1
|
Feng X, Yu F, He XL, Cheng PP, Niu Q, Zhao LQ, Li Q, Cui XL, Jia ZH, Ye SY, Liang LM, Song LJ, Xiong L, Xiang F, Wang X, Ma WL, Ye H. CD8 + tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis. Am J Physiol Cell Physiol 2024; 327:C1178-C1191. [PMID: 39246141 DOI: 10.1152/ajpcell.00368.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8+ TRM cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach. NEW & NOTEWORTHY The role of CD8+ TRM cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8+ TRM cells, thereby exacerbating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Lin Cui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zi-Heng Jia
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shu-Yi Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Fernandes J, Veldhoen M, Ferreira C. Tissue-resident memory T cells: Harnessing their properties against infection for cancer treatment. Bioessays 2024; 46:e2400119. [PMID: 39258352 DOI: 10.1002/bies.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
We have rapidly gained insights into the presence and function of T lymphocytes in non-lymphoid tissues, the tissue-resident memory T (TRM) cells. The central pillar of adaptive immunity has been expanded from classic central memory T cells giving rise to progeny upon reinfection and effector memory cells circulating through the blood and patrolling the tissues to include TRM cells that reside and migrate inside solid organs and tissues. Their development and maintenance have been studied in detail, providing exciting clues on how their unique properties used to fight infections may benefit therapies against solid tumors. We provide an overview of CD8 TRM cells and the properties that make them of interest for vaccination and cancer therapies.
Collapse
Affiliation(s)
- João Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Hamade H, Tsuda M, Oshima N, Stamps DT, Wong MH, Stamps JT, Thomas LS, Salumbides BC, Jin C, Nunnelee JS, Dhall D, Targan SR, Michelsen KS. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8 + T cells. Front Immunol 2024; 15:1465175. [PMID: 39464882 PMCID: PMC11502343 DOI: 10.3389/fimmu.2024.1465175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene ATG16L1 have been implicated in susceptibility and severity of Crohn's disease (CD). Individuals carrying the risk ATG16L1 T300A variant have higher caspase 3-dependent degradation of ATG16L1 resulting in impaired autophagy and increased cellular stress. ATG16L1-deficiency induces enhanced IL-1β secretion in dendritic cells in response to bacterial infection. Infection of ATG16L1-deficient mice with a persistent strain of murine norovirus renders these mice highly susceptible to dextran sulfate sodium colitis. Moreover, persistent norovirus infection leads to intestinal virus specific CD8+ T cells responses. Both Toll-like receptor 7 (TLR7), which recognizes single-stranded RNA viruses, and ATG16L1, which facilitates the delivery of viral nucleic acids to the autolysosome endosome, are required for anti-viral immune responses. Results and discussion However, the role of the enteric virome in IBD is still poorly understood. Here, we investigate the role of TLR7 and ATG16L1 in intestinal homeostasis and inflammation. At steady state, Tlr7-/- mice have a significant increase in large intestinal lamina propria (LP) granzyme B+ tissue-resident memory CD8+ T (TRM) cells compared to WT mice, reminiscent of persistent norovirus infection. Deletion of Atg16l1 in myeloid (Atg16l1ΔLyz2 ) or dendritic cells (Atg16l1ΔCd11c ) leads to a similar increase of LP TRM. Furthermore, Tlr7-/- and Atg16l1ΔCd11c mice were more susceptible to dextran sulfate sodium colitis with an increase in disease activity index, histoscore, and increased secretion of IFN-γ and TNF-α. Treatment of Atg16l1ΔCd11c mice with the TLR7 agonist Imiquimod attenuated colonic inflammation in these mice. Our data demonstrate that ATG16L1-deficiency in myeloid and dendritic cells leads to an increase in LP TRM and consequently to increased susceptibility to colitis by impairing the recognition of enteric viruses by TLR7. Conclusion In conclusion, the convergence of ATG16L1 and TLR7 signaling pathways plays an important role in the immune response to intestinal viruses. Our data suggest that activation of the TLR7 signaling pathway could be an attractive therapeutic target for CD patients with ATG16L1 risk variants.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Tsuda
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naoki Oshima
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle H. Wong
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jordan S. Nunnelee
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Cheng L, Becattini S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol 2024; 17:810-824. [PMID: 38782240 DOI: 10.1016/j.mucimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Valenzano G, Russell SN, Go S, O'Neill E, Jones KI. Using Spectral Flow Cytometry to Characterize Anti-Tumor Immunity in Orthotopic and Subcutaneous Mouse Models of Cancer. Curr Protoc 2024; 4:e70032. [PMID: 39432378 DOI: 10.1002/cpz1.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Mouse models remain at the forefront of immuno-oncology research, providing invaluable insights into the complex interactions between the immune system and developing tumors. While several flow cytometry panels have been developed to study cancer immunity in mice, most are limited in their capacity to address the complexity of anti-cancer immune responses. For example, many of the panels developed to date focus on a restricted number of leukocyte populations (T cells or antigen-presenting cells), failing to include the multitude of other subsets that participate in anti-cancer immunity. In addition, these panels were developed using blood or splenic leukocytes. While the immune composition of the blood or spleen can provide information on systemic immune responses to cancer, it is in the tumor microenvironment (TME) that local immunity takes place. Therefore, we optimized this spectral flow cytometry panel to identify the chief cell types that take part in cancer immunity using immune cells from cancer tissue. We used pancreatic tumors implanted both orthotopically and subcutaneously to demonstrate the panel's flexibility and suitability in diverse mouse models. The panel was also validated in peripheral immune districts (the blood, spleen, and liver of tumor-bearing mice) to allow comparisons between local and systemic anti-tumor immunity. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tumor induction-Orthotopic Alternate Protocol: Tumor induction-Subcutaneous Basic Protocol 2: Preparation of single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice Basic Protocol 3: Staining single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice.
