1
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Pearson AD, DuBois SG, Macy ME, de Rojas T, Donoghue M, Weiner S, Knoderer H, Bernardi R, Buenger V, Canaud G, Cantley L, Chung J, Fox E, Friend J, Glade-Bender J, Gorbatchevsky I, Gore L, Gupta A, Hawkins DS, Juric D, Lang LA, Leach D, Liaw D, Lesa G, Ligas F, Lindberg G, Lindberg W, Ludwinski D, Marshall L, Mazar A, McDonough J, Nysom K, Ours C, Pappo A, Parsons DW, Rosenfeld A, Scobie N, Smith M, Taylor D, Weigel B, Weinstein A, Karres D, Vassal G. Paediatric strategy forum for medicinal product development of PI3-K, mTOR, AKT and GSK3β inhibitors in children and adolescents with cancer. Eur J Cancer 2024; 207:114145. [PMID: 38936103 DOI: 10.1016/j.ejca.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.
Collapse
Affiliation(s)
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | | | | | | | | | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA USA
| | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | - John Chung
- Bayer Healthcare Pharmaceuticals, Whippany, NJ, USA
| | | | | | | | | | | | - Abha Gupta
- The Hospital for Sick Children (SickKids), Princess Margaret Hospital Toronto, Canada
| | | | | | - Leigh Anna Lang
- Rally Foundation for Childhood Cancer Research, Atlanta, GA, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | | | | | | | - Lynley Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | | | - Christopher Ours
- National Human Genome Research Institute/National Institutes of Health, MD, USA
| | | | | | | | | | | | | | | | - Amy Weinstein
- Pediatric Brain Tumor Foundation of the US, Atlanta, USA
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
3
|
Linscott MP, Ren JR, Gestl SA, Gunther EJ. Different Oncogenes and Reproductive Histories Shape the Progression of Distinct Premalignant Clones in Multistage Mouse Breast Cancer Models. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1329-1345. [PMID: 38537934 PMCID: PMC11220927 DOI: 10.1016/j.ajpath.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/10/2024]
Abstract
A remote carcinogen exposure can predispose to breast cancer onset decades later, suggesting that carcinogen-induced mutations generate long-lived premalignant clones. How subsequent events influence the progression of specific premalignant clones remains poorly understood. Herein, multistage mouse models of mammary carcinogenesis were generated by combining chemical carcinogen exposure [using 7,12-dimethylbenzanthracene (DMBA)] with transgenes that enable inducible expression of one of two clinically relevant mammary oncogenes: c-MYC (MYC) or PIK3CAH1047R (PIK). In prior work, DMBA exposure generated mammary clones bearing signature HrasQ61L mutations, which only progressed to mammary cancer after inducible Wnt1 oncogene expression. Here, after an identical DMBA exposure, MYC versus PIK drove cancer progression from mammary clones bearing mutations in distinct Ras family paralogs. For example, MYC drove cancer progression from either Kras- or Nras-mutant clones, whereas PIK transformed Kras-mutant clones only. These Ras mutation patterns were maintained whether oncogenic transgenes were induced within days of DMBA exposure or months later. Completing a full-term pregnancy (parity) failed to protect against either MYC- or PIK-driven tumor progression. Instead, a postpartum increase in mammary tumor predisposition was observed in the context of PIK-driven progression. However, parity decreased the overall prevalence of tumors bearing Krasmut, and the magnitude of this decrease depended on both the number and timing of pregnancies. These multistage models may be useful for elucidating biological features of premalignant mammary neoplasia.
Collapse
Affiliation(s)
- Maryknoll P Linscott
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jerry R Ren
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shelley A Gestl
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Edward J Gunther
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
4
|
Liu Y, Wen HK, Xu RX, Liu C, Li XH, Qin XD, Zhao YX, Jia YX, Luo DQ. Semisynthesis and antitumor activity of endertiin B and related triterpenoids from Ganoderma lucidum. Org Biomol Chem 2024; 22:4978-4986. [PMID: 38832762 DOI: 10.1039/d4ob00641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 μM and 12.12 ± 0.95 μM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Hong-Kai Wen
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Rui-Xuan Xu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Chang Liu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiao-Han Li
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiang-Dong Qin
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - You-Xing Zhao
- Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, People's Republic of China
| | - Yan-Xing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, China
| | - Dou-Qiang Luo
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| |
Collapse
|
5
|
Lu Y, Lin B, Li M. The role of alpha-fetoprotein in the tumor microenvironment of hepatocellular carcinoma. Front Oncol 2024; 14:1363695. [PMID: 38660138 PMCID: PMC11039944 DOI: 10.3389/fonc.2024.1363695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant cancer worldwide, characterized by high morbidity and mortality rates. Alpha-fetoprotein (AFP) is a glycoprotein synthesized by the liver and yolk sac during fetal development. However, the serum levels of AFP exhibit a significant correlation with the onset and progression of HCC in adults. Extensive research has demonstrated that the tumor microenvironment (TME) plays a crucial role in the malignant transformation of HCC, and AFP is a key factor in the TME, promoting HCC development. The objective of this review was to analyze the existing knowledge regarding the role of AFP in the TME. Specifically, this review focused on the effect of AFP on various cells in the TME, tumor immune evasion, and clinical application of AFP in the diagnosis and treatment of HCC. These findings offer valuable insights into the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
- Institution of Tumor, Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
6
|
Chatterjee S, Prashanth P, Rawat V, Ghosh Roy S. Regulation of lipid and serine metabolism by the oncogene c-Myc. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:236-256. [PMID: 39396848 DOI: 10.1016/bs.ircmb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Tumor formation is supported by metabolic reprogramming, characterized by increase nutrient uptake, glycolysis and glutaminolysis. The c-Myc proto-oncogene is a transcription factor, upregulated in most cancers and several reports showed the role of c-Myc in other metabolic pathways such as glucose, amino acid, and nucleotide metabolism. In this short report, we tried to summarize the existing takeaway points from studies conducted in different cancer types with respect to c-Myc and lipid and serine metabolism. Here, we report that c-Myc can activate both lipid and serine metabolism against the backdrop of tumor formation, and different therapies like aspirin and lomitapide target the links between c-Myc and metabolism to slow down tumor progression and invasion. We also report diverse upstream regulators that influence c-Myc in different cancers, and interestingly components of the lipid metabolism (like lipid phosphate phosphatase and leptin) and serine metabolism can also act upstream of c-Myc in certain occasions. Finally, we also summarize the existing knowledge on the involvement of epigenetic pathways and non-coding RNAs in regulating lipid and serine metabolism and c-Myc in tumor cells. Identification of non-coding factors and epigenetic mechanisms present a promising avenue of study that could empower researchers with novel anticancer treatment targeting c-Myc and lipid and serine metabolism pathways!
