1
|
Uhlemann H, Epp K, Klesse C, Link-Rachner CS, Surendranath V, Günther UP, Schetelig J, Heidenreich F. Shape of the art: TCR-repertoire after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101558. [PMID: 39098804 DOI: 10.1016/j.beha.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The human adaptive immune repertoire is characterized by specificity and diversity to provide immunity against past and future tasks. Such tasks are mainly infections but also malignant transformations of cells. With its multiple lines of defense, the human immune system contains both, rapid reaction forces and the potential to capture, disassemble and analyze strange structures in order to teach the adaptive immune system and mount a specific immune response. Prevention and mitigation of autoimmunity is of equal importance. In the context of allogeneic hematopoietic cell transplantation (HCT) specific challenges exist with the transfer of cells from the adapted donor immune system to the immunosuppressed recipient. Those challenges are immunogenetic disparity between donor and host, reconstitution of immunity early after HCT by expansion of mature immune effector cells, and impaired thymic function, if the recipient is an adult (as it is the case in most HCTs). The possibility to characterize the adaptive immune repertoire by massively parallel sequencing of T-cell receptor gene rearrangements allows for a much more detailed characterization of the T-cell repertoire. In addition, high-dimensional characterization of immune effector cells based on their immunophenotype and single cell RNA sequencing allow for much deeper insights in adaptive immune responses. We here review, existing - still incomplete - information on immune reconstitution after allogeneic HCT. Building on the technological advances much deeper insights into immune recovery after HCT and adaptive immune responses and can be expected in the coming years.
Collapse
Affiliation(s)
- Heike Uhlemann
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany.
| | - Katharina Epp
- University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | | | | - Johannes Schetelig
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| | - Falk Heidenreich
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
2
|
Yao Y, Wang H, Xu Y, Zhang L, Liu R. scRNA+TCR+BCR-seq revealed the proportions and gene expression patterns of dual receptor T and B lymphocytes in NPC and NLH. Biochem Biophys Res Commun 2024; 709:149820. [PMID: 38547605 DOI: 10.1016/j.bbrc.2024.149820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
While the relationship between single receptor lymphocytes and cancer has been deeply researched, the origin and biological roles of dual receptor lymphocytes in tumor microenvironment (TME) remain largely unknown. And since nasopharyngeal carcinoma (NPC) is a type of cancer closely associated with immune infiltration, studying the TME of NPC holds particular significance. Utilizing single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA + TCR + BCR-seq), we analyzed data from 7 patients with NPC and 3 patients with nasopharyngeal lymphatic hyperplasia (NLH). In our research, it was firstly found that the presence of dual receptor lymphocytes in both the TME of NPC and the inflammatory environment of NLH. We also confirmed their clonal expansion, suggesting their potential involvement in the immune response. Subsequently, we further discovered the lineage and the pairing characteristics. It was found that the dual receptor lymphocytes in NPC and NLH mainly originate from memory cells, and the predominant pairing type for dual TCR was β+α1+α2 and dual BCR was heavy+κ+λ. By further analyzing their gene expression, we compared the function of dual receptor cells with single receptor cells in the context of both NPC and NLH. This groundbreaking research has enhanced our comprehension of the features of dual-receptor cells and has contributed to a better understanding of the TME in NPC. By comparing with NLH, it illuminates part of the alterations in the process of malignant transformation in NPC. These findings present the potential to acquire improved diagnostic markers and treatment modalities.
Collapse
Affiliation(s)
- Yuanning Yao
- Queen Mary School, Nanchang University, Nanchang, China
| | - Hengyu Wang
- Queen Mary School, Nanchang University, Nanchang, China
| | - Yuanyuan Xu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Li Zhang
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Renping Liu
- Department of Immunology, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Muhowski EM, Rogers LM. Dual TCR-Expressing T Cells in Cancer: How Single-Cell Technologies Enable New Investigation. Immunohorizons 2023; 7:299-306. [PMID: 37129560 PMCID: PMC10354877 DOI: 10.4049/immunohorizons.2200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
TCR diversity measures are often used to understand the immune response in cancer. Traditional measures of diversity rely on bulk RNA sequencing (RNAseq) of the β-chain variable regions. However, the full αβ TCR repertoire is a combination of both the α- and β-chains, which are encoded by separate genes. In contrast with bulk RNAseq, single-cell RNAseq (scRNAseq) allows paired chain analyses, yielding a more accurate measure of the repertoire. Interestingly, ∼30% of mature peripheral T cells express multiple TCR alleles (e.g., two α-chains) and may exhibit dual Ag specificity. scRNAseq has become increasingly common, and data from both human and animal studies are publicly available. However, routine workflows discard secondary TCR alleles and focus on a single TCR clone per cell. This perspectives piece emphasizes why this may not be good practice and highlights unanswered questions in the field of T cell dual specificity.
Collapse
|
4
|
Radtke D, Thuma N, Schülein C, Kirchner P, Ekici AB, Schober K, Voehringer D. Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. eLife 2022; 11:74183. [PMID: 35950748 PMCID: PMC9391044 DOI: 10.7554/elife.74183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and T-cell receptor (TCR) clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLNs) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Natalie Thuma
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christine Schülein
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kilian Schober
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Culberson EJ, Bassing CH. Monogenic TCRβ Assembly and Expression Are Paramount for Uniform Antigen Receptor Specificity of Individual αβ T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:93-98. [PMID: 35697383 PMCID: PMC9246964 DOI: 10.4049/jimmunol.2200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 05/20/2023]
Abstract
The ability of individual T and B cells to display Ag receptors of unique uniform specificity is the molecular basis of adaptive immunity. Most αβ T cells achieve uniform specificity by assembling in-frame genes on only one allelic copy of TCRβ and TCRα loci, while others prevent incorporation of TCRα protein from both alleles into TCRs. Analysis of mice expressing TCR proteins from a restricted combination of transgenes showed that TCR protein pairing restrictions achieve uniform specificity of cells expressing two types of TCRβ protein. However, whether this mechanism operates in the physiological context where each dual-TCRβ cell expresses one set of a vast number of different TCRβ proteins remains an open question, largely because there is a low, but significant, portion of cells carrying two in-frame TCRβ genes. To resolve this issue, we inactivated one allelic copy of the TCRα locus in a new mouse strain that assembles two in-frame TCRβ genes in an elevated fraction of cells. This genetic manipulation has no effect on the frequency of cells that display multiple types of αβ TCR, yet increases the representation of cells displaying TCRβ proteins that generate more highly expressed TCRs. Our data demonstrate that some TCRβ proteins exhibit differential functional pairing with TCRα proteins, but these restrictions have negligible contribution for ensuring uniform specificity of cells that express two types of TCRβ protein. Therefore, we conclude that mechanisms governing monogenic assembly and expression of TCRβ genes in individual cells are paramount for uniform specificity of αβ T lymphocytes.
Collapse
Affiliation(s)
- Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
TCRα reporter mice reveal contribution of dual TCRα expression to T cell repertoire and function. Proc Natl Acad Sci U S A 2020; 117:32574-32583. [PMID: 33288689 DOI: 10.1073/pnas.2013188117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is known that a subpopulation of T cells expresses two T cell receptor (TCR) clonotypes, though the extent and functional significance of this is not established. To definitively evaluate dual TCRα cells, we generated mice with green fluorescent protein and red fluorescent protein reporters linked to TCRα, revealing that ∼16% of T cells express dual TCRs, notably higher than prior estimates. Importantly, dual TCR expression has functional consequences, as dual TCR cells predominated response to lymphocytic choriomeningitis virus infection, comprising up to 60% of virus-specific CD4+ and CD8+ T cells during acute responses. Dual receptor expression selectively influenced immune memory, as postinfection memory CD4+ populations contained significantly increased frequencies of dual TCR cells. These data reveal a previously unappreciated contribution of dual TCR cells to the immune repertoire and highlight their potential effects on immune responses.