Collapse
Affiliation(s)
| | | | - Simei Go
- Department of Oncology, University of Oxford, Oxford, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton I Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Ulibarri MR, Lin Y, Ramprashad JC, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. Cell Rep 2024; 43:114621. [PMID: 39153200 PMCID: PMC11401477 DOI: 10.1016/j.celrep.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor β (TGF-β) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.
Collapse
Affiliation(s)
- Max R Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julian C Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Farha J Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA 02115, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Zhu J, Miner MD. Local Power: The Role of Tissue-Resident Immunity in Human Genital Herpes Simplex Virus Reactivation. Viruses 2024; 16:1019. [PMID: 39066181 PMCID: PMC11281577 DOI: 10.3390/v16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
From established latency, human herpes virus type 2 (HSV-2) frequently reactivates into the genital tract, resulting in symptomatic ulcers or subclinical shedding. Tissue-resident memory (TRM) CD8+ T cells that accumulate and persist in the genital skin at the local site of recrudescence are the "first responders" to viral reactivation, performing immunosurveillance and containment and aborting the ability of the virus to induce clinical lesions. This review describes the unique spatiotemporal characteristics, transcriptional signatures, and noncatalytic effector functions of TRM CD8+ T cells in the tissue context of human HSV-2 infection. We highlight recent insights into the intricate overlaps between intrinsic resistance, innate defense, and adaptive immunity in the tissue microenvironment and discuss how rapid virus-host dynamics at the skin and mucosal level influence clinical outcomes of genital herpes diseases.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Wang L, Mishra S, Fan KKH, Quon S, Li G, Yu B, Liao W, Liu Y, Zhang X, Qiu Y, Li Y, Goldrath AW, Ma C, Zhang N. T-bet deficiency and Hic1 induction override TGF-β-dependency in the formation of CD103 + intestine-resident memory CD8 + T cells. Cell Rep 2024; 43:114258. [PMID: 38781073 PMCID: PMC11240284 DOI: 10.1016/j.celrep.2024.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Transforming growth factor β (TGF-β) represents a well-established signal required for tissue-resident memory T cell (TRM) formation at intestinal surfaces, regulating the expression of a large collection of genes coordinately promoting intestinal TRM differentiation. The functional contribution from each TGF-β-controlled transcription factor is not entirely known. Here, we find that TGF-β-induced T-bet downregulation and Hic1 induction represent two critical events during intestinal TRM differentiation. Importantly, T-bet deficiency significantly rescues intestinal TRM formation in the absence of the TGF-β receptor. Hic1 induction further strengthens TRM maturation in the absence of TGF-β and T-bet. Our results reveal that provision of certain TGF-β-induced molecular events can partially replace TGF-β signaling to promote the establishment of intestinal TRMs, which allows the functional dissection of TGF-β-induced transcriptional targets and molecular mechanisms for TRM differentiation.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kenneth Ka-Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sara Quon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Guo Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yue Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
10
|
Porte R, Belloy M, Audibert A, Bassot E, Aïda A, Alis M, Miranda-Capet R, Jourdes A, van Gisbergen KPJM, Masson F, Blanchard N. Protective function and differentiation cues of brain-resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2024; 121:e2403054121. [PMID: 38838017 PMCID: PMC11181119 DOI: 10.1073/pnas.2403054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.
Collapse
Affiliation(s)
- Rémi Porte
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marcy Belloy
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marine Alis
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Romain Miranda-Capet
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Aurélie Jourdes
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | | | - Frédérick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| |
Collapse
|
11
|
Long J, You X, Yang Q, Wang SR, Zhou M, Zhou W, Wang C, Xie H, Zhang Y, Wang S, Lian ZX, Li L. Bone marrow CD8 + Trm cells induced by IL-15 and CD16 + monocytes contribute to HSPC destruction in human severe aplastic anemia. Clin Immunol 2024; 263:110223. [PMID: 38636890 DOI: 10.1016/j.clim.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.
