1
|
Gao W, Kim MW, Dykstra T, Du S, Boskovic P, Lichti CF, Ruiz-Cardozo MA, Gu X, Weizman Shapira T, Rustenhoven J, Molina C, Smirnov I, Merbl Y, Ray WZ, Kipnis J. Engineered T cell therapy for central nervous system injury. Nature 2024; 634:693-701. [PMID: 39232158 DOI: 10.1038/s41586-024-07906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Traumatic injuries to the central nervous system (CNS) afflict millions of individuals worldwide1, yet an effective treatment remains elusive. Following such injuries, the site is populated by a multitude of peripheral immune cells, including T cells, but a comprehensive understanding of the roles and antigen specificity of these endogenous T cells at the injury site has been lacking. This gap has impeded the development of immune-mediated cellular therapies for CNS injuries. Here, using single-cell RNA sequencing, we demonstrated the clonal expansion of mouse and human spinal cord injury-associated T cells and identified that CD4+ T cell clones in mice exhibit antigen specificity towards self-peptides of myelin and neuronal proteins. Leveraging mRNA-based T cell receptor (TCR) reconstitution, a strategy aimed to minimize potential adverse effects from prolonged activation of self-reactive T cells, we generated engineered transiently autoimmune T cells. These cells demonstrated notable neuroprotective efficacy in CNS injury models, in part by modulating myeloid cells via IFNγ. Our findings elucidate mechanistic insight underlying the neuroprotective function of injury-responsive T cells and pave the way for the future development of T cell therapies for CNS injuries.
Collapse
Affiliation(s)
- Wenqing Gao
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Min Woo Kim
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Taitea Dykstra
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Pavle Boskovic
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Miguel A Ruiz-Cardozo
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Xingxing Gu
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tal Weizman Shapira
- Systems Immunology Department, The Weizmann Institute of Science, Rehovot, Israel
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Camilo Molina
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Yifat Merbl
- Systems Immunology Department, The Weizmann Institute of Science, Rehovot, Israel
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Medical Scientist Training Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Li Y, Zhai B, Yang B, Wang B, Wang Y, Qu M, Tang Y. Immune myocarditis induced by sintilimab therapy: A case report. Exp Ther Med 2024; 28:333. [PMID: 39006500 PMCID: PMC11240266 DOI: 10.3892/etm.2024.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy is a potent tool used in cancer treatment, but the occurrence of immune-related adverse events induced by immune checkpoint inhibitors (ICIs) cannot be overlooked. This is particularly true for rare but potentially fatal cardiovascular complications, such as myocarditis; heart muscle inflammation may lead to heart dysfunction and arrhythmia. The present case is a 68-year-old female breast cancer patient who developed palpitations and elevated cardiac enzyme levels after 1 day of ICI therapy, and the patient was eventually diagnosed with immune myocarditis. After receiving hormonal shock therapy, Ctn I, CK, CK-MB and other cardiac enzyme-related markers improved significantly, and electrocardiogram test returned to normal, and the patient recovered during hospitalization without any major adverse cardiac events. Furthermore, the present study reviewed the mechanism of immune myocarditis induced by ICI therapy, with the aim of providing a clinical foundation for the prevention and diagnosis of cardiovascular adverse events in ICI therapy.
Collapse
Affiliation(s)
- Yu Li
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Baowei Zhai
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Ben Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Bin Wang
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Yubing Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Yuanyuan Tang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
3
|
Yeh AC, Koyama M, Waltner OG, Minnie SA, Boiko JR, Shabaneh TB, Takahashi S, Zhang P, Ensbey KS, Schmidt CR, Legg SRW, Sekiguchi T, Nelson E, Bhise SS, Stevens AR, Goodpaster T, Chakka S, Furlan SN, Markey KA, Bleakley ME, Elson CO, Bradley PH, Hill GR. Microbiota dictate T cell clonal selection to augment graft-versus-host disease after stem cell transplantation. Immunity 2024; 57:1648-1664.e9. [PMID: 38876098 PMCID: PMC11236519 DOI: 10.1016/j.immuni.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Allogeneic T cell expansion is the primary determinant of graft-versus-host disease (GVHD), and current dogma dictates that this is driven by histocompatibility antigen disparities between donor and recipient. This paradigm represents a closed genetic system within which donor T cells interact with peptide-major histocompatibility complexes (MHCs), though clonal interrogation remains challenging due to the sparseness of the T cell repertoire. We developed a Bayesian model using donor and recipient T cell receptor (TCR) frequencies in murine stem cell transplant systems to define limited common expansion of T cell clones across genetically identical donor-recipient pairs. A subset of donor CD4+ T cell clonotypes differentially expanded in identical recipients and were microbiota dependent. Microbiota-specific T cells augmented GVHD lethality and could target microbial antigens presented by gastrointestinal epithelium during an alloreactive response. The microbiota serves as a source of cognate antigens that contribute to clonotypic T cell expansion and the induction of GVHD independent of donor-recipient genetics.
Collapse
MESH Headings
- Graft vs Host Disease/immunology
- Graft vs Host Disease/microbiology
- Animals
- Mice
- Mice, Inbred C57BL
- CD4-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Microbiota/immunology
- Clonal Selection, Antigen-Mediated
- Transplantation, Homologous
- Bayes Theorem
- Stem Cell Transplantation/adverse effects
- Mice, Inbred BALB C
- Gastrointestinal Microbiome/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
Collapse
Affiliation(s)
- Albert C Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olivia G Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Simone A Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tamer B Shabaneh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kathleen S Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine R Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel R W Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ethan Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shruti S Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew R Stevens
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tracy Goodpaster
- Experimental Histopathology Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Saranya Chakka
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott N Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie E Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Charles O Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Philip H Bradley
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Chen J, Wang D, Zhang H. Fc-null anti-CTLA-4 antibody: a novel strategy to facilitate cancer immunotherapy by ridding the colitis-inducing mishap. MedComm (Beijing) 2024; 5:e622. [PMID: 38881673 PMCID: PMC11176731 DOI: 10.1002/mco2.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Writing recently in Science, Lo and coworkers characterized a critical role of the gut microbiota in CTLA-4 blockade-induced colitis, revealing that an Fc domain deficient anti-CTLA-4 antibody can elicit antitumor responses effectively while avoiding the induction of colitis-like disease.1 This research opens up novel avenues for employing anti-CTLA-4 antibody therapy to circumvent the onset of colitis, which is often considered the Achilles' heel of what is arguably the most efficacious treatment for certain blood cancers and/or solid tumors.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Gastroenterology West China Hospital Sichuan University Chengdu China
- Department of Pediatrics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Dexuan Wang
- Department of Pediatrics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Hu Zhang
- Department of Gastroenterology West China Hospital Sichuan University Chengdu China
| |
Collapse
|
5
|
Chen SS, Zhang H. Abrogation and homeostatic restoration of IgE responses by a universal IgE allergy CTL vaccine-The three signal self/non-self/self (S/NS/S) theory. Immunology 2024; 172:91-108. [PMID: 38303079 PMCID: PMC10987285 DOI: 10.1111/imm.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
Natural IgE cytotoxic peptides (nECPs), which are derived from the constant domain of the heavy chain of human IgE producing B cells via endoplasmic reticulum (ER) stress, are decorated onto MHC class 1a molecules (MHCIa) as unique biomarkers for CTL (cytotoxic T lymphocyte)-mediated immune surveillance. Human IgE exhibits only one isotype and lacks polymorphisms; IgE is pivotal in mediating diverse, allergen-specific allergies. Therefore, by disrupting self-IgE tolerance via costimulation, the CTLs induced by nECPs can serve as universal allergy vaccines (UAVs) in humans to dampen IgE production mediated by diverse allergen-specific IgE-secreting B cells and plasma cells expressing surface nECP-MHCIa as targets. The study herein has enabled the identification of nECPs, A32 and SP-1/SP-2 nonameric natural peptides produced through the correspondence principle. Vaccination using nECP induced nECP-specific CTL that profoundly suppressed human IgE production in vitro as well as chimeric human IgE production in human IgE/HLA-A2.01/HLA-B7.02 triple transgenic rodents. Furthermore, nECP-tetramer-specific CTLs were found to be converted into CD4 Tregs that restored IgE competence via the homeostatic principle, mediatepred by SREBP-1c suppressed DCs. Thus, nECPs showed causal efficacy and safety as UAVs for treating categorically type I hypersensitivity IgE-mediated allergies. The applied vaccination concept presented provides the foundation to unify, integrate through a singular class of tetramer-specific TCR clonotypes for regulaing human IgE production. The three signal theory pertains to mechanisms of three cells underlying central tolerance (S), breaking self tolerance (NS) and regaining peripheral tolerance (S) via homeostasis concerning nECP as an efficacious and safe UAV to treat type I IgE-mediated hypersensitivity. The three signal theory impirically extended, may be heuritic for immuno-regulation of adaptive immune repertoire in general.
