1
|
Kim D, Allen CA, Chung D, Meng L, Zhang X, Zhang W, Ouyang Y, Li Z, Hong F. A novel TLR4 accessory molecule drives hepatic oncogenesis through tumor-associated macrophages. Cancer Lett 2025; 614:217543. [PMID: 39929433 DOI: 10.1016/j.canlet.2025.217543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment, yet the roles and mechanisms of TAMs in inflammation-associated oncogenesis remain enigmatic. We report that protein canopy homolog 2 (CNPY2) functions as a novel TLR4 regulator, promoting cytokine production in macrophages. CNPY2 binds directly to TLR4. Cnpy2 deficiency reduces cell surface expression of TLR4, nuclear translocation of NFκB and cytokine production in macrophages. Macrophage-specific CNPY2 deficiency significantly decreases cytokine production in macrophages and reduces hepatocarcinogenesis in a diethylnitrosamine (DEN)-induced liver cancer model. RNA-sequencing analysis revealed Cnpy2 knockout decreased the mRNA level and cell surface expression of two VEGF receptors, Flt1 and Kdr, compared to those in WT counterparts, resulting in inhibition of macrophage tumor infiltration. Cnpy2 knockout inhibits NFκB2/p52-mediated transcription of Flt1 and Kdr in macrophages. These findings demonstrate that CNPY2 regulates macrophages in both inflammation and hepatocarcinogenesis and may serve as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Doyeon Kim
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Carter A Allen
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Dongjun Chung
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Biostatistics Core, College of Nursing, College of Public Health, University of South Florida Health, 12901 Bruce B. Downs Blvd.Tampa, FL, 33612, USA
| | - Wenqing Zhang
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Yuli Ouyang
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Feng Hong
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Identifying Specificity Protein 2 as a key marker for diabetic encephalopathy in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:67-93. [PMID: 39991102 PMCID: PMC11842694 DOI: 10.1007/s13167-024-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025]
Abstract
Background Transcription factor specificity protein (SP2) regulates various cellular functions, including cell division, proliferation, invasion, metastasis, differentiation, and death; however, its role has not been studied in prominent medical conditions including diabetic encephalopathy (DE). Therefore, this study addressed its physiological function in the context of DE to also better characterize its possible use in the context of predictive, preventive, and personalized medicine (PPPM). Methods The anti-inflammatory and anti-DE actions of SP2 were investigated using three animal models (SP2-/- mice, streptozocin-treated mice, and db/db mice) and two cell lines (primary cultured hippocampal neurons and N2A cells). The db/db mice were a leptin deficiency model often used to study type 2 diabetes. An equal number of males and females (8-12 weeks of age) was selected. Behavioral changes in mice were determined using both morris water maze (MWM) test and Y-maze (YM) test. The alterations in oxidative stress and inflammation were examined via immunofluorescence assay, flow cytometry, co-immunoprecipitation, and immunoblotting. Results Mechanistically, SP2-knockout (SP2-/-) mice showed dysregulation of insulin/glucose homeostasis, neuroinflammation, and cognitive loss. Otherwise, in db/db DE mice and STZ-induced DE mice, neuroinflammation, neuroapoptosis, and cognitive decline were significantly attenuated when SP2 was overexpressed in the brain. On the other hand, SP2 overexpression activates the insulin signaling pathway and improves insulin resistance via targeting X-box binding protein 1 (XBP1) in neurons. Moreover, SP2 overexpression significantly reduces oxidative stress by interacting with XBP1 and nuclear factor erythroid 2-related factor 2 (NRF2) in neurons. Furthermore, SP2 enhances the suppression of inflammatory response triggered by nuclear factor kappa B (NFκB) through the recruitment of XBP1 and NRF2 and by the in vitro inactivation of IκB kinase (IKK) complex. Conclusions These findings highlight SP2 as key biological targets for DE and reveal the infammation-related potential molecular mechanism of DE, which is helpful for early risk prediction and targeted prevention of DE. In conclusion, our study provides a new perspective for developing a PPPM method for managing DE patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00394-0.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000 China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
3
|
Di Mattia M, Sallese M, Lopetuso LR. The interplay between gut microbiota and the unfolded protein response: Implications for intestinal homeostasis preservation and dysbiosis-related diseases. Microb Pathog 2025; 200:107279. [PMID: 39761770 DOI: 10.1016/j.micpath.2025.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The unfolded protein response (UPR) is a complex intracellular signal transduction system that orchestrates the cellular response during Endoplasmic Reticulum (ER) stress conditions to reestablish cellular proteostasis. If, on one side, prolonged ER stress conditions can lead to programmed cell death and autophagy as a cytoprotective mechanism, on the other, unresolved ER stress and improper UPR activation represent a perilous condition able to trigger or exacerbate inflammatory responses. Notably, intestinal and immune cells experience ER stress physiologically due to their high protein secretory rate. Indeed, there is evidence of UPR's involvement in both physiological and pathological intestinal conditions, while less is known about its bidirectional interaction with gut microbiota. However, gut microbes and their metabolites can influence ER stress and UPR pathways, and, in turn, ER stress conditions can shape gut microbiota composition, with important implications for overall intestinal health. Thus, targeting UPR components is an intriguing strategy for treating ER stress-linked dysbiosis and diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Pullen KM, Finethy R, Ko SHB, Reames CJ, Sassetti CM, Lauffenburger DA. Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection. NPJ Syst Biol Appl 2025; 11:19. [PMID: 39955299 PMCID: PMC11830044 DOI: 10.1038/s41540-024-00487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2024] [Accepted: 12/25/2024] [Indexed: 02/17/2025] Open
Abstract
Numerous studies have identified similarities in blood transcriptomic signatures of tuberculosis (TB) phenotypes between mice and humans, including type 1 interferon production and innate immune cell activation. However, murine infection pathophysiology is distinct from human disease. We hypothesized that this is partly due to differences in the relative importance of biological pathways across species. To address this animal-to-human gap, we applied a systems modeling framework, Translatable Components Regression, to identify the axes of variation in the preclinical data most relevant to human TB disease state. Among the pathways our cross-species model pinpointed as highly predictive of human TB phenotype was the infection-induced unfolded protein response. To validate this mechanism, we confirmed that this cellular stress pathway modulates immune functions in Mycobacterium tuberculosis-infected mouse macrophages. Our work demonstrates how systems-level computational models enhance the value of animal studies for elucidating complex human pathophysiology.