Collapse
|
7
|
Gill RG, Burrack AL. Diverse Routes of Allograft Tolerance Disruption by Memory T Cells. Front Immunol 2020; 11:580483. [PMID: 33117387 PMCID: PMC7578217 DOI: 10.3389/fimmu.2020.580483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Memory T lymphocytes constitute a significant problem in tissue and organ transplantation due their contribution to early rejection and their relative resistance to tolerance-promoting therapies. Memory cells generated by environmental antigen exposure, as with T cells in general, harbor a high frequency of T cell receptors (TCR) spontaneously cross-reacting with allogeneic major histocompatibility complex (MHC) molecules. This phenomenon, known as ‘heterologous’ immunity, is thought to be a key barrier to transplant tolerance induction since such memory cells can potentially react directly with essentially any prospective allograft. In this review, we describe two additional concepts that expand this commonly held view of how memory cells contribute to transplant immunity and tolerance disruption. Firstly, autoimmunity is an additional response that can comprise an endogenously generated form of heterologous alloimmunity. However, unlike heterologous immunity generated as a byproduct of indiscriminate antigen sensitization, autoimmunity can generate T cells that have the unusual potential to interact with the graft either through the recognition of graft-bearing autoantigens or by their cross-reactive (heterologous) alloimmune specificity to MHC molecules. Moreover, we describe an additional pathway, independent of significant heterologous immunity, whereby immune memory to vaccine- or pathogen-induced antigens also may impair tolerance induction. This latter form of immune recognition indirectly disrupts tolerance by the licensing of naïve alloreactive T cells by vaccine/pathogen directed memory cells recognizing the same antigen-presenting cell in vivo. Thus, there appear to be recognition pathways beyond typical heterologous immunity through which memory T cells can directly or indirectly impact allograft immunity and tolerance.
Collapse
Affiliation(s)
- Ronald G Gill
- Departments of Surgery and Immunology and Microbiology, University of Colorado Denver, Aurora, CO, United States
| | - Adam L Burrack
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
8
|
Carter JA, Preall JB, Atwal GS. Bayesian Inference of Allelic Inclusion Rates in the Human T Cell Receptor Repertoire. Cell Syst 2019; 9:475-482.e4. [PMID: 31677971 DOI: 10.1016/j.cels.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023]
Abstract
A small population of αβ T cells is characterized by the expression of more than one unique T cell receptor (TCR); this outcome is the result of "allelic inclusion," that is, inclusion of both α- or β-chain alleles during V(D)J recombination. Limitations in single-cell sequencing technology, however, have precluded comprehensive enumeration of these dual receptor T cells. Here, we develop and experimentally validate a fully Bayesian inference model capable of reliably estimating the true rate of α and β TCR allelic inclusion across two different emulsion-barcoding single-cell sequencing platforms. We provide a database composed of over 51,000 previously unpublished allelic inclusion TCR sequence sets drawn from eight healthy individuals and show that allelic inclusion contributes a distinct and functionally important set of sequences to the human TCR repertoire. This database and a Python implementation of our statistical inference model are freely available at our Github repository (https://github.com/JasonACarter/Allelic_inclusion).
Collapse
Affiliation(s)
- Jason A Carter
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA.
| | - Jonathan B Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA
| | - Gurinder S Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Stony Brook, NY 11724, USA.
| |
Collapse
|
9
|
Ng AHC, Peng S, Xu AM, Noh WJ, Guo K, Bethune MT, Chour W, Choi J, Yang S, Baltimore D, Heath JR. MATE-Seq: microfluidic antigen-TCR engagement sequencing. LAB ON A CHIP 2019; 19:3011-3021. [PMID: 31502632 DOI: 10.1039/c9lc00538b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adaptive immunity is based on peptide antigen recognition. Our ability to harness the immune system for therapeutic gain relies on the discovery of the T cell receptor (TCR) genes that selectively target antigens from infections, mutated proteins, and foreign agents. Here we present a method that selectively labels peptide antigen-specific CD8+ T cells using magnetic nanoparticles functionalized with peptide-MHC tetramers, isolates these specific cells within an integrated microfluidic device, and directly amplifies the TCR genes for sequencing. Critically, the identity of the peptide recognized by the TCR is preserved, providing the link between peptide and gene. The platform requires inputs on the order of just 100 000 CD8+ T cells, can be multiplexed for simultaneous analysis of multiple peptides, and performs sorting and isolation on chip. We demonstrate 1000-fold sensitivity enhancement of detecting antigen-specific TCRs relative to bulk analysis and simultaneous capture of two virus antigen-specific TCRs from a population of T cells.
Collapse
Affiliation(s)
- Alphonsus H C Ng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schuldt NJ, Binstadt BA. Dual TCR T Cells: Identity Crisis or Multitaskers? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:637-644. [PMID: 30670579 PMCID: PMC11112972 DOI: 10.4049/jimmunol.1800904] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2024]
Abstract
Dual TCR T cells are a common and natural product of TCR gene rearrangement and thymocyte development. As much as one third of the T cell population may have the capability to express two different TCR specificities on the cell surface. This discovery provoked a reconsideration of the classic model of thymic selection. Many potential roles for dual TCR T cells have since been hypothesized, including posing an autoimmune hazard, dominating alloreactive T cell responses, inducing allergy, and expanding the TCR repertoire to improve protective immunity. Yet, since the initial wave of publications following the discovery of dual TCR T cells, research in the area has slowed. In this study, we aim to provide a brief but comprehensive history of dual TCR T cell research, re-evaluate past observations in the context of current knowledge of the immune system, and identify key issues for future study.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
11
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
12
|
MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice. Proc Natl Acad Sci U S A 2018; 115:E2329-E2337. [PMID: 29463744 PMCID: PMC5877958 DOI: 10.1073/pnas.1720169115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mixed chimerism has shown good potential to cure some autoimmune diseases and prevent tissue rejection. It is known that MHC-mismatched but not -matched mixed chimerism effectively tolerizes autoreactive T cells, even those noncross-reactive T cells that do not directly recognize donor-type antigen presenting cells [i.e., dendritic cells (DCs)]. How this is accomplished remains unknown. These studies have shown that tolerizing peripheral residual host-type noncross-reactive autoreactive T cells requires engraftment of donor-type DCs and involves a host-type DC-mediated increase in donor-type Treg cells, which associates with restoration of tolerogenic features of host-type plasmacytoid DCs and expansion of host-type Treg cells. This study suggests a previously unrecognized tolerance network among donor- and host-type DCs and Treg cells in MHC-mismatched mixed chimeras. Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs.
Collapse
|
13
|
Proinflammatory Dual Receptor T Cells in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:1852-1860. [PMID: 28750779 DOI: 10.1016/j.bbmt.2017.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Defective post-transplantation thymopoiesis is associated with chronic graft-versus-host disease (GVHD), a multiorgan pathology affecting up to 80% of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Previous work demonstrated that the subset of T cells expressing 2 T cell receptors (TCRs) is predisposed to alloreactivity, driving selective and disproportionate activity in acute GVHD in both mouse models and HSCT patients. Here we investigate a potential role for this pathogenic T cell subset in chronic GVHD (cGVHD). HSCT patients with cGVHD demonstrated increased numbers of dual TCR cells in circulation. These dual receptor cells had an activated phenotype, indicating an active role in cGVHD. Notably, single-cell RNA sequencing identified the increased dual TCR cells in cGVHD as predominantly expressing Tbet, indicative of a proinflammatory phenotype. These results identify dual TCR cells as specific mediators of pathogenic inflammation underlying cGVHD and highlight Tbet-driven T cell function as a potential pathway for potential therapeutic targeting.
