1
|
Shao Z, Wang L, Cao L, Chen T, Jia XM, Sun W, Gao C, Xiao H. The protein segregase VCP/p97 promotes host antifungal defense via regulation of SYK activation. PLoS Pathog 2024; 20:e1012674. [PMID: 39471181 PMCID: PMC11548748 DOI: 10.1371/journal.ppat.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024] Open
Abstract
C-type lectin receptors (CLRs) are essential to execute host defense against fungal infection. Nevertheless, a comprehensive understanding of the molecular underpinnings of CLR signaling remains a work in progress. Here, we searched for yet-to-be-identified tyrosine-phosphorylated proteins in Dectin-1 signaling and linked the stress-response protein valosin containing protein (VCP)/p97 to Dectin-1 signaling. Knockdown of VCP expression or chemical inhibition of VCP's segregase activity dampened Dectin-1-elicited SYK activation in BMDMs and BMDCs, leading to attenuated expression of proinflammatory cytokines/chemokines such as TNF-α, IL-6 and CXCL1. Biochemical analyses demonstrated that VCP and its cofactor UFD1 form a complex with SYK and its phosphatase SHP-1 following Dectin-1 ligation, and knockdown of VCP led to a more prominent SYK and SHP-1 association. Further, SHP-1 became polyubiquitinated upon Dectin-1 activation, and VCP or UFD1 overexpression accelerated SHP-1 degradation. Conceivably, VCP may promote Dectin-1 signaling by pulling the ubiquitinated SHP-1 out of the SYK complex for degradation. Finally, genetic ablation of VCP in the neutrophil and macrophage compartment rendered the mice highly susceptible to infection by Candida albicans, an observation also phenocopied by administering the VCP inhibitor. These results collectively demonstrate that VCP is a previously unappreciated signal transducer of the Dectin-1 pathway and a crucial component of antifungal defense, and suggest a new mechanism regulating SYK activation.
Collapse
Affiliation(s)
- Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Li Wang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
2
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
3
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
5
|
Chen L, Patil S, Barbon J, Waire J, Laroux S, McCarthy D, Pratibha M, Zhong S, Dong F, Orsi K, Nguyen G, Yang Y, Crosbie N, Dominguez E, Deora A, Veldman G, Westmoreland S, Jin L, Radstake T, White K, Wei HJ. Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution. JCI Insight 2024; 9:e176064. [PMID: 38781017 PMCID: PMC11383175 DOI: 10.1172/jci.insight.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Liang Chen
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suresh Patil
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - James Waire
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Stephen Laroux
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna McCarthy
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Mishra Pratibha
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suju Zhong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Feng Dong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Karin Orsi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Gunarso Nguyen
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Yingli Yang
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Nancy Crosbie
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Eric Dominguez
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Arun Deora
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | | | | | - Liang Jin
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Timothy Radstake
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Kevin White
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Hsi-Ju Wei
- AbbVie Bay Area, South San Francisco, California, USA
| |
Collapse
|
6
|
Zhao G, Li Y, Chen T, Liu F, Zheng Y, Liu B, Zhao W, Qi X, Sun W, Gao C. TRIM26 alleviates fatal immunopathology by regulating inflammatory neutrophil infiltration during Candida infection. PLoS Pathog 2024; 20:e1011902. [PMID: 38166150 PMCID: PMC10786383 DOI: 10.1371/journal.ppat.1011902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/12/2024] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.
Collapse
Affiliation(s)
- Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Yanqi Li
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaopeng Qi
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
7
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T, Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, Zhang LL, Nie YT, Zhu YJ, Yi XY, Zeng LB, Li JQ, Huang XT, Ji HB, Kozlakidis Z, Zhong L, Heeschen C, Zheng XQ, Chen C, Zhang P, Wang H. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell 2023; 41:1927-1944.e9. [PMID: 37738973 DOI: 10.1016/j.ccell.2023.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1β-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1β secretion via β-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Cheng-Xiang Yi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Cong-Cong Hu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Lu Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yun Zou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yi-Kai Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Le-Le Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ya-Ting Nie
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Jing Zhu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Xin-Yao Yi
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Ling-Bing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Jing-Quan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Tian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330052, China
| | - Hong-Bin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Christopher Heeschen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing 211135, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Wang L, Zhang K, Zeng Y, Luo Y, Peng J, Zhang J, Kuang T, Fan G. Gut mycobiome and metabolic diseases: The known, the unknown, and the future. Pharmacol Res 2023; 193:106807. [PMID: 37244385 DOI: 10.1016/j.phrs.2023.106807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Metabolic diseases, such as type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD) and obesity, have become a major public health problem worldwide. In recent years, most research on the role of gut microbes in metabolic diseases has focused on bacteria, whereas fungal microbes have been neglected. This review aims to provide a comprehensive overview of gut fungal alterations in T2DM, obesity, and NAFLD, and to discuss the mechanisms associated with disease development. In addition, several novel strategies targeting gut mycobiome and/or their metabolites to improve T2DM, obesity and NAFLD, including fungal probiotics, antifungal drugs, dietary intervention, and fecal microbiota transplantation, are critically discussed. The accumulated evidence suggests that gut mycobiome plays an important role in the occurrence and development of metabolic diseases. The possible mechanisms by which the gut mycobiome affects metabolic diseases include fungal-induced immune responses, fungal-bacterial interactions, and fungal-derived metabolites. Candida albicans, Aspergillus and Meyerozyma may be potential pathogens of metabolic diseases because they can activate the immune system and/or produce harmful metabolites. Moreover, Saccharomyces boulardii, S. cerevisiae, Alternaria, and Cochliobolus fungi may have the potential to improve metabolic diseases. The information may provide an important reference for the development of new therapeutics for metabolic diseases based on gut mycobiome.
Collapse
Affiliation(s)
- Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
9
|
Yang N, Wang M, Lin K, Wang M, Xu D, Han X, Zhao X, Wang Y, Wu G, Luo W, Liang G, Shan P. Dectin-1 deficiency alleviates diabetic cardiomyopathy by attenuating macrophage-mediated inflammatory response. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166710. [PMID: 37054997 DOI: 10.1016/j.bbadis.2023.166710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Cardiovascular diseases are the primary cause of mortality in patients with diabetes and obesity. Hyperglycemia and hyperlipidemia in diabetes alters cardiac function, which is associated with broader cellular processes such as aberrant inflammatory signaling. Recent studies have shown that a pattern recognition receptor called Dectin-1, expressed on macrophages, mediates pro-inflammatory responses in innate immunity. In the present study, we examined the role of Dectin-1 in the pathogenesis of diabetic cardiomyopathy. We observed increased Dectin-1 expression in heart tissues of diabetic mice and localized the source to macrophages. We then investigated the cardiac function in Dectin-1-deficient mice with STZ-induced type 1 diabetes and high-fat-diet-induced type 2 diabetes. Our results show that Dectin-1 deficient mice are protected against diabetes-induced cardiac dysfunction, cardiomyocyte hypertrophy, tissue fibrosis, and inflammation. Mechanistically, our studies show that Dectin-1 is important for cell activation and induction of inflammatory cytokines in high-concentration glucose and palmitate acid (HG + PA)-challenged macrophages. Deficiency of Dectin-1 generate fewer paracrine inflammatory factors capable of causing cardiomyocyte hypertrophy and fibrotic responses in cardiac fibroblasts. In conclusion, this study provides evidence that Dectin-1 mediates diabetes-induced cardiomyopathy through regulating inflammation. Dectin-1 may be a potential target to combat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Na Yang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Diyun Xu
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Peiren Shan
- Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
WU XUELIANG, GUAN SHAOYU, LU YONGGANG, XUE JUN, YU XIANGYANG, ZHANG QI, WANG XIMO, LI TIAN. Macrophage-derived SHP-2 inhibits the metastasis of colorectal cancer via Tie2-PI3K signals. Oncol Res 2023; 31:125-139. [PMID: 37304233 PMCID: PMC10207961 DOI: 10.32604/or.2023.028657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 06/13/2023] Open
Abstract
This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase (SHP-2) on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2 (Tie2)-expressing monocyte/macrophages (TEMs) and the influence of the angiopoietin(Ang)/Tie2-phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (Ang/Tie2-PI3K/Akt/mTOR) signaling pathway on the tumor microvascular remodeling in an immunosuppressive microenvironment. In vivo, SHP-2-deficient mice were used to construct colorectal cancer (CRC) liver metastasis models. SHP-2-deficient mice had significantly more metastatic cancer and inhibited nodules on the liver surface than wild-type mice, and the high-level expression of p-Tie2 was found in the liver tissue of the macrophages' specific SHP-2-deficient mice (SHP-2MAC-KO) + planted tumor mice. Compared with the SHP-2 wild type mice (SHP-2WT) + planted tumor group, the SHP-2MAC-KO + planted tumor group experienced increased expression of p-Tie2, p-PI3K, p-Akt, p-mTOR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), matrix metalloproteinase 2 (MMP2), and MMP9 in the liver tissue. TEMs selected by in vitro experiments were co-cultured with remodeling endothelial cells and tumor cells as carriers. It was found that when Angpt1/2 was used for stimulation, the SHP-2MAC-KO + Angpt1/2 group displayed evident increases in the expression of the Ang/Tie2-PI3K/Akt/mTOR pathway. The number of cells passing through the lower chamber and the basement membrane and the number of blood vessels formed by cells compared with the SHP-2WT + Angpt1/2 group, while these indexes were subjected to no changes under the simultaneous stimulation of Angpt1/2 + Neamine. To sum up, the conditional knockout of SHP-2 can activate the Ang/Tie2-PI3K/Akt/mTOR pathway in TEMs, thereby strengthening tumor micro angiogenesis in the microenvironment and facilitating CRC liver metastasis.