Collapse
Affiliation(s)
- Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan Finethy
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Seung-Hyun B Ko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte J Reames
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Furusawa-Nishii E, Solongo B, Rai K, Yoshikawa S, Chiba A, Okuzumi A, Ueno SI, Hoshino Y, Imamichi-Tatano Y, Kimura H, Hatano T, Hattori N, Miyake S. α-Synuclein orchestrates Th17 responses as antigen and adjuvant in Parkinson's disease. J Neuroinflammation 2025; 22:38. [PMID: 39934862 DOI: 10.1186/s12974-025-03359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Recently, the role of T cells in the pathology of α-synuclein (αS)-mediated neurodegenerative disorders called synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy, has attracted increasing attention. Although the existence of αS-specific T cells and the immunogenicity of the post-translationally modified αS fragment have been reported in PD and DLB, the key cellular subset associated with disease progression and its induction mechanism remain largely unknown.Peripheral blood mononuclear cells (PBMCs) from synucleinopathy patients and healthy controls were cultured in the presence of the αS peptide pools. Cytokine analysis using culture supernatants revealed that C-terminal αS peptides with a phosphorylated serine 129 residue (pS129), a feature of pathological αS aggregates, promoted the production of IL-17A, IL-17F, IL-22, IFN-γ and IL-13 in PD patients compared with that in controls. In pS129 peptide-reactive PD cases, Ki67 expression was increased in CD4 T cells but not in CD8 T cells, and intracellular cytokine staining assay revealed the existence of pS129 peptide-specific Th1 and Th17 cells. The pS129 peptide-specific Th17 responses, but not Th1 responses, demonstrated a positive correlation with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III scores. A similar correlation was observed for IL-17A levels in the culture supernatant of PBMCs from PD patients with disease duration < 10 years. Interestingly, enhanced Th17 responses to pS129 peptides were uniquely found in PD patients among the synucleinopathies, suggesting that Th17 responses are amplified by certain mechanisms in PD patients. To investigate such mechanisms, we analyzed Th17-inducible capacity of αS-exposed dendritic cells (DCs). In vitro stimulation with αS aggregates generated Th17-inducible DCs with IL-6 and IL-23 production through the signaling of TLR4 and spliced X-box binding protein-1 (XBP1s). In fact, the levels of IL-6 and IL-23 in plasma, and the XBP1s ratio in type 2 conventional DCs were increased in PD patients compared with those in controls.Here, we propose the importance of αS-specific Th17 responses in the progression of PD and the underlying mechanisms inducing Th17 responses. These findings may provide novel therapeutic strategies to prevent disease development through the suppression of TLR4-XBP1s-IL-23 signaling in DCs.
Collapse
Affiliation(s)
- Emi Furusawa-Nishii
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Bataa Solongo
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kou Rai
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Imamichi-Tatano
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Haruka Kimura
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University, Faculty of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Prasad V. Transmission of unfolded protein response-a regulator of disease progression, severity, and spread in virus infections. mBio 2025; 16:e0352224. [PMID: 39772778 PMCID: PMC11796368 DOI: 10.1128/mbio.03522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2025] Open
Abstract
The unfolded protein response (UPR) is a cell-autonomous stress response aimed at restoring homeostasis due to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Viruses often hijack the host cell machinery, leading to an accumulation of misfolded proteins in the ER. The cell-autonomous UPR is the immediate response of an infected cell to this stress, aiming to restore normal function by halting protein translation, degrading misfolded proteins, and activating signaling pathways that increase the production of molecular chaperones. The cell-non-autonomous UPR involves the spreading of UPR signals from initially stressed cells to neighboring unstressed cells that lack the stressor. Though viruses are known modulators of cell-autonomous UPR, recent advancements have highlighted that cell-non-autonomous UPR plays a critical role in elucidating how local infections cause systemic effects, thereby contributing to disease symptoms and progression. Additionally, by utilizing cell-non-autonomous UPR, viruses have devised novel strategies to establish a pro-viral state, promoting virus spread. This review discusses examples that have broadened the understanding of the role of UPR in virus infections and disease progression by looking beyond cell-autonomous to non-autonomous processes and mechanistic details of the inducers, spreaders, and receivers of UPR signals.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Wunderle V, Wilhelm T, Boukeileh S, Goßen J, Margreiter MA, Sakurov R, Capellmann S, Schwoerer M, Ahmed N, Bronneberg G, Arock M, Martin C, Schubert T, Levi‐Schaffer F, Rossetti G, Tirosh B, Huber M. KIRA6 is an Effective and Versatile Mast Cell Inhibitor of IgE-mediated Activation. Eur J Immunol 2025; 55:e202451348. [PMID: 39676406 PMCID: PMC11830387 DOI: 10.1002/eji.202451348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Mast cell (MC)-driven allergic diseases are constantly expanding and require the development of novel pharmacological MC stabilizers. Allergen/antigen (Ag)-triggered activation via crosslinking of the high-affinity receptor for IgE (FcεRI) is fundamentally regulated by SRC family kinases, for example, LYN and FYN, exhibiting positive and negative functions. We report that KIRA6, an inhibitor for the endoplasmic reticulum stress sensor IRE1α, suppresses IgE-mediated MC activation by inhibiting both LYN and FYN. KIRA6 attenuates Ag-stimulated early signaling and effector functions such as degranulation and proinflammatory cytokine production/secretion in murine bone marrow-derived MCs. Moreover, Ag-triggered bronchoconstriction in an ex vivo model and IgE-mediated stimulation of human MCs were repressed by KIRA6. The interaction of KIRA6 with three MC-relevant tyrosine kinases, LYN, FYN, and KIT, and the potential of KIRA6 structure as a pharmacophore for the development of respective single-, dual-, or triple-specificity inhibitors, was evaluated by homology modeling and molecular dynamics simulations. We found that KIRA6 particularly strongly binds the inactive state of LYN, FYN, and KIT with comparable affinities. In conclusion, our data suggest that the chemical structure of KIRA6 as a pharmacophore can be further developed to obtain an effective MC stabilizer.
Collapse
Affiliation(s)
- Veronika Wunderle
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
- Department of Neurology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Shatha Boukeileh
- The School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Jonas Goßen
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
| | - Michael A. Margreiter
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
| | - Roman Sakurov
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Sandro Capellmann
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Maike Schwoerer
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Nabil Ahmed
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Michel Arock
- Department of Hematological Biology, Pitié‐Salpêtrière Charles‐Foix HospitalAP‐HP Sorbonne UniversityParisFrance
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | | | | | - Giulia Rossetti
- Institute for Advanced Simulation, Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
- Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich GmbHJülichGermany
- Department of NeurologyUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Boaz Tirosh
- The School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - Michael Huber
- Institute of Biochemistry and Molecular ImmunologyMedical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
8
|
Zhou L, Zhu X, Lei S, Wang Y, Xia Z. The role of the ER stress sensor IRE1 in cardiovascular diseases. Mol Cell Biochem 2025; 480:683-691. [PMID: 38717685 DOI: 10.1007/s11010-024-05014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 02/19/2025]
Abstract
Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xizi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Minjares M, Thepsuwan P, Zhang K, Wang JM. Unfolded protein responses: Dynamic machinery in wound healing. Pharmacol Ther 2025; 267:108798. [PMID: 39826569 DOI: 10.1016/j.pharmthera.2025.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Skin wound healing is a dynamic process consisting of multiple cellular and molecular events that must be tightly coordinated to repair the injured tissue efficiently. The healing pace is decided by the type of injuries, the depth and size of the wounds, and whether wound infections occur. However, aging, comorbidities, genetic factors, hormones, and nutrition also impact healing outcomes. During wound healing, cells undergo robust processes of synthesizing new proteins and degrading multifunctional proteins. This imposes an increasing burden on the endoplasmic reticulum (ER), causing ER stress. Unfolded protein response (UPR) represents a collection of highly conserved stress signaling pathways originated from the ER to maintain protein homeostasis and modulate cell physiology. UPR is known to be beneficial for tissue healing. However, when excessive ER stress exceeds ER's folding potential, UPR pathways trigger cell apoptosis, interrupting tissue regeneration. Understanding how UPR pathways modulate the skin's response to injuries is critical for new interventions toward the control of acute and chronic wounds. Herein, in this review, we focus on the participation of the canonical and noncanonical UPR pathways during different stages of wound healing, summarize the available evidence demonstrating UPR's unique position in balancing homeostasis and pathophysiology of healing tissues, and highlight the understudied areas where therapeutic opportunities may arise.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | | | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, Wayne State University, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA; Centers for Molecular Medicine and Genetics, Wayne State University, USA; Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
10
|
Valenzuela V, Becerra D, Astorga JI, Fuentealba M, Diaz G, Bargsted L, Chacón C, Martinez A, Gozalvo R, Jackson K, Morales V, Heras ML, Tamburini G, Petrucelli L, Sardi SP, Plate L, Hetz C. Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD. Mol Ther 2025:S1525-0016(25)00008-5. [PMID: 39799393 DOI: 10.1016/j.ymthe.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2023] [Revised: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress. Here, we provide evidence of suboptimal activation of the UPR in ALS/FTD models under experimental ER stress. To artificially engage the UPR, we intracerebroventricularly administrated adeno-associated viruses (AAVs) to express the active form of XBP1 (XBP1s) in the nervous system of ALS/FTD models. XBP1s expression improved motor performance and extended lifespan of mutant SOD1 mice, associated with reduced protein aggregation. AAV-XBP1s administration also attenuated disease progression in models of TDP-43 and C9orf72 pathogenesis. Proteomic profiling of spinal cord tissue revealed that XBP1s overexpression improved proteostasis and modulated the expression of a cluster of synaptic and cell morphology proteins. Our results suggest that strategies to improve ER proteostasis may serve as a pan-therapeutic strategy to treat ALS/FTD.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Daniela Becerra
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José I Astorga
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Matías Fuentealba
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | - Guillermo Diaz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leslie Bargsted
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carlos Chacón
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Romina Gozalvo
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Vania Morales
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Macarena Las Heras
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Giovanni Tamburini
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
11
|
Chen YJN, Shi RC, Xiang YC, Fan L, Tang H, He G, Zhou M, Feng XZ, Tan JD, Huang P, Ye X, Zhao K, Fu WY, Li LL, Bian XT, Chen H, Wang F, Wang T, Zhang CK, Zhou BH, Chen W, Liang TT, Lv JT, Kang X, Shi YX, Kim E, Qin YH, Hettinghouse A, Wang KD, Zhao XL, Yang MY, Tang YZ, Piao HL, Guo L, Liu CJ, Miao HM, Tang KL. Malate initiates a proton-sensing pathway essential for pH regulation of inflammation. Signal Transduct Target Ther 2024; 9:367. [PMID: 39737965 PMCID: PMC11683149 DOI: 10.1038/s41392-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages. Here, we found that L-malate exerts anti-inflammatory effect via BiP-IRF2BP2 signaling, which is a sensor of cytosolic pH in macrophages. First, L-malate, a TCA intermediate upregulated in pro-inflammatory macrophages, was identified as a potent anti-inflammatory metabolite through initial screening. Subsequent screening with DARTS and MS led to the isolation of L-malate-BiP binding. Further screening through protein‒protein interaction microarrays identified a L-malate-restrained coupling of BiP with IRF2BP2, a known anti-inflammatory protein. Interestingly, pH reduction, which promotes carboxyl protonation of L-malate, facilitates L-malate and carboxylate analogues such as succinate to bind BiP, and disrupt BiP-IRF2BP2 interaction in a carboxyl-dependent manner. Both L-malate and acidification inhibit BiP-IRF2BP2 interaction, and protect IRF2BP2 from BiP-driven degradation in macrophages. Furthermore, both in vitro and in vivo, BiP-IRF2BP2 signal is required for effects of both L-malate and pH on inflammatory responses. These findings reveal a previously unrecognized, proton/carboxylate dual sensing pathway wherein pH and L-malate regulate inflammatory responses, indicating the role of certain carboxylate metabolites as adaptors in the proton biosensing by interactions between macromolecules.
Collapse
Affiliation(s)
- Yu-Jia-Nan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Rong-Chen Shi
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan-Cai Xiang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Fan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Gang He
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mei Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin-Zhe Feng
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Jin-Dong Tan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Huang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao Ye
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Wen-Yu Fu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Liu-Li Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Wang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Teng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Tao-Tao Liang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - You-Xing Shi
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ellen Kim
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Yin-Hua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University, Chongqing, 400038, China
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Kai-di Wang
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Xiang-Li Zhao
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ming-Yu Yang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu-Zhen Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Guo
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Hong-Ming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
Li YT, Takaki E, Ouchi Y, Tamai K. Guided monocyte fate to FRβ/CD163 + S1 macrophage antagonises atopic dermatitis via fibroblastic matrices in mouse hypodermis. Cell Mol Life Sci 2024; 82:14. [PMID: 39720957 DOI: 10.1007/s00018-024-05543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024]
Abstract
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1. Characterized by FRβ/CD163 expression, S1 exhibited strong efferocytosis and chemoattracted monocytes and eosinophils. Here we have delineated mechanisms regulating monocyte decision to acquire S1 identity in skin. During M-CSF driven macrophage differentiation in healthy skin, FRβ was expressed via intrinsic control of STAT6 and ALK5 activities, and did not require heterotypic cellular crosstalk. In contrast, CD163 expression required exposure to fibroblastic secretion. This process depended on SHP1 activity and involved STAT5 inactivation. Suppressed STAT5 activity caused CD163 expression and rendered macrophage insensitive to further induction by fibroblasts. Parsing coculture experiments with in silico ligand expression, we identified laminin-α2 and type-V collagen secreted by hypodermal fibroblasts as CD163-driving factors. S1 identity loss in AD followed a stepwise cascade: reduced laminins availability first dampened CD163 expression, IL4 and TGFβ subsequently acted on CD163lo/- cells to downregulate FRβ. In AD skin, we showed that imitating this fibroblast-macrophage crosstalk with exogenous laminin-211 encouraged monocyte differentiation to S1 macrophages, fostered homeostatic commitment of extravasated eosinophils, and alleviated dermatitis. Hence, we demonstrated that reinforcing a steady-state cue from hypodermal fibroblasts could override maladaptive pressure on macrophage and restored tissue homeostasis.