Collapse
|
14
|
Schuldt NJ, Auger JL, Spanier JA, Martinov T, Breed ER, Fife BT, Hogquist KA, Binstadt BA. Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. THE JOURNAL OF IMMUNOLOGY 2017; 199:33-38. [PMID: 28539428 DOI: 10.4049/jimmunol.1700406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
Abstract
Despite accounting for 10-30% of the T cell population in mice and humans, the role of dual TCR-expressing T cells in immunity remains poorly understood. It has been hypothesized that dual TCR T cells pose an autoimmune hazard by allowing self-reactive TCRs to escape thymic selection. We revisited this hypothesis using the NOD murine model of type 1 diabetes. We bred NOD mice hemizygous at both TCRα and β (TCRα+/- β+/-) loci, rendering them incapable of producing dual TCR T cells. We found that the lack of dual TCRα expression skewed the insulin-specific thymocyte population toward greater regulatory T (Treg) cell commitment, resulting in a more tolerogenic Treg to conventional T cell ratio and protection from diabetes. These data support a novel hypothesis by which dual TCR expression can promote autoimmunity by limiting agonist selection of self-reactive thymocytes into the Treg cell lineage.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Jennifer L Auger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Justin A Spanier
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Tijana Martinov
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Elise R Breed
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW T cells can mediate allograft rejection and graft-versus-host disease (GVHD), but are necessary for tolerance and protective immunity. Identifying T-cell populations differentially responsible for these effects has been a goal in transplant research. This review describes investigation of a small subset of T cells naturally predisposed toward alloreactivity, cells expressing two T-cell receptors (TCRs). RECENT FINDINGS Rare peripheral T cells express two αβTCRs. Their impact on T-cell development and function has been uncertain. Recent work demonstrates an important role for these cells in mouse models and human hematopoietic stem cell transplant patients with acute GVHD. Dual receptor T cells are preferentially activated and expanded in vitro and in vivo by allogeneic stimulation. Genetic elimination of dual TCR expression results in loss of approximately half of the alloreactive repertoire and impedes the earliest steps of GVHD. SUMMARY Identification of dual TCR T cells as predisposed to alloreactivity provides an opportunity to examine responses limiting transplantation. Continued investigation will reveal significant fundamental features of T-cell alloreactivity and important information about the earliest events determining allograft rejection and self-tolerance.
Collapse
|
16
|
Joachims ML, Leehan KM, Lawrence C, Pelikan RC, Moore JS, Pan Z, Rasmussen A, Radfar L, Lewis DM, Grundahl KM, Kelly JA, Wiley GB, Shugay M, Chudakov DM, Lessard CJ, Stone DU, Scofield RH, Montgomery CG, Sivils KL, Thompson LF, Farris AD. Single-cell analysis of glandular T cell receptors in Sjögren's syndrome. JCI Insight 2016; 1. [PMID: 27358913 DOI: 10.1172/jci.insight.85609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD4+ T cells predominate in salivary gland (SG) inflammatory lesions in Sjögren's syndrome (SS). However, their antigen specificity, degree of clonal expansion, and relationship to clinical disease features remain unknown. We used multiplex reverse-transcriptase PCR to amplify paired T cell receptor α (TCRα) and β transcripts of single CD4+CD45RA- T cells from SG and peripheral blood (PB) of 10 individuals with primary SS, 9 of whom shared the HLA DR3/DQ2 risk haplotype. TCRα and β sequences were obtained from a median of 91 SG and 107 PB cells per subject. The degree of clonal expansion and frequency of cells expressing two productively rearranged α genes were increased in SG versus PB. Expanded clones from SG exhibited complementary-determining region 3 (CDR3) sequence similarity both within and among subjects, suggesting antigenic selection and shared antigen recognition. CDR3 similarities were shared among expanded clones from individuals discordant for canonical Ro and La autoantibodies, suggesting recognition of alternative SG antigen(s). The extent of SG clonal expansion correlated with reduced saliva production and increased SG fibrosis, linking expanded SG T cells with glandular dysfunction. Knowledge of paired TCRα and β sequences enables further work toward identification of target antigens and development of novel therapies.
Collapse
Affiliation(s)
- Michelle L Joachims
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kerry M Leehan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Richard C Pelikan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Jacen S Moore
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Department of Oral Diagnosis and Radiology, College of Dentistry, OUHSC, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, College of Dentistry, OUHSC, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, College of Medicine, OUHSC, Oklahoma City, Oklahoma, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA; Section of Endocrinology and Diabetes, College of Medicine, OUHSC, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Linda F Thompson
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
17
|
Heutinck KM, Yong SL, Tonneijck L, van den Heuvel H, van der Weerd NC, van der Pant KAMI, Bemelman FJ, Claas FHJ, Ten Berge IJM. Virus-Specific CD8(+) T Cells Cross-Reactive to Donor-Alloantigen Are Transiently Present in the Circulation of Kidney Transplant Recipients Infected With CMV and/or EBV. Am J Transplant 2016; 16:1480-91. [PMID: 26603974 DOI: 10.1111/ajt.13618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/24/2015] [Indexed: 01/25/2023]
Abstract
T cells play a dual role in transplantation: They mediate transplant rejection and are crucial for virus control. Memory T cells generated in response to pathogens can cross-react to alloantigen, a phenomenon called heterologous immunity. Virus-specific CD8(+) T cells cross-reacting to donor-alloantigen might affect alloimmune responses and hamper tolerance induction following transplantation. Here, we longitudinally studied these cross-reactive cells in peripheral blood of 25 kidney transplant recipients with a cytomegalovirus and/or Epstein-Barr virus infection. Cross-reactive T cells were identified by flow cytometry as virus-specific T cells that proliferate in response to donor cells in a mixed-lymphocyte reaction. In 13 of 25 patients, we found cross-reactivity to donor cells for at least 1 viral epitope before (n = 7) and/or after transplantation (n = 8). Cross-reactive T cells were transiently present in the circulation, and their precursor frequency did not increase following transplantation or viral infection. Cross-reactive T cells expressed interferon-γ and CD107a in response to both alloantigen and viral peptide and resembled virus-specific T cells in phenotype and function. Their presence was not associated with impaired renal function, proteinuria, or rejection. In conclusion, virus-specific T cells that cross-react to donor-alloantigen are transiently detectable in the circulation of kidney transplant recipients.
Collapse
Affiliation(s)
- K M Heutinck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - S L Yong
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - L Tonneijck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - H van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - N C van der Weerd
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - K A M I van der Pant
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - F J Bemelman
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - I J M Ten Berge
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Schuldt NJ, Auger JL, Hogquist KA, Binstadt BA. Bi-Allelic TCRα or β Recombination Enhances T Cell Development but Is Dispensable for Antigen Responses and Experimental Autoimmune Encephalomyelitis. PLoS One 2015; 10:e0145762. [PMID: 26693713 PMCID: PMC4687847 DOI: 10.1371/journal.pone.0145762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/08/2015] [Indexed: 01/13/2023] Open
Abstract
Dual TCRα-expressing T cells outnumber dual TCRβ-expressing cells by ~10:1. As a result, efforts to understand how dual TCR T cells impact immunity have focused on dual TCRα expression; dual TCRβ expression remains understudied. We recently demonstrated, however, that dual TCRβ expression accelerated disease in a TCR transgenic model of autoimmune arthritis through enhanced positive selection efficiency, indicating that dual TCRβ expression, though rare, can impact thymic selection. Here we generated mice hemizygous for TCRα, TCRβ, or both on the C57BL/6 background to investigate the impact bi-allelic TCR chain recombination has on T cell development, repertoire diversity, and autoimmunity. Lack of bi-allelic TCRα or TCRβ recombination reduced αβ thymocyte development efficiency, and the absence of bi-allelic TCRβ recombination promoted γδ T cell development. However, we observed no differences in the numbers of naïve and expanded antigen-specific T cells between TCRα+/-β+/- and wildtype mice, and TCR repertoire analysis revealed only subtle differences in Vβ gene usage. Finally, the absence of dual TCR T cells did not impact induced experimental autoimmune encephalomyelitis pathogenesis. Thus, despite more stringent allelic exclusion of TCRβ relative to TCRα, bi-allelic TCRβ expression can measurably impact thymocyte development and is necessary for maintaining normal αβ/γδ T cell proportions.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/microbiology
Collapse
Affiliation(s)
- Nathaniel J. Schuldt
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Jennifer L. Auger
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Kristin A. Hogquist
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
| | - Bryce A. Binstadt
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, United States of America
- * E-mail:
| |
Collapse
|
19
|
Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, Jittayasothorn Y, Chan CC, Yamane H, Honda K, Caspi RR. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity 2015; 43:343-53. [PMID: 26287682 DOI: 10.1016/j.immuni.2015.07.014] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022]
Abstract
Activated retina-specific T cells that have acquired the ability to break through the blood-retinal barrier are thought to be causally involved in autoimmune uveitis, a major cause of human blindness. It is unclear where these autoreactive T cells first become activated, given that their cognate antigens are sequestered within the immune-privileged eye. We demonstrate in a novel mouse model of spontaneous uveitis that activation of retina-specific T cells is dependent on gut commensal microbiota. Retina-specific T cell activation involved signaling through the autoreactive T cell receptor (TCR) in response to non-cognate antigen in the intestine and was independent of the endogenous retinal autoantigen. Our findings not only have implications for the etiology of human uveitis, but also raise the possibility that activation of autoreactive TCRs by commensal microbes might be a more common trigger of autoimmune diseases than is currently appreciated.