Collapse
Affiliation(s)
- Swey-Shen Chen
- Department of Immunology and Inflammation, AAIIT LLC, San Diego, California, USA
- Division of Vaccinology and Immunotherapy, IGE Therapeutics and Pharmaceuticals, Inc, San Diego, California, USA
- Department of Protein Display and Molecular Evolution, The Institute of Genetics at San Diego, San Diego, California, USA
| | - Hailan Zhang
- Department of Immunology and Inflammation, AAIIT LLC, San Diego, California, USA
- Division of Vaccinology and Immunotherapy, IGE Therapeutics and Pharmaceuticals, Inc, San Diego, California, USA
| |
Collapse
|
6
|
Lin Y, Wan Z, Liu B, Yao J, Li T, Yang F, Sui J, Zhao Y, Liu W, Zhou X, Wang J, Qi H. B cell-reactive triad of B cells, follicular helper and regulatory T cells at homeostasis. Cell Res 2024; 34:295-308. [PMID: 38326478 PMCID: PMC10978943 DOI: 10.1038/s41422-024-00929-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Autoreactive B cells are silenced through receptor editing, clonal deletion and anergy induction. Additional autoreactive B cells are ignorant because of physical segregation from their cognate autoantigen. Unexpectedly, we find that follicular B cell-derived autoantigen, including cell surface molecules such as FcγRIIB, is a class of homeostatic autoantigen that can induce spontaneous germinal centers (GCs) and B cell-reactive autoantibodies in non-autoimmune animals with intact T and B cell repertoires. These B cell-reactive B cells form GCs in a manner dependent on spontaneous follicular helper T (TFH) cells, which preferentially recognize B cell-derived autoantigen, and in a manner constrained by spontaneous follicular regulatory T (TFR) cells, which also carry specificities for B cell-derived autoantigen. B cell-reactive GC cells are continuously generated and, following immunization or infection, become intermixed with foreign antigen-induced GCs. Production of plasma cells and antibodies derived from B cell-reactive GC cells are markedly enhanced by viral infection, potentially increasing the chance for autoimmunity. Consequently, immune homeostasis in healthy animals not only involves classical tolerance of silencing and ignoring autoreactive B cells but also entails a reactive equilibrium attained by a spontaneous B cell-reactive triad of B cells, TFH cells and TFR cells.
Collapse
Affiliation(s)
- Yihan Lin
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zurong Wan
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiacheng Yao
- Changping Laboratory, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Yongshan Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wanli Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Wang H, An N, Pei A, Sun Y, Li S, Chen S, Zhang N. Exploration of signature based on T cell-related genes in stomach adenocarcinoma by analysis of single cell sequencing data. Aging (Albany NY) 2024; 16:6035-6053. [PMID: 38536020 PMCID: PMC11042963 DOI: 10.18632/aging.205687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a leading reason for the death of cancer around the world. The immune microenvironment counts a great deal in immunotherapy of advanced tumors, in which T cells exert an indispensable function. METHODS Single-cell RNA sequencing data were utilized to characterize the expression profile of T cells, followed by T cell-related genes (TCRGs) to construct signature and measure differences in survival time, enrichment pathways, somatic mutation status, immune status, and immunotherapy between groups. RESULTS The complex tumor microenvironment was analyzed by scRNA-seq data of GC patients. We screened for these T cell signature expression genes and the TCRGs-based signature was successfully constructed and relied on the riskscore grouping. In gene set enrichment analysis, it was shown that pro-tumor and suppressive immune pathways were more abundant in the higher risk group. We also found different infiltration of immune cells in two groups, and that the higher risk samples had a poorer response to immunotherapy. CONCLUSION Our study established a prognostic model, in which different groups had different prognosis, immune status, and enriched features. These results have provided additional insights into prognostic evaluation and the development of highly potent immunotherapies in GC.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Nan An
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiyue Pei
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yongxiao Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Si Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Goldmann O, Nwofor OV, Chen Q, Medina E. Mechanisms underlying immunosuppression by regulatory cells. Front Immunol 2024; 15:1328193. [PMID: 38380317 PMCID: PMC10876998 DOI: 10.3389/fimmu.2024.1328193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Regulatory cells, such as regulatory T cells (Tregs), regulatory B cells (Bregs), and myeloid-derived suppressor cells (MDSCs), play a crucial role in preserving immune tolerance and controlling immune responses during infections to prevent excessive immune activation. However, pathogens have developed strategies to hijack these regulatory cells to decrease the overall effectiveness of the immune response and persist within the host. Consequently, therapeutic targeting of these immunosuppressive mechanisms during infection can reinvigorate the immune response and improve the infection outcome. The suppressive mechanisms of regulatory cells are not only numerous but also redundant, reflecting the complexity of the regulatory network in modulating the immune responses. The context of the immune response, such as the type of pathogen or tissue involved, further influences the regulatory mechanisms involved. Examples of these immunosuppressive mechanisms include the production of inhibitory cytokines such as interleukin 10 (IL-10) and transforming growth factor beta (TGF-β) that inhibit the production of pro-inflammatory cytokines and dampen the activation and proliferation of effector T cells. In addition, regulatory cells utilize inhibitory receptors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) to engage with their respective effector cells, thereby suppressing their function. An alternative approach involves the modulation of metabolic reprogramming in effector immune cells to limit their activation and proliferation. In this review, we provide an overview of the major mechanisms mediating the immunosuppressive effect of the different regulatory cell subsets in the context of infection.
