1
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4+ memory T cells depend on cell age and not the chronological age of the host. PLoS Biol 2024; 22:e3002380. [PMID: 39137219 PMCID: PMC11321570 DOI: 10.1371/journal.pbio.3002380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4 effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here, we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4 T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
2
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4 + memory T cells depend on cell age and not the chronological age of the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562650. [PMID: 38948729 PMCID: PMC11212895 DOI: 10.1101/2023.10.16.562650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4+ effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4+ T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
3
|
Feng H, Zhao Z, Zhao X, Bai X, Fu W, Zheng L, Kang B, Wang X, Zhang Z, Dong C. A novel memory-like Tfh cell subset is precursor to effector Tfh cells in recall immune responses. J Exp Med 2024; 221:e20221927. [PMID: 38047912 PMCID: PMC10695277 DOI: 10.1084/jem.20221927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
T follicular helper (Tfh) cells, essential for germinal center reactions, are not identical, with different phenotypes reported. Whether, when, and how they generate memory cells is still poorly understood. Here, through single-cell RNA-sequencing analysis of CXCR5+Bcl6+ Tfh cells generated under different conditions, we discovered, in addition to PD-1hi effector Tfh cells, a CD62L+PD1low subpopulation. CD62L-expressing Tfh cells developed independently from PD-1+ cells and not in direct contact with B cells. More importantly, CD62L+ Tfh cells expressed memory- and stemness-associated genes, and with better superior long-term survival, they readily generated PD-1hi cells in the recall response. Finally, KLF2 and IL7R, also highly expressed by CD62L+ Tfh cells, were required to regulate their development. Our work thus demonstrates a novel Tfh memory-like cell subpopulation, which may benefit our understanding of immune responses and diseases.
Collapse
Affiliation(s)
- Han Feng
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xue Bai
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Weiwei Fu
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liangtao Zheng
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Boxi Kang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute and Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
- Westlake University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Wu F, Simonetti FR. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure. Curr HIV/AIDS Rep 2023; 20:428-439. [PMID: 37955826 PMCID: PMC10719122 DOI: 10.1007/s11904-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.
Collapse
Affiliation(s)
- Fengting Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Francesco R Simonetti
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Sponaugle A, Weideman AMK, Ranek J, Atassi G, Kuruc J, Adimora AA, Archin NM, Gay C, Kuritzkes DR, Margolis DM, Vincent BG, Stanley N, Hudgens MG, Eron JJ, Goonetilleke N. Dominant CD4 + T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV. Cell Rep Med 2023; 4:101268. [PMID: 37949070 PMCID: PMC10694675 DOI: 10.1016/j.xcrm.2023.101268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
In people with HIV (PWH), the post-antiretroviral therapy (ART) window is critical for immune restoration and HIV reservoir stabilization. We employ deep immune profiling and T cell receptor (TCR) sequencing and examine proliferation to assess how ART impacts T cell homeostasis. In PWH on long-term ART, lymphocyte frequencies and phenotypes are mostly stable. By contrast, broad phenotypic changes in natural killer (NK) cells, γδ T cells, B cells, and CD4+ and CD8+ T cells are observed in the post-ART window. Whereas CD8+ T cells mostly restore, memory CD4+ T subsets and cytolytic NK cells show incomplete restoration 1.4 years post ART. Surprisingly, the hierarchies and frequencies of dominant CD4 TCR clonotypes (0.1%-11% of all CD4+ T cells) remain stable post ART, suggesting that clonal homeostasis can be independent of homeostatic processes regulating CD4+ T cell absolute number, phenotypes, and function. The slow restoration of host immunity post ART also has implications for the design of ART interruption studies.
Collapse
Affiliation(s)
- Alexis Sponaugle
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jolene Ranek
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn Kuruc
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Adaora A Adimora
- Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nancie M Archin
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Gay
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Margolis
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA; Center for AIDS Research, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Maenosono R. Sex difference and immunosenescence affect transplantation outcomes. FRONTIERS IN TRANSPLANTATION 2023; 2:1235740. [PMID: 38993850 PMCID: PMC11235384 DOI: 10.3389/frtra.2023.1235740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 07/13/2024]
Abstract
Kidney transplantation is a well-established alternative to renal replacement therapy. Although the number of patients with end-stage renal disease (ESRD) is increasing, the availability of kidney for transplantation is still insufficient to meet the needs. As age increases, the prevalence of ESRD increases; thus, the population of aged donors and recipients occupies large proportion. Accumulated senescent cells secrete pro-inflammatory factors and induce senescence. Additionally, it is gradually becoming clear that biological sex differences can influence aging and cause differences in senescence. Here, we review whether age-related sex differences affect organ transplant outcomes and what should be done in the future.
Collapse
Affiliation(s)
- Ryoichi Maenosono
- Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
8
|
Fan NW, Zhu Q, Wang S, Ortiz G, Huckfeldt RM, Chen Y. Long-lived autoreactive memory CD4 + T cells mediate the sustained retinopathy in chronic autoimmune uveitis. FASEB J 2023; 37:e22855. [PMID: 36906286 PMCID: PMC10478160 DOI: 10.1096/fj.202202164r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Chronic uveitis comprises heterogeneous clinical entities characterized by sustained and recurrent intraocular inflammation that is believed to be driven by autoimmune responses. The management of chronic uveitis is challenging with the limited availability of efficacious treatments, and the underlying mechanisms mediating disease chronicity remain poorly understood as the majority of experimental data are derived from the acute phase of the disease (the first 2-3 weeks post-induction). Herein, we investigated the key cellular mechanisms underlying chronic intraocular inflammation using our recently established murine model of chronic autoimmune uveitis. We demonstrate unique long-lived CD44hi IL-7R+ IL-15R+ CD4+ memory T cells in both retina and secondary lymphoid organs after 3 months postinduction of autoimmune uveitis. These memory T cells functionally exhibit antigen-specific proliferation and activation in response to retinal peptide stimulation in vitro. Critically, these effector-memory T cells are capable of effectively trafficking to the retina and accumulating in the local tissues secreting both IL-17 and IFN-γ upon adoptively transferred, leading to retinal structural and functional damage. Thus, our data reveal the critical uveitogenic functions of memory CD4+ T cells in sustaining chronic intraocular inflammation, suggesting that memory T cells can be a novel and promising therapeutic target for treating chronic uveitis in future translational studies.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Qiurong Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Rachel M. Huckfeldt
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
9
|
Bergamo F, Dalla Santa S, Loupakis F, Cerma K, Tosi A, De Grandis C, Dalla Pietà A, Gringeri E, Angerilli V, Ramondo G, Rago A, Cecchi F, Benz S, Cillo U, Dei Tos AP, Zagonel V, Fassan M, Rosato A, Lonardi S. Case report: Complete pathologic response with first-line immunotherapy combination in a young adult with massive liver dissemination of mismatch repair-deficient metastatic colorectal cancer: Immunological and molecular profiling. Front Oncol 2022; 12:964219. [PMID: 36578937 PMCID: PMC9791944 DOI: 10.3389/fonc.2022.964219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
The current level of evidence for immunotherapy in previously untreated microsatellite unstable metastatic colorectal cancer is based on recent pieces of evidence of few studies that demonstrated durable response and clinical benefit, in terms of objective response rate, disease control rate, and progression-free survival in this subgroup of patients. On the basis of combinatorial immunotherapy with nivolumab plus ipilimumab, we report the exceptional case of a complete pathological response in a 21-year-old woman presenting a clinically aggressive stage IV colorectal cancer with massive nodal and liver involvement. Extensive molecular analyses based on whole genome next-generation DNA sequencing, RNA sequencing, fluorescent multiplex immunohistochemistry, and flow cytometry provided a detailed description of tumoral and immunological characteristics of this noteworthy clinical case.