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States.
| | - Sounak Ghosh Roy
- Henry M Jackson Foundation for the Advancement of Military Medicine (In Support of Agile Vaccines & Therapeutics, Directorate for Defense Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
7
|
Ash SL, Orha R, Mole H, Dinesh-Kumar M, Lee SP, Turrell FK, Isacke CM. Targeting the activated microenvironment with endosialin (CD248)-directed CAR-T cells ablates perivascular cells to impair tumor growth and metastasis. J Immunother Cancer 2024; 12:e008608. [PMID: 38413223 PMCID: PMC10900351 DOI: 10.1136/jitc-2023-008608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Targeting of solid cancers with chimeric antigen receptor (CAR)-T cells is limited by the lack of suitable tumor-specific antigens and the immunosuppressive, desmoplastic tumor microenvironment that impedes CAR-T cell infiltration, activity and persistence. We hypothesized that targeting the endosialin (CD248) receptor, strongly expressed by tumor-associated pericytes and perivascular cancer-associated fibroblasts, would circumvent these challenges and offer an exciting antigen for CAR-T cell therapy due to the close proximity of target cells to the tumor vasculature, the limited endosialin expression in normal tissues and the lack of phenotype observed in endosialin knockout mice. METHODS We generated endosialin-directed E3K CAR-T cells from three immunocompetent mouse strains, BALB/c, FVB/N and C57BL/6. E3K CAR-T cell composition (CD4+/CD8+ ratio), activity in vitro against endosialin+ and endosialin- cells, and expansion and activity in vivo in syngeneic tumor models as well as in tumor-naive healthy and wounded mice and tumor-bearing endosialin knockout mice was assessed. RESULTS E3K CAR-T cells were active in vitro against both mouse and human endosialin+, but not endosialin-, cells. Adoptively transferred E3K CAR-T cells exhibited no activity in endosialin knockout mice, tumor-naive endosialin wildtype mice or in wound healing models, demonstrating an absence of off-target and on-target/off-tumor activity. By contrast, adoptive transfer of E3K CAR-T cells into BALB/c, FVB/N or C57BL/6 mice bearing syngeneic breast or lung cancer lines depleted target cells in the tumor stroma resulting in increased tumor necrosis, reduced tumor growth and a substantial impairment in metastatic outgrowth. CONCLUSIONS Together these data highlight endosialin as a viable antigen for CAR-T cell therapy and that targeting stromal cells closely associated with the tumor vasculature avoids CAR-T cells having to navigate the harsh immunosuppressive tumor microenvironment. Further, the ability of E3K CAR-T cells to recognize and target both mouse and human endosialin+ cells makes a humanized and optimized E3K CAR a promising candidate for clinical development applicable to a broad range of solid tumor types.