Collapse
Affiliation(s)
- Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xing You
- School of Medicine South China University of Technology, Guangzhou, China; Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiong Yang
- School of Medicine South China University of Technology, Guangzhou, China
| | - Song-Rong Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Huafeng Xie
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Hao Z, Xin Z, Chen Y, Shao Z, Lin W, Wu W, Lin M, Liu Q, Chen D, Wu D, Wu P. JAML promotes the antitumor role of tumor-resident CD8 + T cells by facilitating their innate-like function in human lung cancer. Cancer Lett 2024; 590:216839. [PMID: 38570084 DOI: 10.1016/j.canlet.2024.216839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Tissue-resident memory CD8+T cells (CD8+TRMs) are thought to play a crucial role in cancer immunosurveillance. However, the characteristics of CD8+TRMs in the tumor microenvironment (TME) of human non-small cell lung cancer (NSCLC) remain unclear. Here, we report that CD8+TRMs accumulate explicitly and exhibit a unique gene expression profile in the TME of NSCLC. Interestingly, these tumor-associated CD8+TRMs uniquely exhibit an innate-like phenotype. Importantly, we found that junction adhesion molecule-like (JAML) provides an alternative costimulatory signal to activate tumor-associated CD8+TRMs via combination with cancer cell-derived CXADR (CXADR Ig-like cell adhesion molecule). Furthermore, we demonstrated that activating JAML could promote the expression of TLR1/2 on CD8+TRMs, inhibit tumor progression and prolong the survival of tumor-bearing mice. Finally, we found that higher CD8+TRMs and JAML expression in the TME could predict favorable clinical outcomes in NSCLC patients. Our study reveals an intrinsic bias of CD8+TRMs for receiving the tumor-derived costimulatory signal in the TME, which sustains their innate-like function and antitumor role. These findings will shed more light on the biology of CD8+TRMs and aid in the development of potential targeted treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Zhu HX, Yang SH, Gao CY, Bian ZH, Chen XM, Huang RR, Meng QL, Li X, Jin H, Tsuneyama K, Han Y, Li L, Zhao ZB, Gershwin ME, Lian ZX. Targeting pathogenic CD8 + tissue-resident T cells with chimeric antigen receptor therapy in murine autoimmune cholangitis. Nat Commun 2024; 15:2936. [PMID: 38580644 PMCID: PMC10997620 DOI: 10.1038/s41467-024-46654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.
Collapse
Affiliation(s)
- Hao-Xian Zhu
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Cai-Yue Gao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen-Hua Bian
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Min Chen
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rong-Rong Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian-Li Meng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Pestal K, Slayden LC, Barton GM. Krüppel-like Factor (KLF) family members control expression of genes required for serous cavity and alveolar macrophage identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582578. [PMID: 38464159 PMCID: PMC10925242 DOI: 10.1101/2024.02.28.582578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Kruppel-like Factor 2 (KLF2) in the development of embryonically derived Large Cavity Macrophages (LCM) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity, such as retinoic acid receptors and GATA6, but also is required for induction of many other transcripts that define the identity of these cells. We identify a similar role for KLF4 in regulating the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors, such as Group 2 KLFs, can play important roles in the specification of distinct identities of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Leianna C Slayden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
16
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
17
|
Ulibarri MR, Lin Y, Ramprashad JR, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569395. [PMID: 38076957 PMCID: PMC10705482 DOI: 10.1101/2023.12.01.569395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-β signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.
Collapse
Affiliation(s)
- Max R. Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Pathobiology Graduate Program, Brown University, Providence, RI, 02912
| | - Julian R. Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Farha J. Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI, 02912
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02115
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
- South Texas Veterans Health Care System, San Antonio, TX, 78229
| | - J. Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| |
Collapse
|
18
|
Chen K, Gu X, Yang S, Tao R, Fan M, Bao W, Wang X. Research progress on intestinal tissue-resident memory T cells in inflammatory bowel disease. Scand J Immunol 2023; 98:e13332. [PMID: 38441381 DOI: 10.1111/sji.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 03/07/2024]
Abstract
Tissue-resident memory T (TRM) cells are a recently discovered subpopulation of memory T cells that reside in non-lymphoid tissues such as the intestine and skin and do not enter the bloodstream. The intestine encounters numerous pathogens daily. Intestinal mucosal immunity requires a balance between immune responses to pathogens and tolerance to food antigens and symbiotic microbiota. Therefore, intestinal TRM cells exhibit unique characteristics. In healthy intestines, TRM cells induce necessary inflammation to strengthen the intestinal barrier and inhibit bacterial translocation. During intestinal infections, TRM cells rapidly eliminate pathogens by proliferating, releasing cytokines, and recruiting other immune cells. Moreover, certain TRM cell subsets may have regulatory functions. The involvement of TRM cells in inflammatory bowel disease (IBD) is increasingly recognized as a critical factor. In IBD, the number of pro-inflammatory TRM cells increases, whereas the number of regulatory subgroups decreases. Additionally, the classic markers, CD69 and CD103, are not ideal for intestinal TRM cells. Here, we review the phenotype, development, maintenance, and function of intestinal TRM cells, as well as the latest findings in the context of IBD. Further understanding of the function of intestinal TRM cells and distinguishing their subgroups is crucial for developing therapeutic strategies to target these cells.
Collapse
Affiliation(s)
- Ke Chen
- Nanjing Medical University, Nanjing, China
| | - Xin Gu
- Nanjing Medical University, Nanjing, China
| | | | - Rui Tao
- Nanjing Medical University, Nanjing, China
| | | | | | - Xiaoyun Wang
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
19
|
Osman M, Park SL, Mackay LK. Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system. Eur J Immunol 2023; 53:e2250060. [PMID: 36597841 DOI: 10.1002/eji.202250060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.