Collapse
Affiliation(s)
- Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Fotios Loupakis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Caterina De Grandis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gaetano Ramondo
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Alessandro Rago
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | | | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy,Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy,*Correspondence: Sara Lonardi,
| |
Collapse
|
10
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
11
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
12
|
Xia CS, Long Y, Liu Y, Alifu A, Zeng X, Liu C. IL-7 Promotes the Expansion of Circulating CD28- Cytotoxic T Lymphocytes in Patients With IgG4-Related Disease via the JAK Signaling. Front Immunol 2022; 13:922307. [PMID: 35874706 PMCID: PMC9301466 DOI: 10.3389/fimmu.2022.922307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives This study aimed to elucidate the changes and associated mechanisms of circulating CD28- cytotoxic T lymphocytes (CTLs) in patients with IgG4-related disease (IgG4-RD). Methods Fifty IgG4-RD patients and 15 healthy controls (HCs) were recruited. Peripheral blood mononuclear cells (PBMCs) were isolated, the levels of circulating CD28- CTLs were detected by flow cytometry, and the proportions of CD127lo or GZMB+CD28- CTL subsets were analyzed in the meantime. Mechanistically, PBMCs isolated from IgG4-RD patients were stimulated with IL-7 in the presence or absence of the JAK inhibitor tofacitinib. Flow cytometry was used to analyze the proliferation of CD28- CTLs and the changes in related subpopulations. Results Circulating CD4+CD28- CTLs and CD8+CD28- CTLs were significantly increased in IgG4-RD patients compared with HCs, accompanied by an elevation of CD127lo or GZMB+ CTL subsets. The ex vivo culture of PBMCs showed that IL-7 could induce the amplification of CD4+CD28- CTLs and CD8+CD28- CTLs in IgG4-RD. Furthermore, IL-7 promotes the proliferation and functional subset changes of these CD28- CTLs in this disease. The selective JAK inhibitor tofacitinib significantly inhibited the effects of IL-7 on CD4+CD28- CTLs and CD8+CD28- CTLs. Conclusion IL-7 can affect the immune balance of IgG4-RD patients by promoting the expansion and function of CD4+CD28- and CD8+CD28- CTLs in IgG4-RD through the JAK pathway. Blockade of the IL-7 signaling pathway may be a new therapeutic strategy for IgG4-RD.
Collapse
Affiliation(s)
- Chang-sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aikede Alifu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
13
|
Rasouli J, Casella G, Zhang W, Xiao D, Kumar G, Fortina P, Zhang GX, Ciric B, Rostami A. Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype. Front Immunol 2022; 13:912583. [PMID: 35860266 PMCID: PMC9289370 DOI: 10.3389/fimmu.2022.912583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
GM-CSF-producing T helper (Th) cells play a crucial role in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Recent studies have identified a distinct population of GM-CSF-producing Th cells, named ThGM cells, that also express cytokines TNF, IL-2, and IL-3, but lack expression of master transcription factors (TF) and signature cytokines of commonly recognized Th cell lineages. ThGM cells are highly encephalitogenic in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Similar to Th17 cells, in response to IL-12, ThGM cells upregulate expression of T-bet and IFN-γ and switch their phenotype to Th1. Here we show that in addition to T-bet, TF RUNX3 also contributes to the Th1 switch of ThGM cells. T-bet-deficient ThGM cells in the CNS of mice with EAE had low expression of RUNX3, and knockdown of RUNX3 expression in ThGM cells abrogated the Th1-inducing effect of IL-12. Comparison of ThGM and Th1 cell transcriptomes showed that ThGM cells expressed a set of TFs known to inhibit the development of other Th lineages. Lack of expression of lineage-specific cytokines and TFs by ThGM cells, together with expression of TFs that inhibit the development of other Th lineages, suggests that ThGM cells are a non-polarized subset of Th cells with lineage characteristics.
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Abdolmohamad Rostami,
| |
Collapse
|
14
|
Wang D, Zou Y, Wang N, Wu J. Chitosan hydrochloride salt stabilized emulsion as vaccine adjuvant. Carbohydr Polym 2022; 296:119879. [DOI: 10.1016/j.carbpol.2022.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
15
|
Ahmad R, Haque M. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines (Basel) 2022; 10:vaccines10040614. [PMID: 35455363 PMCID: PMC9026643 DOI: 10.3390/vaccines10040614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The world has been stricken mentally, physically, and economically by the COVID-19 virus. However, while SARS-CoV-2 viral infection results in mild flu-like symptoms in most patients, a number of those infected develop severe illness. These patients require hospitalization and intensive care. The severe disease can spiral downwards with eventual severe damage to the lungs and failure of multiple organs, leading to the individual’s demise. It is necessary to identify those who are developing a severe form of illness to provide early management. Therefore, it is crucial to learn about the mechanisms and chemical mediators that lead to critical conditions in SARS-CoV-2 infection. This paper reviews studies regarding the individual chemical mediators, pathways, and means that contribute to worsening health conditions in SARS-CoV-2 infection. Abstract A significant part of the world population has been affected by the devastating SARS-CoV-2 infection. It has deleterious effects on mental and physical health and global economic conditions. Evidence suggests that the pathogenesis of SARS-CoV-2 infection may result in immunopathology such as neutrophilia, lymphopenia, decreased response of type I interferon, monocyte, and macrophage dysregulation. Even though most individuals infected with the SARS-CoV-2 virus suffer mild symptoms similar to flu, severe illness develops in some cases, including dysfunction of multiple organs. Excessive production of different inflammatory cytokines leads to a cytokine storm in COVID-19 infection. The large quantities of inflammatory cytokines trigger several inflammation pathways through tissue cell and immune cell receptors. Such mechanisms eventually lead to complications such as acute respiratory distress syndrome, intravascular coagulation, capillary leak syndrome, failure of multiple organs, and, in severe cases, death. Thus, to devise an effective management plan for SARS-CoV-2 infection, it is necessary to comprehend the start and pathways of signaling for the SARS-CoV-2 infection-induced cytokine storm. This article discusses the current findings of SARS-CoV-2 related to immunopathology, the different paths of signaling and other cytokines that result in a cytokine storm, and biomarkers that can act as early signs of warning for severe illness. A detailed understanding of the cytokine storm may aid in the development of effective means for controlling the disease’s immunopathology. In addition, noting the biomarkers and pathophysiology of severe SARS-CoV-2 infection as early warning signs can help prevent severe complications.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Plot No 4 Road 8/9, Sector-1, Dhaka 1230, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
16
|
Fleury M, Vazquez-Mateo C, Hernandez-Escalante J, Dooms H. Partial STAT5 signaling is sufficient for CD4 + T cell priming but not memory formation. Cytokine 2022; 150:155770. [PMID: 34839177 PMCID: PMC8761165 DOI: 10.1016/j.cyto.2021.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) plays an important role in regulating gene expression in response to cytokines of the common (γc) chain family. In this capacity, STAT5 promotes CD8+ effector and memory T cell survival and regulatory T cell development. However, its function in conventional CD4+ T cells is less clear. In this study, the requirement of intact STAT5 signaling for CD4+ effector and memory T cell generation and maintenance was investigated by using DO11.10 TCR transgenic T cells that are genetically deficient in STAT5A or B, as well as by transducing DO11 T cells with a dominant-negative STAT5 to temporally block STAT5 function. We found that the presence of STAT5A or B alone was sufficient for primary CD4+ effector T cell generation, but not for establishing a long-lived memory cell population. Similarly, blocking STAT5 signaling during priming did not prevent initial T cell activation, but inhibited the generation of memory cells. Surprisingly, blocking STAT5 post-priming did not impact the long-term survival of CD4+ memory T cells in vivo. Mechanistically, intact STAT5B, but not STAT5A, was required for IL-7Rα re-expression in activated T cells, which is an important cytokine receptor for CD4+ memory generation. These data show that fully functional STAT5 is essential to deliver an early, non-redundant signal for memory programming during the primary CD4+ T cell response, while partial STAT5 signaling is sufficient for effector differentiation. Our results have implications for the precise use of STAT5 inhibitors to timely inhibit memory T cell responses.