Collapse
Affiliation(s)
- Reiko Horai
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | - Patricia Dillenburg-Pilla
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Jun Chen
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA; State Key of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | - Phyllis B Silver
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Hidehiro Yamane
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kenya Honda
- Keio University School of Medicine, Tokyo 160-8582, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
21
|
Rybakin V, Westernberg L, Fu G, Kim HO, Ampudia J, Sauer K, Gascoigne NRJ. Allelic exclusion of TCR α-chains upon severe restriction of Vα repertoire. PLoS One 2014; 9:e114320. [PMID: 25500569 PMCID: PMC4264757 DOI: 10.1371/journal.pone.0114320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Development of thymocytes through the positive selection checkpoint requires the rearrangement and expression of a suitable T cell receptor (TCR) α-chain that can pair with the already-expressed β-chain to make a TCR that is selectable. That is, it must have sufficient affinity for self MHC-peptide to induce the signals required for differentiation, but not too strong so as to induce cell death. Because both alleles of the α-chain continue to rearrange until a positively-selectable heterodimer is formed, thymocytes and T cells can in principle express dual α-chains. However, cell-surface expression of two TCRs is comparatively rare in mature T cells because of post-transcriptional regulatory mechanisms termed “phenotypic allelic exclusion”. We produced mice transgenic for a rearranged β-chain and for two unrearranged α-chains on a genetic background where endogenous α-chains could not be rearranged. Both Vα3.2 and Vα2 containing α-chains were efficiently positively selected, to the extent that a population of dual α-chain-bearing cells was not distinguishable from single α-chain-expressors. Surprisingly, Vα3.2-expressing cells were much more frequent than the Vα2 transgene-expressing cells, even though this Vα3.2-Vβ5 combination can reconstitute a known selectable TCR. In accord with previous work on the Vα3 repertoire, T cells bearing Vα3.2 expressed from the rearranged minilocus were predominantly selected into the CD8+ T cell subpopulation. Because of the dominance of Vα3.2 expression over Vα2 expressed from the miniloci, the peripheral T cell population was predominantly CD8+ cells.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Luise Westernberg
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Hee-Ok Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Jeanette Ampudia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Nicholas R. J. Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lucca LE, Desbois S, Ramadan A, Ben-Nun A, Eisenstein M, Carrié N, Guéry JC, Sette A, Nguyen P, Geiger TL, Mars LT, Liblau RS. Bispecificity for myelin and neuronal self-antigens is a common feature of CD4 T cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:3267-77. [PMID: 25135834 DOI: 10.4049/jimmunol.1400523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of multiple ligands by a single TCR is an intrinsic feature of T cell biology, with important consequences for physiological and pathological processes. Polyspecific T cells targeting distinct self-antigens have been identified in healthy individuals as well as in the context of autoimmunity. We have previously shown that the 2D2 TCR recognizes the myelin oligodendrocyte glycoprotein epitope (MOG)35-55 as well as an epitope within the axonal protein neurofilament medium (NF-M15-35) in H-2(b) mice. In this study, we assess whether this cross-reactivity is a common feature of the MOG35-55-specific T cell response. To this end, we analyzed the CD4 T cell response of MOG35-55-immunized C57BL/6 mice for cross-reactivity with NF-M15-35. Using Ag recall responses, we established that an important proportion of MOG35-55-specific CD4 T cells also responded to NF-M15-35 in all mice tested. To study the clonality of this response, we analyzed 22 MOG35-55-specific T cell hybridomas expressing distinct TCR. Seven hybridomas were found to cross-react with NF-M15-35. Using an alanine scan of NF-M18-30 and an in silico predictive model, we dissected the molecular basis of cross-reactivity between MOG35-55 and NF-M15-35. We established that NF-M F24, R26, and V27 proved important TCR contacts. Strikingly, the identified TCR contacts are conserved within MOG38-50. Our data indicate that due to linear sequence homology, part of the MOG35-55-specific T cell repertoire of all C57BL/6 mice also recognizes NF-M15-35, with potential implications for CNS autoimmunity.
Collapse
Affiliation(s)
- Liliana E Lucca
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Sabine Desbois
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Abdulraouf Ramadan
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadège Carrié
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lennart T Mars
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Roland S Liblau
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France; Département d'Immunologie, Centre Hospitalier Universitaire Toulouse, Hôpital Purpan, Toulouse F-31300, France
| |
Collapse
|
23
|
Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP. The ability to rearrange dual TCRs enhances positive selection, leading to increased Allo- and Autoreactive T cell repertoires. THE JOURNAL OF IMMUNOLOGY 2014; 193:1778-86. [PMID: 25015825 DOI: 10.4049/jimmunol.1400532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thymic selection is designed to ensure TCR reactivity to foreign Ags presented by self-MHC while minimizing reactivity to self-Ags. We hypothesized that the repertoire of T cells with unwanted specificities such as alloreactivity or autoreactivity are a consequence of simultaneous rearrangement of both TCRα loci. We hypothesized that this process helps maximize production of thymocytes capable of successfully completing thymic selection, but results in secondary TCRs that escape stringent selection. In T cells expressing two TCRs, one TCR can mediate positive selection and mask secondary TCR from negative selection. Examination of mice heterozygous for TRAC (TCRα(+/-)), capable of only one functional TCRα rearrangement, demonstrated a defect in generating mature T cells attributable to decreased positive selection. Elimination of secondary TCRs did not broadly alter the peripheral T cell compartment, though deep sequencing of TCRα repertoires of dual TCR T cells and TCRα(+/-) T cells demonstrated unique TCRs in the presence of secondary rearrangements. The functional impact of secondary TCRs on the naive peripheral repertoire was evidenced by reduced frequencies of T cells responding to autoantigen and alloantigen peptide-MHC tetramers in TCRα(+/-) mice. T cell populations with secondary TCRs had significantly increased ability to respond to altered peptide ligands related to their allogeneic ligand as compared with TCRα(+/-) cells, suggesting increased breadth in peptide recognition may be a mechanism for their reactivity. Our results imply that the role of secondary TCRs in forming the T cell repertoire is perhaps more significant than what has been assumed.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin Solomon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review will explore two new aspects of the involvement of viruses in multiple sclerosis pathogenesis. The first aspect is the complex interactions between viruses. The second aspect is the proposal of a mechanism by which autoreactive T cells are able to escape thymic selection and potentially recognize self and a pathogen. RECENT FINDINGS With regard to viruses, recent work has demonstrated that one virus may enhance the replication of another virus, potentially leading to an increase in inflammation and disease progression. Also, interactions between human endogenous retroviruses, which likely do not replicate, and certain herpes viruses, may also play a role in disease pathogenesis. Mechanistically, T cells expressing dual T-cell receptors would be able to recognize self and a foreign antigen specifically. Therefore, human endogenous retroviruses potentially play a role in multiple sclerosis pathogenesis, and both interactions between multiple viruses and autoreactive CD8(+) T cells with dual T-cell receptors may play a role in the pathogenesis of the disease. SUMMARY The complex interactions between multiple viral infections, either within the central nervous system or in the periphery, and the host immune response to viral infection may be such that a variety of viral specificities result in the activation of T cells that recognize self and induce multiple sclerosis. Therefore, it is unlikely that any one microbe will be determined to be the causative agent of multiple sclerosis as reflected by the number of potential triggering mechanisms of the disease.