Collapse
MESH Headings
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Receptors, Cell Surface/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Animals
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Macrophages/metabolism
- Monocytes/metabolism
- Mice
- Cell Differentiation
- STAT6 Transcription Factor/metabolism
- Skin/metabolism
- Skin/pathology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Mice, Inbred C57BL
- Macrophage Colony-Stimulating Factor/metabolism
- Eosinophils/metabolism
- Laminin/metabolism
Collapse
Affiliation(s)
- Yu-Tung Li
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | - Yuya Ouchi
- StemRIM Inc., Ibaraki, Osaka, 567-0085, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Zhao X, Hu X, Wang W, Lu S. Macrophages dying from ferroptosis promote microglia-mediated inflammatory responses during spinal cord injury. Int Immunopharmacol 2024; 143:113281. [PMID: 39357207 DOI: 10.1016/j.intimp.2024.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1β, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1β and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
14
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2024:e0001623. [PMID: 39699237 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Liang J, Huang YX, Zhu XH, Zhou FY, Wu TY, Jia JF, Liu X, Kuang HX, Xia YG. Structural identification, rheological properties and immunological receptor of a complex galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2024; 346:122644. [PMID: 39245531 DOI: 10.1016/j.carbpol.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Xin Huang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Fang-Yu Zhou
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Tian-Yuan Wu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ju-Fang Jia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xu Liu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
16
|
Zhang JY, Li XY, Li DX, Zhang ZH, Hu LQ, Sun CX, Zhang XN, Wu M, Liu LT. Endoplasmic reticulum stress in intestinal microecology: A controller of antineoplastic drug-related cardiovascular toxicity. Biomed Pharmacother 2024; 181:117720. [PMID: 39631125 DOI: 10.1016/j.biopha.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is extensively studied as a pivotal role in the pathological processes associated with intestinal microecology. In antineoplastic drug treatments, ER stress is implicated in altering the permeability of the mechanical barrier, depleting the chemical barrier, causing dysbiosis, exacerbating immune responses and inflammation in the immune barrier. Enteric dysbiosis and intestinal dysfunction significantly affect the circulatory system in various heart disorders. In antineoplastic drug-related cardiovascular (CV) toxicity, ER stress constitutes a web of relationships in the host-microbiome symbiotic regulatory loop. Therefore, understanding the holobiont perspective will help de-escalate spatial and temporal restrictions. This review investigates the role of ER stress-mediated gut microecological alterations in antineoplastic treatment-induced CV toxicity.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Ya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - De-Xiu Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zi-Hao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lan-Qing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang-Xin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Nan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
17
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
18
|
Cao S, Nguyen KM, Ma K, Du X, Liu X, Ulezko Antonova A, Rood RP, Gremida A, Chen CH, Gutierrez A, Rubin DC, Gregory MH, Gergely M, Escudero GO, Huang K, Jaeger N, Cella M, Newberry RD, Davidson NO, Ciorba MA, Deepak P, Colonna M. Mucosal Single-Cell Profiling of Crohn's-Like Disease of the Pouch Reveals Unique Pathogenesis and Therapeutic Targets. Gastroenterology 2024; 167:1399-1414.e2. [PMID: 39084267 DOI: 10.1053/j.gastro.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND & AIMS The pathophysiology of Crohn's-like disease of the pouch (CDP) in patients with a history of ulcerative colitis (UC) is unknown. We examined mucosal cells from patients with and without CDP using single-cell analyses. METHODS Endoscopic samples were collected from pouch body and prepouch ileum (pouch/ileum) of 50 patients with an ileal pouch-anal anastomosis. Single-cell RNA sequencing was performed on pouch/ileal tissues of patients with normal pouch/ileum and CDP. Mass cytometry was performed on mucosal immune cells from patients with UC with normal pouch/ileum, CDP, pouchitis, and those with familial adenomatous polyposis after pouch formation. Findings were independently validated using immunohistochemistry. RESULTS The cell populations/states in the pouch body differed from those in the prepouch ileum, likely secondary to increased microbial burden. Compared with the familial adenomatous polyposis pouch, the UC pouch was enriched in colitogenic immune cells even without inflammation. CDP was characterized by increases in T helper 17 cells, inflammatory fibroblasts, inflammatory monocytes, TREM1+ monocytes, clonal expansion of effector T cells, and overexpression of T helper 17 cells-inducing cytokine genes such as IL23, IL1B, and IL6 by mononuclear phagocytes. Ligand-receptor analysis further revealed a stromal-mononuclear phagocytes-lymphocyte circuit in CDP. Integrated analysis showed that up-regulated immune mediators in CDP were similar to those in CD and pouchitis, but not UC. Additionally, CDP pouch/ileum exhibited heightened endoplasmic reticulum stress across all major cell compartments. CONCLUSIONS CDP likely represents a distinct entity of inflammatory bowel disease with heightened endoplasmic reticulum stress in both immune and nonimmune cells, which may become a novel diagnostic biomarker and therapeutic target for CDP.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Xiaotang Du
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Xiuli Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Richard P Rood
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Anas Gremida
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Chien-Huan Chen
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alexandra Gutierrez
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Martin H Gregory
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Mate Gergely
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Guadalupe Oliva Escudero
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Katherine Huang
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marina Cella
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Parakkal Deepak
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
19
|
Wang S, Hu L, Fu Y, Xu F, Shen Y, Liu H, Zhu L. Inhibition of IRE1α/XBP1 axis alleviates LPS-induced acute lung injury by suppressing TXNIP/NLRP3 inflammasome activation and ERK/p65 signaling pathway. Respir Res 2024; 25:417. [PMID: 39604886 PMCID: PMC11603636 DOI: 10.1186/s12931-024-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a devastating clinical syndrome with high incidence and mortality rates. IRE1α-XBP1 pathway is one of the three major signaling axes of endoplasmic reticulum stress that is involved in inflammation, metabolism, and immunity. The role and potential mechanisms of IRE1α-XBP1 axis in ALI/ARDS has not well understood. METHODS The ALI murine model was established by intratracheal administration of lipopolysaccharide (LPS). Hematoxylin and eosin (H&E) staining and analysis of bronchoalveolar lavage fluid (BALF) were used to evaluate degree of lung injury. Inflammatory responses were assessed by ELISA and RT-PCR. Apoptosis was evaluated using TUNEL staining and western blot. Moreover, western blot, immunohistochemistry, and immunofluorescence were applied to test expression of IRE1α, XBP1, NLRP3, TXNIP, IL-1β, ERK1/2 and NF-κB p65. RESULTS The expression of IRE1α significantly increased after 24 h of LPS treatment. Inhibition of the IRE1α-XBP1 axis with 4µ8C notably improved LPS-induced lung injury and inflammatory infiltration, reduced the levels of IL-6, IL-1β, and TNF-α, and decreased cell apoptosis as well as the activation of the NLRP3 inflammasome. Besides, in LPS-stimulated Beas-2B cells, both 4µ8C and knockdown of XBP1 diminished the mRNA levels of IL-6 and IL-1B, inhibited cell apoptosis and reduced the protein levels of TXNIP, NLRP3 and secreted IL-1β. Mechanically, the phosphorylation and nuclear translocation of ERK1/2 and p65 were significantly suppressed by 4µ8C and XBP1 knockdown. CONCLUSIONS In summary, our findings suggest that IRE1α-XBP1 axis is crucial in the pathogenesis of ALI/ARDS, whose suppression could mitigate the pulmonary inflammatory response and cell apoptosis in ALI through the TXNIP/NLRP3 inflammasome and ERK/p65 signaling pathway. Our study may provide new evidence that IRE1α-XBP1 may be a promising therapeutic target for ALI/ARDS.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Lijuan Hu
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Fan Xu
- Department of Intensive Care Unit, Peoples Hospital of Peking University, Beijing, 100044, China
| | - Yue Shen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Hanhan Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Lei Zhu