Collapse
Affiliation(s)
- Michelle Fleury
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Cristina Vazquez-Mateo
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States
| | - Jaileene Hernandez-Escalante
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States
| | - Hans Dooms
- Arthritis and Autoimmune Diseases Research Center, Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston MA 02118, United States; Department of Microbiology, Boston University School of Medicine, Boston MA 02118, United States; Department of Pathology, University of California San Francisco, San Francisco CA 94143, United States.
| |
Collapse
|
17
|
Xu J, Ren Z, Cao K, Li X, Yang J, Luo X, Zhu L, Wang X, Ding L, Liang J, Jin D, Yuan T, Li L, Xu J. Boosting Vaccine-Elicited Respiratory Mucosal and Systemic COVID-19 Immunity in Mice With the Oral Lactobacillus plantarum. Front Nutr 2022; 8:789242. [PMID: 35004816 PMCID: PMC8733898 DOI: 10.3389/fnut.2021.789242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Boosting and prolonging SARS-CoV-2 vaccine-elicited immunity is paramount for containing the COVID-19 pandemic, which wanes substantially within months after vaccination. Here we demonstrate that the unique strain of probiotic Lactobacillus plantarum GUANKE (LPG) could promote SARS-CoV-2-specific immune responses in both effective and memory phases through enhancing interferon signaling and suppressing apoptotic and inflammatory pathways. Interestingly, oral LPG administration promoted SARS-CoV-2 neutralization antibodies even 6 months after immunization. Furthermore, when LPG was given immediately after SARS-CoV-2 vaccine inoculation, specific neutralization antibodies could be boosted >8-fold in bronchoalveolar lavage (BAL) and >2-fold in sera, T-cell responses were persistent and stable for a prolonged period both in BAL and the spleen. Transcriptional analyses showed that oral application of LPG mobilized immune responses in the mucosal and systemic compartments; in particular, gut-spleen and gut-lung immune axes were observed. These results suggest that LPG could be applied in combination with SARS-CoV-2 vaccines to boost and prolong both the effective and memory immune responses in mucosal and systemic compartments, thereby improving the efficacy of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Jianqing Xu
- Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhihong Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Kangli Cao
- Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junrong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lianfeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China.,Institute of Public Health, Nankai University, Tianjing, China
| |
Collapse
|
18
|
Zhang X, Lian P, Su M, Ji Z, Deng J, Zheng G, Wang W, Ren X, Jiang T, Zhang P, Li H. Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma. eLife 2021; 10:68436. [PMID: 34905486 PMCID: PMC8719890 DOI: 10.7554/elife.68436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023] Open
Abstract
Ectopic Cushing’s syndrome due to ectopic ACTH&CRH-secreting by pheochromocytoma is extremely rare and can be fatal if not properly diagnosed. It remains unclear whether a unique cell type is responsible for multiple hormones secreting. In this work, we performed single-cell RNA sequencing to three different anatomic tumor tissues and one peritumoral tissue based on a rare case with ectopic ACTH&CRH-secreting pheochromocytoma. And in addition to that, three adrenal tumor specimens from common pheochromocytoma and adrenocortical adenomas were also involved in the comparison of tumor cellular heterogeneity. A total of 16 cell types in the tumor microenvironment were identified by unbiased cell clustering of single-cell transcriptomic profiles from all specimens. Notably, we identified a novel multi-functionally chromaffin-like cell type with high expression of both POMC (the precursor of ACTH) and CRH, called ACTH+&CRH + pheochromocyte. We hypothesized that the molecular mechanism of the rare case harbor Cushing’s syndrome is due to the identified novel tumor cell type, that is, the secretion of ACTH had a direct effect on the adrenal gland to produce cortisol, while the secretion of CRH can indirectly stimulate the secretion of ACTH from the anterior pituitary. Besides, a new potential marker (GAL) co-expressed with ACTH and CRH might be involved in the regulation of ACTH secretion. The immunohistochemistry results confirmed its multi-functionally chromaffin-like properties with positive staining for CRH, POMC, ACTH, GAL, TH, and CgA. Our findings also proved to some extent the heterogeneity of endothelial and immune microenvironment in different adrenal tumor subtypes.
Collapse
Affiliation(s)
- Xuebin Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Penghu Lian
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingming Su
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Deng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Taijiao Jiang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Jiangsu, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Krueger PD, Osum KC, Jenkins MK. CD4 + Memory T-Cell Formation during Type 1 Immune Responses. Cold Spring Harb Perspect Biol 2021; 13:a038141. [PMID: 33903156 PMCID: PMC8635001 DOI: 10.1101/cshperspect.a038141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naive CD4+ T cells become memory cells after proliferating in response to their cognate major histocompatibility complex class II (MHCII)-bound peptide and passing through an effector cell stage. The process by which CD4+ memory T cells emerge from the effector cell pool, however, is less well understood than in the case of CD8+ T cells. During certain acute infections, naive CD4+ T cells proliferate and differentiate into various forms of type 1 (Th1) and follicular helper (Tfh) effector cells. We review the evidence that about 10% of the cells in each of these subsets survive to become memory cells that resemble their effector cell precursors. The roles that asymmetric cell division, the TCF-1 transcription factor, metabolic activity, reactive oxygen species, and the IL-7 receptor play in the effector to memory cell transition are discussed. We propose a speculative model in which the metabolic activity needed for rapid clonal expansion also generates toxic products that induce apoptosis in most effector cells. Memory cells then arise from the effector cells in each subset that are at the low end of the metabolic activity spectrum.
Collapse
Affiliation(s)
- Peter D Krueger
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin C Osum
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
20
|
Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021; 339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Cell-based therapies could overcome the limitations of traditional drugs for the treatment of refractory diseases. Cell exchange between the bone marrow and blood is bidirectional. Several kinds of cells in the blood have the capability to enter the bone marrow by interacting with sinusoidal cells under specific physiological or pathological conditions. These cells are the potential living therapeutics or delivery vehicles to treat or prevent bone marrow-related hematologic diseases. In this review, we summarized the in vivo molecular mechanisms and kinetics of these cells in entering the bone marrow. The advances in the fabrication of living cell drugs and the strategies to design cell-based carriers into the bone marrow were discussed. The latest studies on how to use blood cells as living drugs or as drug carriers to improve therapeutic outcomes of hematologic diseases inside the bone marrow were highlighted.
