1
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412850. [PMID: 39887888 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yueyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Sichong Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Ruiwen Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Qingjun Jiang
- Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Watanabe-Matsui M, Kadoya S, Segawa K, Shima H, Nakagawa T, Nagasawa Y, Hayashi S, Matsumoto M, Ikeda M, Muto A, Ochiai K, Nguyen LC, Doh-Ura K, Shirouzu M, Nakayama K, Murayama K, Igarashi K. Heme regulates protein interactions and phosphorylation of BACH2 intrinsically disordered region in humoral response. iScience 2025; 28:111529. [PMID: 39758820 PMCID: PMC11699347 DOI: 10.1016/j.isci.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2023] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1). TBK1 inactivated BACH2 by phosphorylation of its IDR, whereas BACH2 repressed TBK1 gene expression. BACH2 phosphorylation by TBK1 inhibited its interaction with the co-repressor NCOR1 and promoted plasma cell differentiation. Heme also induced BACH2 binding to ubiquitin E3 ligase adaptor FBXO22, which polyubiquitinated BACH2 only in the presence of heme in vitro. Mutations of some of the TBK1-mediated phosphorylation sites promoted BACH2-FBXO22 interaction, while additional mutations abrogated their interaction, suggesting that TBK1 can both inhibit and promote BACH2-FBXO22 interaction. Therefore, heme regulates phosphorylation of BACH2 IDR by TBK1 and its interaction with NCOR1 and FBXO22, leading to de-repression of BACH2 target genes in humoral immunity.
Collapse
Affiliation(s)
- Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Shun Kadoya
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Segawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Hayashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Long C. Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Mitra M, Batista SL, Coller HA. Transcription factor networks in cellular quiescence. Nat Cell Biol 2025; 27:14-27. [PMID: 39789221 DOI: 10.1038/s41556-024-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways. We further cover the emerging mechanisms governing the dysregulation of quiescence TF networks with age. We explore how recent developments in single-cell technologies have enhanced our understanding of quiescence heterogeneity and gene regulatory networks. We further discuss how TFs and their activities are themselves regulated at the RNA, protein and chromatin levels. Finally, we summarize the challenges associated with defining TF networks in quiescent cells.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sandra L Batista
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Wei Y, Ma HK, Wong ME, Papasavvas E, Konnikova L, Tebas P, Morgenstern R, Montaner LJ, Ho YC. BACH2-driven tissue resident memory programs promote HIV-1 persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628794. [PMID: 39763845 PMCID: PMC11702684 DOI: 10.1101/2024.12.16.628794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors. BACH2 was the leading transcription factor that shaped gut tissue resident memory T cells (TRMs) into long-lived memory with restrained interferon-induced effector function. We found that HIV-1-infected cells were enriched in TRMs (80.8%). HIV-1-infected cells had increased BACH2 transcription factor accessibility, TRM (CD49a, CD69, CD103) and survival (IL7R) gene expression, and Th17 polarization (RORC, CCR6). In vitro gut CD4+ T cell infection revealed preferential infection and persistence of HIV-1 in CCR6+ TRMs. Overall, we found BACH2-driven TRM program promotes HIV-1 persistence and BACH2 as a new therapeutic target.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Michelle E Wong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | - Liza Konnikova
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Pablo Tebas
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Ricardo Morgenstern
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
5
|
Marin D, Fernandez GJ, Hernandez JC, Taborda N. A systems biology approach unveils different gene expression control mechanisms governing the immune response genetic program in peripheral blood mononuclear cells exposed to SARS-CoV-2. PLoS One 2024; 19:e0314754. [PMID: 39637135 PMCID: PMC11620636 DOI: 10.1371/journal.pone.0314754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024] Open
Abstract
COVID-19 and other pandemic viruses continue being important for public health and the global economy. Therefore, it is essential to explore the pathogenesis of COVID-19 more deeply, particularly its association with inflammatory and antiviral processes. In this study, we used the RNA-seq technique to analyze mRNA and non-coding RNA profiles of human peripheral blood mononuclear cells (PBMCs) from healthy individuals after SARS-CoV-2 in vitro exposure, to identify pathways related to immune response and the regulatory post-transcriptional mechanisms triggered that can serve as possible complementary therapeutic targets. Our analyses show that SARS-CoV-2 induced a significant regulation in the expression of 790 genes in PBMCs, of which 733 correspond to mRNAs and 57 to non-coding RNAs (lncRNAs). The immune response, antiviral response, signaling, cell proliferation and metabolism are the main biological processes involved. Among these, the inflammatory response groups the majority of regulated genes with an increase in the expression of chemokines involved in the recruitment of monocytes, neutrophils and T-cells. Additionally, it was observed that exposure to SARS-CoV-2 induces the expression of genes related to the IL-27 pathway but not of IFN-I or IFN-III, indicating the induction of ISGs through this pathway rather than the IFN genes. Moreover, several lncRNA and RNA binding proteins that can act in the cis-regulation of genes of the IL-27 pathway were identified. Our results indicate that SARS-CoV-2 can regulate the expression of multiple genes in PBMCs, mainly related to the inflammatory and antiviral response. Among these, lncRNAs establish an important mechanism in regulating the immune response to the virus. They could contribute to developing severe forms of COVID-19, constituting a possible therapeutic target.
Collapse
Affiliation(s)
- Damariz Marin
- GIOM, Facultad de Odontología, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Geysson Javier Fernandez
- Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia- UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia- UdeA, Medellín, Colombia
| | - Natalia Taborda
- Corporación Universitaria Remington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| |
Collapse
|
6
|
Yoo SP, Yuan X, Engstrom C, Chang P, Li S, Lathrop L, Lagosh J, Seet C, Kohn DB, Crooks GM. Stage-specific CAR-mediated signaling generates naïve-like, TCR-null CAR T cells from induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624041. [PMID: 39651198 PMCID: PMC11623545 DOI: 10.1101/2024.11.25.624041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Genetically modified, induced pluripotent stem cells (iPSCs) offer a promising allogeneic source for the generation of functionally enhanced, chimeric antigen receptor (CAR) T cells. However, the signaling of CARs during early T cell development and the removal of the endogenous T cell receptor required to prevent alloreactivity pose significant challenges to the production of mature conventional CAR T cells from iPSCs. Here, we show that TCR-null, CD8αβ CAR T cells can be efficiently generated from iPSCs by engineering stage-specific onset of CAR expression and signaling to both permit conventional T cell development and to induce efficient positive selection. CAR T cells produced using this approach displayed a uniform, naïve T cell phenotype and demonstrated superior antigen-specific cytotoxicity compared to iPSC-derived effector memory CAR T cells. Multimodal sequencing revealed CAR-mediated positive selection induced the persistent upregulation of key transcription factors involved in naïve T cell development. Achieving precise control of CAR expression and signaling in developmentally sensitive T precursors will be critical to realizing the full potential for "off-the-shelf", iPSC-derived cellular therapies.