Collapse
Affiliation(s)
- Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Xing K, Che Y, Wang Z, Yuan S, Wu Q, Shi F, Chen Y, Shen X, Zhong X, Xie X, Zhu Q, Li X. Chitosan nanoparticles encapsulated with BEZ235 prevent acute rejection in mouse heart transplantation. Int Immunopharmacol 2023; 124:110922. [PMID: 37699303 DOI: 10.1016/j.intimp.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Acute rejection may manifest following heart transplantation, despite the implementation of relatively well-established immunosuppression protocols. The significance of the mTOR signaling pathway in rejection is widely acknowledged. BEZ235, a second-generation mTOR inhibitor with dual inhibitory effects on PI3K and mTOR, holds promise for clinical applications. This study developed a nanodelivery system, BEZ235@NP, to facilitate the intracellular delivery of BEZ235, which enhances efficacy and reduces adverse effects by improving the poor solubility of BEZ235. In the complete MHCII-mismatched model, BEZ235@NP significantly prolonged cardiac allografts survival compared to free BEZ235, which was attributed to more effective suppression of effector T cell activation and promotion of greater expansion of Tregs. These nanoparticles demonstrated excellent biosafety and exhibited no short-term biotoxicity upon investigation. To elucidate the mechanism, primary T cells were isolated from the spleen and it was observed that BEZ235@NP treatment resulted in the arrest of these cells in the G0/G1 phase. As indicated by Western blot analysis, BEZ235@NP substantially reduced mTOR phosphorylation. This, in turn, suppressed downstream pathways and ultimately exerted an anti-proliferative and anti-activating effect on cells. Furthermore, it was observed that inhibition of the mTOR pathway stimulated T-cell autophagy. In conclusion, the strategy of intracellular delivery of BEZ235 presents promising applications for the treatment of acute rejection.
Collapse
Affiliation(s)
- Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China.
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaoyan Shen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Qingyi Zhu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xu Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| |
Collapse
|
22
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
25
|
Schlaak AE, Bengsch B. Of tenants and nomads: The faces of memory T cells. Immunity 2023; 56:1439-1442. [PMID: 37437536 DOI: 10.1016/j.immuni.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Memory T cells comprise circulating and tissue-resident subsets. In this issue of Immunity, Evrard et al. generate an imputed high-dimensional, single-cell protein expression atlas of memory CD8+ T cells, providing insights into stable differentiation markers and organ-specific expression patterns.
Collapse
Affiliation(s)
- Alexandra Emilia Schlaak
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Abstract
Cytotoxic CD8+ T cells recognize and eliminate infected or cancerous cells. A subset of CD8+ memory T cells called tissue-resident memory T cells (TRM ) resides in peripheral tissues, monitors the periphery for pathogen invasion, and offers a rapid and potent first line of defense at potential sites of re-infection. TRM cells are found in almost all tissues and are transcriptionally and epigenetically distinct from circulating memory populations, which shows their ability to acclimate to the tissue environment to allow for long-term survival. Recent work and the broader availability of single-cell profiling have highlighted TRM heterogeneity among different tissues, as well as identified specialized subsets within individual tissues, that are time and infection dependent. TRM cell phenotypic and transcriptional heterogeneity has implications for understanding TRM function and longevity. This review aims to summarize and discuss the latest findings on CD8+ TRM heterogeneity using single-cell molecular profiling and explore the potential implications for immune protection and the design of immune therapies.
Collapse
Affiliation(s)
- Maximilian Heeg
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Evrard M, Becht E, Fonseca R, Obers A, Park SL, Ghabdan-Zanluqui N, Schroeder J, Christo SN, Schienstock D, Lai J, Burn TN, Clatch A, House IG, Beavis P, Kallies A, Ginhoux F, Mueller SN, Gottardo R, Newell EW, Mackay LK. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. Immunity 2023:S1074-7613(23)00262-5. [PMID: 37392736 DOI: 10.1016/j.immuni.2023.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| | - Etienne Becht
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Nagela Ghabdan-Zanluqui
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Junyun Lai
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Imran G House
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Paul Beavis
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Centre Hospitalier Universitaire du Vaud and University of Lausanne, Lausanne 1011, Switzerland
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| |
Collapse
|
29
|
Fung HY, Espinal AM, Teryek M, Lemenze AD, Bergsbaken T. STAT4 increases the phenotypic and functional heterogeneity of intestinal tissue-resident memory T cells. Mucosal Immunol 2023; 16:250-263. [PMID: 36925068 PMCID: PMC10327535 DOI: 10.1016/j.mucimm.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Tissue-resident memory T cells (Trms) are an important subset of lymphocytes that are lodged within non-lymphoid tissues and carry out diverse functions to control local pathogen replication. CD103 has been used to broadly define subsets of Trms within the intestine, with CD103+ and CD103- subsets having unique transcriptional profiles and effector functions. Here we identify signal transducer and activator of transcription 4 (STAT4) as an important regulator of CD103- Trm differentiation. STAT4-deficient cells trafficked to the intestine and localized to areas of infection but displayed impaired Trm differentiation with fewer CD103- Trms. Single-cell RNA-sequencing demonstrated that STAT4-deficiency led to a reduction in CD103- Trm subsets and expansion of a single population of CD103+ cells. Alterations in Trm populations were due, in part, to STAT4-mediated inhibition of transforming growth factor (TGF)-β-driven expression of Trm signature genes. STAT4-dependent Trm populations expressed genes associated with cytokine production and cell migration, and STAT4-deficient Trm cells had altered localization within the tissue and reduced effector function after reactivation in vivo. Overall, our data indicate that STAT4 leads to increased differentiation of CD103- Trms, in part by modulating the expression of TGF-β-regulated genes, and results in increased Trm heterogeneity and function within the intestinal tissue.