Collapse
Affiliation(s)
- Sarah L Ash
- The Institute of Cancer Research, London, UK
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Holly Mole
- University of Birmingham, Birmingham, UK
| | | | | | - Frances K Turrell
- The Institute of Cancer Research, London, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | |
Collapse
|
8
|
Chen H, Hu X, Wang D, Wang Y, Yu Y, Yao H. Association of PIK3CA mutation with outcomes in HER2-positive breast cancer treated with anti-HER2 therapy: A meta-analysis and bioinformatic analysis of TCGA‑BRCA data. Transl Oncol 2023; 37:101738. [PMID: 37597296 PMCID: PMC10458974 DOI: 10.1016/j.tranon.2023.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND This study aimed to comprehensively explore the clinical significance of PIK3CA mutation in human epidermal growth factor receptor 2 (HER2)-positive breast cancer treated with anti-HER2 therapy. METHODS We systematically searched PubMed, Embase, and the Cochrane databases for eligible studies assessing the association between PIK3CA mutation and outcomes in patients with HER2-positive breast cancer receiving anti-HER2 therapy. The main outcomes included: (1) pathological complete response (pCR) or disease-free survival (DFS) for the neoadjuvant setting; (2) DFS or invasive DFS for the adjuvant setting; (3) objective response rate (ORR), progression-free survival (PFS), time-to-progression (TTP), or overall survival (OS) for the metastatic setting. The mutational landscape of HER2-positive breast cancer according to PIK3CA mutation status was examined based on TCGA breast cancer dataset. RESULTS Totally, 43 eligible studies, covering 11,099 patients with available data on PIK3CA mutation status, were identified. In the neoadjuvant setting, PIK3CA mutation was significantly associated with a lower pCR rate (OR=0.23, 95% CI 0.19-0.27, p<0.001). This association remained significant irrespective of the type of anti-HER2 therapy (single-agent or dual-agent) and hormone receptor status. There were no significant differences in DFS between PIK3CA mutated and wild-type patients in either the neoadjuvant or adjuvant settings. In the metastatic setting, PIK3CA mutation predicted worse ORR (OR=0.26, 95%CI 0.17-0.40, p<0.001), PFS (HR=1.28, 95%CI 1.03-1.59, p = 0.024) and TTP (HR=2.27, 95%CI 1.54-3.34, p<0.001). However, no significant association was observed between PIK3CA mutation status and OS. Distinct mutational landscapes were observed in HER2-positive breast cancer between individuals with PIK3CA mutations and those with wild-type PIK3CA. CONCLUSIONS PIK3CA mutation was significantly associated with a lower pCR rate in HER2-positive breast cancer treated with neoadjuvant anti-HER2 therapy. In the metastatic setting, PIK3CA mutation was predictive of worse ORR, PFS and TTP. These results suggest the potential for developing PI3K inhibitors as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xingbin Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Daquan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China.
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China.
| |
Collapse
|
9
|
Bu W, Creighton CJ, Heavener KS, Gutierrez C, Dou Y, Ku AT, Zhang Y, Jiang W, Urrutia J, Jiang W, Yue F, Jia L, Ibrahim AA, Zhang B, Huang S, Li Y. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice. SCIENCE ADVANCES 2023; 9:eade0059. [PMID: 37172086 PMCID: PMC10181191 DOI: 10.1126/sciadv.ade0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey S. Heavener
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jazmin Urrutia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luyu Jia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Bergholz JS, Wang Q, Wang Q, Ramseier M, Prakadan S, Wang W, Fang R, Kabraji S, Zhou Q, Gray GK, Abell-Hart K, Xie S, Guo X, Gu H, Von T, Jiang T, Tang S, Freeman GJ, Kim HJ, Shalek AK, Roberts TM, Zhao JJ. PI3Kβ controls immune evasion in PTEN-deficient breast tumours. Nature 2023; 617:139-146. [PMID: 37076617 PMCID: PMC10494520 DOI: 10.1038/s41586-023-05940-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/10/2023] [Indexed: 04/21/2023]
Abstract
Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kβ isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kβ activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kβ led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kβ inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kβ inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kβ controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kβ inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.
Collapse
Affiliation(s)
- Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qi Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Geode Therapeutics, Inc., Boston, MA, USA
| | - Michelle Ramseier
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sanjay Prakadan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rong Fang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, P. R. China
| | - Sheheryar Kabraji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qian Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - G Kenneth Gray
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Kayley Abell-Hart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xiaocan Guo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hao Gu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thanh Von
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuang Tang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA, USA
| | - Alex K Shalek
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
12
|
Dong C, Tan G, Zhang G, Lin W, Wang G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: A review. Front Bioeng Biotechnol 2023; 11:1133995. [PMID: 37064239 PMCID: PMC10090379 DOI: 10.3389/fbioe.2023.1133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The process of bone regeneration involves the interaction of the skeletal, blood, and immune systems. Bone provides a solid barrier for the origin and development of immune cells in the bone marrow. At the same time, immune cells secrete related factors to feedback on the remodeling of the skeletal system. Pathological or traumatic injury of bone tissue involves changes in blood supply, cell behavior, and cytokine expression. Immune cells and their factors play an essential role in repairing foreign bodies in bone injury or implantation of biomaterials, the clearance of dead cells, and the regeneration of bone tissue. This article reviews the bone regeneration application of the bone tissue repair microenvironment in bone cells and immune cells in the bone marrow and the interaction of materials and immune cells.
Collapse
Affiliation(s)
- Changchao Dong
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Tan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyan Zhang
- Department of Respiratory Medicine, The 7th Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China Hospital, Orthopedics Research Institute, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| |
Collapse
|
13
|
Age-associated microenvironmental changes highlight the role of PDGF-C in ER + breast cancer metastatic relapse. NATURE CANCER 2023; 4:468-484. [PMID: 36914817 PMCID: PMC10132974 DOI: 10.1038/s43018-023-00525-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Patients with estrogen receptor (ER)-positive breast cancer are at risk of metastatic relapse for decades after primary tumor resection and treatment, a consequence of dormant disseminated tumor cells (DTCs) reawakening at secondary sites. Here we use syngeneic ER+ mouse models in which DTCs display a dormant phenotype in young mice but accelerated metastatic outgrowth in an aged or fibrotic microenvironment. In young mice, low-level Pdgfc expression by ER+ DTCs is required for their maintenance in secondary sites but is insufficient to support development of macrometastases. By contrast, the platelet-derived growth factor (PDGF)-Chi environment of aging or fibrotic lungs promotes DTC proliferation and upregulates tumor cell Pdgfc expression stimulating further stromal activation, events that can be blocked by pharmacological inhibition of PDGFRα or with a PDGF-C-blocking antibody. These results highlight the role of the changing microenvironment in regulating DTC outgrowth and the opportunity to target PDGF-C signaling to limit metastatic relapse in ER+ breast cancer.