Collapse
Affiliation(s)
- XUELIANG WU
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
| | - SHAOYU GUAN
- 93868 Troop of the Chinese People’s Liberation Army, Yinchuan, 750021, China
| | - YONGGANG LU
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, 050051, China
| | - JUN XUE
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - XIANGYANG YU
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
| | - QI ZHANG
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - XIMO WANG
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - TIAN LI
- School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
11
|
Jia J, Liu B, Wang D, Wang X, Song L, Ren Y, Guo Z, Ma K, Cui C. CD93 promotes acute myeloid leukemia development and is a potential therapeutic target. Exp Cell Res 2022; 420:113361. [PMID: 36152731 DOI: 10.1016/j.yexcr.2022.113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
CD93 is a transmembrane receptor belonging to the Group XIV C-Type lectin family. It is expressed in a variety of cellular types such as monocytes, neutrophils, platelets, microglia, and endothelial cells. CD93 has been reported to play important roles in cell proliferation, cell migration, and tumor angiogenesis. Here, we show CD93 is highly expressed in M4 and M5 subtypes of acute myeloid leukemia (AML) patients, and highly expressed in leukemia stem cells, AML progenitor cells, as well as more differentiated AML cells. We found that CD93 promotes AML cell proliferation, while CD93 deficient AML cells commit to differentiation. We further show that CD93 exerts its proliferative function through downstream SHP-2/Syk/CREB cascade in AML cells. Moreover, human AML cells treated with CD93 mAb combined with αMFc-NC-DM1 (an IgG Fc specific antibody conjugated to maytansinoid DM1), showed a striking reduction of proliferation. Our study revealed that CD93 is a critical participator of AML development and provides a potential therapeutic cell surface target. (160 words).
Collapse
Affiliation(s)
- Jie Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Bin Liu
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Dandan Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiaohong Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lingrui Song
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yanzhang Ren
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
12
|
Progranulin aggravates lethal Candida albicans sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog 2022; 18:e1010873. [PMID: 36121866 PMCID: PMC9521894 DOI: 10.1371/journal.ppat.1010873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is the most frequent pathogen of fungal sepsis associated with substantial mortality in critically ill patients and those who are immunocompromised. Identification of novel immune-based therapeutic targets from a better understanding of its molecular pathogenesis is required. Here, we reported that the production of progranulin (PGRN) levels was significantly increased in mice after invasive C.albicans infection. Mice that lacked PGRN exhibited attenuated kidney injury and increased survival upon a lethal systemic infection with C. albicans. In mice, PGRN deficiency protected against systemic candidiasis by decreasing aberrant inflammatory reactions that led to renal immune cell apoptosis and kidney injury, and by enhancing antifungal capacity of macrophages and neutrophils that limited fungal burden in the kidneys. PGRN in hematopoietic cell compartment was important for this effect. Moreover, anti-PGRN antibody treatment limited renal inflammation and fungal burden and prolonged survival after invasive C. albicans infection. In vitro, PGRN loss increased phagocytosis, phagosome formation, reactive oxygen species production, neutrophil extracellular traps release, and killing activity in macrophages or neutrophils. Mechanistic studies demonstrated that PGRN loss up-regulated Dectin-2 expression, and enhanced spleen tyrosine kinase phosphorylation and extracellular signal-regulated kinase activation in macrophages and neutrophils. In summary, we identified PGRN as a critical factor that contributes to the immunopathology of invasive C.albicans infection, suggesting that targeting PGRN might serve as a novel treatment for fungal infection.
Collapse
|
13
|
Ma X, Tan X, Yu B, Sun W, Wang H, Hu H, Du Y, He R, Gao R, Peng Q, Cui Z, Pan T, Feng X, Wang J, Xu C, Zhu B, Liu W, Wang C. DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cell Mol Immunol 2022; 19:602-618. [PMID: 35079145 PMCID: PMC8787451 DOI: 10.1038/s41423-021-00835-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
Fungal infections cause ~1.5 million deaths each year worldwide, and the mortality rate of disseminated candidiasis currently exceeds that of breast cancer and malaria. The major reasons for the high mortality of candidiasis are the limited number of antifungal drugs and the emergence of drug-resistant species. Therefore, a better understanding of antifungal host defense mechanisms is crucial for the development of effective preventive and therapeutic strategies. Here, we report that DOCK2 (dedicator of cytokinesis 2) promotes indispensable antifungal innate immune signaling and proinflammatory gene expression in macrophages. DOCK2-deficient macrophages exhibit decreased RAC GTPase (Rac family small GTPase) activation and ROS (reactive oxygen species) production, which in turn attenuates the killing of intracellular fungi and the activation of downstream signaling pathways. Mechanistically, after fungal stimulation, activated SYK (spleen-associated tyrosine kinase) phosphorylates DOCK2 at tyrosine 985 and 1405, which promotes the recruitment and activation of RAC GTPases and then increases ROS production and downstream signaling activation. Importantly, nanoparticle-mediated delivery of in vitro transcribed (IVT) Rac1 mRNA promotes the activity of Rac1 and helps to eliminate fungal infection in vivo. Taken together, this study not only identifies a critical role of DOCK2 in antifungal immunity via regulation of RAC GTPase activity but also provides proof of concept for the treatment of invasive fungal infections by using IVT mRNA.
Collapse
Affiliation(s)
- Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanyun Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruirui He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ting Pan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junhan Wang
- University-Affiliated Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Ng L, Wang X, Yang C, Su C, Li M, Cheung AKL. Celastrol Downmodulates Alpha-Synuclein-Specific T Cell Responses by Mediating Antigen Trafficking in Dendritic Cells. Front Immunol 2022; 13:833515. [PMID: 35309340 PMCID: PMC8926036 DOI: 10.3389/fimmu.2022.833515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease that affects the elderly. It is associated with motor dysfunction due to the accumulation of misfolded or aggregated fibrillar alpha-synuclein (α-syn) in the mid-brain. Current treatments are mainly focused on relieving the symptoms but are accompanied by side effects and are limited in halting disease progression. Increasing evidence points to peripheral immune cells underlying disease development, especially T cells contributing to α-syn-related neuroinflammation in PD. The onset of these cells is likely mediated by dendritic cells (DCs), whose role in α-syn-specific responses remain less studied. Moreover, Traditional Chinese medicine (TCM)-derived compounds that are candidates to treat PD may alleviate DC-T cell-mediated immune responses. Therefore, our study focused on the role of DC in response to fibrillar α-syn and subsequent induction of antigen-specific T cell responses, and the effect of TCM Curcumin-analog C1 and Tripterygium wilfordii Hook F-derived Celastrol. We found that although fibrillar α-syn did not induce significant inflammatory or T cell-mediating cytokines, robust pro-inflammatory T cell responses were found by co-culturing fibrillar α-syn-pulsed DCs with α-syn-specific CD4+ T cells. Celastrol, but not C1, reduced the onset of pro-inflammatory T cell differentiation, through promoting interaction of endosomal, amphisomal, and autophagic vesicles with fibrillar α-syn, which likely lead to its degradation and less antigen peptides available for presentation and T cell recognition. In conclusion, regulating the intracellular trafficking/processing of α-syn by DCs can be a potential approach to control the progression of PD, in which Celastrol is a potential candidate to accomplish this.