Collapse
|
7
|
Parker ME, Mehta NU, Liao TC, Tomaszewski WH, Snyder SA, Busch J, Ciofani M. Restriction of innate Tγδ17 cell plasticity by an AP-1 regulatory axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618522. [PMID: 39463970 PMCID: PMC11507935 DOI: 10.1101/2024.10.15.618522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
IL-17-producing γδ T (Tγδ17) cells are innate-like mediators of intestinal barrier immunity. While Th17 cell and ILC3 plasticity have been extensively studied, the mechanisms governing Tγδ17 cell effector flexibility remain undefined. Here, we combined type 3 fate-mapping with single cell ATAC/RNA-seq multiome profiling to define the cellular features and regulatory networks underlying Tγδ17 cell plasticity. During homeostasis, Tγδ17 cell effector identity was stable across tissues, including for intestinal T-bet+ Tγδ17 cells that restrained IFNγ production. However, S. typhimurium infection induced intestinal Vγ6+ Tγδ17 cell conversion into type 1 effectors, with loss of IL-17A production and partial RORγt downregulation. Multiome analysis revealed a trajectory along Vγ6+ Tγδ17 effector conversion, with TIM-3 marking ex-Tγδ17 cells with enhanced type 1 functionality. Lastly, we characterized and validated a critical AP-1 regulatory axis centered around JunB and Fosl2 that controls Vγ6+ Tγδ17 cell plasticity by stabilizing type 3 identity and restricting type 1 effector conversion.
Collapse
Affiliation(s)
- Morgan E Parker
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Naren U Mehta
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William H Tomaszewski
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie A Snyder
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Julia Busch
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Scirgolea C, Sottile R, De Luca M, Susana A, Carnevale S, Puccio S, Ferrari V, Lise V, Contarini G, Scarpa A, Scamardella E, Feno S, Camisaschi C, De Simone G, Basso G, Giuliano D, Mazza EMC, Gattinoni L, Roychoudhuri R, Voulaz E, Di Mitri D, Simonelli M, Losurdo A, Pozzi D, Tsui C, Kallies A, Timo S, Martano G, Barberis E, Manfredi M, Rescigno M, Jaillon S, Lugli E. NaCl enhances CD8 + T cell effector functions in cancer immunotherapy. Nat Immunol 2024; 25:1845-1857. [PMID: 39198631 DOI: 10.1038/s41590-024-01923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
CD8+ T cells control tumors but inevitably become dysfunctional in the tumor microenvironment. Here, we show that sodium chloride (NaCl) counteracts T cell dysfunction to promote cancer regression. NaCl supplementation during CD8+ T cell culture induced effector differentiation, IFN-γ production and cytotoxicity while maintaining the gene networks responsible for stem-like plasticity. Accordingly, adoptive transfer of tumor-specific T cells resulted in superior anti-tumor immunity in a humanized mouse model. In mice, a high-salt diet reduced the growth of experimental tumors in a CD8+ T cell-dependent manner by inhibiting terminal differentiation and enhancing the effector potency of CD8+ T cells. Mechanistically, NaCl enhanced glutamine consumption, which was critical for transcriptional, epigenetic and functional reprogramming. In humans, CD8+ T cells undergoing antigen recognition in tumors and predicting favorable responses to checkpoint blockade immunotherapy resembled those induced by NaCl. Thus, NaCl metabolism is a regulator of CD8+ T cell effector function, with potential implications for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | | | | | | | | | - Simona Feno
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | | | | | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- University of Regensburg, Regensburg, Germany
- Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Thoracic, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Matteo Simonelli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Carlson Tsui
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Sara Timo
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Martano
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Milan, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Milan, Italy.
| |
Collapse
|
9
|
Markowitz GJ, Ban Y, Tavarez DA, Yoffe L, Podaza E, He Y, Martin MT, Crowley MJP, Sandoval TA, Gao D, Martin ML, Elemento O, Cubillos-Ruiz JR, McGraw TE, Altorki NK, Mittal V. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1 + progenitor CD8 + T cells to improve immunotherapy. Nat Immunol 2024; 25:1884-1899. [PMID: 39327500 DOI: 10.1038/s41590-024-01963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/13/2024] [Indexed: 09/28/2024]
Abstract
TCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy.
Collapse
Affiliation(s)
- Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Ban
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Enrique Podaza
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Gritstone Bio, Boston, MA, USA
| | - Yongfeng He
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Mitchell T Martin
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael J P Crowley
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | - Tito A Sandoval
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Altos Labs, Redwood City, CA, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
11
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Buquicchio FA, Fonseca R, Yan PK, Wang F, Evrard M, Obers A, Gutierrez JC, Raposo CJ, Belk JA, Daniel B, Zareie P, Yost KE, Qi Y, Yin Y, Nico KF, Tierney FM, Howitt MR, Lareau CA, Satpathy AT, Mackay LK. Distinct epigenomic landscapes underlie tissue-specific memory T cell differentiation. Immunity 2024; 57:2202-2215.e6. [PMID: 39043184 DOI: 10.1016/j.immuni.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Collapse
Affiliation(s)
- Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick K Yan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Fangyi Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacob C Gutierrez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathryn E Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Katherine F Nico
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Flora M Tierney
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Michael R Howitt
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
Bao K, Gu X, Song Y, Zhou Y, Chen Y, Yu X, Yuan W, Shi L, Zheng J, Hong M. TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma. Nat Commun 2024; 15:7850. [PMID: 39245681 PMCID: PMC11381517 DOI: 10.1038/s41467-024-52252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Immune memory has been expanded to group 2 innate lymphoid cells (ILC2s), but the cellular and molecular bases remain incompletely understood. Based on house dust mite (HDM)-induced mice asthma models and human samples, we applied flow cytometry, parabiosis, in vivo imaging and adoptive transplantation to confirm the persistence, migration and function of CD45+lineage-CD90.2+NK1.1-NKp46-ST2-KLRG1+IL-17RB+ memory-like ILC2s (ml-ILC2s). Regulated by CCR9/CCL25 and S1P signaling, ml-ILC2s reside in the lamina propria of small intestines (siLP) in asthma remission, and subsequently move to airway upon re-encountering antigens or alarmins. Furthermore, ml-ILC2s possess properties of longevity, potential of rapid proliferation and producing IL-13, and display transcriptional characteristics with up-regulation of Tox and Tcf-7. ml-ILC2s transplantation restore the asthmatic changes abrogated by Tox and Tcf7 knockdown. Our data identify siLP ml-ILC2s as a memory-like subset, which promotes asthma relapse. Targeting TCF-1 and TOX might be promising for preventing asthma recurrence.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Yu
- Nanjing Haikerui Pharmaceutical Technology Co., LTD, Nanjing, 210023, China
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Schelker RC, Fioravanti J, Mastrogiovanni F, Baldwin JG, Rana N, Li P, Chen P, Vadász T, Spolski R, Heuser-Loy C, Slavkovic-Lukic D, Noronha P, Damiano G, Raccosta L, Maggioni D, Pullugula S, Lin JX, Oh J, Grandinetti P, Lecce M, Hesse L, Kocks E, Martín-Santos A, Gebhard C, Telford WG, Ji Y, Restifo NP, Russo V, Rehli M, Herr W, Leonard WJ, Gattinoni L. LIM-domain-only 4 (LMO4) enhances CD8 + T-cell stemness and tumor rejection by boosting IL-21-STAT3 signaling. Signal Transduct Target Ther 2024; 9:199. [PMID: 39117617 PMCID: PMC11310520 DOI: 10.1038/s41392-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.