Collapse
|
14
|
The FDA-Approved Drug Pyrvinium Selectively Targets ER + Breast Cancer Cells with High INPP4B Expression. Cancers (Basel) 2022; 15:cancers15010135. [PMID: 36612130 PMCID: PMC9817693 DOI: 10.3390/cancers15010135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The majority of breast cancers are estrogen receptor-positive (ER+), and endocrine therapies that suppress ER signaling are the standard-of-care treatment for this subset. However, up to half of all ER+ cancers eventually relapse, highlighting a need for improved clinical therapies. The phosphoinositide phosphatase, INPP4B, is overexpressed in almost half of all ER+ breast cancers, and promotes Wnt/β-catenin signaling, cell proliferation and tumor growth. Here, using cell viability assays, we report that INPP4B overexpression does not affect the sensitivity of ER+ breast cancer cells to standard-of-care treatments including the anti-estrogen 4-hydroxytamoxifen (4-OHT) or the PI3Kα inhibitor alpelisib. Examination of four small molecule Wnt inhibitors revealed that ER+ breast cancer cells with INPP4B overexpression were more sensitive to the FDA-approved drug pyrvinium and a 4-OHT-pyrvinium combination treatment. Using 3D culture models, we demonstrated that pyrvinium selectively reduced the size of INPP4B-overexpressing ER+ breast cancer spheroids in the presence and absence of 4-OHT. These findings suggest that repurposing pyrvinium as a Wnt inhibitor may be an effective therapeutic strategy for human ER+ breast cancers with high INPP4B levels.
Collapse
|
15
|
Lin M, Ku AT, Dong J, Yue F, Jiang W, Ibrahim AA, Peng F, Creighton CJ, Nagi C, Gutierrez C, Rosen JM, Zhang XHF, Hilsenbeck SG, Chen X, Du YCN, Huang S, Shi A, Fan Z, Li Y. STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential. Oncogene 2022; 41:5214-5222. [PMID: 36261627 PMCID: PMC9701164 DOI: 10.1038/s41388-022-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.
Collapse
Affiliation(s)
- Meng Lin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Amy T Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Education, Innovation & Technology, Houston, TX, USA
| | - Aiping Shi
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Tsang T, He Q, Cohen EB, Stottrup C, Lien EC, Zhang H, Lau CG, Chin YR. Upregulation of Receptor Tyrosine Kinase Activity and Stemness as Resistance Mechanisms to Akt Inhibitors in Breast Cancer. Cancers (Basel) 2022; 14:5006. [PMID: 36291790 PMCID: PMC9599323 DOI: 10.3390/cancers14205006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K/Akt pathway is frequently deregulated in human cancers, and multiple Akt inhibitors are currently under clinical evaluation. Based on the experience from other molecular targeted therapies, however, it is likely that acquired resistance will be developed in patients treated with Akt inhibitors. We established breast cancer models of acquired resistance by prolonged treatment of cells with allosteric or ATP-competitive Akt inhibitors. Phospho-Receptor tyrosine kinase (Phospho-RTK) arrays revealed hyper-phosphorylation of multiple RTKS, including EGFR, Her2, HFGR, EhpB3 and ROR1, in Akt-inhibitor-resistant cells. Importantly, resistance can be overcome by treatment with an EGFR inhibitor. We further showed that cancer stem cells (CSCs) are enriched in breast tumor cells that have developed resistance to Akt inhibitors. Several candidates of CSC regulators, such as ID4, are identified by RNA sequencing. Cosmic analysis indicated that sensitivity of tumor cells to Akt inhibitors can be predicted by ID4 and stem cell/epithelial-mesenchymal transition pathway targets. These findings indicate the potential of targeting the EGFR pathway and CSC program to circumvent Akt inhibitor resistance in breast cancer.
Collapse
Affiliation(s)
- Tiffany Tsang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Emily B. Cohen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Casey Stottrup
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Evan C. Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong
| | - C. Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong
| | - Y. Rebecca Chin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
- Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
17
|
Zhang J, Abou-Fadel J, Renteria M, Belkin O, Chen B, Zhu Y, Dammann P, Rigamonti D. Cerebral cavernous malformations do not fall in the spectrum of PIK3CA-related overgrowth. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328901. [PMID: 35477890 DOI: 10.1136/jnnp-2022-328901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
Somatic gain-of-function (GOF) mutations in phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), the catalytic subunit of phosphoinositide 3-kinase (PI3K), have been recently discovered in cerebral cavernous malformations (CCMs), raising the possibility that the activation of PI3K pathways is a possible universal regulator of vascular morphogenesis. However, there have been contradicting data presented among various groups and studies. To enhance the current understanding of vascular anomalies, it is essential to explore this possible relationship between altered PI3K signalling pathways and its influence on the pathogenesis of CCMs. GOF PIK3CA-mutants have been linked to overgrowth syndromes, allowing this group of disorders, resulting from somatic activating mutations in PIK3CA, to be collectively named as PIK3CA-related overgrowth spectrum disorders. This paper reviews and attempts to conceptualise the relationships and differences among clinical presentations, genotypic and phenotypic correlations and possible coexistence of PIK3CA and CCM mutations/phenotypes in CCM lesions. Finally, we present a model reflecting our hypothetical understanding of CCM pathogenesis based on a systematic review and conceptualisation of data obtained from other studies.