Collapse
Affiliation(s)
| | | | | | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|
10
|
Lo BC, Kryczek I, Yu J, Vatan L, Caruso R, Matsumoto M, Sato Y, Shaw MH, Inohara N, Xie Y, Lei YL, Zou W, Núñez G. Microbiota-dependent activation of CD4 + T cells induces CTLA-4 blockade-associated colitis via Fcγ receptors. Science 2024; 383:62-70. [PMID: 38175892 DOI: 10.1126/science.adh8342] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.
Collapse
Affiliation(s)
- Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yosuke Sato
- Takeda Pharmaceuticals International Co., Cambridge, MA 02139 USA
| | - Michael H Shaw
- Takeda Pharmaceuticals International Co., Cambridge, MA 02139 USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA
| | - Weiping Zou
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Chen SS, Zhang H. Abrogation and Homeostatic Restoration of IgE Responses by a Universal IgE Allergy CTL Vaccine-The Three Signal Self/Non-Self/Self (S/NS/S) Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561777. [PMID: 37904962 PMCID: PMC10614744 DOI: 10.1101/2023.10.12.561777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Natural IgE cytotoxic peptides (nECPs), which are derived from the constant domain of the heavy chain of human IgE producing B cells via endoplasmic reticulum (ER) stress, are decorated onto MHC class 1a molecules (MHCIa) as unique biomarkers for CTL (cytotoxic T lymphocyte)-mediated immune surveillance. Human IgE exhibits only one isotype and lacks polymorphisms; IgE is pivotal in mediating diverse, allergen-specific allergies. Therefore, by disrupting self-IgE tolerance via costimulation, the cytotoxic T lymphocytes (CTLs) induced by nECPs can serve as universal allergy vaccines (UAVs) in humans to dampen IgE production mediated by diverse allergen-specific IgE- secreting B cells and plasma cells expressing surface nECP-MHCIa as targets. The study herein has enabled the identification of nECPs produced through the correspondence principle 1, 2 . Furthermore, nECP-tetramer-specific CTLs were found to be converted into CD4 Tregs that restored IgE competence via the homeostatic principle, mediated by SREBP-1c suppressed DCs. Thus, nECPs showed causal efficacy and safety as UAVs for treating type I hypersensitivity IgE-mediated allergies. The applied vaccination concept presented provides the foundation to unify, integrate through a singular class of tetramer-specific TCR clonotypes. The three signal model is proposed on the mechanisms underlying central tolerance, breaking tolerance and regaining peripheral tolerance via homeostasis concerning nECP as an efficacious and safe UAV to treat type I IgE-mediated hypersensitivity. One Sentence Summary Human IgE self-peptides are identified as universal allergy vaccines that inhibit IgE synthesis while allowing homeostatic IgE recovery.Graphic abstract textThree cell S/NS/S model of Universal Allergy Vaccines (UAV): Natural IgE peptides (nECPs) presented by enabler DCs break central IgE tolerance (Self), leading to CTLs that inhibit IgE production (Non-self). Generative DCs converted by the metabolic milieu transform the pre-existing nECP-specific CTLs into nECP-specific Tregs leading to homeostatic recovery of IgE competence (S).
Collapse
|
13
|
Agarwal S, Aznar MA, Rech AJ, Good CR, Kuramitsu S, Da T, Gohil M, Chen L, Hong SJA, Ravikumar P, Rennels AK, Salas-Mckee J, Kong W, Ruella M, Davis MM, Plesa G, Fraietta JA, Porter DL, Young RM, June CH. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 2023; 56:2388-2407.e9. [PMID: 37776850 PMCID: PMC10591801 DOI: 10.1016/j.immuni.2023.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.
Collapse
Affiliation(s)
- Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charly R Good
- Department Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tong Da
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linhui Chen
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seok-Jae Albert Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - January Salas-Mckee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L Porter
- Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Nagashima K, Zhao A, Atabakhsh K, Bae M, Blum JE, Weakley A, Jain S, Meng X, Cheng AG, Wang M, Higginbottom S, Dimas A, Murugkar P, Sattely ES, Moon JJ, Balskus EP, Fischbach MA. Mapping the T cell repertoire to a complex gut bacterial community. Nature 2023; 621:162-170. [PMID: 37587342 PMCID: PMC10948025 DOI: 10.1038/s41586-023-06431-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Certain bacterial strains from the microbiome induce a potent, antigen-specific T cell response1-5. However, the specificity of microbiome-induced T cells has not been explored at the strain level across the gut community. Here, we colonize germ-free mice with complex defined communities (roughly 100 bacterial strains) and profile T cell responses to each strain. The pattern of responses suggests that many T cells in the gut repertoire recognize several bacterial strains from the community. We constructed T cell hybridomas from 92 T cell receptor (TCR) clonotypes; by screening every strain in the community against each hybridoma, we find that nearly all the bacteria-specific TCRs show a one-to-many TCR-to-strain relationship, including 13 abundant TCR clonotypes that each recognize 18 Firmicutes. By screening three pooled bacterial genomic libraries, we discover that these 13 clonotypes share a single target: a conserved substrate-binding protein from an ATP-binding cassette transport system. Peripheral regulatory T cells and T helper 17 cells specific for an epitope from this protein are abundant in community-colonized and specific pathogen-free mice. Our work reveals that T cell recognition of commensals is focused on widely conserved, highly expressed cell-surface antigens, opening the door to new therapeutic strategies in which colonist-specific immune responses are rationally altered or redirected.
Collapse
Affiliation(s)
- Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jamie E Blum
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiandong Meng
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alice G Cheng
- Department of Gastroenterology, Stanford School of Medicine, Stanford, CA, USA
| | - Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Alex Dimas
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | | | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J Exp Med 2023; 220:e20221816. [PMID: 37191720 PMCID: PMC10192604 DOI: 10.1084/jem.20221816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4+ T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4+ T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4+ T cells at the intestinal epithelium, imprinting a tissue-specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4+ T cells (Tregs). This steady state CD4+ T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased proinflammatory gene expression. Finally, we identified both steady-state epithelium-adapted CD4+ T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Aubrey Reed
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Calvin Herman
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Lockhart A, Reed A, de Castro TR, Herman C, Canesso MCC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536475. [PMID: 37090529 PMCID: PMC10120666 DOI: 10.1101/2023.04.11.536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4 + T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4 + T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4 + T cells at the intestinal epithelium, imprinting a tissue specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4 + T cells (Tregs). This steady state CD4 + T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased pro-inflammatory gene expression. Finally, we identified both steady state epithelium-adapted CD4 + T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
|
17
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
18
|
Kohatsu K, Suzuki T, Takimoto M, Matsui K, Hashiguchi A, Koike J, Shirai S. Granulomatous interstitial nephritis with CTLA-4 haploinsufficiency: a case report. BMC Nephrol 2022; 23:367. [PMID: 36384506 PMCID: PMC9670605 DOI: 10.1186/s12882-022-02999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential inhibitory regulator of immune activation. CTLA-4 haploinsufficiency is known to be associated with dysregulation of FOXP3+ regulatory T cells, hyperactivation of effector T cells, and lymphocytic infiltration of multiple organs. However, there have only been a few reports of renal involvement with CTLA-4. Herein, we present a case of acute granulomatous tubulointerstitial nephritis (TIN) in a patient with CTLA-4 haploinsufficiency. CASE PRESENTATION A 44-year-old man presented with a 3-week history of fever and malaise, and subsequently developed acute kidney injury (AKI) a few days after treatment with levofloxacin (LVFX). A kidney biopsy and immunohistochemical staining revealed granulomatous TIN with dominantly infiltrating CD4+ T cells. General symptoms and renal impairment showed improvement after discontinuation of LVFX and initiation of oral steroids. However, they worsened following steroid tapering. Further, a colon biopsy analysis showed similar findings to the renal tissue analysis. We suspected that granulomatous TIN was possibly associated with CTLA-4 haploinsufficiency. Therefore, the patient was transferred to another hospital for further treatment of CTLA-4 haploinsufficiency using immunosuppressive agents. CONCLUSIONS There have been few reports regarding renal involvement of CTLA-4 haploinsufficiency. In the present case, granulomatous TIN could have arisen due to instability of immune regulatory functions, such as CTLA-4 haploinsufficiency, and treatment with LVFX could have triggered immunologic activation and severe inflammation as well as renal dysfunction.