Collapse
Affiliation(s)
- Helen Y Fung
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Angie M Espinal
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Matthew Teryek
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Alexander D Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA.
| |
Collapse
|
30
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J Exp Med 2023; 220:e20210923. [PMID: 36809399 PMCID: PMC9960115 DOI: 10.1084/jem.20210923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Timothy H. Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N. Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinyuan Lei
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
32
|
Plunkett KR, Armitage JD, Inderjeeth AJ, McDonnell AM, Waithman J, Lau PKH. Tissue-resident memory T cells in the era of (Neo) adjuvant melanoma management. Front Immunol 2022; 13:1048758. [PMID: 36466880 PMCID: PMC9709277 DOI: 10.3389/fimmu.2022.1048758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 10/10/2023] Open
Abstract
Tissue-resident memory T (TRM) cells have emerged as key players in the immune control of melanoma. These specialized cells are identified by expression of tissue retention markers such as CD69, CD103 and CD49a with downregulation of egress molecules such as Sphingosine-1-Phosphate Receptor-1 (S1PR1) and the lymphoid homing receptor, CD62L. TRM have been shown to be integral in controlling infections such as herpes simplex virus (HSV), lymphocytic choriomeningitis virus (LCMV) and influenza. More recently, robust pre-clinical models have also demonstrated TRM are able to maintain melanoma in a dormant state without progression to macroscopic disease reminiscent of their ability to control viral infections. The discovery of the role these cells play in anti-melanoma immunity has coincided with the advent of immune checkpoint inhibitor (ICI) therapy which has revolutionized the treatment of cancers. ICIs that target programmed death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have led to substantial improvements in outcomes for patients with metastatic melanoma and have been rapidly employed to reduce recurrences in the resected stage III setting. While ICIs mediate anti-tumor activity via CD8+ T cells, the specific subsets that facilitate this response is unclear. TRM invariably exhibit high expression of immune checkpoints such as PD-1, CTLA-4 and lymphocyte activating gene-3 (LAG-3) which strongly implicates this CD8+ T cell subset as a crucial mediator of ICI activity. In this review, we present pre-clinical and translational studies that highlight the critical role of TRM in both immune control of primary melanoma and as a key CD8+ T cell subset that mediates anti-tumor activity of ICIs for the treatment of melanoma.
Collapse
Affiliation(s)
- Kai R. Plunkett
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jesse D. Armitage
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | | | - Alison M. McDonnell
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Peter K. H. Lau
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
33
|
Jensen IJ, Farber DL. Gutsy memory T cells stand their ground against pathogens. Sci Immunol 2022; 7:eade7168. [DOI: 10.1126/sciimmunol.ade7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Elegant fate-mapping models to label intestinal tissue-resident memory CD8
+
T (T
RM
) cells demonstrate retention and lack of expansion of CD103
+
T
RM
cells, whereas intestinal CD103
−
memory cells expand, forming both new tissue-localized CD103
+
and CD103
−
T
RM
cells (see related Research Articles by Fung
et al.
and von Hoesslin
et al.
).
Collapse
Affiliation(s)
- Isaac J. Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
von Hoesslin M, Kuhlmann M, de Almeida GP, Kanev K, Wurmser C, Gerullis AK, Roelli P, Berner J, Zehn D. Secondary infections rejuvenate the intestinal CD103
+
tissue-resident memory T cell pool. Sci Immunol 2022; 7:eabp9553. [DOI: 10.1126/sciimmunol.abp9553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resident T lymphocytes (T
RM
) protect tissues during pathogen reexposure. Although T
RM
phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103
+
T cells (a marker of T
RM
cells) and the other to specifically deplete CD103
−
T cells. Using these models, we observed that intestinal CD103
+
T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103
+
T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103
+
resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103
+
T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103
−
precursors. Moreover, in contrast to CD103
-
cells, which require antigen plus inflammation for their activation, CD103
+
T
RM
became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103
+
resident memory T cells lack secondary expansion potential and require CD103
−
precursors for their long-term maintenance.
Collapse
Affiliation(s)
- Madlaina von Hoesslin
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Pereira de Almeida
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ann-Katrin Gerullis
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Jacqueline Berner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
35
|
Fung HY, Teryek M, Lemenze AD, Bergsbaken T. CD103 fate mapping reveals that intestinal CD103 - tissue-resident memory T cells are the primary responders to secondary infection. Sci Immunol 2022; 7:eabl9925. [PMID: 36332012 PMCID: PMC9901738 DOI: 10.1126/sciimmunol.abl9925] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue-resident memory T (TRM) cells remain poised in the tissue and mediate robust protection from secondary infection. TRM cells within the intestine and other tissues are heterogeneous in their phenotype and function; however, the contributions of these TRM subsets to secondary infection remain poorly defined. To address the plasticity of intestinal TRM subsets and their role in local and systemic immunity, we generated mice to fate map intestinal CD103+ TRM cells and track their location and function during secondary infection with Yersinia pseudotuberculosis. We found that CD103+ TRM cells remained lodged in the tissue and were poorly reactivated during secondary challenge. CD103- TRM cells were the primary responders to secondary infection and expanded within the tissue, with limited contribution from circulating memory T cells. The transcriptional profile of CD103- TRM cells demonstrated maintenance of a gene signature similar to circulating T cells along with increased cytokine production and migratory potential. CD103- TRM cells also expressed genes associated with T cell receptor (TCR) activation and displayed enhanced TCR-mediated reactivation both in vitro and in vivo compared with their CD103+ counterparts. These studies reveal the limited recall potential of CD103+ TRM subsets and the role of CD103- TRM cells as central memory-like T cells within peripheral tissues.