Collapse
|
21
|
Fang F, Cao W, Zhu W, Lam N, Li L, Gaddam S, Wang Y, Kim C, Lambert S, Zhang H, Hu B, Farber DL, Weyand CM, Goronzy JJ. The cell-surface 5'-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Rep 2021; 37:109981. [PMID: 34758299 PMCID: PMC8612175 DOI: 10.1016/j.celrep.2021.109981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Weikang Zhu
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Simon Lambert
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US.
| |
Collapse
|
22
|
Zhang Z, Miao L, Ren Z, Tang F, Li Y. Gene-Edited Interleukin CAR-T Cells Therapy in the Treatment of Malignancies: Present and Future. Front Immunol 2021; 12:718686. [PMID: 34386015 PMCID: PMC8353254 DOI: 10.3389/fimmu.2021.718686] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, chimeric antigen receptor T cells (CAR-T cells) have been faced with the problems of weak proliferation and poor persistence in the treatment of some malignancies. Researchers have been trying to perfect the function of CAR-T by genetically modifying its structure. In addition to the participation of T cell receptor (TCR) and costimulatory signals, immune cytokines also exert a decisive role in the activation and proliferation of T cells. Therefore, genetic engineering strategies were used to generate cytokines to enhance tumor killing function of CAR-T cells. When CAR-T cells are in contact with target tumor tissue, the proliferation ability and persistence of T cells can be improved by structurally or inductively releasing immunoregulatory molecules to the tumor region. There are a large number of CAR-T cells studies on gene-edited cytokines, and the most common cytokines involved are interleukins (IL-7, IL-12, IL-15, IL-18, IL-21, IL-23). Methods for the construction of gene-edited interleukin CAR-T cells include co-expression of single interleukin, two interleukin, interleukin combined with other cytokines, interleukin receptors, interleukin subunits, and fusion inverted cytokine receptors (ICR). Preclinical and clinical trials have yielded positive results, and many more are under way. By reading a large number of literatures, we summarized the functional characteristics of some members of the interleukin family related to tumor immunotherapy, and described the research status of gene-edited interleukin CAR-T cells in the treatment of malignant tumors. The objective is to explore the optimized strategy of gene edited interleukin-CAR-T cell function.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Futian Tang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021; 6:255. [PMID: 34234112 PMCID: PMC8261820 DOI: 10.1038/s41392-021-00679-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xueru Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Zikun Tu
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Jinrong Fu
- General Department, Children's Hospital of Fudan University, Shanghai, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Choi Y, Grech S, Mohammadi A, Perry MC, Huibner S, Sano M, Weiss E, Coburn B, Salit I, Kaul R. Low-Level Anorectal HIV Shedding despite Effective Antiretroviral Therapy Is Not Driven by Mucosal Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:685-695. [PMID: 34215654 DOI: 10.4049/jimmunol.2100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Although antiretroviral treatment (ART) suppresses HIV RNA in blood and prevents transmission, low-level anorectal HIV RNA shedding persists in some ART-treated men who have sex with men. We collected anorectal biopsies and swabs from 55 men who have sex with men on effective ART, hypothesizing that anorectal shedding would be linked to microbiota-driven mucosal T cell activation. Lymphocytes were assessed by flow cytometry, soluble immune factors by multiplex immunoassay, neutrophils and epithelial integrity by immunofluorescence microscopy, and the anorectal microbiome by quantitative PCR and 16S rRNA gene sequencing. Unexpectedly, we found no evidence that anorectal HIV shedding was associated with the parameters of mucosal inflammation, including T cell activation, inflammatory cytokines, the density of neutrophils, or epithelial integrity. Moreover, the anorectal bacterial load was actually lower in the shedding group, with no major differences in bacterial composition. Instead, the strongest mucosal immune correlates of HIV shedding were an increase in central memory cell frequency and Ki67 expression as well as higher concentrations of the cytokine IL-7 in anorectal secretions. Anorectal HIV RNA shedding during effective ART was not driven by local inflammation; the associations seen with local homeostatic T cell proliferation will require further confirmation.
Collapse
Affiliation(s)
- Yoojin Choi
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Sarah Grech
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Avid Mohammadi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Sanja Huibner
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Marie Sano
- University Health Network, Toronto, Ontario, Canada
| | - Edward Weiss
- University Health Network, Toronto, Ontario, Canada
| | - Bryan Coburn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,University Health Network, Toronto, Ontario, Canada
| | - Irving Salit
- University Health Network, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Stamova S, Ott-Rötzer B, Smetak H, Schäffler K, Eder R, Fink I, Hoffmann P, Reichert TE, Beckhove P, Spanier G. Characterization and ex vivo expansion of rare in situ cytokine secreting T cell populations from tumor tissue and blood of oral squamous cell carcinoma patients. J Immunol Methods 2021; 496:113086. [PMID: 34146580 DOI: 10.1016/j.jim.2021.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Rare subpopulations of tumor antigen-reactive memory T cells, which actively secrete type-1 effector cytokines, particularly TNF-α in situ, possess anti-tumor activity and prognostic relevance. These cells are relevant for cancer immunotherapy; however, their low frequencies make them difficult to study and novel protocols for their culture and expansion ex vivo are needed. Here, we studied the presence of T cells secreting type-1 cytokines (Cy+T cells) in the blood and tumors of 24 patients with oral squamous cell carcinomas (OSCC) and explored possibilities for their isolation and expansion. More than 90% of OSCC patients contained enriched numbers Cy+T cells in the blood and tumors compared to healthy donors in which these were hardly detectable. The majority of TNF-α+T cells were CD4+ T helper cells while IFN-γ+TIL were predominantly CD8+. Cy+T helper cells in the blood were early-differentiated memory T cells while Cy+TIL and Cy+CD8+T cells showed advanced-differentiated memory T cell phenotypes. We explored different conditions for their in vitro culture and found that Cy+T cells can be efficiently expanded in vitro to similar levels as Cy-T cells and after expansion maintained their TNF-α secreting capacity. However, for optimal expansion they required specific culture conditions to support the maintenance of stem-like and central memory T cell phenotype. In conclusion, we show that Cy+T cells are enriched in OSCC patients and report a novel cell culture protocol optimized to specifically expand and functionally maintain these cells for further functional characterization or for their exploitation in immunotherapy of OSCC.