Collapse
Affiliation(s)
- Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timea Vadász
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Pedro Noronha
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Giuseppe Damiano
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Sree Pullugula
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Grandinetti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Lecce
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Leo Hesse
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Emilia Kocks
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- National Center for Tumor Diseases, WERA Site, Würzburg-Erlangen-Regensburg-Augsburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- University of Regensburg, Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Thakore PI, Schnell A, Huang L, Zhao M, Hou Y, Christian E, Zaghouani S, Wang C, Singh V, Singaraju A, Krishnan RK, Kozoriz D, Ma S, Sankar V, Notarbartolo S, Buenrostro JD, Sallusto F, Patsopoulos NA, Rozenblatt-Rosen O, Kuchroo VK, Regev A. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H17 cells. Nat Immunol 2024; 25:1395-1410. [PMID: 39009838 DOI: 10.1038/s41590-024-01901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Alexandra Schnell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Linglin Huang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Maryann Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chao Wang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anvita Singaraju
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh Kumar Krishnan
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deneen Kozoriz
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venkat Sankar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
16
|
Poch T, Bahn J, Casar C, Krause J, Evangelakos I, Gilladi H, Kunzmann LK, Laschtowitz A, Iuso N, Schäfer AM, Liebig LA, Steinmann S, Sebode M, Folseraas T, Engesæter LK, Karlsen TH, Franke A, Hubner N, Schlein C, Galun E, Huber S, Lohse AW, Gagliani N, Schwinge D, Schramm C. Intergenic risk variant rs56258221 skews the fate of naive CD4 + T cells via miR4464-BACH2 interplay in primary sclerosing cholangitis. Cell Rep Med 2024; 5:101620. [PMID: 38901430 PMCID: PMC11293351 DOI: 10.1016/j.xcrm.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Collapse
Affiliation(s)
- Tobias Poch
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Bahn
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hilla Gilladi
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Lilly K Kunzmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicola Iuso
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne-Marie Schäfer
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura A Liebig
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Silja Steinmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Trine Folseraas
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Lise K Engesæter
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Tom H Karlsen
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Samuel Huber
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17177 Solna, Sweden
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
17
|
Doll S, Schweizer L, Bollwein C, Steiger K, Pfarr N, Walker M, Wörtler K, Knebel C, von Eisenhart-Rothe R, Hartmann W, Weichert W, Mann M, Kuhn PH, Specht K. Proteomic Characterization of Undifferentiated Small Round Cell Sarcomas With EWSR1 and CIC::DUX4 Translocations Reveals Diverging Tumor Biology and Distinct Diagnostic Markers. Mod Pathol 2024; 37:100511. [PMID: 38705279 DOI: 10.1016/j.modpat.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Undifferentiated small round cell sarcomas (USRS) of bone and soft tissue are a group of tumors with heterogenic genomic alterations sharing similar morphology. In the present study, we performed a comparative large-scale proteomic analysis of USRS (n = 42) with diverse genomic translocations including classic Ewing sarcomas with EWSR1::FLI1 fusions (n = 24) or EWSR1::ERG fusions (n = 4), sarcomas with an EWSR1 rearrangement (n = 2), CIC::DUX4 fusion (n = 8), as well as tumors classified as USRS with no genetic data available (n = 4). Proteins extracted from formalin-fixed, paraffin-embedded pretherapeutic biopsies were analyzed qualitatively and quantitatively using shotgun mass spectrometry (MS). More than 8000 protein groups could be quantified using data-independent acquisition. Unsupervised hierarchical cluster analysis based on proteomic data allowed stratification of the 42 cases into distinct groups reflecting the different molecular genotypes. Protein signatures that significantly correlated with the respective genomic translocations were identified and used to generate a heatmap of all 42 sarcomas with assignment of cases with unknown molecular genetic data to either the EWSR1- or CIC-rearranged groups. MS-based prediction of sarcoma subtypes was molecularly confirmed in 2 cases where next-generation sequencing was technically feasible. MS also detected proteins routinely used in the immunohistochemical approach for the differential diagnosis of USRS. BCL11B highly expressed in Ewing sarcomas, and BACH2 as well as ETS-1 highly expressed in CIC::DUX4-associated sarcomas, were among proteins identified by the present proteomic study, and were chosen for immunohistochemical confirmation of MS data in our study cohort. Differential expressions of these 3 markers in the 2 genetic groups were further validated in an independent cohort of n = 34 USRS. Finally, our proteomic results point toward diverging signaling pathways in the different USRS subgroups.