- Department of Respiratory and Critical Care Medicine, Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Gulzar F, Chhikara N, Kumar P, Ahmad S, Yadav S, Gayen JR, Tamrakar AK. ER stress aggravates NOD1-mediated inflammatory response leading to impaired nutrient metabolism in hepatoma cells. Biochem Biophys Res Commun 2024; 735:150827. [PMID: 39423570 DOI: 10.1016/j.bbrc.2024.150827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Nucleotide-binding Oligomerization Domain 1 (NOD1) is a cytosolic pattern recognition receptor that senses specific bacterial peptidoglycan moieties, leading to the induction of inflammatory response. Besides, sensing peptidoglycan, NOD1 has been reported to sense metabolic disturbances including the ER stress-induced unfolded protein response (UPR). However, the underpinning crosstalk between the NOD1 activating microbial ligands and the metabolic cues to alter metabolic response is not yet comprehensively defined. Here, we show that underlying ER stress aggravated peptidoglycan-induced NOD1-mediated inflammatory response in hepatoma cells. The HepG2 cells, undergoing ER stress induced by thapsigargin exhibited an amplified inflammatory response induced by peptidoglycan ligand of NOD1 (i.e. iE-DAP). This aggravated inflammatory response disrupted lipid and glucose metabolism, characterized by de novo lipogenic response, and increased gluconeogenesis in HepG2 cells. Further, we characterized that the aggravation of NOD1-induced inflammatory response was dependent on inositol-requiring enzyme 1-α (IRE1-α) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation, in conjunction with calcium flux. Altogether, our findings suggest that differential UPR activation makes liver cells more sensitive towards bacterial-derived ligands to pronounce inflammatory response in a NOD1-dependent manner that impairs hepatic nutrient metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shubhi Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
21
|
Wu D, Eeda V, Maria Z, Rawal K, Wang A, Herlea-Pana O, Undi RB, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603931. [PMID: 39071288 PMCID: PMC11275733 DOI: 10.1101/2024.07.17.603931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/30/2024]
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional "M1-like" CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the "M1-like" CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and "M1-like" ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Audrey Wang
- Indian Springs School, 190 Woodward Dr, Pelham, Alabama 35124
| | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Hui-Ying Lim
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
22
|
Xiao J, Song Z, Liu T, Guo Z, Liu X, Jiang H, Wang X. Cell Membrane Engineered Polypeptide Nanonets Mimicking Macrophage Aggregates for Enhanced Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401845. [PMID: 38966869 DOI: 10.1002/smll.202401845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Drug-resistant bacterial infections and their lipopolysaccharide-related inflammatory complications continue to pose significant challenges in traditional treatments. Inspired by the rapid initiation of resident macrophages to form aggregates for efficient antibacterial action, this study proposes a multifunctional and enhanced antibacterial strategy through the construction of novel biomimetic cell membrane polypeptide nanonets (R-DPB-TA-Ce). The design involves the fusion of end-terminal lipidated polypeptides containing side-chain cationic boronic acid groups (DNPLBA) with cell membrane intercalation engineering (R-DPB), followed by coordination with the tannic acid-cerium complex (TA-Ce) to assemble into a biomimetic nanonet through boronic acid-polyphenol-metal ion interactions. In addition to the ability of RAW 264.7 macrophages cell membrane components' (R) ability to neutralize lipopolysaccharide (LPS), R-DPB-TA-Ce demonstrated enhanced capture of bacteria and its LPS, leveraging nanoconfinement-enhanced multiple interactions based on the boronic acid-polyphenol nanonets skeleton combined with polysaccharide. Utilizing these advantages, indocyanine green (ICG) is further employed as a model drug for delivery, showcasing the exceptional treatment effect of R-DPB-TA-Ce as a new biomimetic assembled drug delivery system in antibacterial, anti-inflammatory, and wound healing promotion. Thus, this strategy of mimicking macrophage aggregates is anticipated to be further applicable to various types of cell membrane engineering for enhanced antibacterial treatment.
Collapse
Affiliation(s)
- Jiang Xiao
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhongquan Song
- Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Tengfei Liu
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Zengchao Guo
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Xiaohui Liu
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hui Jiang
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Xuemei Wang
- Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
23
|
Jiang Z, Wang H, Wang X, Duo H, Tao Y, Li J, Li X, Liu J, Ni J, Wu EJ, Xiang H, Guan C, Wang X, Zhang K, Zhang P, Hou Z, Liu Y, Wang Z, Su B, Li B, Hao Y, Li B, Wu X. TMED4 facilitates regulatory T cell suppressive function via ROS homeostasis in tumor and autoimmune mouse models. J Clin Invest 2024; 135:e179874. [PMID: 39480507 PMCID: PMC11684806 DOI: 10.1172/jci179874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) plays crucial roles in maintaining Treg stability and function, yet the underlying mechanism remains largely unexplored. Here, we demonstrate that (Tmed4ΔTreg) mice with Treg-specific KO of ERS-related protein transmembrane p24 trafficking protein 4 (TMED4) had more Tregs with impaired Foxp3 stability, Treg signatures, and suppressive activity, which led to T cell hyperactivation and an exacerbated inflammatory phenotype and boosted antitumor immunity in mice. Mechanistically, loss of Tmed4 caused defects in ERS and a nuclear factor erythroid 2-related factor 2-related (NRF2-related) antioxidant response, which resulted in excessive ROS that reduced the Foxp3 stability and suppressive function of Tregs in an IRE1α/XBP1 axis-dependent manner. The abnormalities could be effectively rescued by the ROS scavenger, NRF2 inducer, or by forcible expression of IRE1α. Moreover, TMED4 suppressed IRE1α proteosome degradation via the ER-associated degradation (ERAD) system including the ER chaperone binding immunoglobulin protein (BIP). Our study reveals that TMED4 maintained the stability of Tregs and their suppressive function through IRE1α-dependent ROS and the NRF2-related antioxidant response.
Collapse
Affiliation(s)
- Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Duo
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Emily Jiatong Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xinyu Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, SJTU-SM, Shanghai, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Bo Li
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
24
|
Unal B, Kuzu OF, Jin Y, Osorio D, Kildal W, Pradhan M, Kung SHY, Oo HZ, Daugaard M, Vendelbo M, Patterson JB, Thomsen MK, Kuijjer ML, Saatcioglu F. Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nat Commun 2024; 15:8895. [PMID: 39406723 PMCID: PMC11480464 DOI: 10.1038/s41467-024-53039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Unfolded protein response (UPR) is a central stress response pathway that is hijacked by tumor cells for their survival. Here, we find that IRE1α signaling, one of the canonical UPR arms, is increased in prostate cancer (PCa) patient tumors. Genetic or small molecule inhibition of IRE1α in syngeneic mouse PCa models and an orthotopic model decreases tumor growth. IRE1α ablation in cancer cells potentiates interferon responses and activates immune system related pathways in the tumor microenvironment (TME). Single-cell RNA-sequencing analysis reveals that targeting IRE1α in cancer cells reduces tumor-associated macrophage abundance. Consistently, the small molecule IRE1α inhibitor MKC8866, currently in clinical trials, reprograms the TME and enhances anti-PD-1 therapy. Our findings show that IRE1α signaling not only promotes cancer cell growth and survival but also interferes with anti-tumor immunity in the TME. Thus, targeting IRE1α can be a promising approach for improving anti-PD-1 immunotherapy in PCa.
Collapse
Affiliation(s)
- Bilal Unal
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Omer Faruk Kuzu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Osorio
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Manohar Pradhan
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mikkel Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Marieke Lydia Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
25
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
27
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
28
|
Wu X, Yang J, Bao X, Wang Y. Toll-like receptor 4 damages the intestinal epithelial cells by activating endoplasmic reticulum stress in septic rats. PeerJ 2024; 12:e18185. [PMID: 39346059 PMCID: PMC11439388 DOI: 10.7717/peerj.18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Background The severity of acute gastrointestinal injury (AGI) is a critical determinant of survival in sepsis. However, there is no specifically interventional management for gastrointestinal dysfunction. Toll-like Receptor 4 (TLR4) is an important contributor to sepsis-induced multiple organ dysfunction syndrome. So, we investigated the effect of TLR4 on leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) + cells and goblet cells and its potential mechanism. Methods A cecal ligation and puncture (CLP) model reflecting the development of clinical sepsis was developed. Tak-242, a TLR4 inhibitor, was administered to septic rats at a dose of 3 mg/kg via intraperitoneal injection. Immunohistochemistry was performed to detect TLR4 and Lgr5+ cells. AB-PAS staining was performed to detect goblet cells. MUC1 and MUC2 secreted by goblet cells, biomarkers of endoplasmic reticulum (ER) stress and inflammatory cytokines in the intestine were detected by western blotting and real-time PCR. Results We found that the upregulation of the TLR4/NF-κB signaling pathway activated intestinal inflammatory response in sepsis. Meanwhile, the structure of intestinal mucosa was destroyed, Lgr5+ cells and goblet cells count were significantly reduced, and the secretory function of goblet cells also decreased. Further studies have found that TLR4 increased the levels of activating transcription factor-6 (ATF6), XBP1, ER chaperone (Bip) and CHOP, but did not activate the protein kinase RNA (PKR)-like ER kinase (P-PERK). Conclusion We concluded that the inhibition of TLR4/NF-κB signaling pathway can reduce intestinal inflammatory response, protect intestinal mucosa, protect Lgr5+ cells, goblet cells and relieve ER stress. Our findings suggest that Tak-242 protects Lgr5+ cells and goblet cells after sepsis, partly may be through the suppression of ER stress. Thus, inhibition of TLR4-mediated ER stress may be a promising therapy of septic AGI.