Collapse
Affiliation(s)
- Jun Zhang
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Johnathan Abou-Fadel
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Mellisa Renteria
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Ofek Belkin
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Bixia Chen
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
18
|
Lipocalin 2 potentially contributes to tumorigenesis from colitis via IL-6/STAT3/NF-kB signaling pathway. Biosci Rep 2022; 42:231201. [PMID: 35470375 PMCID: PMC9109459 DOI: 10.1042/bsr20212418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Lipocalin 2 (LCN2), a member of the lipocalin superfamily, plays an important role in oncogenesis and progression in various types of cancer. However, the role of LCN2 in inflammation-associated cancer remains unknown. Here, we explored the functional role and mechanisms of LCN2 in tumorigenesis using murine colitis-associated cancer (CAC) models and human colorectal cancer (CRC) cells. Using murine CAC models, we found that LCN2 was preferentially expressed in colonic tissues from CAC models compared to tissues from normal mice. In vitro results demonstrated that the levels of LCN2 mRNA and protein were markedly up-regulated by Interleukin-6 (IL-6) in human CRC cells. Interestingly, we found LCN2 up-regulation by IL-6 is diminished by NF-kB and STAT3 inhibition using specific inhibitors and siRNA. Reporter assay results determined that IL-6 induces LCN2 gene promoter activity under control of NF-kB/STAT3 activation. IL-6-induced LCN2 regulated cell survival and susceptibility of developmental factors to the NF-kB/STAT3 pathway. Taken together, our results highlight the unknown role of LCN2 in CAC progression and suggest that increased LCN2 may serve as an indicator of CRC development in the setting of chronic inflammation.
Collapse
|
19
|
Ma X, Ling C, Zhao M, Wang F, Cui Y, Wen J, Ji Z, Zhang C, Chen S, Tong A, Li Y. Mutational Profile and Potential Molecular Therapeutic Targets of Pheochromocytoma. Front Endocrinol (Lausanne) 2022; 13:921645. [PMID: 35966080 PMCID: PMC9368203 DOI: 10.3389/fendo.2022.921645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Pheochromocytoma/paraganglioma (PCC/PGL; collectively known as PPGL) can be driven by germline and somatic mutations in susceptibility genes. We aimed to investigate the mutation profile and clinical features of pathogenic genes in highly genetically heterogeneous PPGL and to preliminary explore molecular therapeutic targets in PPGL. METHODS We established a panel of 260 genes, including susceptibility genes of PPGL and other important tumorigenic genes to sequence 107 PPGL tissues. RESULTS Overall, 608 genomic mutations were identified in 107 PPGL tissues. Almost 57% of PPGL tissue samples exhibited pathogenic mutations, and the most frequently mutated gene was SDHB (15/107, 14%). SDHB and HRAS were the most commonly mutated genes in germline-mutated PPGL (25/107, 23%) and nongermline-mutated PPGL (36/107, 34%), respectively. In addition, novel pathogenic mutations were detected in sporadic PPGL. PPGL with mutations in the hypoxia pathway had an earlier onset and higher norepinephrine level than those in the kinase pathway. Receptor tyrosine kinase (RTK; 22%, 24/107), mitogen-activated protein kinase (MAPK; 14%, 15/107), and tyrosine kinase (TK; 2%, 2/107) pathways were the most frequently mutated pathways in PPGL. CONCLUSION Our results provided the genetic mutation profile in PPGL tissues. Genetic mutations in PPGL were mainly concentrated in the RTK, TK, and MAPK pathways, suggesting potential molecular therapeutic targets for PPGL.
Collapse
Affiliation(s)
- Xiaosen Ma
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Ling
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Zhao
- Bioinformatics Institute, Novogene Co., Ltd., Beijing, China
| | - Fen Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunying Cui
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Caili Zhang
- Department of Technical Support, Novogene Co., Ltd., Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Anli Tong,
| | - Yuxiu Li
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Kishikawa T, Higuchi H, Wang L, Panch N, Maymi V, Best S, Lee S, Notoya G, Toker A, Matesic LE, Wulf GM, Wei W, Otsuka M, Koike K, Clohessy JG, Lee YR, Pandolfi PP. WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities in breast cancer models. J Clin Invest 2021; 131:140436. [PMID: 34907909 DOI: 10.1172/jci140436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is a pervasive event in tumorigenesis due to PI3K mutation and dysfunction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Pharmacological inhibition of PI3K has resulted in variable clinical outcomes, however, raising questions regarding the possible mechanisms of unresponsiveness and resistance to treatment. WWP1 is an oncogenic HECT-type ubiquitin E3 ligase frequently amplified and mutated in multiple cancers, as well as in the germ lines of patients predisposed to cancer, and was recently found to activate PI3K signaling through PTEN inactivation. Here, we demonstrate that PTEN dissociated from the plasma membrane upon treatment with PI3K inhibitors through WWP1 activation, whereas WWP1 genetic or pharmacological inhibition restored PTEN membrane localization, synergizing with PI3K inhibitors to suppress tumor growth both in vitro and in vivo. Furthermore, we demonstrate that WWP1 inhibition attenuated hyperglycemia and the consequent insulin feedback, which is a major tumor-promoting side effect of PI3K inhibitors. Mechanistically, we found that AMPKα2 was ubiquitinated and, in turn, inhibited in its activatory phosphorylation by WWP1, whereas WWP1 inhibition facilitated AMPKα2 activity in the muscle to compensate for the reduction in glucose uptake observed upon PI3K inhibition. Thus, our identification of the cell-autonomous and systemic roles of WWP1 inhibition expands the therapeutic potential of PI3K inhibitors and reveals new avenues of combination cancer therapy.
