We therefore generated genome-wide genotype data for Tsimane individuals to study natural selection, and paired this with blood mRNA-seq as well as cardiometabolic and immune biomarker data generated from a larger sample that included both populations. In the Tsimane, we identified 21 regions that are candidates for selective sweeps, as well as 5 immune traits that show evidence for polygenic selection (e.g., C-reactive protein levels and the response to coronaviruses). Genes overlapping candidate regions were strongly enriched for known involvement in immune-related traits, such as abundance of lymphocytes and eosinophils. Importantly, we were also able to draw on extensive phenotype information for the Tsimane and Moseten and link five regions (containing PSD4, MUC21 and MUC22, TOX2, ANXA6, and ABCA1) with biomarkers of immune and metabolic function. Together, our work highlights the utility of pairing evolutionary analyses with anthropological and biomedical data to gain insight into the genetic basis of health-related traits.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | - Angela Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
| | - Jesusa Arevalo
- Department of Medicine, University of California, Los Angeles, CA90095
| | - Julien F. Ayroles
- Department of Ecology and Evolution, Princeton University, Princeton, NJ08544
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
- School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Steve W. Cole
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA90095
- Department of Medicine, University of California, Los Angeles, CA90095
| | | | | | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27516
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA92866
| | | | - Thomas Kraft
- Department of Anthropology, University of Utah, Salt Lake City, UT84112
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27516
| | | | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, CA92866
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ85287
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106
| |
Collapse
|
38
|
Heianza Y, Xue Q, Rood J, Bray GA, Sacks FM, Qi L. Circulating thrifty microRNA is related to insulin sensitivity, adiposity, and energy metabolism in adults with overweight and obesity: the POUNDS Lost trial. Am J Clin Nutr 2023; 117:121-129. [PMID: 36789931 PMCID: PMC10196610 DOI: 10.1016/j.ajcnut.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNA 128-1 (miR-128-1) was recently linked to the evolutionary adaptation to famine and identified as a thrifty microRNA that controls energy expenditure, contributing to obesity and impaired glucose metabolism. OBJECTIVES We investigated whether circulating miR-128-1-5p and its temporal changes in response to weight-loss diet interventions were related to regulating insulin resistance, adiposity, and energy expenditure in adults with overweight and obesity. We also examined whether habitual physical activity (PA) and different macronutrient intakes modified associations of changes in miR-128-1-5p with improved metabolic outcomes. METHODS This study included 495 adults who consumed weight-loss diets with different macronutrient intakes. Circulating levels of miR-128-1-5p were assessed at baseline and 6 mo after the interventions. Outcome measurements included changes in insulin resistance HOMA-IR, adiposity, and resting energy expenditure. RESULTS We observed significant relations between circulating miR-128-1-5p and the positive selection signals at the 2q21.3 locus assessed by the single nucleotide polymorphisms rs1446585 and rs4988235. Higher miR-128-1-5p levels were associated with greater HOMA-IR (β per 1 SD: 0.08 [SE 0.03]; P = 0.009), waist circumference (β, 1.16 [0.55]; P = 0.036), whole-body total % fat mass (β, 0.75 [0.30]; P = 0.013), and REE (β, 23 [11]; P = 0.037). In addition, higher miR-128-1-5p level was related to lower total PA index (β, -0.23 [0.07]; P = 0.001) and interacted with PA (Pinteraction < 0.05) on changes in HOMA-IR and adiposity. We found that greater increases in miR-128-1-5p levels after the interventions were associated with lesser improvements in HOMA-IR and adiposity in participants with no change/decreases in PA. Furthermore, we found that dietary fat (Pinteraction = 0.027) and protein (Pinteraction= 0.055) intakes modified relations between changes in miR-128-1-5p and REE. CONCLUSIONS Circulating thrifty miRNA was linked to regulating body fat, insulin resistance, and energy metabolism. Temporal changes in circulating miR-128-1-5p were associated with better weight-loss outcomes during the interventions; habitual PA and dietary macronutrient intake may modify such relations. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
39
|
Muktupavela RA, Petr M, Ségurel L, Korneliussen T, Novembre J, Racimo F. Modeling the spatiotemporal spread of beneficial alleles using ancient genomes. eLife 2022; 11:e73767. [PMID: 36537881 PMCID: PMC9767474 DOI: 10.7554/elife.73767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Ancient genome sequencing technologies now provide the opportunity to study natural selection in unprecedented detail. Rather than making inferences from indirect footprints left by selection in present-day genomes, we can directly observe whether a given allele was present or absent in a particular region of the world at almost any period of human history within the last 10,000 years. Methods for studying selection using ancient genomes often rely on partitioning individuals into discrete time periods or regions of the world. However, a complete understanding of natural selection requires more nuanced statistical methods which can explicitly model allele frequency changes in a continuum across space and time. Here we introduce a method for inferring the spread of a beneficial allele across a landscape using two-dimensional partial differential equations. Unlike previous approaches, our framework can handle time-stamped ancient samples, as well as genotype likelihoods and pseudohaploid sequences from low-coverage genomes. We apply the method to a panel of published ancient West Eurasian genomes to produce dynamic maps showcasing the inferred spread of candidate beneficial alleles over time and space. We also provide estimates for the strength of selection and diffusion rate for each of these alleles. Finally, we highlight possible avenues of improvement for accurately tracing the spread of beneficial alleles in more complex scenarios.