Collapse
Affiliation(s)
- Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany; OmicEra Diagnostics GmbH, Planegg, Bavaria, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | | | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Maria Walker
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Klaus Wörtler
- Musculoskeletal Radiology Section, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Knebel
- Department of Orthopaedic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Specht
- Institute of Pathology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
18
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
19
|
Ahn T, Bae EA, Seo H. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol Ther 2024; 32:1617-1627. [PMID: 38582965 PMCID: PMC11184340 DOI: 10.1016/j.ymthe.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
T cell exhaustion, which is observed in various chronic infections and malignancies, is characterized by elevated expression of multiple inhibitory receptors, impaired effector functions, decreased proliferation, and reduced cytokine production. Notably, while adoptive T cell therapies, such as chimeric antigen receptor (CAR)-T therapy, have shown promise in treating cancer and other diseases, the efficacy of these therapies is often compromised by T cell exhaustion. It is imperative, therefore, to understand the mechanisms underlying this exhaustion to promote advances in T cell-related therapies. Here, we divided exhausted T cells into three distinct subsets according to their developmental and functional profiles: stem-like progenitor cells, intermediately exhausted cells, and terminally exhausted cells. These subsets are carefully regulated by synergistic mechanisms that involve transcriptional and epigenetic modulators. Key transcription factors, such as TCF1, BACH2, and TOX, are crucial for defining and sustaining exhaustion phenotypes. Concurrently, epigenetic regulators, such as TET2 and DNMT3A, shape the chromatin dynamics that direct T cell fate. The interplay of these molecular drivers has recently been highlighted in CAR-T research, revealing promising therapeutic directions. Thus, a profound understanding of exhausted T cell hierarchies and their molecular complexities may reveal innovative and improved tumor treatment strategies.
Collapse
Affiliation(s)
- Taeyoung Ahn
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Fan L, Liu J, Hu W, Chen Z, Lan J, Zhang T, Zhang Y, Wu X, Zhong Z, Zhang D, Zhang J, Qin R, Chen H, Zong Y, Zhang J, Chen B, Jiang J, Cheng J, Zhou J, Gao Z, Liu Z, Chai Y, Fan J, Wu P, Chen Y, Zhu Y, Wang K, Yuan Y, Huang P, Zhang Y, Feng H, Song K, Zeng X, Zhu W, Hu X, Yin W, Chen W, Wang J. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res 2024; 34:407-427. [PMID: 38491170 PMCID: PMC11143203 DOI: 10.1038/s41422-024-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/24/2024] [Indexed: 03/18/2024] Open
Abstract
Atherosclerosis (AS), a leading cause of cardio-cerebrovascular disease worldwide, is driven by the accumulation of lipid contents and chronic inflammation. Traditional strategies primarily focus on lipid reduction to control AS progression, leaving residual inflammatory risks for major adverse cardiovascular events (MACEs). While anti-inflammatory therapies targeting innate immunity have reduced MACEs, many patients continue to face significant risks. Another key component in AS progression is adaptive immunity, but its potential role in preventing AS remains unclear. To investigate this, we conducted a retrospective cohort study on tumor patients with AS plaques. We found that anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) significantly reduces AS plaque size. With multi-omics single-cell analyses, we comprehensively characterized AS plaque-specific PD-1+ T cells, which are activated and pro-inflammatory. We demonstrated that anti-PD-1 mAb, when captured by myeloid-expressed Fc gamma receptors (FcγRs), interacts with PD-1 expressed on T cells. This interaction turns the anti-PD-1 mAb into a substitute PD-1 ligand, suppressing T-cell functions in the PD-1 ligands-deficient context of AS plaques. Further, we conducted a prospective cohort study on tumor patients treated with anti-PD-1 mAb with or without Fc-binding capability. Our analysis shows that anti-PD-1 mAb with Fc-binding capability effectively reduces AS plaque size, while anti-PD-1 mAb without Fc-binding capability does not. Our work suggests that T cell-targeting immunotherapy can be an effective strategy to resolve AS in humans.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Junwei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Hu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology and Biostatistics and Department of Scientific Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Lan
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China
| | - Tongtong Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianpeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiwei Zhong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danyang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Qin
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Zong
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bing Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jifang Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiwei Gao
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junqiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinxuan Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuefeng Zhu
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Department of Respiratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiqin Feng
- Department of Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaichen Song
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Zeng
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Huang Q, H J Cao W, Curio S, Yu H, Denman R, Chen E, Schreuder J, Dight J, Chaudhry M, Jacquelot N, Wimmer VC, Seillet C, Möröy T, Belz GT. GFI1B specifies developmental potential of innate lymphoid cell progenitors in the lungs. Sci Immunol 2024; 9:eadj2654. [PMID: 38820141 DOI: 10.1126/sciimmunol.adj2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.
Collapse
Affiliation(s)
- Qiutong Huang
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Wang H J Cao
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophie Curio
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Huiyang Yu
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Renae Denman
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Evelyn Chen
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jaring Schreuder
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - James Dight
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - M Chaudhry
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology; Department of Microbiology, Immunology and Infectious Diseases; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Verena C Wimmer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarik Möröy
- Institut de recherches cliniques de Montreal, Université de Montréal, Montreal, QC H2W 1R7, Canada
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Zwick D, Vo MT, Shim YJ, Reijonen H, Do JS. BACH2: The Future of Induced T-Regulatory Cell Therapies. Cells 2024; 13:891. [PMID: 38891024 PMCID: PMC11172166 DOI: 10.3390/cells13110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
BACH2 (BTB Domain and CNC Homolog 2) is a transcription factor that serves as a central regulator of immune cell differentiation and function, particularly in T and B lymphocytes. A picture is emerging that BACH2 may function as a master regulator of cell fate that is exquisitely sensitive to cell activation status. In particular, BACH2 plays a key role in stabilizing the phenotype and suppressive function of transforming growth factor-beta (TGF-β)-derived human forkhead box protein P3 (FOXP3)+ inducible regulatory T cells (iTregs), a cell type that holds great clinical potential as a cell therapeutic for diverse inflammatory conditions. As such, BACH2 potentially could be targeted to overcome the instability of the iTreg phenotype and suppressive function that has hampered their clinical application. In this review, we focus on the role of BACH2 in T cell fate and iTreg function and stability. We suggest approaches to modulate BACH2 function that may lead to more stable and efficacious Treg cell therapies.
Collapse
Affiliation(s)
- Daniel Zwick
- Frederick National Laboratory, Frederick, MD 21701, USA
| | - Mai Tram Vo
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Young Jun Shim
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Helena Reijonen
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| | - Jeong-su Do
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
23
|
Restifo NP, Gattinoni L. Synthetic soldiers: Turning T cells into immortal warriors. J Exp Med 2024; 221:e20240258. [PMID: 38634804 PMCID: PMC11032022 DOI: 10.1084/jem.20240258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.org/10.1084/jem.20232368) describe how disruption of BCOR and ZC3H12A unleashes anti-tumor T cells with unprecedented lifespan and killer instinct. Are we witnessing the birth of immortal super-soldiers in medicine?