Collapse
Affiliation(s)
- Lam Ng
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xiaohui Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chuanbin Yang
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Li
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Allen Ka Loon Cheung, ; Min Li,
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Allen Ka Loon Cheung, ; Min Li,
| |
Collapse
|
15
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
16
|
Wang Y, Zhou J, Zou Y, Chen X, Liu L, Qi W, Huang X, Chen C, Liu NN. Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Rep 2022; 38:110293. [PMID: 35081357 DOI: 10.1016/j.celrep.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xinhua Huang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
17
|
Zhu Y, Wu Z, Yan W, Shao F, Ke B, Jiang X, Gao J, Guo W, Lai Y, Ma H, Chen D, Xu Q, Sun Y. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Mol Med 2021; 14:e14455. [PMID: 34936223 PMCID: PMC8899919 DOI: 10.15252/emmm.202114455] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease with unclear molecular mechanisms. We found that the Src homology‐2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) was highly expressed in both psoriatic patients and imiquimod (IMQ)‐induced psoriasis‐like mice. Also, the SHP2 allosteric inhibitor SHP099 reduced pro‐inflammatory cytokine expression in PBMCs taken from psoriatic patients. Consistently, SHP099 significantly ameliorated IMQ‐triggered skin inflammation in mice. Single‐cell RNA sequencing of murine skin demonstrated that SHP2 inhibition impaired skin inflammation in myeloid cells, especially macrophages. Furthermore, IMQ‐induced psoriasis‐like skin inflammation was significantly alleviated in myeloid cells (monocytes, mature macrophages, and granulocytes)—but not dendritic cells conditional SHP2 knockout mice. Mechanistically, SHP2 promoted the trafficking of toll‐like receptor 7 (TLR7) from the Golgi to the endosome in macrophages by dephosphorylating TLR7 at Tyr1024, boosting the ubiquitination of TLR7 and NF‐κB‐mediated skin inflammation. Importantly, Tlr7 point‐mutant knock‐in mice showed an attenuated psoriasis‐like phenotype compared to wild‐type littermates following IMQ treatment. Collectively, our findings identify SHP2 as a novel regulator of psoriasis and suggest that SHP2 inhibition may be a promising therapeutic approach for psoriatic patients.
Collapse
Affiliation(s)
- Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Yan
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Zuo W, Li J, Jiang W, Zhang M, Ma Y, Gu Q, Wang X, Cai L, Shi L, Sun M. Dose-Sparing Intradermal DTaP-sIPV Immunization With a Hollow Microneedle Leads to Superior Immune Responses. Front Microbiol 2021; 12:757375. [PMID: 34759909 PMCID: PMC8573275 DOI: 10.3389/fmicb.2021.757375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Dose-sparing intradermal (ID) vaccination may induce the same immune responses as intramuscular (IM) vaccination, which can increase vaccine supplies and save costs. In this study, rats were immunized with fractional-dose of Sabin-derived IPV combined with diphtheria-tetanus-acellular pertussis vaccine (DTaP-sIPV) intradermally with hollow microneedle devices called MicronJet600 and the vaccine immunogenicity and efficacy were evaluated and compared with those of full-dose intramuscular immunization. We tested levels of antibodies and the subclass distribution achieved via different immunization routes. Furthermore, gene transcription in the lung and spleen, cytokine levels and protection against Bordetella pertussis (B. pertussis) infection were also examined. The humoral immune effect of DTaP-sIPV delivered with MicronJet600 revealed that this approach had a significant dose-sparing effect and induced more effective protection against B. pertussis infection by causing Th1/Th17 responses. In conclusion, ID immunization of DTaP-sIPV with the MicronJet600 is a better choice than IM immunization, and it has the potential to be a new DTaP-sIPV vaccination strategy.
Collapse
Affiliation(s)
- Weilun Zuo
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Mengyao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Yan Ma
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Qin Gu
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Lukui Cai
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Zajta E, Csonka K, Tóth A, Tiszlavicz L, Németh T, Orosz A, Novák Á, Csikós M, Vágvölgyi C, Mócsai A, Gácser A. Signaling through Syk or CARD9 Mediates Species-Specific Anti- Candida Protection in Bone Marrow Chimeric Mice. mBio 2021; 12:e0160821. [PMID: 34465030 PMCID: PMC8406149 DOI: 10.1128/mbio.01608-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
The spleen tyrosine kinase (Syk) and the downstream adaptor protein CARD9 are crucial signaling molecules in antimicrobial immunity. Candida parapsilosis is an emerging fungal pathogen with a high incidence in neonates, while Candida albicans is the most common agent of candidiasis. While signaling through Syk/CARD9 promotes protective host mechanisms in response to C. albicans, its function in immunity against C. parapsilosis remains unclear. Here, we generated Syk-/- and CARD9-/- bone marrow chimeric mice to study the role of Syk/CARD9 signaling in immune responses to C. parapsilosis compared to C. albicans. We demonstrate various functions of this pathway (e.g., phagocytosis, phagosome acidification, and killing) in Candida-challenged, bone marrow-derived macrophages with differential involvement of Syk and CARD9 along with species-specific differences in cytokine production. We report that Syk-/- or CARD9-/- chimeras rapidly display high susceptibility to C. albicans, while C. parapsilosis infection exacerbates over a prolonged period in these animals. Thus, our results establish that Syk and CARD9 contribute to systemic resistance to C. parapsilosis and C. albicans differently. Additionally, we confirm prior studies but also detail new insights into the fundamental roles of both proteins in immunity against C. albicans. Our data further suggest that Syk has a more prominent influence on anti-Candida immunity than CARD9. Therefore, this study reinforces the Syk/CARD9 pathway as a potential target for anti-Candida immune therapy. IMPORTANCE While C. albicans remains the most clinically significant Candida species, C. parapsilosis is an emerging pathogen with increased affinity to neonates. Syk/CARD9 signaling is crucial in immunity to C. albicans, but its role in in vivo responses to other pathogenic Candida species is largely unexplored. We used mice with hematopoietic systems deficient in Syk or CARD9 to comparatively study the function of these proteins in anti-Candida immunity. We demonstrate that Syk/CARD9 signaling has a protective role against C. parapsilosis differently than against C. albicans. Thus, this study is the first to reveal that Syk can exert immune responses during systemic Candida infections species specifically. Additionally, Syk-dependent immunity to a nonalbicans Candida species in an in vivo murine model has not been reported previously. We highlight that the contribution of Syk and CARD9 to fungal infections are not identical and underline this pathway as a promising immune-therapeutic target to fight Candida infections.
Collapse
Affiliation(s)
- Erik Zajta
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Katalin Csonka
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Adél Tóth
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Anita Orosz
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Ádám Novák
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Máté Csikós
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Nguyen GT, Xu S, Adams W, Leong JM, Bunnell SC, Mansour MK, Sykes DB, Mecsas J. Neutrophils require SKAP2 for reactive oxygen species production following C-type lectin and Candida stimulation. iScience 2021; 24:102871. [PMID: 34386732 PMCID: PMC8346660 DOI: 10.1016/j.isci.2021.102871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling cascades converting the recognition of pathogens to efficient inflammatory responses by neutrophils are critical for host survival. SKAP2, an adaptor protein, is required for reactive oxygen species (ROS) generation following neutrophil stimulation by integrins, formyl peptide receptors, and for host defense against the Gram-negative bacterial pathogens, Klebsiella pneumoniae and Yersinia pseudotuberculosis. Using neutrophils from murine HoxB8-immortalized progenitors, we show that SKAP2 in neutrophils is crucial for maximal ROS response to purified C-type lectin receptor agonists and to the fungal pathogens, Candida glabrata and Candida albicans, and for robust killing of C. glabrata. Inside-out signaling to integrin and Syk phosphorylation occurred independently of SKAP2 after Candida infection. However, Pyk2, ERK1/2, and p38 phosphorylation were significantly reduced after infection with C. glabrata and K. pneumoniae in Skap2-/- neutrophils. These data demonstrate the importance of SKAP2 in ROS generation and host defense beyond antibacterial immunity to include CLRs and Candida species.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - John M. Leong
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Stephen C. Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02115, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
21
|
Yoo DG, Paracatu LC, Xu E, Lin X, Dinauer MC. NADPH Oxidase Limits Collaborative Pattern-Recognition Receptor Signaling to Regulate Neutrophil Cytokine Production in Response to Fungal Pathogen-Associated Molecular Patterns. THE JOURNAL OF IMMUNOLOGY 2021; 207:923-937. [PMID: 34301842 DOI: 10.4049/jimmunol.2001298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/26/2021] [Indexed: 01/28/2023]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by genetic defects in leukocyte NADPH oxidase, which has both microbicidal and immunomodulatory roles. Hence, CGD is characterized by recurrent bacterial and fungal infections as well as aberrant inflammation. Fungal cell walls induce neutrophilic inflammation in CGD; yet, underlying mechanisms are incompletely understood. This study investigated the receptors and signaling pathways driving aberrant proinflammatory cytokine production in CGD neutrophils activated by fungal cell walls. Although cytokine responses to β-glucan particles were similar in NADPH oxidase-competent and NADPH oxidase-deficient mouse and human neutrophils, stimulation with zymosan, a more complex fungal particle, induced elevated cytokine production in NADPH oxidase-deficient neutrophils. The dectin-1 C-type lectin receptor, which recognizes β-glucans (1-3), and TLRs mediated cytokine responses by wild-type murine neutrophils. In the absence of NADPH oxidase, fungal pathogen-associated molecular patterns engaged additional collaborative signaling with Mac-1 and TLRs to markedly increase cytokine production. Mechanistically, this cytokine overproduction is mediated by enhanced proximal activation of tyrosine phosphatase SHP2-Syk and downstream Card9-dependent NF-κB and Card9-independent JNK-c-Jun. This activation and amplified cytokine production were significantly decreased by exogenous H2O2 treatment, enzymatic generation of exogenous H2O2, or Mac-1 blockade. Similar to zymosan, Aspergillus fumigatus conidia induced increased signaling in CGD mouse neutrophils for activation of proinflammatory cytokine production, which also used Mac-1 and was Card9 dependent. This study, to our knowledge, provides new insights into how NADPH oxidase deficiency deregulates neutrophil cytokine production in response to fungal cell walls.