Collapse
|
25
|
Morris GP, Uy GL, Donermeyer D, Dipersio JF, Allen PM. Dual receptor T cells mediate pathologic alloreactivity in patients with acute graft-versus-host disease. Sci Transl Med 2014; 5:188ra74. [PMID: 23740900 DOI: 10.1126/scitranslmed.3005452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acute graft-versus-host disease (aGVHD) results from a robust response of donor T cells transferred during hematopoietic stem cell transplantation (HSCT) to allogeneic peptide-major histocompatibility complex antigens. Previous investigations have not identified T cell subsets that selectively mediate either protective immunity or pathogenic alloreactivity. We demonstrate that the small subset of peripheral T cells that naturally express two T cell receptors (TCRs) on the cell surface contributes disproportionately to aGVHD in patients after allogeneic HSCT. Dual TCR T cells from patients with aGVHD demonstrate an activated phenotype and produce pathogenic cytokines ex vivo. Dual receptor clones from a patient with symptomatic aGVHD responded specifically to mismatched recipient human leukocyte antigens (HLAs), demonstrating pathologic alloreactivity. Human dual TCR T cells are strongly activated and expanded by allogeneic stimulation in vitro, and disproportionately contribute to the repertoire of T cells recognizing both major (HLA) and minor histocompatibility antigens, providing a mechanism for their observed activity in vivo in patients with aGVHD. These results identify dual TCR T cells as a target for focused analysis of a T cell subset mediating GVHD and as a potential prognostic indicator.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
26
|
Shen ZT, Nguyen TT, Daniels KA, Welsh RM, Stern LJ. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:5139-52. [PMID: 24127554 DOI: 10.4049/jimmunol.1300852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Closely related peptide epitopes can be recognized by the same T cells and contribute to the immune response against pathogens encoding those epitopes, but sometimes cross-reactive epitopes share little homology. The degree of structural homology required for such disparate ligands to be recognized by cross-reactive TCRs remains unclear. In this study, we examined the mechanistic basis for cross-reactive T cell responses between epitopes from unrelated and pathogenic viruses, lymphocytic choriomeningitis virus (LCMV) and vaccinia virus. Our results show that the LCMV cross-reactive T cell response toward vaccinia virus is dominated by a shared asparagine residue, together with other shared structural elements conserved in the crystal structures of K(b)-VV-A11R and K(b)-LCMV-gp34. Based on analysis of the crystal structures and the specificity determinants for the cross-reactive T cell response, we were able to manipulate the degree of cross-reactivity of the T cell response, and to predict and generate a LCMV cross-reactive response toward a variant of a null OVA-derived peptide. These results indicate that protective heterologous immune responses can occur for disparate epitopes from unrelated viruses.
Collapse
Affiliation(s)
- Zu T Shen
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | | | | | |
Collapse
|
27
|
Schreinemachers MCJM, Bemelman FJ, Idu MM, van Donselaar-van der Pant KAMI, van de Berg PJEJ, Reitsma JB, Legemate DA, Florquin S, ten Berge IJM, Doorschodt BM, van Gulik TM. First clinical experience with polysol solution: pilot study in living kidney transplantation. Transplant Proc 2013; 45:38-45. [PMID: 23375273 DOI: 10.1016/j.transproceed.2012.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
Abstract
In this study, we assessed the safety of the new organ preservation solution polysol solution in the clinical setting of living kidney transplantation. We conducted a prospective pilot study in nine adult donor-recipient couples using polysol solution for washout and cold storage of kidney grafts. Adverse reactions possibly related to the use of polysol solution as well as renal function at 1, 6, and 12 months after transplantation were monitored. All living kidney transplantation performed in adults in our center within 2002 to 2008 using the University of Winconsin solution served as controls (n = 190). The use of polysol solution was associated with a higher acute rejection rate compared to University of Wisconsin solution at all time points. Also, antibody-mediated rejection occurred more frequently in the polysol group. Renal function at all time points was also comparable between the groups. This pilot study in living kidney transplantation is the first clinical study on the use of polysol solution. Although the study was not powered on the endpoint rejection, we observed a high number of acute rejection and antibody-mediated rejection episodes in recipients of polysol solution preserved grafts as compared to University of Wisconsin solution controls. As a consequence the study was terminated prematurely.
Collapse
Affiliation(s)
- M-C J M Schreinemachers
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gravano DM, Hoyer KK. Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun 2013; 45:68-79. [PMID: 23871638 DOI: 10.1016/j.jaut.2013.06.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Until recently, little was known about the importance of CD8+ T effectors in promoting and preventing autoimmune disease development. CD8+ T cells can oppose or promote autoimmune disease through activities as suppressor cells and as cytotoxic effectors. Studies in several distinct autoimmune models and data from patient samples are beginning to establish the importance of CD8+ T cells in these diseases and to define the mechanisms by which these cells influence autoimmunity. CD8+ effectors can promote disease via dysregulated secretion of inflammatory cytokines, skewed differentiation profiles and inappropriate apoptosis induction of target cells, and work to block disease by eliminating self-reactive cells and self-antigen sources, or as regulatory T cells. Defining the often major contribution of CD8+ T cells to autoimmune disease and identifying the mechanisms by which they alter the pathogenesis of disease is a rapidly expanding area of study and will add valuable information to our understanding of the kinetics, pathology and biology of autoimmune disease.
Collapse
Affiliation(s)
- David M Gravano
- Department of Molecular Cell Biology, Health Sciences Research Institute, University of California, Merced, CA, USA
| | | |
Collapse
|
29
|
Eckle SBG, Rossjohn J, McCluskey J. Alloreactivity. Methods Mol Biol 2013; 1034:3-39. [PMID: 23775729 DOI: 10.1007/978-1-62703-493-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The alloimmune response between individuals genetically disparate for antigens encoded within the major histocompatibility complex (MHC) remains a substantial barrier to transplantation of solid organs, tissues, and hematopoietic stem cells. Alloreactivity has been an immunological paradox because of its apparent contradiction to the requirement of MHC restriction for the induction of normal T lymphocyte mediated immune responses. Through crystallographic analyses and experimental systems utilizing murine CD8(+) cytolytic T cell clones, major advances have been achieved in understanding the molecular and structural basis of T cell receptor recognition of MHC-peptide complexes and the basis of T cell mediated alloreactivity. These studies have further provided an explanation for the relatively high frequencies of alloreactive T cells compared to the frequencies of T cells for microbial derived antigens.
Collapse
Affiliation(s)
- Sidonia B G Eckle
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
30
|
Havenith SHC, Yong SL, Henson SM, Piet B, Idu MM, Koch SD, Jonkers RE, Kragten NAM, Akbar AN, van Lier RAW, ten Berge IJM. Analysis of stem-cell-like properties of human CD161++IL-18Rα+ memory CD8+ T cells. Int Immunol 2012; 24:625-36. [PMID: 22836020 DOI: 10.1093/intimm/dxs069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD161(++)IL-18Rα(+)CD8(+) human T cells have recently been identified as a new subset of memory cells but their exact role remains unclear. CD161(++)IL-18Rα(+)CD8(+), mucosal-associated invariant T cells express a semi-invariant TCR Vα7.2-Jα33, which recognizes the MHC-related protein 1. On the basis of properties including the expression of the ABC-B1 transporter, cKit expression and survival after chemotherapy, CD161(++)IL-18Rα(+)CD8(+) T cells have been designated as 'stem' cells. Here we analyse location and functional properties of CD161(++)IL-18Rα(+) CD8(+) T cells and question whether they have other traits that would mark them as genuine 'stem' cells. CD161(++)IL-18Rα(+)CD8(+) T cells were found in peripheral blood, spleen and bone marrow but interestingly hardly at all in lymph nodes (LNs), which may possibly be explained by the finding that these cells express a specific set of chemokine receptors that allows migration to inflamed tissue rather than to LNs. In addition to TCR ligation and co-stimulation, CD161(++)IL-18Rα(+) CD8(+) T cells require cytokines for proliferation. The CD161(++)IL-18Rα(+) CD8(+) pool contains cells reactive towards peptides, derived from both persisting and cleared viruses. Although CD161(++)IL-18Rα(+) CD8(+) T cells express the ABC-B1 transporter, they have shorter telomeres and less telomerase activity and do not express aldehyde dehydrogenase. Finally, CD161(++)IL-18Rα(+) CD8(+) T cells show similarities to terminally differentiated T cells, expressing IFNγ, KLRG1 and the transcription factor Blimp-1. In conclusion, CD161(++)IL-18Rα(+) CD8(+) T cells lack many features of typical 'stem' cells, but appear rather to be a subset of effector-type cells.