Collapse
|
36
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- grid.418356.d0000 0004 0478 7015Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN 37212 USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Amrendra Kumar
- grid.418356.d0000 0004 0478 7015Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN 37212 USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Xiang Ye
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Meredith Rogers
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA ,grid.21925.3d0000 0004 1936 9000Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224 USA
| | - John V. Williams
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA ,grid.21925.3d0000 0004 1936 9000Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224 USA ,Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA 15224 USA
| | - John T. Wilson
- grid.152326.10000 0001 2264 7217Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - John Karijolich
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
37
|
Lobby JL, Uddbäck I, Scharer CD, Mi T, Boss JM, Thomsen AR, Christensen JP, Kohlmeier JE. Persistent Antigen Harbored by Alveolar Macrophages Enhances the Maintenance of Lung-Resident Memory CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1778-1787. [PMID: 36162870 PMCID: PMC9588742 DOI: 10.4049/jimmunol.2200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022]
Abstract
Lung tissue-resident memory T cells are crucial mediators of cellular immunity against respiratory viruses; however, their gradual decline hinders the development of T cell-based vaccines against respiratory pathogens. Recently, studies using adenovirus (Ad)-based vaccine vectors have shown that the number of protective lung-resident CD8+ TRMs can be maintained long term. In this article, we show that immunization of mice with a replication-deficient Ad serotype 5 expressing influenza (A/Puerto Rico/8/34) nucleoprotein (AdNP) generates a long-lived lung TRM pool that is transcriptionally indistinct from those generated during a primary influenza infection. In addition, we demonstrate that CD4+ T cells contribute to the long-term maintenance of AdNP-induced CD8+ TRMs. Using a lineage tracing approach, we identify alveolar macrophages as a cell source of persistent NP Ag after immunization with AdNP. Importantly, depletion of alveolar macrophages after AdNP immunization resulted in significantly reduced numbers of NP-specific CD8+ TRMs in the lungs and airways. Combined, our results provide further insight to the mechanisms governing the enhanced longevity of Ag-specific CD8+ lung TRMs observed after immunization with recombinant Ad.
Collapse
Affiliation(s)
- Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| |
Collapse
|
38
|
Advancements in the characterization of tissue resident memory T cells in skin disease. Clin Immunol 2022; 245:109183. [DOI: 10.1016/j.clim.2022.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
39
|
Li G, Srinivasan S, Wang L, Ma C, Guo K, Xiao W, Liao W, Mishra S, Zhang X, Qiu Y, Lu Q, Liu Y, Zhang N. TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine. Nat Commun 2022; 13:6043. [PMID: 36229613 PMCID: PMC9562983 DOI: 10.1038/s41467-022-33768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
TGF-β signaling is necessary for CD8+ T cell differentiation into tissue resident memory T cells (TRM). Although higher frequency of CD8+ TRM cells in the tumor microenvironment is associated with better prognosis, TGF-β-blockade typically improves rather than worsens outcomes. Here we show that in a mouse melanoma model, in the tumor-draining lymph nodes (TDLN) rather than in the tumors themselves, stem-like CD8+ T cells differentiate into TRMs in a TGF-β and tumor antigen dependent manner. Following vaccination against a melanoma-specific epitope, most tumour-specific CD8+ T cells are maintained in a stem-like state, but a proportion of cells lost TRM status and differentiate into CX3CR1+ effector CD8+ T cells in the TDLN, which are subsequently migrating into the tumours. Disruption of TGF-β signaling changes the dynamics of these developmental processes, with the net result of improving effector CD8+ T cell migration into the tumours. In summary, TDLN stem-like T cells transiently switch from a TGF-β-dependent TRM differentiation program to an anti-tumor migratory effector development upon vaccination, which transition can be facilitated by targeted TGF-β blockade.