Collapse
Affiliation(s)
- Nicholas P. Restifo
- Marble Therapeutics, Boston, MA, USA
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Ochiai K, Shima H, Tamahara T, Sugie N, Funayama R, Nakayama K, Kurosaki T, Igarashi K. Accelerated plasma-cell differentiation in Bach2-deficient mouse B cells is caused by altered IRF4 functions. EMBO J 2024; 43:1947-1964. [PMID: 38605225 PMCID: PMC11099079 DOI: 10.1038/s44318-024-00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Toru Tamahara
- Division of Community Oral Health Science, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Sendai, 980-8573, Japan
| | - Nao Sugie
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory for Lymhocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| |
Collapse
|
25
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
26
|
Weng X, Zheng M, Liu Y, Lou G. The role of Bach2 in regulating CD8 + T cell development and function. Cell Commun Signal 2024; 22:169. [PMID: 38459508 PMCID: PMC10921639 DOI: 10.1186/s12964-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Bach2 was initially discovered in B cells, where it was revealed to control the transcription involved in cell differentiation. Bach2 is intimately connected to CD8 + T lymphocytes in various differentiation states and subsets according to recent findings. Bach2 can regulate primitive T cells, stimulate the development and differentiation of memory CD8 + T cells, inhibit the differentiation of effector CD8 + T cells, and play a significant role in the exhaustion of CD8 + T cells. The appearance and development of diseases are tightly linked to irregular CD8 + T cell differentiation and function. Accordingly, Bach2 offers novel approaches and possible targets for the clinical treatment of associated disorders based on research on these pathways. Here, we summarize the role of Bach2 in the function and differentiation of CD8 + T cells and its potential clinical applications.
Collapse
Affiliation(s)
- Xinyu Weng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Watson NB, Patel RK, Kean C, Veazey J, Oyesola OO, Laniewski N, Grenier JK, Wang J, Tabilas C, Yee Mon KJ, McNairn AJ, Peng SA, Wesnak SP, Nzingha K, Davenport MP, Tait Wojno ED, Scheible KM, Smith NL, Grimson A, Rudd BD. The gene regulatory basis of bystander activation in CD8 + T cells. Sci Immunol 2024; 9:eadf8776. [PMID: 38394230 DOI: 10.1126/sciimmunol.adf8776] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
CD8+ T cells are classically recognized as adaptive lymphocytes based on their ability to recognize specific foreign antigens and mount memory responses. However, recent studies indicate that some antigen-inexperienced CD8+ T cells can respond to innate cytokines alone in the absence of cognate T cell receptor stimulation, a phenomenon referred to as bystander activation. Here, we demonstrate that neonatal CD8+ T cells undergo a robust and diverse program of bystander activation, which corresponds to enhanced innate-like protection against unrelated pathogens. Using a multi-omics approach, we found that the ability of neonatal CD8+ T cells to respond to innate cytokines derives from their capacity to undergo rapid chromatin remodeling, resulting in the usage of a distinct set of enhancers and transcription factors typically found in innate-like T cells. We observed that the switch between innate and adaptive functions in the CD8+ T cell compartment is mediated by changes in the abundance of distinct subsets of cells. The innate CD8+ T cell subset that predominates in early life was also present in adult mice and humans. Our findings provide support for the layered immune hypothesis and indicate that the CD8+ T cell compartment is more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Connor Kean
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Nathan Laniewski
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer K Grenier
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Adrian J McNairn
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Seth A Peng
- Department of Clinical Science, Cornell University, Ithaca, NY 14853, USA
| | - Samantha P Wesnak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kito Nzingha
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Kristin M Scheible
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Akshay A, Katoch M, Shekarchizadeh N, Abedi M, Sharma A, Burkhard FC, Adam RM, Monastyrskaya K, Gheinani AH. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience 2024; 13:giad111. [PMID: 38206587 PMCID: PMC10783149 DOI: 10.1093/gigascience/giad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain optimal performance. RESULTS To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the use of ML in research, specifically focusing on classification problems at present. By integrating 4 essential functionalities-namely, Data Exploration, AutoML, CustomML, and Visualization-MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on 6 distinct datasets, each presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets, reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme's feature selection functionality, we successfully identified significant markers for CD8+ naive (BACH2), CD16+ (CD16), and CD14+ (VCAN) cell populations. CONCLUSION MLme serves as a valuable resource for leveraging ML to facilitate insightful data analysis and enhance research outcomes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available at https://github.com/FunctionalUrology/MLme.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mitali Katoch
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Navid Shekarchizadeh
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 04105 Leipzig, Germany
| | - Masoud Abedi
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
| | - Ankush Sharma
- KG Jebsen Centre for B-cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Fiona C Burkhard
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, 02115 Boston, MA, USA
- Department of Surgery, Harvard Medical School, 02115 Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Katia Monastyrskaya
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Urological Diseases Research Center, Boston Children's Hospital, 02115 Boston, MA, USA
- Department of Surgery, Harvard Medical School, 02115 Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| |
Collapse
|
29
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DS, Li Z, DeBarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. eLife 2023; 12:RP87900. [PMID: 38127070 PMCID: PMC10735224 DOI: 10.7554/elife.87900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, intracellular bacteria, and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and memory. Comparative Argonaute-2 high-throughput sequencing of crosslinking immunoprecipitation (AHC) combined with gene expression profiling in normal and miR-15/16-deficient mouse T cells revealed a large network of hundreds of direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak. This binding site was among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16-binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of interleukin 2 (IL-2) and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence in mice following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long non-coding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Dimitre S Simeonov
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Rachel DeBarge
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
- Parker Institute for Cancer Immunotherapy, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Medicine, University of California San FranciscoLexingtonUnited States
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
30
|
Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, Zhang B, Evans AC, Wesolowski AJ, Conti AG, Yang J, Lauder SN, Clement M, Humphreys IR, Dooley J, Burton O, Liston A, Alloisio M, Voulaz E, Langhorne J, Okkenhaug K, Lugli E, Roychoudhuri R. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon T reg depletion. Sci Immunol 2023; 8:eabo5558. [PMID: 38100544 PMCID: PMC7615475 DOI: 10.1126/sciimmunol.abo5558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Francis M Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Leqi Tang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Baojie Zhang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander C Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander J Wesolowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Mathew Clement
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
31
|
Zhou P, Shi H, Huang H, Sun X, Yuan S, Chapman NM, Connelly JP, Lim SA, Saravia J, Kc A, Pruett-Miller SM, Chi H. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 2023; 624:154-163. [PMID: 37968405 PMCID: PMC10700132 DOI: 10.1038/s41586-023-06733-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
33
|