Collapse
Affiliation(s)
- Dae-Goon Yoo
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Luana C Paracatu
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Evan Xu
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China; and
| | - Mary C Dinauer
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO; .,Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
22
|
Abstract
Each year, the global mortality rates for fungal diseases now exceed those for malaria and breast cancer and are currently comparable to those for tuberculosis and HIV. The limited scope of currently available antifungal drugs is the major factor underlying the observed high mortality rate. Here, we provide evidence that Myosin IF (MYO1F) plays a critical role in the mediating of signaling molecules “trafficking from membrane to cytoplasm,” and this process is essential for the antifungal signaling pathway activation. Moreover, we provide evidence that Sirt2 deacetylase inhibitors promote antifungal immunity and protect mice from lethal Candida albicans infection, which indicates that the Sirt2 could be a good therapeutic target for the antifungal drug development. Opportunistic fungal infections have become one of the leading causes of death among immunocompromised patients, resulting in an estimated 1.5 million deaths each year worldwide. The molecular mechanisms that promote host defense against fungal infections remain elusive. Here, we find that Myosin IF (MYO1F), an unconventional myosin, promotes the expression of genes that are critical for antifungal innate immune signaling and proinflammatory responses. Mechanistically, MYO1F is required for dectin-induced α-tubulin acetylation, acting as an adaptor that recruits both the adaptor AP2A1 and α-tubulin N-acetyltransferase 1 to α-tubulin; in turn, these events control the membrane-to-cytoplasm trafficking of spleen tyrosine kinase and caspase recruitment domain-containing protein 9. Myo1f-deficient mice are more susceptible than their wild-type counterparts to the lethal sequelae of systemic infection with Candida albicans. Notably, administration of Sirt2 deacetylase inhibitors, namely AGK2, AK-1, or AK-7, significantly increases the dectin-induced expression of proinflammatory genes in mouse bone marrow–derived macrophages and microglia, thereby protecting mice from both systemic and central nervous system C. albicans infections. AGK2 also promotes proinflammatory gene expression in human peripheral blood mononuclear cells after Dectin stimulation. Taken together, our findings describe a key role for MYO1F in promoting antifungal immunity by regulating the acetylation of α-tubulin and microtubules, and our findings suggest that Sirt2 deacetylase inhibitors may be developed as potential drugs for the treatment of fungal infections.
Collapse
|
23
|
Britt EA, Gitau V, Saha A, Williamson AP. Modular Organization of Engulfment Receptors and Proximal Signaling Networks: Avenues to Reprogram Phagocytosis. Front Immunol 2021; 12:661974. [PMID: 33953723 PMCID: PMC8092387 DOI: 10.3389/fimmu.2021.661974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protein engulfment receptors expressed on the surface of phagocytes engage ligands on apoptotic cells and debris to initiate a sequence of events culminating in material internalization and immunologically beneficial outcomes. Engulfment receptors are modular, comprised of functionally independent extracellular ligation domains and cytosolic signaling motifs. Cognate kinases, adaptors, and phosphatases regulate engulfment by controlling the degree of receptor activation in phagocyte plasma membranes, thus acting as receptor-proximal signaling modules. Here, we review recent efforts to reprogram phagocytes using modular synthetic receptors composed of antibody-based extracellular domains fused to engulfment receptor signaling domains. To aid the development of new phagocyte reprogramming methods, we then define the kinases, adaptors, and phosphatases that regulate a conserved family of engulfment receptors. Finally, we discuss current challenges and opportunities for the field.
Collapse
Affiliation(s)
- Emily A Britt
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Vanessa Gitau
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Amara Saha
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Adam P Williamson
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| |
Collapse
|
24
|
Chen X, Zhang H, Wang X, Shao Z, Li Y, Zhao G, Liu F, Liu B, Zheng Y, Chen T, Zheng H, Zhang L, Gao C. OTUD1 Regulates Antifungal Innate Immunity through Deubiquitination of CARD9. THE JOURNAL OF IMMUNOLOGY 2021; 206:1832-1843. [PMID: 33789983 DOI: 10.4049/jimmunol.2001253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
CARD9 is an essential adaptor protein in antifungal innate immunity mediated by C-type lectin receptors. The activity of CARD9 is critically regulated by ubiquitination; however, the deubiquitinases involved in CARD9 regulation remain incompletely understood. In this study, we identified ovarian tumor deubiquitinase 1 (OTUD1) as an essential regulator of CARD9. OTUD1 directly interacted with CARD9 and cleaved polyubiquitin chains from CARD9, leading to the activation of the canonical NF-κB and MAPK pathway. OTUD1 deficiency impaired CARD9-mediated signaling and inhibited the proinflammatory cytokine production following fungal stimulation. Importantly, Otud1 -/- mice were more susceptible to fungal infection than wild-type mice in vivo. Collectively, our results identify OTUD1 as an essential regulatory component for the CARD9 signaling pathway and antifungal innate immunity through deubiquitinating CARD9.
Collapse
Affiliation(s)
- Xiaorong Chen
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Xueer Wang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Yanqi Li
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China; and
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China;
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, 250012 Jinan, Shandong, People's Republic of China;
| |
Collapse
|
25
|
Zhang MW, Zhu ZH, Xia ZK, Yang X, Luo WT, Ao JH, Yang RY. Comprehensive circRNA-microRNA-mRNA network analysis revealed the novel regulatory mechanism of Trichosporon asahii infection. Mil Med Res 2021; 8:19. [PMID: 33750466 PMCID: PMC7941914 DOI: 10.1186/s40779-021-00311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. METHODS RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. RESULTS A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. CONCLUSIONS These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.
Collapse
Affiliation(s)
- Ming-Wang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
| | - Zhi-Hong Zhu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000 Hainan China
| | - Zhi-Kuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Wan-Ting Luo
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Jun-Hong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
| | - Rong-Ya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| |
Collapse
|
26
|
Specific inhibition of SHP2 suppressed abdominal aortic aneurysm formation in mice by augmenting the immunosuppressive function of MDSCs. Life Sci 2020; 265:118751. [PMID: 33189823 DOI: 10.1016/j.lfs.2020.118751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
AIMS To address the roles of SHP2 in regulating angiotensin II (Ang II) induced abdominal aortic aneurysm (AAA) and the potential molecular mechanisms. MAIN METHODS AAA model was established in apolipoprotein E-deficient (apoE-/-) mice infused with Ang II. Suprarenal aortic luminal diameters were ultrasonically measured to determine the presentation of AAA in mice. The inflammatory and immunosuppressive factors in serum were detected by ELISA. AAA lesion size, positive macrophages and elastic laminae degradation were examined by histological analysis. Myeloid-derived suppressor cells (MDSCs) were measured by flow cytometry after magnetic bead sorting. Bioinformatics analysis was applied to screen the crucial genes related the progression of AAA. KEY FINDINGS Treatment with PHPS1 (SHP2 inhibitor) significantly decreased the vascular diameter of AAA. Histological analysis showed that PHPS1 obviously reduced the Masson positive area, macrophages positive area, as well as the damage rate of elastic laminae. Moreover, PHPS1 suppressed the expression of INF-γ, TNF-α and MMPs, as well as elevated IL-10 and arginase-1 expression. Additionally, PHPS1 enhanced the expression of granulocytic MDSCs (G-MDSCs). By consulting with bioinformatics, STAT3 was selected. In G-MDSCs, PHPS1 stimulation obviously increased the phosphorylation level of STAT3, as well as elevated the protein expression of C/EBPβ and arginase-1. However, the above phenomena can be blocked after Stattic (STAT3 inhibitor) treatment. SIGNIFICANCE SHP2 may affect the AAA progression by interfering with expansion and function of MDSCs to regulate the body immunity, which might afford a novel direction for the treatment of patients with AAA.