Collapse
Affiliation(s)
- Rasa A Muktupavela
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Martin Petr
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Laure Ségurel
- UMR5558 Biométrie et Biologie Evolutive, CNRS - Université Lyon 1VilleurbanneFrance
| | | | - John Novembre
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| |
Collapse
|
40
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Reprint of: Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Balentine CM, Bolnick DA. Parallel evolution in human populations: A biocultural perspective. Evol Anthropol 2022; 31:302-316. [PMID: 36059181 DOI: 10.1002/evan.21956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 07/30/2022] [Indexed: 12/27/2022]
Abstract
Parallel evolution-where different populations evolve similar traits in response to similar environments-has been a topic of growing interest to biologists and biological anthropologists for decades. Parallel evolution occurs in human populations thanks to myriad biological and cultural mechanisms that permit humans to survive and thrive in diverse environments worldwide. Because humans shape and are shaped by their environments, biocultural approaches that emphasize the interconnections between biology and culture are key to understanding parallel evolution in human populations as well as the nuances of human biological variation and adaptation. In this review, we discuss how biocultural theory has been and can be applied to studies of parallel evolution and adaptation more broadly. We illustrate this through four examples of parallel evolution in humans: malaria resistance, lactase persistence, cold tolerance, and high-altitude adaptation.
Collapse
Affiliation(s)
- Christina M Balentine
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.,Department of Anthropology, University of Connecticut, Storrs, Connecticut, USA
| | - Deborah A Bolnick
- Department of Anthropology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
42
|
Jansson-Knodell CL, Krajicek EJ, Ramakrishnan M, Rogers NA, Siwiec R, Bohm M, Nowak T, Wo J, Lockett C, Xu H, Savaiano DA, Shin A. Relationships of Intestinal Lactase and the Small Intestinal Microbiome with Symptoms of Lactose Intolerance and Intake in Adults. Dig Dis Sci 2022; 67:5617-5627. [PMID: 35322314 PMCID: PMC11075758 DOI: 10.1007/s10620-022-07469-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Approximately two-thirds of adults are genetically predisposed to decreased lactase activity after weaning, putting them at risk of lactose intolerance. However, symptoms are a poor marker of lactose maldigestion. AIMS We assessed association between self-reported lactose intolerance and intestinal lactase, lactose intake, and the small intestinal microbiome. METHODS Patients 18-75 years presenting for upper endoscopy were recruited prospectively. Observational study participants completed a lactose intolerance symptom questionnaire and reported lactose intake. Post-bulbar biopsies were obtained to measure lactase activity and assess the small intestinal mucosal microbiome. We compared intestinal lactase between patients with and without lactose intolerance. We assessed associations between lactose intolerance symptoms and lactase and lactose intake. We examined associations of small bowel microbial composition with self-reported lactose intolerance and symptoms. RESULTS Among 34 patients, 23 (68%) reported lactose intolerance. Those with lactose intolerance had higher total symptom scores, more frequent bowel urgency, and more bowel movements after consuming dairy. The proportion of individuals with abnormal lactase activity did not differ by lactose intolerance status. Median lactase levels were correlated with total lactose intolerance symptom scores (p = 0.038) and frequency of bowel urgency (p = 0.012). Daily lactose intake did not differ between groups. In 19 patients, we observed significant associations of small intestinal microbiome beta diversity with stool consistency after consuming dairy (p = 0.03). CONCLUSIONS Intestinal lactase is associated with lactose intolerance symptoms and bowel urgency in adults but does not distinguish the clinical phenotype entirely. Studying other contributing factors (microbiota, diet) may further clarify the pathophysiology of lactose intolerance.