McCutcheon SR, Swartz AM, Brown MC, Barrera A, McRoberts Amador C, Siklenka K, Humayun L, Ter Weele MA, Isaacs JM, Reddy TE, Allen AS, Nair SK, Antonia SJ, Gersbach CA. Transcriptional and epigenetic regulators of human CD8 + T cell function identified through orthogonal CRISPR screens. Nat Genet 2023; 55:2211-2223. [PMID: 37945901 PMCID: PMC10703699 DOI: 10.1038/s41588-023-01554-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Adam M Swartz
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Christian McRoberts Amador
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Durham, NC, USA
| | - Keith Siklenka
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Lucas Humayun
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Maria A Ter Weele
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - James M Isaacs
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC, USA
| | - Timothy E Reddy
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Andrew S Allen
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Scott J Antonia
- Duke Cancer Institute Center for Cancer Immunotherapy, Duke University School of Medicine, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
34
|
Schnoegl D, Hiesinger A, Huntington ND, Gotthardt D. AP-1 transcription factors in cytotoxic lymphocyte development and antitumor immunity. Curr Opin Immunol 2023; 85:102397. [PMID: 37931499 DOI: 10.1016/j.coi.2023.102397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
The proper functioning of cytotoxic lymphocytes, such as natural killer and CD8+ T cells, is essential for effective cancer-immunity and immunotherapy responses. The differentiation of these cells is controlled by several transcription factors (TFs), including members of the activator protein (AP)-1 family. The activity of AP-1 family members is regulated by various immune signaling pathways, which can be triggered by activating or inhibitory receptors as well as cytokines. The target genes controlled by AP-1 TFs are central to generate immunity to pathogens or malignancies. Here, we provide an overview of the current understanding of how AP-1 TFs regulate cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Diana Schnoegl
- Institute for Rheumatology and Immunology, Medical University of Graz, Austria; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Hiesinger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
35
|
Louie RHY, Cai C, Samir J, Singh M, Deveson IW, Ferguson JM, Amos TG, McGuire HM, Gowrishankar K, Adikari T, Balderas R, Bonomi M, Ruella M, Bishop D, Gottlieb D, Blyth E, Micklethwaite K, Luciani F. CAR + and CAR - T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies. Nat Commun 2023; 14:7767. [PMID: 38012187 PMCID: PMC10682404 DOI: 10.1038/s41467-023-43656-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is effective in treating B cell malignancies, but factors influencing the persistence of functional CAR+ T cells, such as product composition, patients' lymphodepletion, and immune reconstitution, are not well understood. To shed light on this issue, here we conduct a single-cell multi-omics analysis of transcriptional, clonal, and phenotypic profiles from pre- to 1-month post-infusion of CAR+ and CAR- T cells from patients from a CARTELL study (ACTRN12617001579381) who received a donor-derived 4-1BB CAR product targeting CD19. Following infusion, CAR+ T cells and CAR- T cells shows similar differentiation profiles with clonally expanded populations across heterogeneous phenotypes, demonstrating clonal lineages and phenotypic plasticity. We validate these findings in 31 patients with large B cell lymphoma treated with CD19 CAR T therapy. For these patients, we identify using longitudinal mass-cytometry data an association between NK-like subsets and clinical outcomes at 6 months with both CAR+ and CAR- T cells. These results suggest that non-CAR-derived signals can provide information about patients' immune recovery and be used as correlate of clinically relevant parameters.
Collapse
Affiliation(s)
- Raymond Hall Yip Louie
- School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Curtis Cai
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jerome Samir
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | | | - Timothy G Amos
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Helen Marie McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kavitha Gowrishankar
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thiruni Adikari
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Martina Bonomi
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- Department of Physics, University of Bologna, Bologna, Italy
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bishop
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - David Gottlieb
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Garvan Institute for Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Wei Y, Davenport TC, Collora JA, Ma HK, Pinto-Santini D, Lama J, Alfaro R, Duerr A, Ho YC. Single-cell epigenetic, transcriptional, and protein profiling of latent and active HIV-1 reservoir revealed that IKZF3 promotes HIV-1 persistence. Immunity 2023; 56:2584-2601.e7. [PMID: 37922905 PMCID: PMC10843106 DOI: 10.1016/j.immuni.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Timothy C Davenport
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Delia Pinto-Santini
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Javier Lama
- Asociación Civil Impacta Salud y Educación, Lima 15063, Perú
| | - Ricardo Alfaro
- Centro de Investigaciones Tecnológicas Biomédicas y Medioambientales (CITBM), Lima 07006, Perú
| | - Ann Duerr
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
38
|
Santosa EK, Sun JC. Cardinal features of immune memory in innate lymphocytes. Nat Immunol 2023; 24:1803-1812. [PMID: 37828377 PMCID: PMC10998651 DOI: 10.1038/s41590-023-01607-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 10/14/2023]
Abstract
The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
39
|
Russ BE, Barugahare A, Dakle P, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, See M, Nussing S, Morey AE, Udupa VA, Bennett TJ, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naivety through regulation of global genome architecture. Cell Rep 2023; 42:113301. [PMID: 37858463 PMCID: PMC10679840 DOI: 10.1016/j.celrep.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushkar Dakle
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Jason K C Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Paul F Harrison
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michael See
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simone Nussing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alison E Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Vibha A Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Taylah J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
40
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Kaiser FMP, Janowska I, Menafra R, de Gier M, Korzhenevich J, Pico-Knijnenburg I, Khatri I, Schulz A, Kuijpers TW, Lankester AC, Konstantinidis L, Erlacher M, Kloet S, van Schouwenburg PA, Rizzi M, van der Burg M. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood 2023; 142:1113-1130. [PMID: 37369082 PMCID: PMC10644098 DOI: 10.1182/blood.2023019721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Although absence of interleukin-7 (IL-7) signaling completely abrogates T and B lymphopoiesis in mice, patients with severe combined immunodeficiency caused by mutations in the IL-7 receptor α chain (IL-7Rα) still generate peripheral blood B cells. Consequently, human B lymphopoiesis has been thought to be independent of IL-7 signaling. Using flow cytometric analysis and single-cell RNA sequencing of bone marrow samples from healthy controls and patients who are IL-7Rα deficient, in combination with in vitro modeling of human B-cell differentiation, we demonstrate that IL-7R signaling plays a crucial role in human B lymphopoiesis. IL-7 drives proliferation and expansion of early B-cell progenitors but not of pre-BII large cells and has a limited role in the prevention of cell death. Furthermore, IL-7 guides cell fate decisions by enhancing the expression of BACH2, EBF1, and PAX5, which jointly orchestrate the specification and commitment of early B-cell progenitors. In line with this observation, early B-cell progenitors of patients with IL-7Rα deficiency still expressed myeloid-specific genes. Collectively, our results unveil a previously unknown role for IL-7 signaling in promoting the B-lymphoid fate and expanding early human B-cell progenitors while defining important differences between mice and humans. Our results have implications for hematopoietic stem cell transplantation strategies in patients with T- B+ severe combined immunodeficiency and provide insights into the role of IL-7R signaling in leukemogenesis.