Collapse
Affiliation(s)
- Simone H C Havenith
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Auger JL, Haasken S, Steinert EM, Binstadt BA. Incomplete TCR-β allelic exclusion accelerates spontaneous autoimmune arthritis in K/BxN TCR transgenic mice. Eur J Immunol 2012; 42:2354-62. [PMID: 22706882 DOI: 10.1002/eji.201242520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 06/04/2012] [Indexed: 01/07/2023]
Abstract
Allelic exclusion of antigen receptor loci is a fundamental mechanism of immunological self-tolerance. Incomplete allelic exclusion leads to dual T-cell receptor (TCR) expression and can allow developing autoreactive αβ T lymphocytes to escape clonal deletion. Because allelic exclusion at the TCR-β locus is more stringent than at the TCR-α locus, dual TCR-β expression has not been considered a likely contributor to autoimmunity. We show here that incomplete TCR-β allelic exclusion permits developing thymocytes bearing the autoreactive, transgene-encoded KRN TCR to be positively selected more efficiently, thereby accelerating the onset of spontaneous autoimmune arthritis. Our findings highlight dual TCR-β expression as a mechanism that can enhance the maturation of autoreactive pathogenic T cells and lead to more rapid development of autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Auger
- Center for Immunology and Department of Pediatrics, University of Minnesota, Minneapolis, MN 55414, USA
| | | | | | | |
Collapse
|
32
|
van de Berg PJEJ, Yong SL, Koch SD, Lardy N, van Donselaar-van der Pant KAMI, Florquin S, Bemelman FJ, van Lier RAW, ten Berge IJM. Characteristics of alloreactive T cells measured before renal transplantation. Clin Exp Immunol 2012; 168:241-50. [PMID: 22471286 DOI: 10.1111/j.1365-2249.2011.04551.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Several assays to measure pre-existing allospecific T cell immunity in renal transplant candidates have been developed in the past years. In 46 patients, we used flow cytometry-based mixed lymphocyte culture to measure the precursor frequency and phenotype of alloreactive T cells before renal transplantation, using donor-specific or third-party cells for allostimulation. Allostimulation induced up-regulation of co-stimulatory molecules, chemokine receptors relevant for migration of T cells into the graft and effector proteins. Recipients prone for acute rejection had a higher precursor frequency of alloreactive CD8(+) T cells and a lower percentage of interleukin (IL)-7Rα expressing alloreactive CD8(+) T cells than non-rejectors. These data point to quantitative and qualitative differences between T cells of patients who will experience acute cellular rejection episodes from those who will not.
Collapse
Affiliation(s)
- P J E J van de Berg
- Renal Transplant Unit, Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barnaba V, Paroli M, Piconese S. The ambiguity in immunology. Front Immunol 2012; 3:18. [PMID: 22566903 PMCID: PMC3341998 DOI: 10.3389/fimmu.2012.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/02/2012] [Indexed: 01/07/2023] Open
Abstract
In the present article, we discuss the various ambiguous aspects of the immune system that render this complex biological network so highly flexible and able to defend the host from different external invaders. This ambiguity stems mainly from the property of the immune system to be both protective and harmful. Immunity cannot be fully protective without producing a certain degree of damage (immunopathology) to the host. The balance between protection and tissue damage is, therefore, critical for the establishment of immune homeostasis and protection. In this review, we will consider as ambiguous, various immunological tactics including: (a) the opposing functions driving immune responses, immune-regulation, and contra-regulation, as well as (b) the phenomenon of chronic immune activation as a result of a continuous cross-presentation of apoptotic T cells by dendritic cells. All these plans participate principally to maintain a state of chronic low-level inflammation during persisting infections, and ultimately to favor the species survival.
Collapse
Affiliation(s)
- Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
34
|
Herndler-Brandstetter D, Landgraf K, Tzankov A, Jenewein B, Brunauer R, Laschober GT, Parson W, Kloss F, Gassner R, Lepperdinger G, Grubeck-Loebenstein B. The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 2011; 91:197-205. [PMID: 22013229 DOI: 10.1189/jlb.0611299] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, the BM has been shown to play a key role in regulating the survival and function of memory T cells. However, the impact of aging on these processes has not yet been studied. We demonstrate that the number of CD4⁺ and CD8⁺ T cells in the BM is maintained during aging. However, the composition of the T cell pool in the aged BM is altered with a decline of naïve and an increase in T(EM) cells. In contrast to the PB, a highly activated CD8⁺CD28⁻ T cell population, which lacks the late differentiation marker CD57, accumulates in the BM of elderly persons. IL-6 and IL-15, which are both increased in the aged BM, efficiently induce the activation, proliferation, and differentiation of CD8⁺ T cells in vitro, highlighting a role of these cytokines in the age-dependent accumulation of highly activated CD8⁺CD28⁻ T cells in the BM. Yet, these age-related changes do not impair the maintenance of a high number of polyfunctional memory CD4⁺ and CD8⁺ T cells in the BM of elderly persons. In summary, aging leads to the accumulation of a highly activated CD8⁺CD28⁻ T cell population in the BM, which is driven by the age-related increase of IL-6 and IL-15. Despite these changes, the aged BM is a rich source of polyfunctional memory T cells and may thus represent an important line of defense to fight recurrent infections in old age.
Collapse
|
35
|
Morris GP, Ni PP, Allen PM. Alloreactivity is limited by the endogenous peptide repertoire. Proc Natl Acad Sci U S A 2011; 108:3695-700. [PMID: 21321209 PMCID: PMC3048116 DOI: 10.1073/pnas.1017015108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A significant portion of the naive T-cell repertoire is capable of responding to allogeneic MHC, violating the paradigm of self-MHC restriction. Recent studies have demonstrated convincing evidence for germ-line affinity of T-cell receptors (TCR) for MHC, providing explanation for recognition of MHC not encountered during thymic development. However, although germ-line affinity proposes all TCR have inherent affinity for MHC, most T cells are not alloreactive to a given MHC. We propose that specific recognition of endogenous presented peptides, rather than inability to interact with allogeneic MHC molecules, is the primary determinant of alloreactivity. Here, we demonstrate that alloreactive and nonalloreactive TCR differ specifically in the CDR3 sequences responsible primarily for the peptide specificity of T-cell recognition. Limitations on alloreactivity imposed by a requirement for recognition of presented peptides are directly demonstrated by expansion of the alloreactive T-cell repertoire through the addition of peptide mimotopes enabling response to two distinct allogeneic MHC by otherwise nonalloreactive T cells. Responses to peptide mimotopes were specific and depended on TCR interaction with MHC. These results demonstrate that recognition of presented endogenous peptides, and not the inability to interact with allogeneic MHC, is the primary limiter on alloreactivity. This observation reconciles the concept of an inherently MHC-reactive TCR repertoire with observed frequencies of T cells responding to allogeneic stimulation and underscores the fundamental nature of TCR recognition of ligands, where both MHC and presented peptides contribute critically to T-cell recognition.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
36
|
Shen ZT, Brehm MA, Daniels KA, Sigalov AB, Selin LK, Welsh RM, Stern LJ. Bi-specific MHC heterodimers for characterization of cross-reactive T cells. J Biol Chem 2010; 285:33144-33153. [PMID: 20729210 PMCID: PMC2963422 DOI: 10.1074/jbc.m110.141051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/25/2010] [Indexed: 11/06/2022] Open
Abstract
T cell cross-reactivity describes the phenomenon whereby a single T cell can recognize two or more different peptide antigens presented in complex with MHC proteins. Cross-reactive T cells have previously been characterized at the population level by cytokine secretion and MHC tetramer staining assays, but single-cell analysis is difficult or impossible using these methods. In this study, we describe development of a novel peptide-MHC heterodimer specific for cross-reactive T cells. MHC-peptide monomers were independently conjugated to hydrazide or aldehyde-containing cross-linkers using thiol-maleimide coupling at cysteine residues introduced into recombinant MHC heavy chain proteins. Hydrazone formation provided bi-specific MHC heterodimers carrying two different peptides. Using this approach we prepared heterodimers of the murine class I MHC protein H-2K(b) carrying peptides from lymphocytic choriomeningitis virus and vaccinia virus, and used these to identify cross-reactive CD8+ T cells recognizing both lymphocytic choriomeningitis virus and vaccinia virus antigens. A similar strategy could be used to develop reagents to analyze cross-reactive T cell responses in humans.