Collapse
Affiliation(s)
- Guo Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kai Guo
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Wenhao Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Dermatology, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, 410007, China
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
40
|
Xu W, Bergsbaken T, Edelblum KL. The multifunctional nature of CD103 (αEβ7 integrin) signaling in tissue-resident lymphocytes. Am J Physiol Cell Physiol 2022; 323:C1161-C1167. [PMID: 36036450 PMCID: PMC9576162 DOI: 10.1152/ajpcell.00338.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Intestinal tissue-resident lymphocytes are critical for maintenance of the mucosal barrier and to prevent enteric infections. The activation of these lymphocytes must be tightly regulated to prevent aberrant inflammation and epithelial damage observed in autoimmune diseases, yet also ensure that antimicrobial host defense remains uncompromised. Tissue-resident lymphocytes express CD103, or αE integrin, which dimerizes with the β7 subunit to bind to E-cadherin expressed on epithelial cells. Although the role of CD103 in homing and retention of lymphocytes to and within peripheral tissues has been well characterized, the molecular signals activated following CD103 engagement remain understudied. Here, we highlight recent studies that elucidate the functional contribution of CD103 in various lymphocyte subpopulations, either as an independent signaling molecule or in the context of TCR co-stimulation. Finally, we will discuss the gaps in our understanding of CD103 biology and the therapeutic potential of targeting CD103 on tissue-resident lymphocytes.
Collapse
Affiliation(s)
- Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Tessa Bergsbaken
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Karen L Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
41
|
Cheng L, Becattini S. Intestinal CD8 + tissue-resident memory T cells: From generation to function. Eur J Immunol 2022; 52:1547-1560. [PMID: 35985020 PMCID: PMC9804592 DOI: 10.1002/eji.202149759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T cells (Trm), and particularly the CD8+ subset, have been shown to play a pivotal role in protection against infections and tumors. Studies in animal models and human tissues have highlighted that, while a core functional program is shared by Trm at all anatomical sites, distinct tissues imprint unique features through specific molecular cues. The intestinal tissue is often the target of pathogens for local proliferation and penetration into the host systemic circulation, as well as a prominent site of tumorigenesis. Therefore, promoting the formation of Trm at this location is an appealing therapeutic option. The various segments composing the gastrointestinal tract present distinctive histological and functional characteristics, which may reflect on the imprinting of unique functional features in the respective Trm populations. What these features are, and whether they can effectively be harnessed to promote local and systemic immunity, is still under investigation. Here, we review how Trm are generated and maintained in distinct intestinal niches, analyzing the required molecular signals and the models utilized to uncover them. We also discuss evidence for a protective role of Trm against infectious agents and tumors. Finally, we integrate the knowledge obtained from animal models with that gathered from human studies.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Geneva Centre for Inflammation Research, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Geneva Centre for Inflammation Research, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
42
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
43
|
The Memory T Cell “Communication Web” in Context with Gastrointestinal Disorders—How Memory T Cells Affect Their Surroundings and How They Are Influenced by It. Cells 2022; 11:cells11182780. [PMID: 36139354 PMCID: PMC9497182 DOI: 10.3390/cells11182780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Gut-related diseases like ulcerative colitis, Crohn’s disease, or colorectal cancer affect millions of people worldwide. It is an ongoing process finding causes leading to the development and manifestation of those disorders. This is highly relevant since understanding molecular processes and signalling pathways offers new opportunities in finding novel ways to interfere with and apply new pharmaceuticals. Memory T cells (mT cells) and their pro-inflammatory properties have been proven to play an important role in gastrointestinal diseases and are therefore increasingly spotlighted. This review focuses on mT cells and their subsets in the context of disease pathogenesis and maintenance. It illustrates the network of regulatory proteins and metabolites connecting mT cells with other cell types and tissue compartments. Furthermore, the crosstalk with various microbes will be a subject of discussion. Characterizing mT cell interactions will help to further elucidate the sophisticated molecular and cellular networking system in the intestine and may present new ideas for future research approaches to control gut-related diseases.
Collapse
|
44
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
45
|
Wu Y, Biswas D, Usaite I, Angelova M, Boeing S, Karasaki T, Veeriah S, Czyzewska-Khan J, Morton C, Joseph M, Hessey S, Reading J, Georgiou A, Al-Bakir M, McGranahan N, Jamal-Hanjani M, Hackshaw A, Quezada SA, Hayday AC, Swanton C. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. NATURE CANCER 2022; 3:696-709. [PMID: 35637401 PMCID: PMC9236901 DOI: 10.1038/s43018-022-00376-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 01/26/2023]
Abstract
Murine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA-CD27- effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Yin Wu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Ieva Usaite
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics and Software Development & Machine Learning Team, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Justyna Czyzewska-Khan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cienne Morton
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Lab, University College London Cancer Institute, London, UK
| | - James Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Andrew Georgiou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Maise Al-Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Lab, University College London Cancer Institute, London, UK
| | - Allan Hackshaw
- Cancer Research UK & University College London Cancer Trials Centre, University College London, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
46
|