Collapse
Affiliation(s)
- Fabian M. P. Kaiser
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Melanie de Gier
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, University Ulm, Ulm, Germany
| | - Taco W. Kuijpers
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susan Kloet
- Leiden Genome Technology Center, Leiden, The Netherlands
| | - Pauline A. van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Markowitz GJ, Ban Y, Tavarez DA, Yoffe L, Podaza E, He Y, Martin MT, Crowley MJP, Sandoval TA, Gao D, Martin ML, Elemento O, Cubillos-Ruiz JR, McGraw TE, Altorki NK, Mittal V. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1+ progenitor CD8+ T cells to improve checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3356477. [PMID: 37790365 PMCID: PMC10543315 DOI: 10.21203/rs.3.rs-3356477/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
TCF1high progenitor CD8+ T cells mediate the efficacy of PD-1 blockade, however the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high central memory-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites, and increased PPP cycling as determined by 1,2 13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells towards a TCF1high population, generated a unique transcriptional landscape, enhanced tumor control in mice in combination with PD-1 blockade, and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state amenable to checkpoint blockade.
Collapse
|
43
|
Yao Z, Xu N, Shang G, Wang H, Tao H, Wang Y, Qin Z, Tan S, Feng J, Zhu J, Ma F, Tian S, Zhang Q, Qu Y, Hou J, Guo J, Zhao J, Hou Y, Ding C. Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ. Nat Commun 2023; 14:5670. [PMID: 37704624 PMCID: PMC10499981 DOI: 10.1038/s41467-023-41139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
The progression of urothelial bladder cancer (UC) is a complicated multi-step process. We perform a comprehensive multi-omics analysis of 448 samples from 190 UC patients, covering the whole spectrum of disease stages and grades. Proteogenomic integration analysis indicates the mutations of HRAS regulated mTOR signaling to form urothelial papilloma rather than papillary urothelial cancer (PUC). DNA damage is a key signaling pathway in the progression of carcinoma in situ (CIS) and related to APOBEC signature. Glucolipid metabolism increase and lower immune cell infiltration are associated with PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis and molecular features. Additionally, loss of RBPMS, associated with CIS-derived tumors, is validated to increase the activity of AP-1 and promote metastasis. This study reveals the characteristics of two distinct branches (PUC and CIS) of UC progression and may eventually benefit clinical practice.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2022YFA1303200 [C.D.], 2022YFA1303201 [C.D.], 2020YFE0201600 [C.D.], 2018YFE0201600 [C.D.], 2018YFE0201603 [C.D.], 2018YFA0507500 [C.D.], 2018YFA0507501 [C.D.], 2017YFA0505100 [C.D.], 2017YFA0505102 [C.D.], 2017YFA0505101 [C.D.], 2017YFC0908404 [C.D.], and 2016YFA0502500 [C.D.]), Program of Shanghai Academic/Technology Research Leader (22XD1420100 [C.D.]), Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19SG02 [C.D.]),the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone (ZJ2019‐ZD‐004 [C.D.]), the Science and Technology Commission of Shanghai Municipality (2017SHZDZX01 [C.D.]).
Collapse
Affiliation(s)
- Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, Second Hospital of Anhui Medical University, and Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jun Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianming Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
44
|
Wells AC, Hioki KA, Angelou CC, Lynch AC, Liang X, Ryan DJ, Thesmar I, Zhanybekova S, Zuklys S, Ullom J, Cheong A, Mager J, Hollander GA, Pobezinskaya EL, Pobezinsky LA. Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation. Nat Commun 2023; 14:5585. [PMID: 37696797 PMCID: PMC10495470 DOI: 10.1038/s41467-023-40959-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/17/2023] [Indexed: 09/13/2023] Open
Abstract
The success of the CD8 T cell-mediated immune response against infections and tumors depends on the formation of a long-lived memory pool, and the protection of effector cells from exhaustion. The advent of checkpoint blockade therapy has significantly improved anti-tumor therapeutic outcomes by reversing CD8 T cell exhaustion, but fails to generate effector cells with memory potential. Here, using in vivo mouse models, we show that let-7 miRNAs determine CD8 T cell fate, where maintenance of let-7 expression during early cell activation results in memory CD8 T cell formation and tumor clearance. Conversely, let-7-deficiency promotes the generation of a terminal effector population that becomes vulnerable to exhaustion and cell death in immunosuppressive environments and fails to reject tumors. Mechanistically, let-7 restrains metabolic changes that occur during T cell activation through the inhibition of the PI3K/AKT/mTOR signaling pathway and production of reactive oxygen species, potent drivers of terminal differentiation and exhaustion. Thus, our results reveal a role for let-7 in the time-sensitive support of memory formation and the protection of effector cells from exhaustion. Overall, our data suggest a strategy in developing next-generation immunotherapies by preserving the multipotency of effector cells rather than enhancing the efficacy of differentiation.