Collapse
Affiliation(s)
- Kaori Kohatsu
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tomo Suzuki
- Department of Nephrology, Kameda Medical Center, Chiba, Japan
| | - Madoka Takimoto
- Department of Hematology, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Katsuomi Matsui
- Department of Nephrology and Hypertension, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junki Koike
- Department of Diagnostic Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Sayuri Shirai
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
19
|
Daniel B, Yost KE, Hsiung S, Sandor K, Xia Y, Qi Y, Hiam-Galvez KJ, Black M, J Raposo C, Shi Q, Meier SL, Belk JA, Giles JR, Wherry EJ, Chang HY, Egawa T, Satpathy AT. Divergent clonal differentiation trajectories of T cell exhaustion. Nat Immunol 2022; 23:1614-1627. [PMID: 36289450 PMCID: PMC11225711 DOI: 10.1038/s41590-022-01337-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.
Collapse
Affiliation(s)
- Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yu Xia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kamir J Hiam-Galvez
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Mollie Black
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Quanming Shi
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Stefanie L Meier
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday N, Soskic B, Kaur S, Qureshi OS, Morris EC, Ikemizu S, Paluch C, Huo J, Davis SJ, Boucrot E, Walker LSK, Sansom DM. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 2022; 23:1365-1378. [PMID: 35999394 PMCID: PMC9477731 DOI: 10.1038/s41590-022-01289-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.
Collapse
Affiliation(s)
- Alan Kennedy
- UCL Institute of Immunity and Transplantation, London, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, London, UK
| | | | - Daniel Janman
- UCL Institute of Immunity and Transplantation, London, UK
| | - Thomas A Fox
- UCL Institute of Immunity and Transplantation, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Neil Halliday
- UCL Institute of Immunity and Transplantation, London, UK
| | - Blagoje Soskic
- UCL Institute of Immunity and Transplantation, London, UK
| | - Satdip Kaur
- School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, UK
| | | | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Shinji Ikemizu
- Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Christopher Paluch
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute-Diamond Light Source, The Research Complex at Harwell, Didcot, UK
| | - Simon J Davis
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - David M Sansom
- UCL Institute of Immunity and Transplantation, London, UK.
| |
Collapse
|
21
|
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022; 71:1979-1993. [PMID: 35730902 PMCID: PMC9450849 DOI: 10.2337/db21-0989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Sean E. Connolly
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Renelle J. Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - TuKiet T. Lam
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Jean Kanyo
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Arvan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kevan C. Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
- Department of Immunobiology, Yale University, New Haven, CT
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
22
|
Gao J, Miao J, Sun H, Fu X, Zhang P, Chen Z, Zhu P. TNF-α inhibitor ameliorates immune-related arthritis and pneumonitis in humanized mice. Front Immunol 2022; 13:955812. [PMID: 36016934 PMCID: PMC9396351 DOI: 10.3389/fimmu.2022.955812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThis study aimed at establishing a mouse model of immune-related adverse in humanized BALB/c-hPD1/hCTLA4 mice to investigate their potential pathogenesis and explore therapeutic targets for immune-related arthritis and pneumonitis.MethodsHumanized BALB/c-hPD1/hCTLA4 mice were injected with vehicle or collagen-specific antibodies (CA) and immune checkpoint inhibitors (ICI, ipilimumab, anti-human CTLA-4; and nivolumab, anti-human PD-1), and some mice were treated with anti-TNF-α antibody, leading to the control, collagen antibody-induced arthritis (CAIA), CAIA+ICI and treatment groups. The severity of clinical arthritis and pneumonitis in mice was monitored longitudinally and the pathological changes in the joints and lungs were histologically analyzed and the contents of lung hydroxyproline were measured. The frequency of different subsets of T cells was analyzed by flow cytometry and multiplex immunofluorescency.ResultsCompared with the control, the ICI group of mice developed the delayed onset of moderate degrees of arthritis while the CAIA+ICI group of mice exhibited the early onset of severe arthritis. Treatment with ICI caused severe pneumonitis, especially in the mice with CA. Flow cytometry analysis indicated a significantly higher frequency of splenic TNF-α+CD4+ and TNF-α+CD8+ T cells, but not other subsets of T cells tested, in the CAIA+ICI group of mice, relative to that in other groups of mice. Treatment with anti-TNF-α significantly mitigated the severity of arthritis and pneumonitis as well as deposition of collagen in lung of mice. The treatment also decreased the frequency of TNF-α+CD4+ and TNF-α+CD8+ T cells as well as effector memory T cells in the periphery lymph orangs and lungs of mice.ConclusionsWe successfully established a humanized mouse model of ICI-related severe arthritis and pneumonitis with a higher frequency of TNF-α+ T cells, which were significantly mitigated by anti-TNF-α treatment. Conceptually, ICI treatment can induce multiple autoimmune-like diseases in autoimmune-prone individuals and TNF-α+ T cells may be therapeutic targets for intervention of immune-related arthritis and pneumonitis.
Collapse
Affiliation(s)
- Jian Gao
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jinlin Miao
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| | - Haoyang Sun
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xianghui Fu
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Peiyan Zhang
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhinan Chen
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| | - Ping Zhu
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| |
Collapse
|
23
|
Wang X, Xia Z, Li Z, Zhang C. Development of a SETD2-related immune prognostic signature in clear cell renal cell carcinoma. Medicine (Baltimore) 2022; 101:e29561. [PMID: 35945780 PMCID: PMC9351884 DOI: 10.1097/md.0000000000029561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignant tumor of urinary system, and clear cell RCC (ccRCC) is the major pathological subtype. A high-frequency mutation in SETD2 gene is related to the occurrence, development, and poor prognosis of RCC. OBJECTIVE The research of immune-related genes (IRGs) is important to the success of immunotherapy in RCC. The aim of this study was to develop SETD2-related immune prognostic signature (IPS) potentially useful in the prognosis prediction of ccRCC. METHODS The expression profile, mutation profile, and clinical data related to ccRCC were obtained from the TCGA (Cancer Genome Atlas) and cBioPortal databases. The data of IRGs were downloaded from the ImmPort database. RESULTS An IPS with 5 genes (PDIA2, PAEP, AMELX, GREM2, and INHA) was constructed by analyzing the correlation between prognosis data and IRGs associated with ccRCC patients with wild type and mutant SETD2 genes. The clinical utility of the IPS and its relationship with immune microenvironment were also studied. CONCLUSIONS According to the results of this study, the IPS can be a promising biomarker of ccRCC to guide its prognosis and treatment.