Collapse
Affiliation(s)
- Slava Stamova
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Birgitta Ott-Rötzer
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Heiko Smetak
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Katharina Schäffler
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Irina Fink
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
27
|
Vilsmaier T, Amann N, Löb S, Schmoeckel E, Kuhn C, Zati Zehni A, Meister S, Beyer S, Kolben TM, Becker J, Mumm JN, Mahner S, Jeschke U, Kolben T. The decidual expression of Interleukin-7 is upregulated in early pregnancy loss. Am J Reprod Immunol 2021; 86:e13437. [PMID: 33934432 DOI: 10.1111/aji.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Maternal immunological rejection of the semi-allogenic fetus is discussed as one of the significant factors involved in early pregnancy loss. An array of cytokines secreted by both maternal and fetal cells is involved in generating a delicate maternal immune tolerance. Interleukin-7 (IL-7) is discussed to play a key role in pro-inflammatory processes, but there is still limited insight into the pathophysiological input on placentation and embryonic development in early pregnancy loss. PATIENTS AND METHODS Cytokine level differences were identified with quantitative real-time PCR in placental tissue from spontaneous abortions (SA) (n = 18), recurrent spontaneous abortions (RSA) (n = 15), and healthy pregnancies (n = 15) at gestational weeks 7 to 14. Protein expression of IL-7 in the decidua was investigated by immunohistochemistry. IL-7-expressing cells were identified with double-immunofluorescence. RESULTS Decidua of women with RSA expressed almost 51-times higher values of IL-7 in gene expression analysis. Immunohistochemistry identified a significant upregulation of IL-7 in the decidua of RSA specimens (p = .013) and in the decidua of women with SA (p = .004). Double-immunofluorescence confirmed decidual stroma cells as IL-7-expressing cells. CONCLUSION Significantly elevated IL-7 values in the decidua of spontaneous and recurrent miscarriages imply a crucial role of the cytokine in the signaling at the feto-maternal interface of the placenta. An overexpression of IL-7 could result in early pregnancy loss by inducing a pro-inflammatory environment. Proven to be valuable in other autoimmune diseases, targeting IL-7 signaling therapeutically may prove to be a very beneficial treatment option for RSA patients.
Collapse
Affiliation(s)
- Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Niklas Amann
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, LMU Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, University Hospital, LMU Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Johanna Becker
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Jan-Niclas Mumm
- Department of Urology, University Hospital, LMU Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| |
Collapse
|
28
|
Machlin JH, Barishansky SJ, Kelsh J, Larmore MJ, Johnson BW, Pritchard MT, Pavone ME, Duncan FE. Fibroinflammatory Signatures Increase with Age in the Human Ovary and Follicular Fluid. Int J Mol Sci 2021; 22:ijms22094902. [PMID: 34063149 PMCID: PMC8125514 DOI: 10.3390/ijms22094902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The female reproductive system ages before any other organ system in the body. This phenomenon can have tangible clinical implications leading to infertility, miscarriages, birth defects and systemic deterioration due to estrogen loss. “Fibroinflammation” is a hallmark of aging tissues; there is an increase in inflammatory cytokines and fibrotic tissue in the aging ovarian stroma. We systematically evaluated immunomodulatory factors in human follicular fluid, which, like the stroma, is a critical ovarian microenvironment directly influencing the oocyte. Using a cytokine antibody array, we identified a unique fibroinflammatory cytokine signature in follicular fluid across an aging series of women (27.7–44.8 years). This signature (IL-3, IL-7, IL-15, TGFβ1, TGFβ3 and MIP-1) increased with chronologic age, was inversely correlated to anti-Müllerian hormone (AMH) levels, and was independent of body mass index (BMI). We focused on one specific protein, TGFβ3, for further validation. By investigating this cytokine in human cumulus cells and ovarian tissue, we found that the age-dependent increase in TGFβ3 expression was unique to the ovarian stroma but not other ovarian sub-compartments. This study broadens our understanding of inflammaging in the female reproductive system and provides a defined fibroinflammatory aging signature in follicular fluid and molecular targets in the ovary with potential clinical utility.
Collapse
Affiliation(s)
- Jordan H. Machlin
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.H.M.); (S.J.B.); (M.E.P.)
| | - Seth J. Barishansky
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.H.M.); (S.J.B.); (M.E.P.)
| | - John Kelsh
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Megan J. Larmore
- Department of Comparative Medicine, Histology and Imaging Core, University of Washington, Seattle, WA 98195, USA; (M.J.L.); (B.W.J.)
| | - Brian W. Johnson
- Department of Comparative Medicine, Histology and Imaging Core, University of Washington, Seattle, WA 98195, USA; (M.J.L.); (B.W.J.)
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology, & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.H.M.); (S.J.B.); (M.E.P.)
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.H.M.); (S.J.B.); (M.E.P.)
- Correspondence: ; Tel.: +1-312-503-2172
| |
Collapse
|
29
|
Fan NW, Li J, Mittal SK, Foulsham W, Elbasiony E, Huckfeldt RM, Chauhan SK, Chen Y. Characterization of Clinical and Immune Responses in an Experimental Chronic Autoimmune Uveitis Model. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:425-437. [PMID: 32966818 PMCID: PMC7931616 DOI: 10.1016/j.ajpath.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023]
Abstract
Autoimmune uveitis is a sight-threatening intraocular inflammatory disease. For >30 years, the mouse model of experimental autoimmune uveitis has been employed to investigate disease mechanisms and test immunotherapeutic approaches. However, inflammation in this model is self-limited, and does not replicate the chronic, insidious nature prevalent in the human disease. Herein, a robust and reliable model of chronic autoimmune uveitis was developed and characterized in two strains of wild-type mice by modifying interphotoreceptor retinoid-binding protein dose and peptide fragments from conventional experimental autoimmune uveitis models. In both of these murine strains, immunization with our modified protocols resulted in a slowly progressive uveitis, with retinal scars and atrophy observed in the chronic stage by fundoscopy. Optical coherence tomography demonstrated decreased retinal thickness in chronic autoimmune uveitis mice, and electroretinography showed significantly reduced amplitudes of dark-adapted a- and b-waves and light-adapted b-waves. Histologic examination revealed prominent choroiditis with extensive retinal damage. Flow cytometry analysis showed substantially increased numbers of CD44hiIL-17+IFN-γ- memory T-helper 17 (Th17) cells in the retina, cervical lymph nodes, inguinal lymph nodes, and spleen. These data establish new modified protocols for inducing chronic uveitis in wild-type mice, and demonstrate a predominant memory Th17 cell response, suggesting an important role for memory Th17 cells in driving chronic inflammation in autoimmune uveitis.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Joy Li
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - William Foulsham
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Yihe Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Maternal schistosomiasis impairs offspring Interleukin-4 production and B cell expansion. PLoS Pathog 2021; 17:e1009260. [PMID: 33524040 PMCID: PMC7877777 DOI: 10.1371/journal.ppat.1009260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/11/2021] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have identified a correlation between maternal helminth infections and reduced immunity to some early childhood vaccinations, but the cellular basis for this is poorly understood. Here, we investigated the effects of maternal Schistosoma mansoni infection on steady-state offspring immunity, as well as immunity induced by a commercial tetanus/diphtheria vaccine using a dual IL-4 reporter mouse model of maternal schistosomiasis. We demonstrate that offspring born to S. mansoni infected mothers have reduced circulating plasma cells and peripheral lymph node follicular dendritic cells at steady state. These reductions correlate with reduced production of IL-4 by iNKT cells, the cellular source of IL-4 in the peripheral lymph node during early life. These defects in follicular dendritic cells and IL-4 production were maintained long-term with reduced secretion of IL-4 in the germinal center and reduced generation of TFH, memory B, and memory T cells in response to immunization with tetanus/diphtheria. Using single-cell RNASeq following tetanus/diphtheria immunization of offspring, we identified a defect in cell-cycle and cell-proliferation pathways in addition to a reduction in Ebf-1, a key B-cell transcription factor, in the majority of follicular B cells. These reductions are dependent on the presence of egg antigens in the mother, as offspring born to single-sex infected mothers do not have these transcriptional defects. These data indicate that maternal schistosomiasis leads to long-term defects in antigen-induced cellular immunity, and for the first time provide key mechanistic insight into the factors regulating reduced immunity in offspring born to S. mansoni infected mothers. Maternal helminth infections are a global public health concern and correlate with altered infant immune responses to some childhood immunizations, but a mechanistic understanding of how maternal helminth infection alters the cellular immune responses of offspring is lacking. Here we establish a model of maternal Schistosoma mansoni infection in dual IL-4 reporter mice. We find that offspring born to mothers infected with S. mansoni have impaired production of IL-4 during homeostasis, and following immunization with a Tetanus-Diphtheria vaccine. We identified that iNKT cells are the dominant source of IL-4 during early life homeostasis, and that diminished IL-4 production was associated with both reduced B cell and follicular dendritic cell responses. These defects were maintained long-term, affecting memory B and T cell responses. Single-cell RNASeq analysis of immunized offspring identified egg antigen-dependent reductions in B-cell cell cycle and proliferation-related genes. These data reveal that maternal infection leads to long-lasting defects in the cellular responses to heterologous antigens and provide vital insight into the influence of maternal infection on offspring immunity.