Collapse
Affiliation(s)
- Zu T Shen
- From the Department of Pathology, Worcester, Massachusetts 01655
| | | | - Keith A Daniels
- From the Department of Pathology, Worcester, Massachusetts 01655
| | | | - Liisa K Selin
- From the Department of Pathology, Worcester, Massachusetts 01655
| | - Raymond M Welsh
- From the Department of Pathology, Worcester, Massachusetts 01655
| | - Lawrence J Stern
- From the Department of Pathology, Worcester, Massachusetts 01655; Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655.
| |
Collapse
|
37
|
Brady BL, Steinel NC, Bassing CH. Antigen receptor allelic exclusion: an update and reappraisal. THE JOURNAL OF IMMUNOLOGY 2010; 185:3801-8. [PMID: 20858891 DOI: 10.4049/jimmunol.1001158] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most lymphocytes express cell surface Ag receptor chains from single alleles of distinct Ig or TCR loci. Since the identification of Ag receptor allelic exclusion, the importance of this process and the precise molecular mechanisms by which it is achieved have remained enigmatic. This brief review summarizes current knowledge of the extent to which Ig and TCR loci are subject to allelic exclusion. Recent progress in studying and defining mechanistic steps and molecules that may control the monoallelic initiation and subsequent inhibition of V-to-(D)-J recombination is outlined using the mouse TCRβ locus as a model with frequent comparisons to the mouse IgH and Igκ loci. Potential consequences of defects in mechanisms that control Ag receptor allelic exclusion and a reappraisal of the physiologic relevance of this immunologic process also are discussed.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
38
|
Kekäläinen E, Hänninen A, Maksimow M, Arstila TP. T cells expressing two different T cell receptors form a heterogeneous population containing autoreactive clones. Mol Immunol 2010; 48:211-8. [PMID: 20828824 DOI: 10.1016/j.molimm.2010.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/20/2023]
Abstract
During T cell development both alleles of the T cell receptor (TCR) alpha locus are rearranged. As a result, a sizeable proportion of T cells can express two distinct TCRs, but the functional significance of this phenomenon remains controversial. Studies on transgenic mice with two TCRs have focused on the risk of immunopathology that such cells may pose, while some have suggested that most dual-specific T cells are nonfunctional or even protective. We tracked the fate and TCR repertoire of single- and dual-specific T cells within a normal polyclonal population undergoing lymphopenia-induced proliferation, a setting which has been shown to cause immunopathology and autoimmunity. After the expansion the repertoire of dual-specific T cells had become highly biased, with both prominent clonal expansions and the complete disappearance of other clones. Our results suggest that the normal repertoire of dual-specific T cells contains both nonfunctional cells and a small, 5% fraction of clones which display a much higher than average affinity to antigens normally tolerated as harmless. This heterogeneity may also help in reconciling some of the earlier, conflicting results.
Collapse
Affiliation(s)
- Eliisa Kekäläinen
- Haartman Institute, Department of Immunology, University of Helsinki, P.O. box 21, 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
39
|
Aronica MA, Vogel N. Pathogens and immunologic memory in asthma: what have we learned? Expert Rev Clin Immunol 2010; 1:589-601. [PMID: 20477600 DOI: 10.1586/1744666x.1.4.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal models and clinical studies of asthma have generated important insights into the first effector phase leading to the development of allergic airway disease and bronchial hyper-reactivity. In contrast, mechanisms related to asthma chronicity or persistence are less well understood. The CD4(+) T-helper 2 lymphocytes are known initiators of the inflammatory response associated with asthma. There is now increasing evidence that memory T-cells, sensitized against allergenic, occupational or viral antigens, are also involved in the persistence of asthma. Additionally, the role of pathogens in asthma has been linked to both the initial susceptibility to and flares of this disease. This review will discuss the potential links between infection and asthma, the role of the memory T-cells in asthma, and the potential mechanisms by which these factors interact to lead to the development and/or persistence of asthma.
Collapse
Affiliation(s)
- Mark A Aronica
- Cleveland Clinic Foundation, Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland, OH 44195, USA.
| | | |
Collapse
|
40
|
Ji Q, Perchellet A, Goverman JM. Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol 2010; 11:628-34. [PMID: 20526343 PMCID: PMC2900379 DOI: 10.1038/ni.1888] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/13/2010] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is an inflammatory, demyelinating, central nervous system disease mediated by myelin-specific T cells. Environmental triggers that cause the breakdown of myelin-specific T cell tolerance are unknown. Here we found that CD8(+) myelin basic protein (MBP)-specific T cell tolerance was broken and autoimmunity was induced by infection with a virus that did not express MBP cross-reactive epitopes and did not depend on bystander activation. Instead, the virus activated T cells expressing dual T cell antigen receptors (TCRs) that were able to recognize both MBP and viral antigens. Our results demonstrate the importance of dual TCR-expressing T cells in autoimmunity and suggest a mechanism by which a ubiquitous viral infection could trigger autoimmunity in a subset of infected people, as suggested by the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Qingyong Ji
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
41
|
Morris GP, Allen PM. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:6639-43. [PMID: 19454656 DOI: 10.4049/jimmunol.0900638] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alloreactivity is the response of T cells to MHC molecules not encountered during thymic development. A small population (1-8%) of peripheral T cells in mice and humans express two TCRs due to incomplete allelic exclusion of TCRalpha, and we hypothesized they are highly alloreactive. FACS analysis of mouse T cell MLR revealed increased dual TCR T cells among alloreactive cells. Quantitative assessment of the alloreactive repertoire demonstrated a nearly 50% reduction in alloreactive T cell frequency among T cells incapable of expressing a secondary TCR. We directly demonstrated expansion of the alloreactive T cell repertoire at the single cell level by identifying a dual TCR T cell with distinct alloreactivities for each TCR. The importance of dual TCR T cells is clearly demonstrated in a parent-into-F(1) model of graft-vs-host disease, where dual TCR T cells comprised up to 60% of peripheral activated T cells, demonstrating a disproportionate contribution to disease.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Abreu JRF, Grabiec AM, Krausz S, Spijker R, Burakowski T, Maslinski W, Eldering E, Tak PP, Reedquist KA. The presumed hyporesponsive behavior of rheumatoid arthritis T lymphocytes can be attributed to spontaneous ex vivo apoptosis rather than defects in T cell receptor signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:621-30. [PMID: 19525395 DOI: 10.4049/jimmunol.0803278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetic associations and the clinical success of compounds targeting TCR costimulatory proteins suggest an active role for TCR signaling in the initiation and perpetuation of rheumatoid arthritis (RA). Paradoxically, T cells isolated from affected joints in RA show impaired proliferative and cytokine responses following stimulation with mitogens and recall Ags attributed in part to chronic T cell exposure to oxidative stress and inflammatory cytokines. Therefore, it is uncertain how local autoreactive TCR signaling contributes to pathology in established RA. Using single-cell analysis, we show that in contrast to results obtained in bulk culture assays, T cells from the synovial fluid of RA patients proliferate and produce cytokines (IL-2, TNF-alpha, and IFN-gamma) as efficiently, if not more so, than T cells isolated from healthy donors and RA patient peripheral blood following TCR/CD28 stimulation. RA synovial fluid T cell hyporesponsiveness observed in bulk cultures can be attributed to spontaneous apoptosis ex vivo, which is associated with altered ratios of proapoptotic Noxa and anti-apoptotic Mcl-1 expression. The absence of RA synovial T cell proliferation and cytokine production in situ, despite the capacity of these cells to support productive TCR signaling, suggests that T cells contribute to local pathology in established RA by TCR-independent mechanisms.