Collapse
Affiliation(s)
- Claire L Jansson-Knodell
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Edward J Krajicek
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Monica Ramakrishnan
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, 47907, USA
| | - Nicholas A Rogers
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Robert Siwiec
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Matt Bohm
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Thomas Nowak
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - John Wo
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Carolyn Lockett
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA
| | - Huiping Xu
- Department of Biostatistics and Health Sciences Data, Indiana University School of Medicine, 410 W 10th St, Indianapolis, IN, 46202, USA
| | - Dennis A Savaiano
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, 47907, USA
| | - Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN, 46202, USA.
| |
Collapse
|
43
|
Application of Lactose-Free Whey Protein to Greek Yogurts: Potential Health Benefits and Impact on Rheological Aspects and Sensory Attributes. Foods 2022; 11:foods11233861. [PMID: 36496669 PMCID: PMC9737567 DOI: 10.3390/foods11233861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
The application of β-galactosidase in the fermentation of milk enables the acquirement of lower levels of lactose that are tolerated by lactose maldigesters and can reduce the nutritional consequences of avoiding dairy products. The present study evaluated the viability of the fortification of lactose-free prebiotic Greek yogurt formulas with whey protein concentrate (WPC). Two rotational central composite designs (RCCDs) were applied: one to perform the hydrolysis of the whey protein concentrate and another for the yogurt formulations (α = 2 with 2 central points and 4 axial points). Two β-galactosidase enzymes obtained from Kluyveromyces lactis were used. The content of lactose, glucose, galactose, and lactic acid were determined in the WPC, milk (pasteurized and powdered), and yogurts. The three best formulations regarding the attributes’ viscosity, syneresis, firmness, and elasticity were sensorially evaluated by using a nine-point hedonic scale. A microbiological analysis was performed after 48 h of yogurt production. The characterization of the products and the comparison of the results obtained were evaluated using the Student’s T test and the analysis of variance with Tukey’s test (p-values < 0.05). The application of a lactose-free WPC promoted viscosity, firmness, and elasticity. The syneresis was reduced, and whey increased the protein and calcium content. Lactose-free WPC can be used as a partial substitute for skimmed powdered milk in yogurts. The obtained results are encouraging with respect to the production of lactose-free Greek yogurts by the dairy industry.
Collapse
|
44
|
Vissers LET, Sluijs I, Burgess S, Forouhi NG, Freisling H, Imamura F, Nilsson TK, Renström F, Weiderpass E, Aleksandrova K, Dahm CC, Perez-Cornago A, Schulze MB, Tong TYN, Aune D, Bonet C, Boer JMA, Boeing H, Chirlaque MD, Conchi MI, Imaz L, Jäger S, Krogh V, Kyrø C, Masala G, Melander O, Overvad K, Panico S, Sánches MJ, Sonestedt E, Tjønneland A, Tzoulaki I, Verschuren WMM, Riboli E, Wareham NJ, Danesh J, Butterworth AS, van der Schouw YT. Milk intake and incident stroke and CHD in populations of European descent: a Mendelian randomisation study. Br J Nutr 2022; 128:1789-1797. [PMID: 34670632 PMCID: PMC9592953 DOI: 10.1017/s0007114521004244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Higher milk intake has been associated with a lower stroke risk, but not with risk of CHD. Residual confounding or reverse causation cannot be excluded. Therefore, we estimated the causal association of milk consumption with stroke and CHD risk through instrumental variable (IV) and gene-outcome analyses. IV analysis included 29 328 participants (4611 stroke; 9828 CHD) of the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD (eight European countries) and European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) case-cohort studies. rs4988235, a lactase persistence (LP) SNP which enables digestion of lactose in adulthood was used as genetic instrument. Intake of milk was first regressed on rs4988235 in a linear regression model. Next, associations of genetically predicted milk consumption with stroke and CHD were estimated using Prentice-weighted Cox regression. Gene-outcome analysis included 777 024 participants (50 804 cases) from MEGASTROKE (including EPIC-CVD), UK Biobank and EPIC-NL for stroke, and 483 966 participants (61 612 cases) from CARDIoGRAM, UK Biobank, EPIC-CVD and EPIC-NL for CHD. In IV analyses, each additional LP allele was associated with a higher intake of milk in EPIC-CVD (β = 13·7 g/d; 95 % CI 8·4, 19·1) and EPIC-NL (36·8 g/d; 95 % CI 20·0, 53·5). Genetically predicted milk intake was not associated with stroke (HR per 25 g/d 1·05; 95 % CI 0·94, 1·16) or CHD (1·02; 95 % CI 0·96, 1·08). In gene-outcome analyses, there was no association of rs4988235 with risk of stroke (OR 1·02; 95 % CI 0·99, 1·05) or CHD (OR 0·99; 95 % CI 0·95, 1·03). Current Mendelian randomisation analysis does not provide evidence for a causal inverse relationship between milk consumption and stroke or CHD risk.