Collapse
|
31
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
32
|
Zou Y, Li S, Ngai T, Zhang S, Ma G, Wu J. Green preparation of hydrogel particles-in-emulsions for simultaneous enhancement of humoral and cell-mediated immunity. Eng Life Sci 2020; 20:514-524. [PMID: 33204238 PMCID: PMC7645649 DOI: 10.1002/elsc.202000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Emulsions are one of the most often used vaccine adjuvant formulations. Although they promote high humoral immunity, the induced cellular immunity is often poor, which restrict their application. To enhance the cellular immunity, some researchers have prepared mixed formulations by adding particles into the aqueous phase of emulsions. However, the particle preparation process usually involves the addition and removal of organic reagents, which is environmentally unfriendly and cumbersome. Moreover, the obtained vaccine adjuvant only induces limited cell-mediated immunity and humoral immunity compared with emulsion-adjuvanted vaccines. Herein, we developed a green and simple method for fabricating a novel nanoparticles-in-emulsions (NPE) formulation. Firstly, a temperature-sensitive hydrogel was used to prepare particles by self-solidification without additional crosslinking reagents. Secondly, the white oil was used as organic phase to avoid the particle washing procedures and organic solvent residues. Moreover, the effect of NPE as vaccine adjuvant was evaluated by using two veterinary vaccines as model antigens. NPE showed advantages than the conventional vaccine formulations in inducing both humoral and cellular immunity. This work provides a facile and broadly applicable approach for preparing nanoparticles-in-emulsions formulation, and presents an effective adjuvant for enhancing immunity against infectious diseases.
Collapse
Affiliation(s)
- Yongjuan Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Shuai Li
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - To Ngai
- Department of ChemistryThe Chinese University of Hong KongShatinNTHong Kong
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
- PLA Key Laboratory of Biopharmaceutical Production and Formulation EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjingP. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
- PLA Key Laboratory of Biopharmaceutical Production and Formulation EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjingP. R. China
| |
Collapse
|
33
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
34
|
SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54:62-75. [PMID: 32513566 PMCID: PMC7265853 DOI: 10.1016/j.cytogfr.2020.06.001] [Citation(s) in RCA: 741] [Impact Index Per Article: 185.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
A wide range of cytokines are involved in the development of COVID-19 disease. Some of these biomolecules are related to the progression and even to the prognosis of the infection. Findings on the role of cytokine storm associated with SARS-CoV-2 infection can be useful in order to manage this highly virulent disease.
COVID-19 disease, caused by infection with SARS-CoV-2, is related to a series of physiopathological mechanisms that mobilize a wide variety of biomolecules, mainly immunological in nature. In the most severe cases, the prognosis can be markedly worsened by the hyperproduction of mainly proinflammatory cytokines, such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, preferentially targeting lung tissue. This study reviews published data on alterations in the expression of different cytokines in patients with COVID-19 who require admission to an intensive care unit. Data on the implication of cytokines in this disease and their effect on outcomes will support the design of more effective approaches to the management of COVID-19.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.
Collapse
|
36
|
Liu R, Simonetti FR, Ho YC. The forces driving clonal expansion of the HIV-1 latent reservoir. Virol J 2020; 17:4. [PMID: 31910871 PMCID: PMC6947923 DOI: 10.1186/s12985-019-1276-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Despite antiretroviral therapy (ART) which halts HIV-1 replication and reduces plasma viral load to clinically undetectable levels, viral rebound inevitably occurs once ART is interrupted. HIV-1-infected cells can undergo clonal expansion, and these clonally expanded cells increase over time. Over 50% of latent reservoirs are maintained through clonal expansion. The clonally expanding HIV-1-infected cells, both in the blood and in the lymphoid tissues, contribute to viral rebound. The major drivers of clonal expansion of HIV-1-infected cells include antigen-driven proliferation, homeostatic proliferation and HIV-1 integration site-dependent proliferation. Here, we reviewed how viral, immunologic and genomic factors contribute to clonal expansion of HIV-1-infected cells, and how clonal expansion shapes the HIV-1 latent reservoir. Antigen-specific CD4+ T cells specific for different pathogens have different clonal expansion dynamics, depending on antigen exposure, cytokine profiles and exhaustion phenotypes. Homeostatic proliferation replenishes the HIV-1 latent reservoir without inducing viral expression and immune clearance. Integration site-dependent proliferation, a mechanism also deployed by other retroviruses, leads to slow but steady increase of HIV-1-infected cells harboring HIV-1 proviruses integrated in the same orientation at specific sites of certain cancer-related genes. Targeting clonally expanding HIV-1 latent reservoir without disrupting CD4+ T cell function is a top priority for HIV-1 eradication.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, 06519, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, 06519, USA.
| |
Collapse
|
37
|
Hogan T, Nowicka M, Cownden D, Pearson CF, Yates AJ, Seddon B. Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4 + T cell memory. eLife 2019; 8:e48901. [PMID: 31742553 PMCID: PMC6905650 DOI: 10.7554/elife.48901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 11/13/2022] Open
Abstract
Laboratory mice develop populations of circulating memory CD4+ T cells in the absence of overt infection. We have previously shown that these populations are replenished from naive precursors at high levels throughout life (Gossel et al., 2017). However, the nature, relative importance and timing of the forces generating these cells remain unclear. Here, we tracked the generation of memory CD4+ T cell subsets in mice housed in facilities differing in their 'dirtiness'. We found evidence for sequential naive to central memory to effector memory development, and confirmed that both memory subsets are heterogeneous in their rates of turnover. We also inferred that early exposure to self and environmental antigens establishes persistent memory populations at levels determined largely, although not exclusively, by the dirtiness of the environment. After the first few weeks of life, however, these populations are continuously supplemented by new memory cells at rates that are independent of environment.