Collapse
Affiliation(s)
- Xingyuan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyuan Li
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Cheng Zhang, Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China (e-mail: )
| |
Collapse
|
24
|
Regulatory T Cell Depletion Using a CRISPR Fc-Optimized CD25 Antibody. Int J Mol Sci 2022; 23:ijms23158707. [PMID: 35955841 PMCID: PMC9369266 DOI: 10.3390/ijms23158707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) are major drivers behind immunosuppressive mechanisms and present a major hurdle for cancer therapy. Tregs are characterized by a high expression of CD25, which is a potentially valuable target for Treg depletion to alleviate immune suppression. The preclinical anti-CD25 (αCD25) antibody, clone PC-61, has met with modest anti-tumor activity due to its capacity to clear Tregs from the circulation and lymph nodes, but not those that reside in the tumor. The optimization of the Fc domain of this antibody clone has been shown to enhance the intratumoral Treg depletion capacity. Here, we generated a stable cell line that produced optimized recombinant Treg-depleting antibodies. A genome engineering strategy in which CRISPR-Cas9 was combined with homology-directed repair (CRISPR-HDR) was utilized to optimize the Fc domain of the hybridoma PC-61 for effector functions by switching it from its original rat IgG1 to a mouse IgG2a isotype. In a syngeneic tumor mouse model, the resulting αCD25-m2a (mouse IgG2a isotype) antibody mediated the effective depletion of tumor-resident Tregs, leading to a high effector T cell (Teff) to Treg ratio. Moreover, a combination of αCD25-m2a and an αPD-L1 treatment augmented tumor eradication in mice, demonstrating the potential for αCD25 as a cancer immunotherapy.
Collapse
|
25
|
Zhao Y, Xu H, Zhang M, Li L. Single-Cell RNA-Seq and Bulk RNA-Seq Reveal Intratumoral Heterogeneity and Tumor Microenvironment Characteristics in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:881345. [PMID: 35601491 PMCID: PMC9116505 DOI: 10.3389/fgene.2022.881345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of non-Hodgkin’s lymphoma (NHL) with highly heterogeneous genetic and phenotypic features. Therefore, a comprehensive understanding of cellular diversity and intratumoral heterogeneity is essential to elucidate the mechanisms driving DLBCL progression and to develop new therapeutic approaches. Methods: We analyzed single-cell transcriptomic data from 2 reactive lymph node tissue samples and 2 DLBCL lymph node biopsy tissue samples to explore the transcriptomic landscape of DLBCL. In addition, we constructed a prognostic model based on the genes obtained from differential analysis. Results: Based on gene expression profiles at the single cell level, we identified and characterized different subpopulations of malignant and immune cells. Malignant cells exhibited a high degree of inter-tumor heterogeneity. Tumor-infiltrating regulatory CD4+ T cells showed highly immunosuppressive properties and exhausted cytotoxic CD8+ T cells were highly expressed with markers of exhaustion. Cell communication analysis identified complex interactions between malignant cells and other cell subpopulations. In addition, the prognostic model we constructed allows for monitoring the prognosis of DLBCL patients. Conclusion: This study provides an in-depth dissection of the transcriptional features of malignant B cells and tumor microenvironment (TME) in DLBCL and provides new insights into the tumor heterogeneity of DLBCL.
Collapse
|
26
|
Programme of self-reactive innate-like T cell-mediated cancer immunity. Nature 2022; 605:139-145. [PMID: 35444279 DOI: 10.1038/s41586-022-04632-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αβ T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.
Collapse
|
27
|
Poto R, Troiani T, Criscuolo G, Marone G, Ciardiello F, Tocchetti CG, Varricchi G. Holistic Approach to Immune Checkpoint Inhibitor-Related Adverse Events. Front Immunol 2022; 13:804597. [PMID: 35432346 PMCID: PMC9005797 DOI: 10.3389/fimmu.2022.804597] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) block inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1) and enhance antitumor T-cell activity. ICIs provide clinical benefits in a percentage of patients with advanced cancers, but they are usually associated with a remarkable spectrum of immune-related adverse events (irAEs) (e.g., rash, colitis, hepatitis, pneumonitis, endocrine, cardiac and musculoskeletal dysfunctions). Particularly patients on combination therapy (e.g., anti-CTLA-4 plus anti-PD-1/PD-L1) experience some form of irAEs. Different mechanisms have been postulated to explain these adverse events. Host factors such as genotype, gut microbiome and pre-existing autoimmune disorders may affect the risk of adverse events. Fatal ICI-related irAEs are due to myocarditis, colitis or pneumonitis. irAEs usually occur within the first months after ICI initiation but can develop as early as after the first dose to years after ICI initiation. Most irAEs resolve pharmacologically, but some appear to be persistent. Glucocorticoids represent the mainstay of management of irAEs, but other immunosuppressive drugs can be used to mitigate refractory irAEs. In the absence of specific trials, several guidelines, based on data from retrospective studies and expert consensus, have been published to guide the management of ICI-related irAEs.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | | | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
28
|
Liang W, Wang F. Characterization of Mouse CD4 TCR and Its Targeting Antigen. Methods Mol Biol 2022; 2574:221-232. [PMID: 36087204 DOI: 10.1007/978-1-0716-2712-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The initial step of activation and differentiation of naïve CD4+ T cells is the TCR-antigenic stimulation. The specific antigen peptides (>11 residues) are presented by the class II MHC (MHC II) protein which expresses professional antigen-presenting cells (APCs). To recognize various peptides and highly polymorphic MHC molecules, a diverse TCR repertoire is achieved through random V(D)J rearrangement. Following TCR initiation, naive CD4+ T cells proliferate and differentiate into one of the lineages of T helper (Th) cells, including Th1, Th2, Th17, iTreg, and some new subsets, as defined by the signatures of functional cytokines. In this chapter, we provide a series of methods to identify antigens for a specific TCR in vitro and also track the dynamics of the specific TCR-expressing T cell in vivo.
Collapse
Affiliation(s)
- Wenhua Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2021; 21:509-528. [PMID: 34937915 DOI: 10.1038/s41573-021-00345-8] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunity, and the potential for cancer immunotherapy, have been topics of scientific discussion and experimentation for over a hundred years. Several successful cancer immunotherapies - such as IL-2 and interferon-α (IFNα) - have appeared over the past 30 years. However, it is only in the past decade that immunotherapy has made a broad impact on patient survival in multiple high-incidence cancer indications. The emergence of immunotherapy as a new pillar of cancer treatment (adding to surgery, radiation, chemotherapy and targeted therapies) is due to the success of immune checkpoint blockade (ICB) drugs, the first of which - ipilimumab - was approved in 2011. ICB drugs block receptors and ligands involved in pathways that attenuate T cell activation - such as cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and its ligand, PDL1 - and prevent, or reverse, acquired peripheral tolerance to tumour antigens. In this Review we mark the tenth anniversary of the approval of ipilimumab and discuss the foundational scientific history of ICB, together with the history of the discovery, development and elucidation of the mechanism of action of the first generation of drugs targeting the CTLA4 and PD1 pathways.