Collapse
Affiliation(s)
- L. E. T. Vissers
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - I. Sluijs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - S. Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - N. G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - H. Freisling
- International Agency for Research on Cancer, Lyon, France
| | - F. Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - T. K. Nilsson
- Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden
| | - F. Renström
- Department of Biobank Research, Umeå University, Umeå, Sweden
- Division of Endocrinology and Diabetes, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - E. Weiderpass
- International Agency for Research on Cancer, Lyon, France
| | - K. Aleksandrova
- Germany Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - C. C. Dahm
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - A. Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - M. B. Schulze
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Germany Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - T. Y. N. Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - D. Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - C. Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - J. M. A. Boer
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - H. Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - M. D. Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M. I. Conchi
- Navarra Public Health Institute – IdiSNA, Pamplona, Spain
- Research Network on Health Services in Chronic Diseases (REDISSEC), Pamplona, Spain
| | - L. Imaz
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - S. Jäger
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - V. Krogh
- Epidemiology and prevention Unit, Fondazione IRCCS Instituto Nazionale dei Tumori, Milano, Italy
| | - C. Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - G. Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network – ISPRO, Florence, Italy
| | - O. Melander
- Lund University, Department of Clinical Sciences, Malmö, Sweden
| | - K. Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - S. Panico
- Dipartemento di medicina clinica e chirurgia, Federico II University, Naples, Italy
| | - M. J. Sánches
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Universidad de Granada, Granada, Spain
| | - E. Sonestedt
- Lund University, Department of Clinical Sciences, Malmö, Sweden
| | - A. Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - I. Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - W. M. M. Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E. Riboli
- School of Public Health, Imperial College London, UK
| | - N. J. Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - J. Danesh
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - A. S. Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Y. T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Rajabloo S, Marefat E, Hassan-Zadeh V. Lactase persistence phenotype and genotype in Iranian Mazani-Shahmirzadi and Afghan Hazara ethnicities. Eur J Med Genet 2022; 65:104656. [DOI: 10.1016/j.ejmg.2022.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
46
|
Kiani AK, Medori MC, Dhuli K, Donato K, Caruso P, Fioretti F, Perrone MA, Ceccarini MR, Manganotti P, Nodari S, Codini M, Beccari T, Bertelli M. Clinical assessment for diet prescription. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E102-E124. [PMID: 36479490 PMCID: PMC9710416 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate nutritional assessment based on dietary intake, physical activity, genetic makeup, and metabolites is required to prevent from developing and/or to treat people suffering from malnutrition as well as other nutrition related health issues. Nutritional screening ought to be considered as an essential part of clinical assessment for every patient on admission to healthcare setups, as well as on change in clinical conditions. Therefore, a detailed nutritional assessment must be performed every time nutritional imbalances are observed or suspected. In this review we have explored different techniques used for nutritional and physical activity assessment. Dietary Intake (DI) assessment is a multidimensional and complex process. Traditionally, dietary intake is assessed through self-report techniques, but due to limitations like biases, random errors, misestimations, and nutrient databases-linked errors, questions arise about the adequacy of self-reporting dietary intake procedures. Despite the limitations in assessing dietary intake (DI) and physical activity (PA), new methods and improved technologies such as biomarkers analysis, blood tests, genetic assessments, metabolomic analysis, DEXA (Dual-energy X-ray absorptiometry), MRI (Magnetic resonance imaging), and CT (computed tomography) scanning procedures have made much progress in the improvement of these measures. Genes also plays a crucial role in dietary intake and physical activity. Similarly, metabolites are also involved in different nutritional pathways. This is why integrating knowledge about the genetic and metabolic markers along with the latest technologies for dietary intake (DI) and physical activity (PA) assessment holds the key for accurately assessing one's nutritional status and prevent malnutrition and its related complications.