Collapse
|
27
|
Chen J, He R, Sun W, Gao R, Peng Q, Zhu L, Du Y, Ma X, Guo X, Zhang H, Tan C, Wang J, Zhang W, Weng X, Man J, Bauer H, Wang QK, Martin BN, Zhang CJ, Li X, Wang C. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat Commun 2020; 11:1913. [PMID: 32312989 PMCID: PMC7171161 DOI: 10.1038/s41467-020-15564-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruirui He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Zhu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yanyun Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoli Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junhan Wang
- University-Affiliated Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hermann Bauer
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Bradley N Martin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cun-Jin Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, 44106, USA
| | - Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Wuhan Institute of Biotechnology, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Zhou C, Chen X, Planells-Cases R, Chu J, Wang L, Cao L, Li Z, López-Cayuqueo KI, Xie Y, Ye S, Wang X, Ullrich F, Ma S, Fang Y, Zhang X, Qian Z, Liang X, Cai SQ, Jiang Z, Zhou D, Leng Q, Xiao TS, Lan K, Yang J, Li H, Peng C, Qiu Z, Jentsch TJ, Xiao H. Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity 2020; 52:767-781.e6. [PMID: 32277911 DOI: 10.1016/j.immuni.2020.03.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.
Collapse
Affiliation(s)
- Chun Zhou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Limin Cao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Karen I López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Yadong Xie
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwei Ye
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Florian Ullrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Shixin Ma
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiyuan Fang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhikang Qian
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaozheng Liang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi-Qing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Dongming Zhou
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Tsan S Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jinbo Yang
- College of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huabin Li
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany; NeuroCure Cluster of Excellence, Charité University Medicine, D-10117 Berlin, Germany.
| | - Hui Xiao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
29
|
Tang Y, Zhang H, Xu H, Zeng W, Qiu Y, Tan C, Tang S, Zhang J. Dendritic Cells Promote Treg Expansion but Not Th17 Generation in Response to Talaromyces marneffei Yeast Cells. Infect Drug Resist 2020; 13:805-813. [PMID: 32210595 PMCID: PMC7075240 DOI: 10.2147/idr.s239906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background Dendritic cells (DCs) with both proinflammatory and tolerogenic properties have been implicated in modulation of CD4+ T cell responses in many fungal diseases. However, the role of DC in the context of Talaromyces marneffei (T. marneffei) infection has not been determined. In this study, we aimed to study the effect of the yeast form of T. marneffei yeasts on DCs, as well as the role of DCs in modulating T helper 17 (Th17) and regulatory T (Treg) cell responses to the pathogen. Methods Mouse bone marrow-derived DCs were stimulated with T. marneffei yeasts for 24 h. Frequencies of CD80 and CD86 expression on DCs and the levels of IL-6, IL-10 and TGF-β in the culture supernatant of yeast-stimulated DCs were detected by flow cytometry and ELISA, respectively. In co-culture experiments, CD4+ T lymphocytes of mice were isolated from the spleen using magnetic beads and co-cultured with T. marneffei yeasts, with or without DCs for 24 h. The proportions of Th17 and Treg cells in co-culture were detected by flow cytometry. The mRNA levels of RORγt and Foxp3 were detected by RT-PCR. Levels of IL-10 and TGF-β in the co-culture supernatant were detected by ELISA. Results The expressions of CD80 and CD86 on DCs were increased, as well as IL-6, IL-10 and TGF-β levels in the culture supernatant of T. marneffei-stimulated DCs were higher than those in DCs cultured without T. marneffei. In co-culture experiments, in the presence of DCs, T. marneffei promoted Treg expansion and Foxp3 up-regulation but limited Th17 and downregulated RORγt. Levels of IL-10 and TGF-β were higher in the co-culture containing DCs than without DCs. Conclusion Our findings demonstrated that the interaction between DCs and T. marneffei could promote Treg expansion but not Th17 generation. These findings provide a mechanism by which DCs may promote immune tolerance in T. marneffei infection.
Collapse
Affiliation(s)
- Yanping Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haiguang Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wen Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ye Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Caimei Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shudan Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jianquan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
30
|
Bai W, Wang Q, Deng Z, Li T, Xiao H, Wu Z. TRAF1 suppresses antifungal immunity through CXCL1-mediated neutrophil recruitment during Candida albicans intradermal infection. Cell Commun Signal 2020; 18:30. [PMID: 32093731 PMCID: PMC7038620 DOI: 10.1186/s12964-020-00532-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Candida albicans is the most common opportunistic human fungal pathogen. The chemokine ligand CXCL1 plays a protective role in fungal infection through the recruitment of neutrophils. TRAF1 (tumor necrosis factor-associated factor 1) can be highly induced by proinflammatory stimuli such as LPS and TNF and has been implicated in septic shock. However, the role of TRAF1 in infection, especially fungal infection, remains elusive. Herein, we reveal that TRAF1 suppresses the antifungal immune response to Candida albicans intradermal infection through the regulation of CXCL1 induction and neutrophil recruitment. Methods A mouse model of C. albicans intradermal infection was established. The Traf1−/− mice and Traf1−/− immortalized human keratinocytes were generated. The p65 inhibitor triptolide, STAT1 inhibitor fludarabine, neutrophil-depletion antibody Ly6G, and neutralizing antibody for CXCL1 were utilized. The expression of proinflammatory cytokines and chemokines was assessed by real-time PCR and ELISA, and the activation of signaling molecules was analyzed by Western blotting. Hematoxylin and eosin staining and periodic acid Schiff staining were used for histology or fungal detection, respectively. The immunofluorescence and flow cytometry analyses were employed in the assessment of immune cell infiltration. Bone marrow transplantation and adoptive transfer experiments were conducted to establish a role for TRAF1 in the macrophage compartment in fungal skin infection. Results TRAF1-deficient mice demonstrated improved control of Candida albicans intradermal infection, and concomitant increase in neutrophil recruitment and reduction in fungal burden. The chemokine CXCL1 was upregulated in the TRAF1-deficient macrophages treated with heat-killed C. albicans. Mechanistically, TRAF1-deficient macrophages showed increased activation of transcription factor NFκB p65. The human CXCL8 was also highly induced in the TRAF1-deficient human keratinocytes upon TNF stimulation through decreasing the activation of transcription factor STAT1. TRAF1-deficient macrophages played a critical role in containing the C. albicans skin infection in vivo. Conclusion TRAF1-deficient mice can better control fungal infection in the skin, a process attributable to the CXCL-neutrophil axis. Mechanistically, TRAF1 likely regulates CXCL1 expression in both macrophages and keratinocytes through the transcriptional factor NFκB and STAT1, respectively. Our finding offers new insight into the understanding of the immune regulatory mechanisms in host defense against C. albicans infection. Graphical abstract ![]()
Collapse
Affiliation(s)
- Wenjuan Bai
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center,
- Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510120, People's Republic of China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Qingqing Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zihou Deng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Hui Xiao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zhiyuan Wu
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center,
- Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
31
|
Bao L, Zhao Y, Liu C, Cao Q, Huang Y, Chen K, Song Z. The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. J Cancer 2020; 11:1712-1726. [PMID: 32194783 PMCID: PMC7052876 DOI: 10.7150/jca.38379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate the potential mechanisms contributing to metastasis of clear cell renal cell carcinoma (ccRCC), screen the hub genes, associated pathways of metastatic ccRCC and identify potential biomarkers. Methods: The ccRCC metastasis gene expression profile GSE47352 was employed to analyze the differentially expressed genes (DEGs). DAVID was performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction (PPI) network and modules were constructed. The function pathway, prognostic and diagnostic analysis of these hub genes was picked out to estimate their potential effects on metastasis of ccRCC. Results: A total of 873 DEGs were identified (503 upregulated genes and 370 downregulated genes). Meanwhile, top 20 hub genes were displayed. GO analysis showed that the top 20 hub genes were enriched in regulation of phosphatidylinositol 3-kinase signaling, positive regulation of DNA replication, protein autophosphorylation, protein tyrosine kinase activity, etc. KEGG analysis indicated these hub genes were enriched in the Ras signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, Pathways in cancer, etc. The GO and KEGG enrichment analyses for the hub genes disclosed important biological features of metastatic ccRCC. PPI network showed the interaction of top 20 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes was associated with metastasis, epithelial mesenchymal transition (EMT), hypoxia cancer and adipogenesis of ccRCC. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis uncovered that changes in signal pathways such as Ras signaling pathway, PI3K-Akt signaling pathway, etc. may be the main signatures of metastatic ccRCC. We identified several candidate biomarkers related with overall survival (OS) and disease-free survival (DFS) of ccRCC patients. Accordingly, they might be novel therapeutic targets and used as potential biomarkers for diagnosis, prognosis of ccRCC.