Collapse
Affiliation(s)
- Xue Wu
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jilin Yang
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Bao
- Department of Oncology, The Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yijie Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Identification of endoplasmic reticulum stress-associated genes and subtypes for predicting risk signature and depicting immune features in inflammatory bowel disease. Heliyon 2024; 10:e37053. [PMID: 39296237 PMCID: PMC11409092 DOI: 10.1016/j.heliyon.2024.e37053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) becomes a significant factor in inflammatory bowel disease (IBD), like Crohn's disease (CD) and ulcerative colitis (UC). Our research was aimed at identifying molecular markers to enhance our understanding of ERS and inflammation in IBD, recognizing risk factors and high-risk groups at the molecular level, and developing a predictive model on the grounds of based on ERS-associated genes. This research adopted the least absolute shrinkage and selection operator (LASSO) regression and logistic regression to build a predictive model, and categorized IBD patients into high- and low-risk groups, and then identified four gene clusters. Our key findings included a significant increase in drug target gene expression in high-risk groups, notable discrepancies in immune levels, and functions between high-risk and low-risk groups. Notably, the TAP1 gene emerged as a strong predictor with the highest diagnostic value (area under the curve [AUC] = 0.941). TAP1 encodes proteins required for antigenic peptide transfer across the endoplasmic reticulum (ER) membrane, and its potential as a diagnostic marker and therapeutic target is reflected by its overexpression in IBD tissues. Our study established a new ERS-associated gene model which could forecast the risk, immunological status, and treatment efficacy of patients with IBD. These findings suggest potential targets for personalized therapy and highlight the significance of ERS in the etiology and therapy of IBD. Future studies should explore the therapeutic potential of targeting TAP1 and other ERS-related genes for IBD management.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
30
|
Lee J, Jeon BS, Kang S, Son Y, Lim YB, Bae MJ, Jo WS, Lee CG, Shin IS, Moon C, Lee HJ, Kim JS. Protective effects of tauroursodeoxycholate against radiation-induced intestinal injury in a mouse model. Biochem Biophys Res Commun 2024; 724:150226. [PMID: 38865815 DOI: 10.1016/j.bbrc.2024.150226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.
Collapse
Affiliation(s)
- Jeongmin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byung-Suk Jeon
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Young-Bin Lim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Wol Soon Jo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Chang-Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - In Shik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hae-June Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
31
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Choi HJ, Wu Y, Mcdaniel Mims B, Pugel A, Tang CHA, Tian L, Hu CCA, Yu XZ. Endoplasmic Reticulum Stress Response Mediator IRE-1α Promotes Host Dendritic Cells in Graft-versus-Host Disease Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:384-393. [PMID: 38864663 PMCID: PMC11415232 DOI: 10.4049/jimmunol.2300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brianyell Mcdaniel Mims
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Allison Pugel
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chih-Hang Anthony Tang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Linlu Tian
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
Zhu Y, Wei L, Zwygart ACA, Gaínza P, Khac QO, Olgiati F, Kurum A, Tang L, Correia B, Tapparel C, Stellacci F. A Synthetic Multivalent Lipopeptide Derived from Pam3CSK4 with Irreversible Influenza Inhibition and Immuno-Stimulating Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307709. [PMID: 38438885 DOI: 10.1002/smll.202307709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.
Collapse
Affiliation(s)
- Yong Zhu
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Lixia Wei
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Arnaud Charles-Antoine Zwygart
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Pablo Gaínza
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Quy Ong Khac
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Francesca Olgiati
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Armand Kurum
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Li Tang
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Bruno Correia
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
34
|
Hu Q, Zhang L, Tao Y, Xie S, Wang A, Luo C, Yang R, Shen Z, He B, Fang Y, Chen P. Semaglutide Ameliorates Hepatocyte Steatosis in a Cell Co-Culture System by Downregulating the IRE1α-XBP1-C/EBPα Signaling Pathway in Macrophages. Pharmacology 2024; 110:26-35. [PMID: 39089233 DOI: 10.1159/000540654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is currently the most common type of chronic liver disease. Semaglutide is a glucose-lowering drug administered for the treatment of type 2 diabetes mellitus (T2DM) and is clinically effective in the treatment of NAFLD. X-box binding protein 1 (XBP1) is related to the pathogenesis of both NAFLD and T2DM. The aim of the present study was to demonstrate whether the underlying mechanism of semaglutide treatment for NAFLD is via downregulation of the inositol-requiring transmembrane kinase/endonuclease-1α (IRE1α)-XBP1-CCAAT/enhancer binding protein α (C/EBPα) signaling pathway in macrophages. METHODS In the present study, NAFLD cell modeling was induced by oleic acid (0.4 mm) and palmitic acid (0.2 mm). Hepatocytes (AML12) and macrophages (RAW264.7) were co-cultured in 6-well Transwell plates. Semaglutide (60 or 140 nm) was administrated for 24 h, while pioglitazone (2 μm) and toyocamycin (200 nm) were used as a positive control drug and a XBP1 inhibitor, respectively. Autophagy and apoptosis of AML12 cells were detected by transmission electron microscopy and Western blotting (WB). Hepatocyte steatosis was evaluated by adopting total intracellular triglyceride determination, analysis of the relative expression of proteins and genes associated with lipid metabolism and hepatocyte Oil red O staining. Detection of inflammation factors was conducted by ELISA and WB. To explore the underlying mechanism of NAFLD treatment with semaglutide, the relative expression of related proteins and genes were tested. RESULTS Our study demonstrated that semaglutide treatment improved autophagy and inhibited apoptosis of hepatocytes, while notably ameliorating steatosis of hepatocytes. In addition, inflammation was attenuated in the NAFLD cell co-culture model after semaglutide administration. Semaglutide also significantly reduced the protein and gene expression levels of the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. CONCLUSION Semaglutide partially ameliorated NAFLD by downregulating the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. These findings may provide a potential theoretical basis for semaglutide therapy for NAFLD.
Collapse
Affiliation(s)
- Qin Hu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - YiTing Tao
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - ShuangLin Xie
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - AiYun Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Caiying Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - RenHua Yang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Bo He
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Yu Fang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| |
Collapse
|
35
|
Doll CL, Snider AJ. The diverse roles of sphingolipids in inflammatory bowel disease. FASEB J 2024; 38:e23777. [PMID: 38934445 PMCID: PMC467036 DOI: 10.1096/fj.202400830r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The incidence of inflammatory bowel disease (IBD) has increased over the last 20 years. A variety of causes, both physiological and environmental, contribute to the initiation and progression of IBD, making disease management challenging. Current treatment options target various aspects of the immune response to dampen intestinal inflammation; however, their effectiveness at retaining remission, their side effects, and loss of response from patients over time warrant further investigation. Finding a common thread within the multitude causes of IBD is critical in developing robust treatment options. Sphingolipids are evolutionary conserved bioactive lipids universally generated in all cell types. This diverse lipid family is involved in a variety of fundamental, yet sometimes opposing, processes such as proliferation and apoptosis. Implicated as regulators in intestinal diseases, sphingolipids are a potential cornerstone in understanding IBD. Herein we will describe the role of host- and microbial-derived sphingolipids as they relate to the many factors of intestinal health and IBD.