Collapse
|
30
|
Russler-Germain EV, Jung J, Miller AT, Young S, Yi J, Wehmeier A, Fox LE, Monte KJ, Chai JN, Kulkarni DH, Funkhouser-Jones LJ, Wilke G, Durai V, Zinselmeyer BH, Czepielewski RS, Greco S, Murphy KM, Newberry RD, Sibley LD, Hsieh CS. Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity 2021; 54:2547-2564.e7. [PMID: 34715017 DOI: 10.1016/j.immuni.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.
Collapse
Affiliation(s)
- Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jisun Jung
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aidan T Miller
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon Young
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alec Wehmeier
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey E Fox
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen J Monte
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafael S Czepielewski
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Zhao N, Bardine C, Lourenço AL, Wang YH, Huang Y, Cleary SJ, Wilson DM, Oh DY, Fong L, Looney MR, Evans MJ, Craik CS. In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS CENTRAL SCIENCE 2021; 7:1638-1649. [PMID: 34729407 PMCID: PMC8554823 DOI: 10.1021/acscentsci.1c00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 05/28/2023]
Abstract
The biology of human granzymes remains enigmatic in part due to our inability to probe their functions outside of in vitro assays or animal models with divergent granzyme species. We hypothesize that the biology of human granzymes could be better elaborated with a translational imaging technology to reveal the contexts in which granzymes are secreted and biochemically active in vivo. Here, we advance toward this goal by engineering a Granzyme targeting Restricted Interaction Peptide specific to family member B (GRIP B) to measure secreted granzyme B (GZMB) biochemistry with positron emission tomography. A proteolytic cleavage of 64Cu-labeled GRIP B liberates a radiolabeled form of Temporin L, which sequesters the radioisotope by binding to adjacent phospholipid bilayers. Thus, at extended time points postinjection (i.e., hours, not seconds), tissue biodistribution of the radioisotope in vivo reflects relative units of the GZMB activity. As a proof of concept, we show in three syngeneic mouse cancer models that 64Cu-GRIP B detects GZMB from T cells activated with immune checkpoint inhibitors (CPI). Remarkably, the radiotracer detects the proteolysis within tumors but also in lymphoid tissue, where immune cells are activated by a systemic CPI. Control experiments with an uncleavable analogue of 64Cu-GRIP B and tumor imaging studies in germline GZMB knockout mice were applied to show that 64Cu-GRIP B is specific for GZMB proteolysis. Furthermore, we explored a potential noncytotoxic function for GZMB by applying 64Cu-GRIP B to a model of pulmonary inflammation. In summary, we demonstrate that granzyme biochemistry can be assessed in vivo using an imaging modality that can be scaled vertically into human subjects.
Collapse
Affiliation(s)
- Ning Zhao
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Conner Bardine
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - André Luiz Lourenço
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Yung-hua Wang
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Yangjie Huang
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Simon J. Cleary
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - David Y. Oh
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Lawrence Fong
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Mark R. Looney
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Michael J. Evans
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| | - Charles S. Craik
- Department
of Radiology and Biomedical Imaging, Department of Pharmaceutical Chemistry, Department of Medicine, Department of Laboratory
Medicine, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
32
|
Sena LA, Denmeade SR, Antonarakis ES. Targeting the spectrum of immune checkpoints in prostate cancer. Expert Rev Clin Pharmacol 2021; 14:1253-1266. [PMID: 34263692 PMCID: PMC8484035 DOI: 10.1080/17512433.2021.1949287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Introduction: The proven efficacy of the cellular vaccine sipuleucel-T in 2010 led to optimism about immunotherapeutic approaches for the treatment of prostate cancer. Some surmised that prostate cancer might be an ideal target for immune-mediated killing given that the prostate is not an essential organ and expresses unique proteins including prostate-specific antigen, prostate-specific membrane antigen, and prostatic acid phosphatase that could be targeted without side effects. Subsequently, antibodies that inhibit the T cell checkpoints PD1 and CTLA4 were shown to stimulate antitumor immune responses, leading to tumor regression in several cancer types. These therapies have since been tested in several studies as treatments for prostate cancer, but appear to have limited efficacy in molecularly unselected patients.Areas covered: In this review, we discuss these studies and evaluate features of prostate cancer and its host environment that may render it generally resistant to CTLA4 and PD1 blockade. We provide an overview of alternate immune checkpoints that may hold greater significance in this disease.Expert opinion: Combination therapies to target multiple layers of alternate immune checkpoints may be required for an effective immune response to prostate cancer. We discuss combination therapies currently being investigated.
Collapse
Affiliation(s)
- Laura A. Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, Dobbs K, Loh KL, Miosge LA, Lee CE, Chand R, Chan A, Yap JY, Keller MD, Chen K, Rossjohn J, La Gruta NL, Vinuesa CG, Reid HH, Lionakis MS, Notarangelo LD, Gray DHD, Goodnow CC, Cook MC, Daley SR. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med 2021; 218:211502. [PMID: 33107914 PMCID: PMC7595743 DOI: 10.1084/jem.20200476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.
Collapse
Affiliation(s)
- Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ainsley R Davies
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Xavier Y X Sng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Khai L Loh
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Cindy Eunhee Lee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Rochna Chand
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Anna Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jin Yan Yap
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Medical Center, Washington, DC
| | - Karin Chen
- Department of Pediatrics, University of Utah, Salt Lake City, UT.,Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicole L La Gruta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Deerhake ME, Danzaki K, Inoue M, Cardakli ED, Nonaka T, Aggarwal N, Barclay WE, Ji RR, Shinohara ML. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54:484-498.e8. [PMID: 33581044 PMCID: PMC7956124 DOI: 10.1016/j.immuni.2021.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.
Collapse
MESH Headings
- Animals
- Astrocytes/immunology
- Brain/pathology
- CARD Signaling Adaptor Proteins/metabolism
- Cell Communication
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Galectins/metabolism
- Gene Expression Regulation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myeloid Cells/immunology
- Neurogenic Inflammation/immunology
- Oncostatin M/genetics
- Oncostatin M/metabolism
- Oncostatin M Receptor beta Subunit/metabolism
- Peptide Fragments/immunology
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Emre D Cardakli
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Toshiaki Nonaka
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William E Barclay
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Russler-Germain EV, Yi J, Young S, Nutsch K, Wong HS, Ai TL, Chai JN, Durai V, Kaplan DH, Germain RN, Murphy KM, Hsieh CS. Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. eLife 2021; 10:54792. [PMID: 33533717 PMCID: PMC7877908 DOI: 10.7554/elife.54792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Generation of tolerogenic peripheral regulatory T (pTreg) cells is commonly thought to involve CD103+ gut dendritic cells (DCs), yet their role in commensal-reactive pTreg development is unclear. Using two Helicobacter-specific T cell receptor (TCR) transgenic mouse lines, we found that both CD103+ and CD103- migratory, but not resident, DCs from the colon-draining mesenteric lymph node presented Helicobacter antigens to T cells ex vivo. Loss of most CD103+ migratory DCs in vivo using murine genetic models did not affect the frequency of Helicobacter-specific pTreg cell generation or induce compensatory tolerogenic changes in the remaining CD103- DCs. By contrast, activation in a Th1-promoting niche in vivo blocked Helicobacter-specific pTreg generation. Thus, these data suggest a model where DC-mediated effector T cell differentiation is 'dominant', necessitating that all DC subsets presenting antigen are permissive for pTreg cell induction to maintain gut tolerance.