Collapse
Affiliation(s)
- Takahiro Kishikawa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Higuchi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Limei Wang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nivedita Panch
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Maymi
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, and
| | - Sachem Best
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, and
| | - Samuel Lee
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, and
| | - Genso Notoya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Gerburg M Wulf
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, and
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.,Renown Institute for Cancer, Nevada System of Higher Education, Reno, Nevada, USA
| |
Collapse
|
21
|
New derivatives of sulfonylhydrazone as potential antitumor agents: Design, synthesis and cheminformatics evaluation. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:545-565. [PMID: 36651560 DOI: 10.2478/acph-2021-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/19/2023]
Abstract
Phosphoinositide 3-kinase α (PI3Kα) is a propitious target for designing anticancer drugs. A series of new N'-(diphenylmethylene)benzenesulfonohydrazide was synthesized and characterized using FT-IR, NMR (1H and 13C), HRMS, and elemental analysis. Target compounds exhibited an antiproliferative effect against the human colon carcinoma (HCT-116) cell line. Our cheminformatics analysis indicated that the para-tailored derivatives [p-NO2 (3) and p-CF3 (7)] have better ionization potentials based on calculated Moran autocorrelations and ionization potentials. Subsequent in vitro cell proliferation assays validated our cheminformatics results by providing experimental evidence that both derivatives 3 and 7 exhibited improved antiproliferative activities against HCT-116. Hence, our results emphasized the importance of electron-withdrawing groups and hydrogen bond-acceptors in the rational design of small-molecule chemical ligands targeting PI3Kα. These results agreed with the induced-fit docking against PI3Kα, highlighting the role of p-substituted aromatic rings in guiding the ligand-PI3Kα complex formation, by targeting a hydrophobic pocket in the ligand-binding site and forming π-stacking interactions with a nearby tryptophan residue.
Collapse
|
22
|
Xu J, Yu X, Martin TC, Bansal A, Cheung K, Lubin A, Stratikopoulos E, Cahuzac KM, Wang L, Xie L, Zhou R, Shen Y, Wu X, Yao S, Qiao R, Poulikakos PI, Chen X, Liu J, Jin J, Parsons R. AKT Degradation Selectively Inhibits the Growth of PI3K/PTEN Pathway-Mutant Cancers with Wild-Type KRAS and BRAF by Destabilizing Aurora Kinase B. Cancer Discov 2021; 11:3064-3089. [PMID: 34301793 PMCID: PMC9056008 DOI: 10.1158/2159-8290.cd-20-0815] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Using a panel of cancer cell lines, we characterized a novel degrader of AKT, MS21. In mutant PI3K-PTEN pathway cell lines, AKT degradation was superior to AKT kinase inhibition for reducing cell growth and sustaining lower signaling over many days. AKT degradation, but not kinase inhibition, profoundly lowered Aurora kinase B (AURKB) protein, which is known to be essential for cell division, and induced G2-M arrest and hyperploidy. PI3K activated AKT phosphorylation of AURKB on threonine 73, which protected it from proteasome degradation. A mutant of AURKB (T73E) that mimics phosphorylation and blocks degradation rescued cells from growth inhibition. Degrader-resistant lines were associated with low AKT phosphorylation, wild-type PI3K/PTEN status, and mutation of KRAS/BRAF. Pan-cancer analysis identified that 19% of cases have PI3K-PTEN pathway mutation without RAS pathway mutation, suggesting that these patients with cancer could benefit from AKT degrader therapy that leads to loss of AURKB. SIGNIFICANCE MS21 depletes cells of phosphorylated AKT (pAKT) and a newly identified AKT substrate, AURKB, to inhibit tumor growth in mice. MS21 is superior to prior agents that target PI3K and AKT due to its ability to selectively target active, pAKT and sustain repression of signaling to deplete AURKB. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tiphaine C. Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kakit Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elias Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Royce Zhou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yudao Shen
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruifang Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Liu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Young A, Bu W, Jiang W, Ku A, Kapali J, Dhamne S, Qin L, Hilsenbeck SG, Du YCN, Li Y. Targeting the Pro-Survival Protein BCL-2 to Prevent Breast Cancer. Cancer Prev Res (Phila) 2021; 15:3-10. [PMID: 34667127 DOI: 10.1158/1940-6207.capr-21-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention.