Collapse
Affiliation(s)
- Chelsea L. Doll
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
36
|
Guisasola-Serrano A, Bilbao-Arribas M, Varela-Martínez E, Abendaño N, Pérez M, Luján L, Jugo BM. Identifying transcriptomic profiles in ovine spleen after repetitive vaccination. Front Immunol 2024; 15:1386590. [PMID: 39076984 PMCID: PMC11284609 DOI: 10.3389/fimmu.2024.1386590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Aluminum hydroxide has long been employed as a vaccine adjuvant for its safety profile, although its precise mechanism of action remains elusive. In this study, we investigated the transcriptomic responses in sheep spleen following repetitive vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. Notably, this work represents the first exploration of the sheep spleen transcriptome in such conditions. Animals were splitted in 3 treatment groups: vaccine group, adjuvant alone group and control group. A total of 18 high-depth RNA-seq libraries were sequenced, resulting in a rich dataset which also allowed isoform-level analysis. The comparisons between vaccine-treated and control groups (V vs C) as well as between vaccine-treated and adjuvant-alone groups (V vs A) revealed significant alterations in gene expression profiles, including protein coding genes and long non-coding RNAs. Among the differentially expressed genes, many were associated with processes such as endoplasmic reticulum (ER) stress, immune response and cell cycle. The analysis of co-expression modules further indicated a correlation between vaccine treatment and genes related to ER stress and unfolded protein response. Surprisingly, adjuvant-alone treatment had little impact on the spleen transcriptome. Additionally, the role of alternative splicing in the immune response was explored. We identified isoform switches in genes associated with immune regulation and inflammation, potentially influencing protein function. In conclusion, this study provides valuable insights into the transcriptomic changes in sheep spleen following vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. These findings shed light on the molecular mechanisms underlying vaccine-induced immune responses and emphasize the significance of antigenic components in aluminum adjuvant mechanism of action. Furthermore, the analysis of alternative splicing revealed an additional layer of complexity in the immune response to vaccination in a livestock species.
Collapse
Affiliation(s)
- Aitor Guisasola-Serrano
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Martin Bilbao-Arribas
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martínez
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara Abendaño
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Pérez
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Begoña Marina Jugo
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
37
|
Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab 2024; 36:1439-1455. [PMID: 38823393 DOI: 10.1016/j.cmet.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), harmful use of alcohol, or viral hepatitis, may result in liver fibrosis, cirrhosis, and cancer. Hepatic fibrogenesis is a complex process with interactions between different resident and non-resident heterogeneous liver cell populations, ultimately leading to deposition of extracellular matrix and organ failure. Shifts in cell phenotypes and functions involve pronounced transcriptional and protein synthesis changes that require metabolic adaptations in cellular substrate metabolism, including glucose and lipid metabolism, resembling changes associated with the Warburg effect in cancer cells. Cell activation and metabolic changes are regulated by metabolic stress responses, including the unfolded protein response, endoplasmic reticulum stress, autophagy, ferroptosis, and nuclear receptor signaling. These metabolic adaptations are crucial for inflammatory and fibrogenic activation of macrophages, lymphoid cells, and hepatic stellate cells. Modulation of these pathways, therefore, offers opportunities for novel therapeutic approaches to halt or even reverse liver fibrosis progression.
Collapse
Affiliation(s)
- Paul Horn
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
38
|
Fionda C, Sciumè G. A little ER stress isn't bad: the IRE1α/XBP1 pathway shapes ILC3 functions during intestinal inflammation. J Clin Invest 2024; 134:e182204. [PMID: 38949019 PMCID: PMC11213460 DOI: 10.1172/jci182204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/02/2024] Open
Abstract
Type 3 innate lymphoid cells (ILC3s) are key regulators of intestinal homeostasis and epithelial barrier integrity. In this issue of the JCI, Cao and colleagues found that a sensor of endoplasmic reticulum (ER) stress, the inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1) pathway, fine-tuned the functions of ILC3s. Activation of IRE1α and XBP1 in ILC3s limited intestinal inflammation in mice and correlated with the efficacy of ustekinumab, an IL-12/IL-23 blocker, in patients with Crohn's disease. These results advance our understanding in the use of ILCs as biomarkers not only to predict disease outcomes but also to indicate the response to biologicals in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
39
|
Zhao Y, Zhan J, Sun C, Zhu S, Zhai Y, Dai Y, Wang X, Gao X. Sishen Wan enhances intestinal barrier function via regulating endoplasmic reticulum stress to improve mice with diarrheal irritable bowel syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155541. [PMID: 38579640 DOI: 10.1016/j.phymed.2024.155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaguo Zhan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
40
|
Xu F, Wang L. Deciphering ER stress-unfolded protein response relationship by visualizing unfolded proteins in the ER. Cell Rep 2024; 43:114358. [PMID: 38865243 DOI: 10.1016/j.celrep.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2023] [Revised: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Despite the consensus that accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen, i.e. ER stress, activates the unfolded protein response (UPR), studies under physiological and pathophysiological conditions suggest that ER stress may not always trigger the UPR, and the UPR can be activated in an ER stress-independent way. To better understand how the UPR is regulated and its relationship with ER stress requires direct detection of unfolded proteins in the ER, a method that is still lacking. Here, we report a strategy of visualizing unfolded protein accumulation in the ER lumen in living cells by employing an engineered ER stress sensor, PERK, which forms fluorescence puncta upon unfolded protein binding, in a fast and reversible way. Our reporter enables us to clarify the involvement of unfolded proteins in UPR activation under several physiological conditions and suggests that persistent unfolded protein accumulation in the ER despite UPR attenuation predicts cell death.
Collapse
Affiliation(s)
- Fenfen Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P.R. China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
41
|
Qu S, Jia W, Nie Y, Shi W, Chen C, Zhao Z, Song W. AGR2: The Covert Driver and New Dawn of Hepatobiliary and Pancreatic Cancer Treatment. Biomolecules 2024; 14:743. [PMID: 39062458 PMCID: PMC11275012 DOI: 10.3390/biom14070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The anterior gradient protein 2 (AGR2) plays a crucial role in facilitating the formation of protein disulfide bonds within the endoplasmic reticulum (ER). Research suggests that AGR2 can function as an oncogene, with its heightened expression linked to the advancement of hepatobiliary and pancreatic cancers through invasion and metastasis. Notably, AGR2 not only serves as a pro-oncogenic agent but also as a downstream targeting protein, indirectly fostering cancer progression. This comprehensive review delves into the established functions and expression patterns of AGR2, emphasizing its pivotal role in cancer progression, particularly in hepatobiliary and pancreatic malignancies. Furthermore, AGR2 emerges as a potential cancer prognostic marker and a promising target for immunotherapy, offering novel avenues for the treatment of hepatobiliary and pancreatic cancers and enhancing patient outcomes.