Lyu Y, Zhou Y, Shen J. An Overview of Tissue-Resident Memory T Cells in the Intestine: From Physiological Functions to Pathological Mechanisms. Front Immunol 2022; 13:912393. [PMID: 35711464 PMCID: PMC9192946 DOI: 10.3389/fimmu.2022.912393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The human intestine contains a complex network of innate and adaptive immune cells that provide protective immunity. The dysfunction of this network may cause various chronic diseases. A large number of T cells in the human intestine have been identified as tissue-resident memory T cells (TRM). TRM are present in the peripheral tissues, and they do not recirculate through the blood. It is known that TRM provide rapid immune responses at the frontline of pathogen invasion. Recent evidence also suggests that these cells play a role in tumor surveillance and the pathogenesis of autoimmune diseases. In this review, we discuss the general features of intestinal TRM together with their role in intestinal infection, colorectal cancer (CRC), and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | | | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Gähler A, Trufa DI, Chiriac MT, Tausche P, Hohenberger K, Brunst AK, Rauh M, Geppert CI, Rieker RJ, Krammer S, Leberle A, Neurath MF, Sirbu H, Hartmann A, Finotto S. Glucose-Restricted Diet Regulates the Tumor Immune Microenvironment and Prevents Tumor Growth in Lung Adenocarcinoma. Front Oncol 2022; 12:873293. [PMID: 35574343 PMCID: PMC9102798 DOI: 10.3389/fonc.2022.873293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLung cancer is the second common cancer type in western countries and has a high mortality. During the development and progression of the tumor, the nutrients in its environment play a central role. The tumor cells depend crucially on glucose metabolism and uptake. Tumor cell metabolism is dominated by the Warburg effect, where tumor cells produce large amounts of lactate from pyruvate under aerobic conditions. We thus reasoned that, reducing carbohydrates in the diet might support anti-tumoral effects of current immunotherapy and additionally target tumor immune escape.ObjectivesThe link between reducing carbohydrates to improve current immunotherapy is not clear. We thus aimed at analyzing the effects of different glucose levels on the tumor development, progression and the anti-tumoral immune response.MethodsWe correlated the clinical parameters of our LUAD cohort with different metabolic markers. Additionally, we performed cell culture experiments with A549 tumor cell line under different glucose levels. Lastly, we investigated the effect of low and high carbohydrate diet in an experimental murine model of lung cancer on the tumor progression and different immune subsets.ResultsHere we found a positive correlation between the body mass index (BMI), blood glucose levels, reduced overall survival (OS) and the expression of Insulin-like growth factor-1 receptor (IGF1R) in the lung tumoral region of patients with lung adenocarcinoma (LUAD). Furthermore, increasing extracellular glucose induced IGF1R expression in A549 LUAD cells. Functional studies in a murine model of LUAD demonstrated that, glucose restricted diet resulted in decreased tumor load in vivo. This finding was associated with increased presence of lung infiltrating cytotoxic CD8+ T effector memory (TEM), tissue resident memory T (TRM) and natural killer cells as well as reduced IGFR mRNA expression, suggesting that glucose restriction regulates lung immunity in the tumor microenvironment.ConclusionsThese results indicate that, glucose restricted diet improves lung immune responses of the host and suppresses tumor growth in experimental lung adenocarcinoma. As glucose levels in LUAD patients were negatively correlated to postoperative survival rates, glucose-restricted diet emerges as therapeutic avenue for patients with LUAD.
Collapse
Affiliation(s)
- Alexander Gähler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mircea T. Chiriac
- Department of Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ann-Kathrin Brunst
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Paediatrics and Adolescent Medicine, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Leberle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- *Correspondence: Susetta Finotto,
| |
Collapse
|
48
|
Igalouzene R, Hernandez-Vargas H, Benech N, Guyennon A, Bauché D, Barrachina C, Dubois E, Marie JC, Soudja SM. SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. J Clin Invest 2022; 132:151020. [PMID: 35426367 PMCID: PMC9012287 DOI: 10.1172/jci151020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
SMAD4, a mediator of TGF-β signaling, plays an important role in T cells to prevent inflammatory bowel disease (IBD). However, the precise mechanisms underlying this control remain elusive. Using both genetic and epigenetic approaches, we revealed an unexpected mechanism by which SMAD4 prevents naive CD8+ T cells from becoming pathogenic for the gut. Prior to the engagement of the TGF-β receptor, SMAD4 restrains the epigenetic, transcriptional, and functional landscape of the TGF-β signature in naive CD8+ T cells. Mechanistically, prior to TGF-β signaling, SMAD4 binds to promoters and enhancers of several TGF-β target genes, and by regulating histone deacetylation, suppresses their expression. Consequently, regardless of a TGF-β signal, SMAD4 limits the expression of TGF-β negative feedback loop genes, such as Smad7 and Ski, and likely conditions CD8+ T cells for the immunoregulatory effects of TGF-β. In addition, SMAD4 ablation conferred naive CD8+ T cells with both a superior survival capacity, by enhancing their response to IL-7, as well as an enhanced capacity to be retained within the intestinal epithelium, by promoting the expression of Itgae, which encodes the integrin CD103. Accumulation, epithelial retention, and escape from TGF-β control elicited chronic microbiota-driven CD8+ T cell activation in the gut. Hence, in a TGF-β–independent manner, SMAD4 imprints a program that preconditions naive CD8+ T cell fate, preventing IBD.
Collapse
Affiliation(s)
- Ramdane Igalouzene
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Nicolas Benech
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Alexandre Guyennon
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - David Bauché
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Célia Barrachina
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien C. Marie
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Saïdi M’Homa Soudja
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| |
Collapse
|
49
|
Parga-Vidal L, van Aalderen MC, Stark R, van Gisbergen KPJM. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 2022; 18:209-223. [PMID: 35079143 DOI: 10.1038/s41581-021-00525-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Konjar Š, Ficht X, Iannacone M, Veldhoen M. Heterogeneity of Tissue Resident Memory T cells. Immunol Lett 2022; 245:1-7. [DOI: 10.1016/j.imlet.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|