Collapse
Affiliation(s)
- Adelaide Young
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Amy Ku
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jyoti Kapali
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Sagar Dhamne
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Lan Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Chai Y, Xu L, He R, Zhong L, Wang Y. Identification of hub genes specific to pulmonary metastasis in osteosarcoma through integrated bioinformatics analysis. Technol Health Care 2021; 30:735-745. [PMID: 34542049 DOI: 10.3233/thc-213163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary metastasis is the most frequent cause of death in osteosarcoma (OS) patients. Recently, several bioinformatics studies specific to pulmonary metastatic osteosarcoma (PMOS) have been applied to identify genetic alterations. However, the interpretation and reliability of the results obtained were limited for the independent database analysis. OBJECTIVE The expression profiles and key pathways specific to PMOS remain to be comprehensively explored. Therefore, in our study, three original datasets of GEO database were selected. METHODS Initially, three microarray datasets (GSE14359, GSE14827, and GSE85537) were downloaded from the GEO database. Differentially expressed genes (DEGs) between PMOS and nonmetastatic osteosarcoma (NMOS) were identified and mined using DAVID. Subsequently, GO and KEGG pathway analyses were carried out for DEGs. Corresponding PPI network of DEGs was constructed based on the data collected from STRING datasets. The network was visualized with Cytoscape software, and ten hub genes were selected from the network. Finally, survival analysis of these hub genes also used the TARGET database. RESULTS In total, 569 upregulated and 1238 downregulated genes were filtered as DEGs between PMOS and NMOS. Based on the GO analysis result, these DEGs were significantly enriched in the anatomical structure development, extracellular matrix, biological adhesion, and cell adhesion terms. Based on the KEGG pathway analysis result, these DEGs were mainly enriched in the pathways in cancer, PI3K-Akt signaling, MAPK signaling, focal adhesion, cytokine-cytokine receptor interaction, and IL-17 signaling. Hub genes (ANXA1 and CXCL12) were significantly associated with overall survival time in OS patient. CONCLUSION Our results may provide new insight into pulmonary metastasis of OS. However, experimental studies remain necessary to elucidate the biological function and mechanism underlying PMOS.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lihan Xu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Rui He
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liangjun Zhong
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Sun H, Cao S, Mashl RJ, Mo CK, Zaccaria S, Wendl MC, Davies SR, Bailey MH, Primeau TM, Hoog J, Mudd JL, Dean DA, Patidar R, Chen L, Wyczalkowski MA, Jayasinghe RG, Rodrigues FM, Terekhanova NV, Li Y, Lim KH, Wang-Gillam A, Van Tine BA, Ma CX, Aft R, Fuh KC, Schwarz JK, Zevallos JP, Puram SV, Dipersio JF, Davis-Dusenbery B, Ellis MJ, Lewis MT, Davies MA, Herlyn M, Fang B, Roth JA, Welm AL, Welm BE, Meric-Bernstam F, Chen F, Fields RC, Li S, Govindan R, Doroshow JH, Moscow JA, Evrard YA, Chuang JH, Raphael BJ, Ding L. Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment. Nat Commun 2021; 12:5086. [PMID: 34429404 PMCID: PMC8384880 DOI: 10.1038/s41467-021-25177-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.
Collapse
Affiliation(s)
- Hua Sun
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Song Cao
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - R. Jay Mashl
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Chia-Kuei Mo
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Simone Zaccaria
- grid.16750.350000 0001 2097 5006Department of Computer Science, Princeton University, Princeton, NJ USA ,grid.83440.3b0000000121901201Computational Cancer Genomics Research Group and Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Michael C. Wendl
- grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Mathematics, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Genetics, Washington University in St. Louis, St. Louis, MO USA
| | - Sherri R. Davies
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Matthew H. Bailey
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Tina M. Primeau
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Jeremy Hoog
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Jacqueline L. Mudd
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Dennis A. Dean
- grid.492568.4Seven Bridges Genomics, Inc., Cambridge, Charlestown, MA USA
| | - Rajesh Patidar
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Li Chen
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Matthew A. Wyczalkowski
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Reyka G. Jayasinghe
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Fernanda Martins Rodrigues
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Nadezhda V. Terekhanova
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Yize Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Kian-Huat Lim
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Andrea Wang-Gillam
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Brian A. Van Tine
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Cynthia X. Ma
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Rebecca Aft
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Katherine C. Fuh
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Julie K. Schwarz
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO USA
| | - Jose P. Zevallos
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Otolaryngology, Washington University St. Louis, St. Louis, MO USA
| | - Sidharth V. Puram
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Otolaryngology, Washington University St. Louis, St. Louis, MO USA
| | - John F. Dipersio
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | | | | | - Matthew J. Ellis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Michael T. Lewis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Bingliang Fang
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jack A. Roth
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alana L. Welm
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Bryan E. Welm
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Feng Chen
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Ryan C. Fields
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Shunqiang Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Ramaswamy Govindan
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - James H. Doroshow
- grid.48336.3a0000 0004 1936 8075Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD USA
| | - Jeffrey A. Moscow
- grid.48336.3a0000 0004 1936 8075Investigational Drug Branch, National Cancer Institute, Bethesda, MD USA
| | - Yvonne A. Evrard
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jeffrey H. Chuang
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Benjamin J. Raphael
- grid.16750.350000 0001 2097 5006Department of Computer Science, Princeton University, Princeton, NJ USA
| | - Li Ding
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Genetics, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
26
|
Synthetic fluorescent MYC probe: Inhibitor binding site elucidation and development of a high-throughput screening assay. Bioorg Med Chem 2021; 42:116246. [PMID: 34130216 DOI: 10.1016/j.bmc.2021.116246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.