Collapse
Affiliation(s)
- Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Maria Nowicka
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Daniel Cownden
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Claire F Pearson
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | - Andrew J Yates
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
38
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
39
|
CD161 + CD4 + T Cells Harbor Clonally Expanded Replication-Competent HIV-1 in Antiretroviral Therapy-Suppressed Individuals. mBio 2019; 10:mBio.02121-19. [PMID: 31594817 PMCID: PMC6786872 DOI: 10.1128/mbio.02121-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The latent reservoir continues to be the major obstacle to curing HIV-1 infection. The clonal expansion of latently infected cells adds another layer maintaining the long-term stability of the reservoir, but its mechanism remains unclear. Here, we report that CD161+ CD4+ T cells serve as an important compartment of the HIV-1 latent reservoir and contain a significant amount of clonally expanded proviruses. In our study, we describe a feasible strategy that may reduce the size of the latent reservoir to a certain extent by counterbalancing the repopulation and dissemination of latently infected cells. The presence of an extremely stable latent reservoir of HIV-1 is the major obstacle to eradication, despite effective antiretroviral therapy (ART). Recent studies have shown that clonal expansion of latently infected cells without viral reactivation is an important phenomenon that maintains the long-term stability of the reservoir, yet its underlying mechanism remains unclear. Here we report that a subset of CD4+ T cells, characterized by CD161 expression on the surface, is highly permissive for HIV-1 infection. These cells possess a significantly higher survival and proliferative capacity than their CD161-negative counterparts. More importantly, we found that these cells harbor HIV-1 DNA and replication-competent latent viruses at a significantly higher frequency. By using massive single-genome proviral sequencing from ART-suppressed individuals, we confirm that CD161+ CD4+ T cells contain remarkably more identical proviral sequences, indicating clonal expansion of the viral genome in these cells. Taking the results together, our study identifies infected CD161+ CD4+ T cells to be a critical force driving the clonal expansion of the HIV-1 latent reservoir, providing a novel mechanism for the long-term stability of HIV-1 latency.
Collapse
|
40
|
Goonetilleke N, Clutton G, Swanstrom R, Joseph SB. Blocking Formation of the Stable HIV Reservoir: A New Perspective for HIV-1 Cure. Front Immunol 2019; 10:1966. [PMID: 31507594 PMCID: PMC6714000 DOI: 10.3389/fimmu.2019.01966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrate that the stable HIV-1 reservoir in resting CD4+ T cells is mostly formed from viruses circulating when combination antiretroviral therapy (ART) is initiated. Here we explore the immunological basis for these observations. Untreated HIV-1 infection is characterized by a progressive depletion of memory CD4+ T cells which mostly express CD127, the α chain of the IL-7 receptor (IL-7R). Depletion results from both direct infection and bystander loss of memory CD4+ T cells in part attributed to dysregulated IL-7/IL-7R signaling. While IL-7/IL7R signaling is not essential for the generation of effector CD4+ T cells from naïve cells, it is essential for the further transition of effectors to memory CD4+ T cells and their subsequent homeostatic maintenance. HIV-1 infection therefore limits the transition of CD4+ T cells from an effector to long-lived memory state. With the onset of ART, virus load (VL) levels rapidly decrease and the frequency of CD127+ CD4+ memory T cells increases, indicating restoration of effector to memory transition in CD4+ T cells. Collectively these data suggest that following ART initiation, HIV-1 infected effector CD4+ T cells transition to long-lived, CD127+ CD4+ T cells forming the majority of the stable HIV-1 reservoir. We propose that combining ART initiation with inhibition of IL-7/IL-7R signaling to block CD4+ T cell memory formation will limit the generation of long-lived HIV-infected CD4+ T cells and reduce the overall size of the stable HIV-1 reservoir.
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ron Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah B. Joseph
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Shi L, Chen X, Zang A, Li T, Hu Y, Ma S, Lü M, Yin H, Wang H, Zhang X, Zhang B, Leng Q, Yang J, Xiao H. TSC1/mTOR-controlled metabolic-epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biol 2019; 17:e3000420. [PMID: 31433805 PMCID: PMC6719877 DOI: 10.1371/journal.pbio.3000420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) play pivotal roles in T-cell homeostasis and activation, and metabolic programing has been recently linked to DC development and function. However, the metabolic underpinnings corresponding to distinct DC functions remain largely unresolved. Here, we demonstrate a special metabolic–epigenetic coupling mechanism orchestrated by tuberous sclerosis complex subunit 1 (TSC1)-mechanistic target of rapamycin (mTOR) for homeostatic DC function. Specific ablation of Tsc1 in the DC compartment (Tsc1DC-KO) largely preserved DC development but led to pronounced reduction in naïve and memory–phenotype cluster of differentiation (CD)8+ T cells, a defect fully rescued by concomitant ablation of mTor or regulatory associated protein of MTOR, complex 1 (Rptor) in DCs. Moreover, Tsc1DC-KO mice were unable to launch efficient antigen-specific CD8+ T effector responses required for containing Listeria monocytogenes and B16 melanomas. Mechanistically, our data suggest that the steady-state DCs tend to tune down de novo fatty acid synthesis and divert acetyl-coenzyme A (acetyl-CoA) for histone acetylation, a process critically controlled by TSC1-mTOR. Correspondingly, TSC1 deficiency elevated acetyl-CoA carboxylase 1 (ACC1) expression and fatty acid synthesis, leading to impaired epigenetic imprinting on selective genes such as major histocompatibility complex (MHC)-I and interleukin (IL)-7. Remarkably, tempering ACC1 activity was able to divert cytosolic acetyl-CoA for histone acetylation and restore the gene expression program compromised by TSC1 deficiency. Taken together, our results uncover a crucial role for TSC1-mTOR in metabolic programing of the homeostatic DCs for T-cell homeostasis and implicate metabolic-coupled epigenetic imprinting as a paradigm for DC specification. Dendritic cells (DCs) play pivotal roles in T cell homeostasis and activation, but the basis of the metabolic programming of distinct DC functions remains unclear. This study identifies a novel metabolic-epigenetic node enabling DC control of CD8 T cell homeostasis, involving mTOR-ACC1 as a rheostat that balances fatty-acid synthesis and histone acetylation.
Collapse
Affiliation(s)
- Lei Shi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanxiang Hu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengdie Lü
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- * E-mail: (HX); (JY); (QL)
| | - Jinbo Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- * E-mail: (HX); (JY); (QL)
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Science; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HX); (JY); (QL)
| |
Collapse
|
42
|
Chi X, Yang P, Zhang E, Gu J, Xu H, Li M, Gao X, Li X, Zhang Y, Xu H, Hu J. Significantly increased anti-tumor activity of carcinoembryonic antigen-specific chimeric antigen receptor T cells in combination with recombinant human IL-12. Cancer Med 2019; 8:4753-4765. [PMID: 31237116 PMCID: PMC6712469 DOI: 10.1002/cam4.2361] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Background aims Chimeric antigen receptor T cells (CAR‐T cells) have been successfully used in treatments of hematological tumors, however, their anti‐tumor activity in solid tumor treatments was limited. As IL‐12 increases T‐cell immune functions, we designed carcinoembryonic antigen (CEA) specific CAR‐T (CEA‐CAR‐T) cells and, for the first time, used them in combination with recombinant human IL‐12 (rhIL‐12) to treat several types of solid tumors. Methods In vitro anti‐tumor activity of CEA‐CAR‐T cells in combination with rhIL‐12 was confirmed by evaluation of CEA‐CAR‐T cell activation, proliferation, and cytotoxicity after co‐incubation with CEA‐positive or CEA‐negative human tumor cells. In vivo anti‐tumor activity of CEA‐CAR‐T cells in combination with rhIL‐12 was confirmed in a xenograft model in nude mice for treatments of several types of solid tumors. Results In vitro experiments confirmed that rhIL‐12 significantly increased the activation, proliferation, and cytotoxicity of CEA‐CAR‐T cells. Similarly, in vivo experiments found that CEA‐CAR‐T cells in combination with rhIL‐12 had significantly enhanced anti‐tumor activity than CEA‐CAR‐T cells in growth inhibition of newly colonized colorectal cancer cell HT‐29, pancreatic cancer cell AsPC‐1, and gastric cancer cell MGC803. Conclusions These works confirmed that simultaneous use of cytokines, for example, rhIL‐12, can increase the anti‐tumor activity of CAR‐T cells, especially for treatments of several types of solid tumors.