Collapse
Affiliation(s)
- Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Shannon Young
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Katherine Nutsch
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Teresa L Ai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| | - Vivek Durai
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, United States
| | - Daniel H Kaplan
- Department of Dermatology, Department of Immunology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Kenneth M Murphy
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, United States
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
36
|
The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Crit Rev Oncol Hematol 2021; 157:103160. [DOI: 10.1016/j.critrevonc.2020.103160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
|
37
|
Waliany S, Lee D, Witteles RM, Neal JW, Nguyen P, Davis MM, Salem JE, Wu SM, Moslehi JJ, Zhu H. Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annu Rev Pharmacol Toxicol 2020; 61:113-134. [PMID: 32776859 DOI: 10.1146/annurev-pharmtox-010919-023451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA
| | - Ronald M Witteles
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joel W Neal
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-Oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France.,Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Sean M Wu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Javid J Moslehi
- Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Han Zhu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
38
|
Richter MD, Hughes GC, Chung SH, Ezeanuna M, Singh N, Thompson JA. Immunologic adverse events from immune checkpoint therapy. Best Pract Res Clin Rheumatol 2020; 34:101511. [DOI: 10.1016/j.berh.2020.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Fisher J, Zeitouni N, Fan W, Samie FH. Immune checkpoint inhibitor therapy in solid organ transplant recipients: A patient-centered systematic review. J Am Acad Dermatol 2020; 82:1490-1500. [DOI: 10.1016/j.jaad.2019.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
|
40
|
Grabie N, Lichtman AH, Padera R. T cell checkpoint regulators in the heart. Cardiovasc Res 2020; 115:869-877. [PMID: 30721928 DOI: 10.1093/cvr/cvz025] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
T lymphocyte-mediated immune responses in the heart are potentially dangerous because they can interfere with the electromechanical function. Furthermore, the myocardium has limited regenerative capacity to repair damage caused by effector T cells. Myocardial T cell responses are normally suppressed by multiple mechanisms of central and peripheral tolerance. T cell inhibitory molecules, so called immune checkpoints, limit the activation and effector function of heart antigen-reactive T cells that escape deletion during development in the thymus. Programmed cell protein death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) are checkpoint molecules homologous to the costimulatory receptor CD28, and they work to block activating signals from the T cell antigen receptor and CD28. Nonetheless, PD-1 and CTLA-4 function in different ways and at different steps in a T cell response to antigen. Studies in mice have established that genetic deficiencies of checkpoint molecules, including PD-1, PD-L1, CTLA-4, and lymphocyte activation gene-3, result in enhanced risk of autoimmune T cell-mediated myocarditis and increased pathogenicity of heart antigen-specific effector T cells. The PD-1/PD-L1 pathway appears to be particularly important in cardiac protection from T cells. PD-L1 is markedly up-regulated on myocardial cells by interferon-gamma secreted by T cells and PD-1 or PD-L1 deficiency synergizes with other defects in immune regulation in promoting myocarditis. Consistent with these studies, myocarditis has emerged as a serious adverse reaction of cancer therapies that target checkpoint molecules to enhance anti-tumour T cell responses. Histopathology and immunohistochemical analyses of myocardial tissue from immune checkpoint blockade (ICB)-treated patients echoes findings in checkpoint-deficient mice. Many questions about myocarditis in the setting of cancer immunotherapy still need to be answered, including the nature of the target antigens, genetic risk factors, and variations in the disease with combined therapies. Addressing these questions will require further immunological analyses of blood and heart tissue from patients treated with ICB.
Collapse
Affiliation(s)
- Nir Grabie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, NRB Room 752N, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, NRB Room 752N, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, NRB Room 752N, 77 Avenue Louis Pasteur, Boston, MA, USA
| |
Collapse
|
41
|
Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annu Rev Immunol 2020; 38:597-620. [DOI: 10.1146/annurev-immunol-102319-103410] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes—the pia mater, arachnoid mater, and dura mater—surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and—according to recent evidence—also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.
Collapse
Affiliation(s)
- Kalil Alves de Lima
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG) and Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA;,
| |
Collapse
|
42
|
Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, Nakayama M. Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Front Immunol 2020; 11:633. [PMID: 32328071 PMCID: PMC7160884 DOI: 10.3389/fimmu.2020.00633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.
Collapse
Affiliation(s)
- Sarah E. Mann
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Zhicheng Zhou
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aimon K. Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Fischer
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Peakman
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roberto Mallone
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
- Assistance Publique - Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Kristen Campbell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
43
|
Kuczma MP, Szurek EA, Cebula A, Chassaing B, Jung YJ, Kang SM, Fox JG, Stecher B, Ignatowicz L. Commensal epitopes drive differentiation of colonic T regs. SCIENCE ADVANCES 2020; 6:eaaz3186. [PMID: 32494613 PMCID: PMC7164940 DOI: 10.1126/sciadv.aaz3186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/23/2020] [Indexed: 05/29/2023]
Abstract
The gut microbiome is the largest source of intrinsic non-self-antigens that are continuously sensed by the immune system but typically do not elicit lymphocyte responses. CD4+ T cells are critical to sustain uninterrupted tolerance to microbial antigens and to prevent intestinal inflammation. However, clinical interventions targeting commensal bacteria-specific CD4+ T cells are rare, because only a very limited number of commensal-derived epitopes have been identified. Here, we used a new approach to study epitopes and identify T cell receptors expressed by CD4+Foxp3+ (Treg) cells specific for commensal-derived antigens. Using this approach, we found that antigens from Akkermansia muciniphila reprogram naïve CD4+ T cells to the Treg lineage, expand preexisting microbe specific Tregs, and limit wasting disease in the CD4+ T cell transfer model of colitis. These data suggest that the administration of specific commensal epitopes may help to widen the repertoire of specific Tregs that control intestinal inflammation.