Collapse
Affiliation(s)
- Joana R F Abreu
- Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fiorillo MT, Sorrentino R. T-cell responses against viral and self-epitopes and HLA-B27 subtypes differentially associated with ankylosing spondylitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:255-62. [PMID: 19731635 DOI: 10.1007/978-1-4419-0298-6_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HLA-B27 family comprehends some alleles strongly associated with Ankylosing Spondylitis (AS) and some others that are not. A comparative analysis at genetic and functional level is likely to give a clue to the understanding of disease pathogenesis. Here, we summarize our recent studies on the functional differences between B*2705, the most frequent and worldwide AS-associated allele and B*2709, an allele found in Sardinia where it accounts for 20% of all B27 alleles and where it is not associated with AS. The two B27 alleles are distinguished by a single amino acid change, located in the peptide binding groove, that correlates with relevant structural and functional differences in presenting viral and self peptides to T-cells. In particular, B*2709 individuals lack in their T-cell repertoire of CD8+ T-cells specific for a self-epitope (pVIPR) derived from the vasoactive intestinal peptide Type 1 receptor (VPAC1). This peptide shares extensive homology with a viral epitope, pLMP2, derived from EBV, toward which, both B*2705 and B*2709 individuals mount a vigorous CTL response. A likely explanation to this finding, also supported by crystallographic data, is that the autoreactivity present in the disease-prone B*2705 individuals can be unleashed by a molecular mimicry mechanism which does not occur in the B*2709 individuals. The possible implications of the T-cell cross-reactivity between pLMP2, pVIPR and other related peptides in AS pathogenesis are discussed.
Collapse
Affiliation(s)
- María T Fiorillo
- Department of Cell Biology and Development, Sapienza, Università di Roma, Roma, Italy
| | | |
Collapse
|
44
|
Sharma R, Ju ACY, Kung JT, Fu SM, Ju ST. Rapid and selective expansion of nonclonotypic T cells in regulatory T cell-deficient, foreign antigen-specific TCR-transgenic scurfy mice: antigen-dependent expansion and TCR analysis. THE JOURNAL OF IMMUNOLOGY 2008; 181:6934-41. [PMID: 18981113 DOI: 10.4049/jimmunol.181.10.6934] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
45
|
Naumov YN, Naumova EN, Yassai MB, Kota K, Welsh RM, Selin LK. Multiple glycines in TCR alpha-chains determine clonally diverse nature of human T cell memory to influenza A virus. THE JOURNAL OF IMMUNOLOGY 2008; 181:7407-19. [PMID: 18981164 DOI: 10.4049/jimmunol.181.10.7407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of alpha-chain usage in the formation of T cell memory and revealed that M1(58-66)-specific, clonally diverse VB19 T cells express alpha-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these alpha TCRs was the presence of CDR3 fitting to an AGA(G(n))GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3alpha were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of alpha- and beta-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.
Collapse
Affiliation(s)
- Yuri N Naumov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Buenafe AC, Sherwood C, Moes N, Jones RE. Recombinase-activating gene 1-associated expression of the myelin basic protein 1-11-specific transgenic T-cell receptor in H-2b mice. J Neurosci Res 2008; 87:42-9. [PMID: 18752298 DOI: 10.1002/jnr.21839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We pursued a breeding strategy intended to generate disease-resistant mice with exclusive expression of the H-2(u)-restricted myelin basic protein (MBP) 1-11 peptide-specific transgenic (Tg) T-cell receptor (TCR) on the T-cell-deficient RAG1KO (H-2(b)) background. Utilizing specific screening assays for the offspring, analyses of the F1 intercross and subsequent crosses revealed that the TgTCR-associated clonotypic marker detected by the 3H12 mAb could be found only in association with the H-2(b) homozygous background in offspring possessing a functional rag1 gene. Moreover, expression of the MBP-specific TgTCR could not be found in H-2(b) homozygous offspring that were RAG1 deficient (rag1(-/-)). PCR analysis of genomic DNA from these 3H12-negative offspring verified the presence of the TCR transgenes. Thus, the presence of a functional rag1 gene was required for the expression of the MBP-specific TgTCR on the H-2(b) background. Given the role for RAG1, the results have important implications for T-cell repertoire development.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
48
|
Witsch EJ, Bettelheim E. Allelic and Isotypic Light Chain Inclusion in Peripheral B Cells from Anti-DNA Antibody Transgenic C57BL/6 and BALB/c Mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3708-18. [DOI: 10.4049/jimmunol.180.6.3708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Nikolaeva N, Bemelman FJ, Yong SL, Verschuur A, van Lier RAW, ten Berge IJM. The pyrimidin analogue cyclopentenyl cytosine induces alloantigen-specific non-responsiveness of human T lymphocytes. Clin Exp Immunol 2008; 151:348-58. [PMID: 18062797 PMCID: PMC2276945 DOI: 10.1111/j.1365-2249.2007.03557.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2007] [Indexed: 11/29/2022] Open
Abstract
Cyclopentenyl cytosine (CPEC) has been shown to induce apoptosis in human T lymphoblastic cell lines and T cells from leukaemia patients. In this study we have addressed the question of whether CPEC is able to decrease proliferation and effector functions of human alloresponsive T lymphocytes and induce T cell anergy. The proliferative capacity of human peripheral blood mononuclear cells in response to allogeneic stimulation was measured by 5,6-carboxy-succinimidyl-diacetate-fluorescein-ester staining. Flow cytometric analysis was performed using surface CD4, CD8, CD25, CD103 and intracellular perforin, granzyme A, granzyme B, caspase-3 and forkhead box P3 (FoxP3) markers. The in vivo immunosuppressive capacity was tested in a murine skin graft model. Addition of CPEC at a concentration of 20 nM strongly decreased the expansion and cytotoxicity of alloreactive T cells. Specific restimulation in the absence of CPEC showed that the cells became anergic. The drug induced caspase-dependent apoptosis of alloreactive T lymphocytes. Finally, CPEC increased the percentage of CD25(high) FoxP3+ CD4+ and CD103+ CD8+ T cells, and potentiated the effect of rapamycin in increasing the numbers of alloreactive regulatory T cells. Treatment with CPEC of CBA/CA mice transplanted with B10/Br skin grafts significantly prolonged graft survival. We conclude that CPEC inhibits proliferation and cytotoxicity of human alloreactive T cells and induces alloantigen non-responsiveness in vitro.
Collapse
Affiliation(s)
- N Nikolaeva
- Department of Experimental Immunology, Division of Nephrology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Alcohol consumption impairs type 1 cell-mediated adaptive immune responses both in vivo and in vitro. The present study investigated the effect of alcohol consumption on antigen-presenting cell (APC) populations and cytokine production. METHODS BALB/c were fed ethanol-containing, pair-fed isocaloric liquid control, or solid diets for 11 days. Macrophage and dendritic cell (DC) populations were isolated by paramagenetic bead separation and used to present ovalbumin (OVA) to highly purified syngeneic CD4+ T cells derived from DO11.10 T cell receptor transgenic mice in coculture. DC isolated from diet-fed mice were also used to present OVA to highly purified CD4+ T cells derived from antigen-naïve DO11.10Rag2-/- mice that are devoid of memory T cells. In vitro cytokine responses, interleukin (IL) -2, IL-6, IL-12, IL-13, IL-17A, and interferon-gamma (IFN-gamma) were measured by enzyme-linked immunosorbent assay. Flow cytometry measured cell surface molecule expression. RESULTS Alcohol consumption impairs delayed hypersensitivity responses (type 1) and enhances serum IgE levels (type 2). CD11c+ DC, but not F4/80+ macrophages, support cytokine responses by purified CD4+ T cells. CD11c+ DC derived from ethanol consuming BALB/c mice show diminished ability to support IFN-gamma responses by purified CD4+ T cells derived from DO11.10 or DO11.10Rag2-/- mice. Subset analysis indicates that of the 3 "conventional" DC subsets found in mouse spleens, CD11c+CD8(alpha)+ DCs are both responsible for OVA presentation and susceptible to the effects of ethanol. Ethanol consumption does not overtly alter the percent of splenic DC, but does increase the surface density of CD11c on these cells. Data show that cocultures containing purified CD4+ T DO11.10 cells and APC derived from alcohol-consuming mice show decreased IL-6, IL-12, IL-17A, and IFN-gamma and increased IL-13 cytokine production in response to OVA stimulation. CONCLUSIONS Ethanol alters CD11c+CD8(alpha)+ DC function, affecting cytokines responsible for adaptive immune responses. A unifying hypothesis for the underlying mechanism(s) of ethanol's effect upon adaptive immune function is proposed.
Collapse
Affiliation(s)
- Richard Heinz
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, Chicago, Illinois 60611, USA
| | | |
Collapse
|