Collapse
Affiliation(s)
- Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ChenChen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
32
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
33
|
Shi L, Chen X, Zang A, Li T, Hu Y, Ma S, Lü M, Yin H, Wang H, Zhang X, Zhang B, Leng Q, Yang J, Xiao H. TSC1/mTOR-controlled metabolic-epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biol 2019; 17:e3000420. [PMID: 31433805 PMCID: PMC6719877 DOI: 10.1371/journal.pbio.3000420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) play pivotal roles in T-cell homeostasis and activation, and metabolic programing has been recently linked to DC development and function. However, the metabolic underpinnings corresponding to distinct DC functions remain largely unresolved. Here, we demonstrate a special metabolic–epigenetic coupling mechanism orchestrated by tuberous sclerosis complex subunit 1 (TSC1)-mechanistic target of rapamycin (mTOR) for homeostatic DC function. Specific ablation of Tsc1 in the DC compartment (Tsc1DC-KO) largely preserved DC development but led to pronounced reduction in naïve and memory–phenotype cluster of differentiation (CD)8+ T cells, a defect fully rescued by concomitant ablation of mTor or regulatory associated protein of MTOR, complex 1 (Rptor) in DCs. Moreover, Tsc1DC-KO mice were unable to launch efficient antigen-specific CD8+ T effector responses required for containing Listeria monocytogenes and B16 melanomas. Mechanistically, our data suggest that the steady-state DCs tend to tune down de novo fatty acid synthesis and divert acetyl-coenzyme A (acetyl-CoA) for histone acetylation, a process critically controlled by TSC1-mTOR. Correspondingly, TSC1 deficiency elevated acetyl-CoA carboxylase 1 (ACC1) expression and fatty acid synthesis, leading to impaired epigenetic imprinting on selective genes such as major histocompatibility complex (MHC)-I and interleukin (IL)-7. Remarkably, tempering ACC1 activity was able to divert cytosolic acetyl-CoA for histone acetylation and restore the gene expression program compromised by TSC1 deficiency. Taken together, our results uncover a crucial role for TSC1-mTOR in metabolic programing of the homeostatic DCs for T-cell homeostasis and implicate metabolic-coupled epigenetic imprinting as a paradigm for DC specification. Dendritic cells (DCs) play pivotal roles in T cell homeostasis and activation, but the basis of the metabolic programming of distinct DC functions remains unclear. This study identifies a novel metabolic-epigenetic node enabling DC control of CD8 T cell homeostasis, involving mTOR-ACC1 as a rheostat that balances fatty-acid synthesis and histone acetylation.
Collapse
Affiliation(s)
- Lei Shi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanxiang Hu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengdie Lü
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- * E-mail: (HX); (JY); (QL)
| | - Jinbo Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (HX); (JY); (QL)
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HX); (JY); (QL)
| |
Collapse
|
34
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
35
|
Ueno K, Otani Y, Yanagihara N, Nakamura T, Shimizu K, Yamagoe S, Miyazaki Y. Cryptococcus gattii alters immunostimulatory potential in response to the environment. PLoS One 2019; 14:e0220989. [PMID: 31398236 PMCID: PMC6688814 DOI: 10.1371/journal.pone.0220989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus gattii is a capsular fungal pathogen, which causes life-threatening cryptococcosis in immunocompetent individuals. This emerging pathogen is less likely to be recognized by innate immunity compared to traditional Cryptococcus neoformans strains. Previous studies indicate that C-type lectin receptors (CLRs), including dectin-1 and dectin-2, play a role in recognizing cryptococcal cells; however, it remains to be elucidated whether the receptors physically associate with C. gattii yeast cell surfaces. Based on the previous findings, we hypothesized that culture conditions influence the expression or exposure of CLR ligands on C. gattii. Therefore, in the present study, we first investigated the culture conditions that induce exposure of CLR ligands on C. gattii yeast cells via the binding assay using recombinant fusion proteins of mouse CLR and IgG Fc, Fc dectin-1 and Fc dectin-2. Common fungal culture media, such as yeast extract–peptone–dextrose (YPD) broth, Sabouraud broth, and potato dextrose agar, did not induce the exposure of dectin-1 ligands, including β-1,3-glucan, on both capsular and acapsular C. gattii strains, in contrast to Fc dectin-1 and Fc dectin-2 bound to C. gattii cells growing in the conventional synthetic dextrose (SD) medium [may also be referred to as a yeast nitrogen base with glucose medium]. The medium also induced the exposure of dectin-1 ligands on C. neoformans, whereas all tested media induced dectin-1 and dectin-2 ligands in a control fungus Candida albicans. Notably, C. gattii did not expose dectin-1 ligands in SD medium supplemented with yeast extract or neutral buffer. In addition, compared to YPD medium-induced C. gattii, SD medium-induced C. gattii more efficiently induced the phosphorylation of Syk, Akt, and Erk1/2 in murine dendritic cells (DCs). Afterwards, the cells were considerably engulfed by DCs and remarkably induced DCs to secrete the inflammatory cytokines. Overall, the findings suggest that C. gattii alters its immunostimulatory potential in response to the environment.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yoshiko Otani
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Takumi Nakamura
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
36
|
Brian BF, Jolicoeur AS, Guerrero CR, Nunez MG, Sychev ZE, Hegre SA, Sætrom P, Habib N, Drake JM, Schwertfeger KL, Freedman TS. Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells. eLife 2019; 8:e46043. [PMID: 31282857 PMCID: PMC6660195 DOI: 10.7554/elife.46043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.
Collapse
Affiliation(s)
- Ben F Brian
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | | | - Candace R Guerrero
- College of Biological Sciences Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaMinneapolisUnited States
| | - Myra G Nunez
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Zoi E Sychev
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
| | - Siv A Hegre
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pål Sætrom
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Nagy Habib
- Department of Surgery and CancerHammersmith Hospital, Imperial College LondonLondonUnited Kingdom
| | - Justin M Drake
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Department of UrologyUniversity of MinnesotaMinneapolisUnited States
| | - Kathryn L Schwertfeger
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUnited States
| | - Tanya S Freedman
- Department of PharmacologyUniversity of MinnesotaMinneapolisUnited States
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisUnited States
- Center for ImmunologyUniversity of MinnesotaMinneapolisUnited States
- Center for Autoimmune Diseases ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
37
|
Wang W, Deng Z, Wu H, Zhao Q, Li T, Zhu W, Wang X, Tang L, Wang C, Cui SZ, Xiao H, Chen J. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nat Commun 2019; 10:1015. [PMID: 30833559 PMCID: PMC6399272 DOI: 10.1038/s41467-019-08950-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/17/2019] [Indexed: 11/09/2022] Open
Abstract
Candida albicans can switch from commensal to pathogenic mode, causing mucosal or disseminated candidiasis. The host relies on pattern-recognition receptors including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) to sense invading fungal pathogens and launch immune defense mechanisms. However, the complex interplay between fungus and host innate immunity remains incompletely understood. Here we report that C. albicans upregulates expression of a small secreted cysteine-rich protein Sel1 upon encountering limited nitrogen and abundant serum. Sel1 activates NF-κB and MAPK signaling pathways, leading to expression of proinflammatory cytokines and chemokines. Comprehensive genetic and biochemical analyses reveal both TLR2 and TLR4 are required for the recognition of Sel1. Further, SEL1-deficient C. albicans display an impaired immune response in vivo, causing increased morbidity and mortality in a bloodstream infection model. We identify a critical component in the Candida-host interaction that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Longhai Tang
- Suzhou Blood Center, Suzhou, Jiangsu, 215000, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
38
|
Xiao P, Zhang H, Zhang Y, Zheng M, Liu R, Zhao Y, Zhang X, Cheng H, Cao Q, Ke Y. Phosphatase Shp2 exacerbates intestinal inflammation by disrupting macrophage responsiveness to interleukin-10. J Exp Med 2019; 216:337-349. [PMID: 30610104 PMCID: PMC6363431 DOI: 10.1084/jem.20181198] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Appropriate macrophage responsiveness to IL-10 is crucial for the maintenance of gut immune homeostasis. Xiao et al. demonstrate that phosphatase Shp2 restrains IL-10–mediated deactivation of macrophages and thus supports the progression of intestinal inflammation. Inflammatory cytokines produced by activated macrophages largely contribute to the pathological signs of inflammatory bowel disease (IBD). Interleukin-10 (IL-10) is the predominant anti-inflammatory cytokine in the intestine, and its therapeutic efficacy for IBD has been clinically tested. Nevertheless, how the function of IL-10 is regulated in the intestinal microenvironment remains unknown, which largely hinders the further development of IL-10–based therapeutic strategies. Here, we found that the expression of phosphatase Shp2 was increased in colonic macrophages and blood monocytes from IBD patients compared with those from healthy controls. Shp2 deficiency in macrophages protects mice from colitis and colitis-driven colon cancer. Mechanistically, Shp2 disrupts IL-10–STAT3 signaling and its dependent anti-inflammatory response in human and mouse macrophages. Furthermore, a Shp2-inducing role of TNF-α is unveiled in our study. Collectively, our work identifies Shp2 as a detrimental factor for intestinal immune homeostasis and hopefully will be helpful in the future exploitation of IL-10 immunotherapy for IBD.