Collapse
Affiliation(s)
- Alexandria C Wells
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Kaito A Hioki
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
- UMass Biotech Training Program (BTP), Amherst, MA, USA
| | - Constance C Angelou
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Adam C Lynch
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Xueting Liang
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Daniel J Ryan
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Iris Thesmar
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Saule Zhanybekova
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Saulius Zuklys
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Jacob Ullom
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Agnes Cheong
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Georg A Hollander
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
45
|
Rudloff MW, Zumbo P, Favret NR, Roetman JJ, Detrés Román CR, Erwin MM, Murray KA, Jonnakuti ST, Dündar F, Betel D, Philip M. Hallmarks of CD8 + T cell dysfunction are established within hours of tumor antigen encounter before cell division. Nat Immunol 2023; 24:1527-1539. [PMID: 37537361 PMCID: PMC10878719 DOI: 10.1038/s41590-023-01578-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Tumor-specific CD8+ T cells (TST) in patients with cancer are dysfunctional and unable to halt cancer progression. TST dysfunction, also known as exhaustion, is thought to be driven by chronic T cell antigen receptor (TCR) stimulation over days to weeks. However, we know little about the interplay between CD8+ T cell function, cell division and epigenetic remodeling within hours of activation. Here, we assessed early CD8+ T cell differentiation, cell division, chromatin accessibility and transcription in tumor-bearing mice and acutely infected mice. Surprisingly, despite robust activation and proliferation, TST had near complete effector function impairment even before undergoing cell division and had acquired hallmark chromatin accessibility features previously associated with later dysfunction/exhaustion. Moreover, continued tumor/antigen exposure drove progressive epigenetic remodeling, 'imprinting' the dysfunctional state. Our study reveals the rapid divergence of T cell fate choice before cell division in the context of tumors versus infection.
Collapse
Affiliation(s)
- Michael W Rudloff
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Natalie R Favret
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Jessica J Roetman
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Carlos R Detrés Román
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Megan M Erwin
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Kristen A Murray
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Sriya T Jonnakuti
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
46
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
47
|
Castiglioni A, Yang Y, Williams K, Gogineni A, Lane RS, Wang AW, Shyer JA, Zhang Z, Mittman S, Gutierrez A, Astarita JL, Thai M, Hung J, Yang YA, Pourmohamad T, Himmels P, De Simone M, Elstrott J, Capietto AH, Cubas R, Modrusan Z, Sandoval W, Ziai J, Gould SE, Fu W, Wang Y, Koerber JT, Sanjabi S, Mellman I, Turley SJ, Müller S. Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun 2023; 14:4703. [PMID: 37543621 PMCID: PMC10404279 DOI: 10.1038/s41467-023-40398-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
TGFβ signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFβ signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFβ and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFβ/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFβ therapy efficacy. Our data suggest that TGFβ works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhe Zhang
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Minh Thai
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DR, Li Z, Debarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 Inhibits miR-15/16 to Enhance Cytotoxic T Cell Activation and Memory Cell Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536843. [PMID: 37547023 PMCID: PMC10401941 DOI: 10.1101/2023.04.14.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, many intracellular bacteria and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 also play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and T cell memory. Comparative Argonaute-2 high throughput sequencing of crosslinking immunoprecipitation (Ago2 HITS-CLIP, or AHC) combined with gene expression profiling in normal and miR-15/16-deficient T cells revealed a large network of several hundred direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, the long non-coding RNA Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak in T cells. This binding site was also among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16 binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of IL-2 and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long noncoding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dimitre R Simeonov
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Rachel Debarge
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Verma M, Verma D, Sripada AS, Sirohi K, Varma R, Sahu A, Alam R. NFκB1 inhibits memory formation and supports effector function of ILC2s in memory-driven asthma. Front Immunol 2023; 14:1217776. [PMID: 37575259 PMCID: PMC10415221 DOI: 10.3389/fimmu.2023.1217776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background ILC2s are capable of generating memory. The mechanism of memory induction and memory-driven effector function (trained immunity) in ILC2s is unknown. Objective NFκB1 is preferentially expressed at a high level in ILC2s. We examined the role of NFkB1 in memory induction and memory-driven effector function in a mouse model of asthma. Methods Intranasal administration of Alternaria, flexivent, ELISA, histology, real-time PCR, western blot, flow cytometry and immunofluorescence staining. Results NFκB1 was essential for the effector phase of memory-driven asthma. NFκB1 was critical for IL33 production, ILC2 generation, and production of type-2 cytokines, which resulted in eosinophilic inflammation and other features of asthma. NFκB1 induction of type-2 cytokines in ILC2s was independent of GATA3. NFκB1 was important for allergen induction of ILC3s and FoxP3+ Tregs. NFκB1 did not affect Th2 cells or their cytokine production. In contrast to its protagonistic role in the effector phase, NFκB1 had an antagonistic role in the memory phase. NFκB1 inhibited allergen-induced upregulation of memory-associated repressor and preparedness genes in ILC2s. NFκB1 upregulated RUNX1. NFκB1 formed a heterodimer with RUNX1 in ILC2s. Conclusions NFκB1 positively regulated the effector phase but inhibited the induction phase of memory. The foregoing pointed to an interdependent antagonism between the memory induction and the memory effector processes. The NFκB1-RUNX1 heterodimer represented a non-canonical transcriptional activator of type-2 cytokines in ILC2s.
Collapse
Affiliation(s)
- Mukesh Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Divya Verma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Anand Santosh Sripada
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kapil Sirohi
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Rangati Varma
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Anita Sahu
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Rafeul Alam
- Division of Allergy & Immunology, Department of Medicine, National Jewish Health, Denver, CO, United States
- School of Medicine, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
50
|
Nam AR, Heo M, Lee KH, Kim JY, Won SH, Cho JY. The landscape of PBMC methylome in canine mammary tumors reveals the epigenetic regulation of immune marker genes and its potential application in predicting tumor malignancy. BMC Genomics 2023; 24:403. [PMID: 37460953 DOI: 10.1186/s12864-023-09471-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Genome-wide dysregulation of CpG methylation accompanies tumor progression and characteristic states of cancer cells, prompting a rationale for biomarker development. Understanding how the archetypic epigenetic modification determines systemic contributions of immune cell types is the key to further clinical benefits. RESULTS In this study, we characterized the differential DNA methylome landscapes of peripheral blood mononuclear cells (PBMCs) from 76 canines using methylated CpG-binding domain sequencing (MBD-seq). Through gene set enrichment analysis, we discovered that genes involved in the growth and differentiation of T- and B-cells are highly methylated in tumor PBMCs. We also revealed the increased methylation at single CpG resolution and reversed expression in representative marker genes regulating immune cell proliferation (BACH2, SH2D1A, TXK, UHRF1). Furthermore, we utilized the PBMC methylome to effectively differentiate between benign and malignant tumors and the presence of mammary gland tumors through a machine-learning approach. CONCLUSIONS This research contributes to a better knowledge of the comprehensive epigenetic regulation of circulating immune cells responding to tumors and suggests a new framework for identifying benign and malignant cancers using genome-wide methylome.
Collapse
Affiliation(s)
- A-Reum Nam
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Heo
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yoon Kim
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Ho Won
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|