Collapse
Affiliation(s)
| | | | | | | | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Francesco Fioretti
- Department of Cardiology, University of Brescia and ASST "Spedali Civili" Hospital, Brescia, Italy
| | | | | | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Savina Nodari
- Department of Cardiology, University of Brescia and ASST "Spedali Civili" Hospital, Brescia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences; University of Perugia, Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences; University of Perugia, Perugia, Italy
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy
- MAGI'S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
47
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022; 128:253-264. [DOI: https:/doi.org/10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
|
48
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Fortes-Lima C, Tříska P, Čížková M, Podgorná E, Diallo MY, Schlebusch CM, Černý V. Demographic and Selection Histories of Populations Across the Sahel/Savannah Belt. Mol Biol Evol 2022; 39:6731090. [PMID: 36173804 PMCID: PMC9582163 DOI: 10.1093/molbev/msac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Sahel/Savannah belt harbors diverse populations with different demographic histories and different subsistence patterns. However, populations from this large African region are notably under-represented in genomic research. To investigate the population structure and adaptation history of populations from the Sahel/Savannah space, we generated dense genome-wide genotype data of 327 individuals-comprising 14 ethnolinguistic groups, including 10 previously unsampled populations. Our results highlight fine-scale population structure and complex patterns of admixture, particularly in Fulani groups and Arabic-speaking populations. Among all studied Sahelian populations, only the Rashaayda Arabic-speaking population from eastern Sudan shows a lack of gene flow from African groups, which is consistent with the short history of this population in the African continent. They are recent migrants from Saudi Arabia with evidence of strong genetic isolation during the last few generations and a strong demographic bottleneck. This population also presents a strong selection signal in a genomic region around the CNR1 gene associated with substance dependence and chronic stress. In Western Sahelian populations, signatures of selection were detected in several other genetic regions, including pathways associated with lactase persistence, immune response, and malaria resistance. Taken together, these findings refine our current knowledge of genetic diversity, population structure, migration, admixture and adaptation of human populations in the Sahel/Savannah belt and contribute to our understanding of human history and health.
Collapse
Affiliation(s)
- Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petr Tříska
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Čížková
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mame Yoro Diallo
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
50
|
Rasinkangas P, Forssten SD, Marttinen M, Ibarra A, Bothe G, Junnila J, Uebelhack R, Donazzolo Y, Ouwehand AC. Bifidobacterium animalis subsp. lactis Bi-07 supports lactose digestion in vitro and in randomized, placebo- and lactase-controlled clinical trials. Am J Clin Nutr 2022; 116:1580-1594. [PMID: 36149331 PMCID: PMC9761758 DOI: 10.1093/ajcn/nqac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Probiotics may alleviate lactose maldigestion. OBJECTIVES The objective was to select a probiotic with high lactase activity and compare it with lactase and placebo in clinical trials. METHODS Bacterial cultures were screened for lactase activity in a model of the upper gastrointestinal (GI) tract. Bifidobacterium animalis subsp. lactis Bi-07 (Bi-07) counts were adjusted in subsequent experiments to correspond to 4500 Food Chemicals Codex (FCC) units of lactase, the amount in the European Food Safety Authority (EFSA)-approved health claim. Two crossover clinical trials, Booster Alpha and Booster Omega, were performed in participants with lactose intolerance, where 2 × 1012 CFUs Bi-07, 4662 FCC lactase, or placebo was consumed simultaneously with a lactose challenge, with 1-wk washouts between challenges. The trial designs were identical except for the source of lactose. Breath hydrogen concentration (BHC) was measured to assess the effect of the investigational products on lactose digestion, for which incremental area under the curve (iAUC) was the primary outcome. Peak BHC, cumulative BHC, and GI symptoms were secondary outcomes. RESULTS Bi-07 was superior to placebo in reducing BHC [iAUC, parts per million (ppm) ∙ h] in both trials (Booster Alpha: geometric least square mean ratio: 0.462; 95% CI: 0.249, 0.859; P = 0.016; Booster Omega: 0.227; 95% CI: 0.095, 0.543; P = 0.001). Lactase was superior to placebo in Booster Alpha (0.190; 95% CI: 0.102, 0.365; P < 0.001) but not Booster Omega (0.493; 95% CI: 0.210, 1.156; P = 0.102). Noninferiority of Bi-07 compared with lactase was observed in Booster Omega (0.460; 95% CI: 0.193, 1.096; P = 0.079; CI upper limit < 1.25 noninferiority margin). Odds of abdominal pain (compared with placebo: 0.32, P = 0.036) and flatulence (compared with placebo: 0.25, P = 0.007) were lower with lactase in Booster Alpha. Increased odds of nausea were seen with Bi-07 (compared with placebo: 4.0, P = 0.005) in Booster Omega. CONCLUSIONS Bi-07 has high lactase activity, and in 2 clinical trials, it supported lactose digestion in individuals with lactose intolerance.These trials were registered at clinicaltrials.gov as NCT03659747 (Booster Alpha) and NCT03814668 (Booster Omega).
Collapse
Affiliation(s)
| | - Sofia D Forssten
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | - Maija Marttinen
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | - Alvin Ibarra
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | | | | | | | | | - Arthur C Ouwehand
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| |
Collapse
|