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huilun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhu Zheng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongbei Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Alzahrani KS, Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, El-Sherbeeny AM, Alhoshani AR, Alshammari MA, Alotaibi MR, Al-Harbi MM. Inhibition of spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed Pharmacother 2018; 111:347-358. [PMID: 30593001 DOI: 10.1016/j.biopha.2018.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is a debilitating autoimmune disease of the skin characterized by acanthosis and hyperkeratosis resulting from excessive growth of keratinocytes in the epidermis and inflammatory infiltrates in the dermis. Innate immune cells such as dendritic cells (DCs), perform a critical role in the pathophysiology of psoriasis by presenting inflammatory/costimulatory signals for differentiation of Th17 cells. Recent studies point to the involvement of spleen tyrosine kinase (SYK) in inflammatory signaling cascade of DCs. However, it is yet to be determined whether SYK inhibition in DCs would lead to diminishment of psoriatic inflammation. Therefore, our study evaluated the effects of SYK inhibitor, R406 on imiquimod (IMQ)-induced psoriasis-like inflammation, expression of costimulatory/inflammatory molecules in DCs and their relationship with Th17/Treg cells. Our data show that R406 causes attenuation of IMQ-induced dermal inflammation as shown by reduction in ear/back skin thickness, acanthosis and myeloperoxidase activity. This was concurrent with reduction in inflammatory cytokines and co-stimulatory molecules in CD11c + DCs such as IL-6, IL-23, MHCII, and CD40. This favoured the suppression of Th17 cells and upregulation of Treg cells in R406-treated mice with psoriasis-like inflammation. Direct activation of TLR7 by IMQ in splenocytic cultures led to increased SYK expression in CD11c + DCs and release of IL-23/IL-6. IMQ-induced IL-6/IL-23 levels were significantly diminished by SYK inhibitor, R406 in splenocytic cultures. In essence, our study shows that SYK inhibition supresses psoriasis-like inflammation by modifying DC function in mice. Further, it implies that SYK inhibition could be a prospective therapeutic approach for the treatment of psoriasis-like inflammation.
Collapse
Affiliation(s)
- Khalid S Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Iizuka A, Segawa S, Kondo Y, Kaneko S, Yokosawa M, Furuyama K, Miki H, Tahara-Hanaoka S, Shibuya A, Tsuboi H, Goto D, Matsumoto I, Shibayama S, Sumida T. Allergy inhibitory receptor-1 inhibits autoantibody production via upregulation of apoptotic debris clearance by macrophages. Int J Rheum Dis 2018; 21:2071-2078. [PMID: 30556363 DOI: 10.1111/1756-185x.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/26/2022]
Abstract
AIM Allergy inhibitory receptor-1 (Allergin-1) is a newly identified immune regulatory molecule thought to influence autoantibody production. Autoantibody production, like that observed in Allergin-1-deficient mice, is crucial in the pathogenesis of several autoimmune diseases such as systemic lupus erythematosus. The purpose of this study is to clarify the regulatory role of Allergin-1-mediated autoantibody production using a murine model of thymocytic anaphylaxis. METHODS C57BL/6 (WT) and Allergin-1-deficient mice were treated with apoptotic cells from naive thymocytes stimulated by dexamethasone. Antibody titers of total or immunoglobulin G (IgG) subclass of anti-double-stranded DNA (anti-dsDNA) and anti-histone antibody from serum were measured using an enzyme-linked immunosorbent assay. Macrophages from wild-type (WT) or Allergin-1-deficient mice were co-cultured with fluorescence-labeled apoptotic thymocytes or fluorogenic reagent and resultant phagocytic activity was quantified by with flow cytometry. RESULTS After apoptotic cells injection, antibody titers of total and IgG3 anti-dsDNA and total anti-histone from serum were significantly increased in Allergin-1-deficient versus WT mice. Phagocytic activity was significantly lower in macrophages from Allergin-1-deficient mice versus WT mice. CONCLUSION Allergin-1 might play an inhibitory role in autoantibody production via upregulation of macrophage phagocytosis.
Collapse
Affiliation(s)
- Akira Iizuka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Segawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunta Kaneko
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Yokosawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kotona Furuyama
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Miki
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Goto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shiro Shibayama
- Research Center of Immunology, ONO Pharmaceutical Co. Ltd., Osaka, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
41
|
Nguyen TNY, Padungros P, Wongsrisupphakul P, Sa-Ard-Iam N, Mahanonda R, Matangkasombut O, Choo MK, Ritprajak P. Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci Rep 2018; 8:17123. [PMID: 30459422 PMCID: PMC6244250 DOI: 10.1038/s41598-018-35101-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) abundantly express diverse receptors to recognize mannans in the outer surface of Candida cell wall, and these interactions dictate the host immune responses that determine disease outcomes. C. krusei prevalence in candidiasis worldwide has increased since this pathogen has developed multidrug resistance. However, little is known how the immune system responds to C. krusei. Particularly, the molecular mechanisms of the interplay between C. krusei mannan and DCs remain to be elucidated. We investigated how C. krusei mannan affected DC responses in comparison to C. albicans, C. tropicalis and C. glabrata mannan. Our results showed that only C. krusei mannan induced massive cytokine responses in DCs, and led to apoptosis. Although C. krusei mannan-activated DCs underwent apoptosis, they were still capable of initiating Th17 response. C. krusei mannan-mediated DC apoptosis was obligated to the TLR2 and MyD88 pathway. These pathways also controlled Th1/Th17 switching possibly by virtue of the production of the polarizing cytokines IL-12 and IL-6 by the C. krusei mannan activated-DCs. Our study suggests that TLR2 and MyD88 pathway in DCs are dominant for C. krusei mannan recognition, which differs from the previous reports showing a crucial role of C-type lectin receptors in Candida mannan sensing.
Collapse
Affiliation(s)
- Thu Ngoc Yen Nguyen
- Graduate program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panuwat Padungros
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Panachai Wongsrisupphakul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patcharee Ritprajak
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
42
|
Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, Zhao X. C-Type Lectin Receptor CD23 Is Required for Host Defense against Candida albicans and Aspergillus fumigatus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:2427-2440. [DOI: 10.4049/jimmunol.1800620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
|
43
|
Phagocytes from Mice Lacking the Sts Phosphatases Have an Enhanced Antifungal Response to Candida albicans. mBio 2018; 9:mBio.00782-18. [PMID: 30018105 PMCID: PMC6050958 DOI: 10.1128/mbio.00782-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mice lacking expression of the homologous phosphatases Sts-1 and Sts-2 (Sts−/− mice) are resistant to disseminated candidiasis caused by the fungal pathogen Candida albicans. To better understand the immunological mechanisms underlying the enhanced resistance of Sts−/− mice, we examined the kinetics of fungal clearance at early time points. In contrast to the rapid C. albicans growth seen in normal kidneys during the first 24 h postinfection, we observed a reduction in kidney fungal CFU within Sts−/− mice beginning at 12 to 18 h postinfection. This corresponds to the time period when large numbers of innate leukocytes enter the renal environment to counter the infection. Because phagocytes of the innate immune system are important for host protection against pathogenic fungi, we evaluated responses of bone marrow leukocytes. Relative to wild-type cells, Sts−/− marrow monocytes and bone marrow-derived dendritic cells (BMDCs) displayed a heightened ability to inhibit C. albicans growth ex vivo. This correlated with significantly enhanced production of reactive oxygen species (ROS) by Sts−/− BMDCs downstream of Dectin-1, a C-type lectin receptor that plays a critical role in stimulating host responses to fungi. We observed no visible differences in the responses of other antifungal effector pathways, including cytokine production and inflammasome activation, despite enhanced activation of the Syk tyrosine kinase downstream of Dectin-1 in Sts−/− cells. Our results highlight a novel mechanism regulating the immune response to fungal infections. Further understanding of this regulatory pathway could aid the development of therapeutic approaches to enhance protection against invasive candidiasis. Systemic candidiasis caused by fungal Candida species is becoming an increasingly serious medical problem for which current treatment is inadequate. Recently, the Sts phosphatases were established as key regulators of the host antifungal immune response. In particular, genetic inactivation of Sts significantly enhanced survival of mice infected intravenously with Candida albicans. The Sts−/−in vivo resistance phenotype is associated with reduced fungal burden and an absence of inflammatory lesions. To understand the underlying mechanisms, we studied phagocyte responses. Here, we demonstrate that Sts−/− phagocytes have heightened responsiveness to C. albicans challenge relative to wild-type cells. Our data indicate the Sts proteins negatively regulate phagocyte activation via regulating selective elements of the Dectin-1–Syk tyrosine kinase signaling axis. These results suggest that phagocytes lacking Sts respond to fungal challenge more effectively and that this enhanced responsiveness partially underlies the profound resistance of Sts−/− mice to systemic fungal challenge.