Collapse
Affiliation(s)
- Shen Qu
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Weili Jia
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wen Shi
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Chao Chen
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Zihao Zhao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| |
Collapse
|
42
|
Fernández JJ, Marín A, Rosales R, Penrice-Randal R, Mlcochova P, Alvarez Y, Villalón-Letelier F, Yildiz S, Pérez E, Rathnasinghe R, Cupic A, Kehrer T, Uccellini MB, Alonso S, Martínez F, McGovern BL, Clark JJ, Sharma P, Bayón Y, Alonso A, Albrecht RA, White KM, Schotsaert M, Miorin L, Stewart JP, Hiscox JA, Gupta RK, Irigoyen N, García-Sastre A, Crespo MS, Fernández N. The IRE1α-XBP1 arm of the unfolded protein response is a host factor activated in SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167193. [PMID: 38648902 DOI: 10.1016/j.bbadis.2024.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.
Collapse
Affiliation(s)
- Jose Javier Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marín
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Enrique Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Ciencias de la Salud, Universidad Europea Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Fernando Martínez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Briana Lynn McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Infectious Diseases, University of Georgia, GA 30602, USA
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore; Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain.
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
43
|
Almanza G, Searles S, Zanetti M. Delivery of miR-214 via extracellular vesicles downregulates Xbp1 expression and pro-inflammatory cytokine genes in macrophages. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:249-258. [PMID: 39118980 PMCID: PMC11308798 DOI: 10.20517/evcna.2023.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 08/10/2024]
Abstract
Aim Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Shidoji Y. Induction of Hepatoma Cell Pyroptosis by Endogenous Lipid Geranylgeranoic Acid-A Comparison with Palmitic Acid and Retinoic Acid. Cells 2024; 13:809. [PMID: 38786033 PMCID: PMC11119665 DOI: 10.3390/cells13100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan
| |
Collapse
|
45
|
Cao S, Fachi JL, Ma K, Ulezko Antonova A, Wang Q, Cai Z, Kaufman RJ, Ciorba MA, Deepak P, Colonna M. The IRE1α/XBP1 pathway sustains cytokine responses of group 3 innate lymphoid cells in inflammatory bowel disease. J Clin Invest 2024; 134:e174198. [PMID: 38722686 PMCID: PMC11214543 DOI: 10.1172/jci174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. ER stress is linked to inflammatory bowel disease (IBD). Here, we used cell culture, mouse models, and human specimens to determine whether ER stress in ILC3s affects IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24-hour rhythmic expression pattern of the master ER stress response regulator inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1). Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial ROS (mtROS). IRE1α/XBP1 was activated in ILC3s from mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of the ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in patients with Crohn's disease before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with the response to treatment. We demonstrate that a noncanonical mtROS-IRE1α/XBP1 pathway augmented cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting the response to anti-IL-23 therapies in IBD.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine and
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
McFadden MJ, Reynolds MB, Michmerhuizen BC, Ólafsson EB, Anderson FM, Schultz TL, O’Riordan MX, O’Meara TR. Non-canonical activation of IRE1α during Candida albicans infection enhances macrophage fungicidal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560560. [PMID: 37873171 PMCID: PMC10592910 DOI: 10.1101/2023.10.02.560560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2023]
Abstract
While the canonical function of IRE1α is to detect misfolded proteins and activate the unfolded protein response (UPR) to maintain cellular homeostasis, microbial pathogens can also activate IRE1α, which modulates innate immunity and infection outcomes. However, how infection activates IRE1α and its associated inflammatory functions have not been fully elucidated. Recognition of microbe-associated molecular patterns can activate IRE1α, but it is unclear whether this depends on protein misfolding. Here, we report that a common and deadly fungal pathogen, Candida albicans, activates macrophage IRE1α through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. This activation did not depend on protein misfolding in response to C. albicans infection. Moreover, lipopolysaccharide treatment was also able to activate IRE1α prior to protein misfolding, suggesting that pathogen-mediated activation of IRE1α occurs through non-canonical mechanisms. During C. albicans infection, we observed that IRE1α activity promotes phagolysosomal fusion that supports the fungicidal activity of macrophages. Consequently, macrophages lacking IRE1α activity displayed inefficient phagosome maturation, enabling C. albicans to lyse the phagosome, evade fungal killing, and drive aberrant inflammatory cytokine production. Mechanistically, we show that IRE1α activity supports phagosomal calcium flux after phagocytosis of C. albicans, which is crucial for phagosome maturation. Importantly, deletion of IRE1α activity decreased the fungicidal activity of phagocytes in vivo during systemic C. albicans infection. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.
Collapse
Affiliation(s)
- Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Einar B. Ólafsson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X.D. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Cabrera S, García-Vicente Á, Gutiérrez P, Sánchez A, Gaxiola M, Rodríguez-Bobadilla C, Selman M, Pardo A. Increased ER Stress and Unfolded Protein Response Activation in Epithelial and Inflammatory Cells in Hypersensitivity Pneumonitis. J Histochem Cytochem 2024; 72:289-307. [PMID: 38725414 PMCID: PMC11107439 DOI: 10.1369/00221554241251915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.
Collapse
Affiliation(s)
- Sandra Cabrera
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Ángeles García-Vicente
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Pamela Gutiérrez
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Sánchez
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, México
| | - Carolina Rodríguez-Bobadilla
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, México
| | - Annie Pardo
- Laboratorio de Fibrosis, Unidad de Biopatología Pulmonar, Ciencias-INER, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
48
|
Li W, Qi M, Zhou J, Sun Y, Sun J, Dong B, Wang L, Song S. Pathogen-Activated Macrophage Membrane Encapsulated CeO 2-TCPP Nanozyme with Targeted and Photo-Enhanced Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309664. [PMID: 38057126 DOI: 10.1002/smll.202309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Nanozymes with peroxidase-mimic activity have recently emerged as effective strategies for eliminating infections. However, challenges in enhancing catalytic activities and the ability to target bacteria have hindered the broader application of nanozymes in bacterial infections. Herein, a novel nanozyme based on mesoporous CeO2 nanosphere and meso-tetra(4-carboxyphenyl)porphine (TCPP) encapsulated within pathogen-activated macrophage membranes, demonstrates photodynamic capability coupled with photo-enhanced chemodynamic therapy for selective and efficient antibacterial application against infected wounds. Interestingly, the expression of Toll-like receptors accordingly upregulates when macrophages are co-cultured with specific bacteria, thereby facilitating to recognition of the pathogen-associated molecular patterns originating from bacteria. The CeO2 not only serve as carriers for TCPP, but also exhibit intrinsic peroxidase-like catalytic activity. Consequently, Staphylococcus aureus (S. aureus)-activated macrophage membrane-coated CeO2-TCPP (S-MM@CeO2-TCPP) generated singlet oxygen, and simultaneously promoted photo-enhanced chemodynamic therapy, significantly boosting reactive oxygen species (ROS) to effectively eliminate bacteria. S-MM@CeO2-TCPP specifically targeted S. aureus via Toll-like receptor, thereby directly disrupting bacterial structural integrity to eradicate S. aureus in vitro and relieve bacteria-induced inflammation to accelerate infected wound healing in vivo. By selectively targeting specific bacteria and effectively killing pathogens, such strategy provides a more efficient and reliable alternative for precise elimination of pathogens and inflammation alleviation in microorganism-infected wounds.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, P. R. China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
49
|
Chen R, Zheng Y, Zhou C, Dai H, Wang Y, Chu Y, Luo J. N-Acetylcysteine Attenuates Sepsis-Induced Muscle Atrophy by Downregulating Endoplasmic Reticulum Stress. Biomedicines 2024; 12:902. [PMID: 38672256 PMCID: PMC11048408 DOI: 10.3390/biomedicines12040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.
Collapse
Affiliation(s)
- Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|