Collapse
Affiliation(s)
- Michal P. Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta A. Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- INSERM U1016, Team “Mucosal microbiota in chronic inflammatory diseases”, Paris, France
- Université de Paris, Paris, France
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
44
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
45
|
Li W, Qie J, Zhang Y, Chang J. Spatiotemporal Changes in Checkpoint Molecule Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:167-200. [PMID: 32185711 DOI: 10.1007/978-981-15-3266-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have led to therapeutic breakthrough in patients with advanced malignancy, covering the lung, breast, gastrointestinal, head and neck, urinary system, lymphoma, and solid tumor harboring MSI/dMMR. In certain cancer types, the expression level of immune checkpoint molecule will be required if the immune-based approaches are considered, especially the PD-L1 expression. However, in other types, survival benefit has been proven regardless of PD-L1 expression. It raises a question of how to select patients for immune therapy and whether the expression of immune checkpoint molecules will be optimal biomarkers. Before answering this question, a comprehensive map for the expression of immune checkpoint molecules is needed. In this chapter, we describe our current knowledge on the spatiotemporal changes in the expression of checkpoint molecules. We discuss the different frequencies of expression depending on tumor types and stages, the different patterns between primary and metastatic tumors, as well as the change of expression before and after treatment. The expression of PD-L1 has been most studied, but the threshold that separate "positive" and "negative" PD-L1 expressions and the consistency of testing platform remain under debate. Better understanding on the tumor microenvironment and expression of checkpoint molecules will help to identify patients who will benefit from checkpoint blockade therapy.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jingbo Qie
- Institutes of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Yao Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
46
|
Okazaki T, Okazaki IM. Stimulatory and Inhibitory Co-signals in Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:213-232. [PMID: 31758536 DOI: 10.1007/978-981-32-9717-3_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Co-receptors cooperatively regulate the function of immune cells to optimize anti-infectious immunity while limiting autoimmunity by providing stimulatory and inhibitory co-signals. Among various co-receptors, those in the CD28/CTLA-4 family play fundamental roles in the regulation of lymphocytes by modulating the strength, quality, and/or duration of the antigen receptor signal. The development of the lethal lymphoproliferative disorder and various tissue-specific autoimmune diseases in mice deficient for CTLA-4 and PD-1, respectively, clearly demonstrates their pivotal roles in the development and the maintenance of immune tolerance. The recent success of immunotherapies targeting CTLA-4 and PD-1 in the treatment of various cancers highlights their critical roles in the regulation of cancer immunity in human. In addition, the development of multifarious autoimmune diseases as immune-related adverse events of anti-CTLA-4 and anti-PD-1/PD-L1 therapies and the successful clinical application of the CD28 blocking therapy using CTLA-4-Ig to the treatment of arthritis assure their crucial roles in the regulation of autoimmunity in human. Accumulating evidences in mice and humans indicate that genetic and environmental factors strikingly modify effects of the targeted inhibition and potentiation of co-signals. In this review, we summarize our current understanding of the roles of CD28, CTLA-4, and PD-1 in autoimmunity. Deeper understandings of the context-dependent and context-independent functions of co-signals are essential for the appropriate usage and the future development of innovative immunomodulatory therapies for a diverse array of diseases.
Collapse
Affiliation(s)
- Taku Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Il-Mi Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
47
|
Abstract
The repertoire of αβ T cell antigen receptors (TCRs) on mature T cells is selected in the thymus where it is rendered both self-tolerant and restricted to the recognition of major histocompatibility complex molecules presenting peptide antigens (pMHC). It remains unclear whether germline TCR sequences exhibit an inherent bias to interact with pMHC prior to selection. Here, we isolated TCR libraries from unselected thymocytes and upon reexpression of these random TCR repertoires in recipient T cell hybridomas, interrogated their reactivities to antigen-presenting cell lines. While these random TCR combinations could potentially have reacted with any surface molecule on the cell lines, the hybridomas were stimulated most frequently by pMHC ligands. The nature and CDR3 loop composition of the TCRβ chain played a dominant role in determining pMHC-reactivity. Replacing the germline regions of mouse TCRβ chains with those of other jawed vertebrates preserved reactivity to mouse pMHC. Finally, introducing the CD4 coreceptor into the hybridomas increased the proportion of cells that could respond to pMHC ligands. Thus, αβ TCRs display an intrinsic and evolutionary conserved bias for pMHC molecules in the absence of any selective pressure, which is further strengthened in the presence of coreceptors.
Collapse
|
48
|
Abstract
Immunotherapy greatly improves clinical outcomes in treated patients with cancer. However, the long-lasting immune response and long duration of therapy could induce long-term adverse effects owing to the chronic inflammation induced. Type 2 diabetes is now recognized as an inflammatory disease. In addition, immunotherapy is concerned with increase in the production of tumor necrosis factor-α, interleukin-2, and interferon-γ, which are involved in the inflammatory process. Based on these observations, we hypothesized that anti-programmed cell death-1 (anti-PD-1) and/or anticytotoxic T-lymphocyte-associated protein-4 therapy could contribute to type 2 diabetes genesis in treated patients. Therefore, to evaluate this hypothesis, we studied HbA1c levels during follow-up in patients treated with anti-PD-1 and/or anticytotoxic T-lymphocyte-associated protein-4 therapy. A prospective and observational study was performed in an oncodermatology department (Saint-Louis Hospital, Paris, France) from March 2015 to February 2017. Sixty-two patients meeting the inclusion criteria were enrolled. Forty-three patients had paired HbA1c measurements during their follow-up period and were analyzed. The median follow-up was 3 months. We noted an increase in HbA1c levels from 5.3% [interquartile range (IQR): 5.1-5.5; range: 4.5-6.2) to 5.45% (IQR: 5.2-5.7; range: 4.7-6.2; P=0.037). This observation was confirmed in the subgroup of patients who did not receive concomitant glucocorticoids; their median HbA1c levels increased from 5.3% (IQR: 5.1-5.5; range: 4.7-6.2) to 5.5% (IQR: 5.2-5.7; range: 4.7-6.3; P=0.025). Variables such as age, BMI, and sex were not associated with the HbA1c level increase, but a tendency toward rising HbA1c levels was observed in treatments longer than 12 months. This study demonstrates that treatment with anti-PD-1 antibodies may impair glucose metabolism, as measured by increasing HbA1c levels.
Collapse
|
49
|
Ovcinnikovs V, Ross EM, Petersone L, Edner NM, Heuts F, Ntavli E, Kogimtzis A, Kennedy A, Wang CJ, Bennett CL, Sansom DM, Walker LSK. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci Immunol 2019; 4:eaaw0902. [PMID: 31152091 PMCID: PMC6570622 DOI: 10.1126/sciimmunol.aaw0902] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
CTLA-4 is a critical negative regulator of the immune system and a major target for immunotherapy. However, precisely how it functions in vivo to maintain immune homeostasis is not clear. As a highly endocytic molecule, CTLA-4 can capture costimulatory ligands from opposing cells by a process of transendocytosis (TE). By restricting costimulatory ligand expression in this manner, CTLA-4 controls the CD28-dependent activation of T cells. Regulatory T cells (Tregs) constitutively express CTLA-4 at high levels and, in its absence, show defects in TE and suppressive function. Activated conventional T cells (Tconv) are also capable of CTLA-4-dependent TE; however, the relative use of this mechanism by Tregs and Tconv in vivo remains unclear. Here, we set out to characterize both the perpetrators and cellular targets of CTLA-4 TE in vivo. We found that Tregs showed constitutive cell surface recruitment of CTLA-4 ex vivo and performed TE rapidly after TCR stimulation. Tregs outperformed activated Tconv at TE in vivo, and expression of ICOS marked Tregs with this capability. Using TCR transgenic Tregs that recognize a protein expressed in the pancreas, we showed that the presentation of tissue-derived self-antigen could trigger Tregs to capture costimulatory ligands in vivo. Last, we identified migratory dendritic cells (DCs) as the major target for Treg-based CTLA-4-dependent regulation in the steady state. These data support a model in which CTLA-4 expressed on Tregs dynamically regulates the phenotype of DCs trafficking to lymph nodes from peripheral tissues in an antigen-dependent manner.
Collapse
Affiliation(s)
- Vitalijs Ovcinnikovs
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Ellen M Ross
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Lina Petersone
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Natalie M Edner
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Frank Heuts
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Elisavet Ntavli
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Alexandros Kogimtzis
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Chun Jing Wang
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Clare L Bennett
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
- Department of Haematology, University College London Cancer Institute, Royal Free Campus, NW3 2PF London, UK
| | - David M Sansom
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK.
| |
Collapse
|
50
|
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42:101298. [DOI: 10.1016/j.smim.2019.101298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
|