Collapse
Affiliation(s)
- Xiaowei Chi
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
- Development Center for Medicine Science and TechnologyNational Health and Family Planning Commission of the People's Republic of ChinaBeijingP. R. China
| | - Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Erhao Zhang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Jieyi Gu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Hui Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Mengwei Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Xinmei Gao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Xin Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Yinan Zhang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu ProvinceNanjingP. R. China
- State Key Laboratory of Natural Medicines, Ministry of EducationChina Pharmaceutical UniversityNanjingP. R. China
| |
Collapse
|
43
|
Ayasoufi K, Zwick DB, Fan R, Hasgur S, Nicosia M, Gorbacheva V, Keslar KS, Min B, Fairchild RL, Valujskikh A. Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight 2019; 4:125489. [PMID: 30944247 DOI: 10.1172/jci.insight.125489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Antibody-mediated lymphoablation is used in solid organ and stem cell transplantation and autoimmunity. Using murine anti-thymocyte globulin (mATG) in a mouse model of heart transplantation, we previously reported that the homeostatic recovery of CD8+ T cells requires help from depletion-resistant memory CD4+ T cells delivered through CD40-expressing B cells. This study investigated the mechanisms by which B cells mediate CD8+ T cell proliferation in lymphopenic hosts. While CD8+ T cell recovery required MHC class I expression in the host, the reconstitution occurred independently of MHC class I, MHC class II, or CD80/CD86 expression on B cells. mATG lymphoablation upregulated the B cell expression of several cytokine genes, including IL-15 and IL-27, in a CD4-dependent manner. Neither treatment with anti-CD122 mAb nor the use of IL-15Rα-/- recipients altered CD8+ T cell recovery after mATG treatment, indicating that IL-15 may be dispensable for T cell proliferation in our model. Instead, IL-27 neutralization or the use of IL-27Rα-/- CD8+ T cells inhibited CD8+ T cell proliferation and altered the phenotype and cytokine profile of reconstituted CD8+ T cells. Our findings uncover what we believe is a novel role of IL-27 in lymphopenia-induced CD8+ T cell proliferation and suggest that targeting B cell-derived cytokines may increase the efficacy of lymphoablation and improve transplant outcomes.
Collapse
|
44
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
45
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
46
|
Lythe G, Molina-París C. Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol Rev 2018; 285:206-217. [DOI: 10.1111/imr.12696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Grant Lythe
- School of Mathematics; University of Leeds; Leeds UK
| | | |
Collapse
|
47
|
Terrazzini N, Mantegani P, Kern F, Fortis C, Mondino A, Caserta S. Interleukin-7 Unveils Pathogen-Specific T Cells by Enhancing Antigen-Recall Responses. J Infect Dis 2018; 217:1997-2007. [PMID: 29506153 PMCID: PMC5972594 DOI: 10.1093/infdis/jiy096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin (IL)-7 promotes the generation, expansion, and survival of memory T cells. Previous mouse and human studies showed that IL-7 can support immune cell reconstitution in lymphopenic conditions, expand tumor-reactive T cells for adoptive immunotherapy, and enhance effector cytokine expression by autoreactive T cells. Whether pathogen-reactive T cells also benefit from IL-7 exposure remains unknown. Methods In this study, we investigated this issue in cultures of peripheral blood mononuclear cells (PBMCs) derived from patients infected with various endemic pathogens. After short-term exposure to IL-7, we measured PBMC responses to antigens derived from pathogens, such as Mycobacterium tuberculosis, Candida albicans, and cytomegalovirus, and to the superantigen Staphylococcus aureus enterotoxin B. Results We found that IL-7 favored the expansion and, in some instances, the uncovering of pathogen-reactive CD4 T cells, by promoting pathogen-specific interferon-γ, IL-2, and tumor necrosis factor recall responses. Conclusions Our findings indicate that IL-7 unveils and supports reactivation of pathogen-specific T cells with possible diagnostic, prognostic, and therapeutic significance of clinical value, especially in conditions of pathogen persistence and chronic infection.
Collapse
Affiliation(s)
- Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, United Kingdom
| | - Paola Mantegani
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Florian Kern
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
| | - Claudio Fortis
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Caserta
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- School of Life Sciences, The University of Hull, United Kingdom
| |
Collapse
|
48
|
Altered levels of memory T cell subsets and common γc cytokines in Strongyloides stercoralis infection and partial reversal following anthelmintic treatment. PLoS Negl Trop Dis 2018; 12:e0006481. [PMID: 29795573 PMCID: PMC5991401 DOI: 10.1371/journal.pntd.0006481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/06/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD4+ and CD8+ T cells are central players in immunity to helminth infections. However, the role of T cell subsets in human helminth infections is not well understood. In addition, the common γc cytokines, IL-2, IL-4, IL-7, IL-9 and IL-15 play an important role in the maintenance of these CD4+ and CD8+ T cell subsets. METHODS To examine the major T cell subsets and their association with the common γc cytokines, the absolute numbers of CD4+ and CD8+ naïve, central memory, effector memory and effector cells and the plasma levels of IL-2, IL-4, IL-7, IL-9 and IL-15 were measured in Strongyloides stercoralis (Ss) infected (INF, n = 60), helminth-uninfected (UN, n = 58) and in post treatment INF individuals. RESULTS Ss infection is characterized by significantly increased absolute numbers of naïve and decreased absolute numbers of central and effector memory CD4+ T cells in comparison to UN individuals. No significant difference in the numbers of CD8+ T cell subsets was observed between the groups. The numbers of naïve cells and central memory CD4+ T cells were significantly reversed after anthelmintic treatment. Circulating levels of IL-2, IL-7 and IL-15 were significantly diminished, whereas the levels of IL-4 and IL-9 were significantly increased in INF compared to UN individuals. Following anthelminthic treatment, IL-2, IL-7 and IL-15 levels were significantly increased, while IL-4 and IL-9 levels were significantly decreased. Our data also showed a significant positive correlation between the levels of IL-7 and the numbers of central and effector memory CD4+ T cells. CONCLUSION Ss infection is characterized by alterations in the absolute numbers of CD4+ T cell subsets and altered levels of common γc cytokines IL-2, IL-4, IL-7, IL-9 and IL-15; alterations which are partially reversed after anthelmintic treatment.
Collapse
|
49
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
50
|
Cao J, Xu X, Zhang Y, Zeng Z, Hylkema MN, Huo X. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:988-995. [PMID: 29096958 DOI: 10.1016/j.scitotenv.2017.10.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/21/2017] [Accepted: 10/21/2017] [Indexed: 02/05/2023]
Abstract
Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4+ central memory T cells and CD8+ central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4+ central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8+ central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4+ central memory T cells in these children.
Collapse
Affiliation(s)
- Junjun Cao
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, The Netherlands
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|