Collapse
|
44
|
Lillico DME, Pemberton JG, Stafford JL. Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Front Immunol 2018; 9:1144. [PMID: 30002653 PMCID: PMC6032007 DOI: 10.3389/fimmu.2018.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis evolved from a fundamental nutrient acquisition mechanism in primitive unicellular amoeboids, into a dynamic and complex component of innate immunity in multicellular organisms. To better understand the cellular mechanisms contributing to phagocytic processes across vertebrates, our research has focused on characterizing the involvement of innate immune proteins originally identified in channel catfish (Ictalurus punctatus) called leukocyte immune-type receptors (IpLITRs). These unique teleost proteins share basic structural as well as distant phylogenetic relationships with several immunoregulatory proteins within the mammalian immunoglobulin superfamily. In the present study, we use a combination of live-cell confocal imaging and high-resolution scanning electron microscopy to further examine the classical immunoreceptor tyrosine-based activation motif (ITAM)-dependent phagocytic pathway mediated by the chimeric construct IpLITR 2.6b/IpFcRγ-L and the functionally diverse immunoreceptor tyrosine-based inhibitory motif-containing receptor IpLITR 1.1b. Results demonstrate that IpLITR 1.1b-expressing cells can uniquely generate actin-dense filopodia-like protrusions during the early stages of extracellular target interactions. In addition, we observed that these structures retract after contacting extracellular targets to secure captured microspheres on the cell surface. This activity was often followed by the generation of robust secondary waves of actin polymerization leading to the formation of stabilized phagocytic cups. At depressed temperatures of 27°C, IpLITR 2.6b/IpFcRγ-L-mediated phagocytosis was completely blocked, whereas IpLITR 1.1b-expressing cells continued to generate dynamic actin-dense filopodia at this lower temperature. Overall, these results provide new support for the hypothesis that IpLITR 1.1b, but not IpLITR 2.6b/IpFcRγ-L, directly triggers filopodia formation when expressed in representative myeloid cells. This also offers new information regarding the directed ability of immunoregulatory receptor-types to initiate dynamic membrane structures and provides insights into an alternative ITAM-independent target capture pathway that is functionally distinct from the classical phagocytic pathways.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Abstract
Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
Collapse
Affiliation(s)
- Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institute, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, University of Texas Health Science Center, Houston, TX, USA
| | - Bart Jan Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
46
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
47
|
Pardo-Camacho C, González-Castro AM, Rodiño-Janeiro BK, Pigrau M, Vicario M. Epithelial immunity: priming defensive responses in the intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2018; 314:G247-G255. [PMID: 29146676 DOI: 10.1152/ajpgi.00215.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As the largest interface between the outside and internal milieu, the intestinal epithelium constitutes the first structural component facing potential luminal threats to homeostasis. This single-cell layer is the epicenter of a tightly regulated communication network between external and internal factors that converge to prime defensive responses aimed at limiting antigen penetration and the maintenance of intestinal barrier function. The defensive role developed by intestinal epithelial cells (IEC) relies largely on the variety of receptors they express at both extracellular (apical and basolateral) and intracellular compartments, and the capacity of IEC to communicate with immune and nervous systems. IEC recognize pathogen-associated molecules by innate receptors that promote the production of mucus, antimicrobial substances, and immune mediators. Epithelial cells are key to oral tolerance maintenance and also participate in adaptive immunity through the expression of immunoglobulin (Ig) receptors and by promoting local Ig class switch recombination. In IEC, different types of antigens can be sensed by multiple immune receptors that share signaling pathways to assure effective responses. Regulated defensive activity maintains intestinal homeostasis, whereas a breakdown in the control of epithelial immunity can increase the intestinal passage of luminal content and microbial invasion, leading to inflammation and tissue damage. In this review, we provide an updated overview of the type of immune receptors present in the human intestinal epithelium and the responses generated to promote effective barrier function and maintain mucosal homeostasis.
Collapse
Affiliation(s)
- Cristina Pardo-Camacho
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron , Barcelona , Spain.,Facultat de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Ana M González-Castro
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron , Barcelona , Spain.,Facultat de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron , Barcelona , Spain.,Facultat de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron , Barcelona , Spain.,Facultat de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - María Vicario
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron , Barcelona , Spain.,Facultat de Medicina, Universitat Autònoma de Barcelona , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| |
Collapse
|
48
|
Tang J, Lin G, Langdon WY, Tao L, Zhang J. Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front Immunol 2018; 9:123. [PMID: 29449845 PMCID: PMC5799234 DOI: 10.3389/fimmu.2018.00123] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Of all the pathogen recognition receptor families, C-type lectin receptor (CLR)-induced intracellular signal cascades are indispensable for the initiation and regulation of antifungal immunity. Ongoing experiments over the last decade have elicited diverse CLR functions and novel regulatory mechanisms of CLR-mediated-signaling pathways. In this review, we highlight novel insights in antifungal innate and adaptive-protective immunity mediated by CLRs and discuss the potential therapeutic strategies against fungal infection based on targeting the mediators in the host immune system.
Collapse
Affiliation(s)
- Juan Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoxin Lin
- Department of Pathology, The University of Iowa, Iowa City, IA, United States.,Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
49
|
Hsieh WC, Hsu TS, Chang YJ, Lai MZ. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun 2018; 9:463. [PMID: 29386580 PMCID: PMC5792625 DOI: 10.1038/s41467-018-02862-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
X-linked lymphoproliferative syndrome type-2 (XLP-2) is a primary immunodeficiency disease attributed to XIAP mutation and is triggered by infection. Here, we show that mouse Xiap-/- regulatory T (Treg) cells and human XIAP-deficient Treg cells are defective in suppressive function. The Xiap-/- Treg cell defect is linked partly to decreased SOCS1 expression. XIAP binds SOCS1 and promotes SOCS1 stabilization. Foxp3 stability is reduced in Xiap-/- Treg cells. In addition, Xiap-/- Treg cells are prone to IFN-γ secretion. Transfer of wild-type Treg cells partly rescues infection-induced inflammation in Xiap-/- mice. Notably, inflammation-induced reprogramming of Xiap-/- Treg cells can be prevented by blockade of the IL-6 receptor (IL-6R), and a combination of anti-IL-6R and Xiap-/- Treg cells confers survival to inflammatory infection in Xiap-/- mice. Our results suggest that XLP-2 can be corrected by combination treatment with autologous iTreg (induced Treg) cells and anti-IL-6R antibody, bypassing the necessity to transduce Treg cells with XIAP.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Molecular Biology, Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
50
|
Jubrail J, Kurian N, Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed J 2017; 40:305-312. [PMID: 29433833 PMCID: PMC6138611 DOI: 10.1016/j.bj.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023] Open
Abstract
In the normal non-diseased lung, various macrophage populations maintain homeostasis and sterility by ingesting and clearing inhaled particulates, pathogens and apoptotic cells from the local environment. This process of phagocytosis leads to the degradation of the internalized material, coordinated induction of gene expression, antigen presentation and cytokine production, implicating phagocytosis as a central regulator of innate immunity. Phagocytosis is extremely efficient and any perturbation of this function is deleterious. In inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), despite their increased numbers, macrophages demonstrate significantly reduced phagocytic capacity of bacteria and apoptotic cells. This defect could play a role in dysbiosis of the lung microbiome contributing to disease pathophysiology. In this review, we will discuss lung macrophages, describe phagocytosis and its related downstream processes and the reported phagocytosis defects in COPD. Finally, we will briefly examine current strategies that focus on restoring the phagocytic capabilities of lung macrophages that may have utility in COPD.
Collapse
Affiliation(s)
- Jamil Jubrail
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nisha Kurian
- AstraZeneca, Precision Medicine & Genomics, RIA Companion Diagnostics Unit, Sweden
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|