Collapse
|
27
|
Shor RE, Dai J, Lee SY, Pisarsky L, Matei I, Lucotti S, Lyden D, Bissell MJ, Ghajar CM. The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. Mol Oncol 2021; 16:130-147. [PMID: 34058066 PMCID: PMC8732345 DOI: 10.1002/1878-0261.13031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Dormant, disseminated tumor cells (DTCs) are thought to be the source of breast cancer metastases several years or even decades after initial treatment. To date, a selective therapy that leads to their elimination has not been discovered. While dormant DTCs resist chemotherapy, evidence suggests that this resistance is driven not by their lack of proliferation, but by their engagement of the surrounding microenvironment, via integrin‐β1‐mediated interactions. Because integrin‐β1‐targeted agents have not been translated readily to the clinic, signaling nodes downstream of integrin‐β1 could serve as attractive therapeutic targets in order to sensitize dormant DTCs to therapy. By probing a number of kinases downstream of integrin‐β1, we determined that PI3K inhibition with either a tool compounds or a compound (PF‐05212384; aka Gedatolisib) in clinical trials robustly sensitizes quiescent breast tumor cells seeded in organotypic bone marrow cultures to chemotherapy. These results motivated the preclinical study of whether Gedatolisib—with or without genotoxic therapy—would reduce DTC burden and prevent metastases. Despite promising results in organotypic culture, Gedatolisib failed to reduce DTC burden or delay, reduce or prevent metastasis in murine models of either triple‐negative or estrogen receptor‐positive breast cancer dissemination and metastasis. This result held true whether analyzing Gedatolisib on its own (vs. vehicle‐treated animals) or in combination with dose‐dense doxorubicin and cyclophosphamide (vs. animals treated only with dose‐dense chemotherapies). These data suggest that PI3K is not the node downstream of integrin‐β1 that confers chemotherapeutic resistance to DTCs. More broadly, they cast doubt on the strategy to target PI3K in order to eliminate DTCs and prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Ryann E Shor
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, USA
| | - Laura Pisarsky
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
28
|
Bushnell GG, Deshmukh AP, den Hollander P, Luo M, Soundararajan R, Jia D, Levine H, Mani SA, Wicha MS. Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer 2021; 7:66. [PMID: 34050189 PMCID: PMC8163741 DOI: 10.1038/s41523-021-00269-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Luo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Departments of Physics and Bioengineering, Northeastern University, Boston, MA, USA.
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Mabe NW, Garcia NMG, Wolery SE, Newcomb R, Meingasner RC, Vilona BA, Lupo R, Lin CC, Chi JT, Alvarez JV. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program. Cell Rep 2021; 33:108341. [PMID: 33147463 PMCID: PMC7656293 DOI: 10.1016/j.celrep.2020.108341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nina Marie G Garcia
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Shayna E Wolery
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Rachel Newcomb
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan C Meingasner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Brittany A Vilona
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan Lupo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - James V Alvarez
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
31
|
Madsen RR, Longden J, Knox RG, Robin X, Völlmy F, Macleod KG, Moniz LS, Carragher NO, Linding R, Vanhaesebroeck B, Semple RK. NODAL/TGFβ signalling mediates the self-sustained stemness induced by PIK3CAH1047R homozygosity in pluripotent stem cells. Dis Model Mech 2021; 14:dmm048298. [PMID: 33514588 PMCID: PMC7969366 DOI: 10.1242/dmm.048298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Activating PIK3CA mutations are known 'drivers' of human cancer and developmental overgrowth syndromes. We recently demonstrated that the 'hotspot' PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In this study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of homozygous PIK3CAH1047R cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in heterozygous PIK3CAH1047R was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in homozygous PIK3CAH1047R hPSCs was reversed by pharmacological inhibition of NODAL/TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in hPSCs and directly links strong PI3K activation to developmental NODAL/TGFβ signalling. This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - James Longden
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Rachel G. Knox
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Xavier Robin
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Franziska Völlmy
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenneth G. Macleod
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Larissa S. Moniz
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rune Linding
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115Berlin, Germany
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
32
|
Lin CC, Yang WH, Lin YT, Tang X, Chen PH, Ding CKC, Qu DC, Alvarez JV, Chi JT. DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway. Oncogene 2021; 40:2018-2034. [PMID: 33603168 PMCID: PMC7988308 DOI: 10.1038/s41388-021-01676-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023]
Abstract
Recurrent breast cancer presents significant challenges with aggressive phenotypes and treatment resistance. Therefore, novel therapeutics are urgently needed. Here, we report that murine recurrent breast tumor cells, when compared with primary tumor cells, are highly sensitive to ferroptosis. Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), the receptor for collagen I, is highly expressed in ferroptosis-sensitive recurrent tumor cells and human mesenchymal breast cancer cells. EMT regulators, TWIST and SNAIL, significantly induce DDR2 expression and sensitize ferroptosis in a DDR2-dependent manner. Erastin treatment induces DDR2 upregulation and phosphorylation, independent of collagen I. Furthermore, DDR2 knockdown in recurrent tumor cells reduces clonogenic proliferation. Importantly, both the ferroptosis protection and reduced clonogenic growth may be compatible with the compromised YAP/TAZ upon DDR2 inhibition. Collectively, these findings identify the important role of EMT-driven DDR2 upregulation in recurrent tumors in maintaining growth advantage but activating YAP/TAZ-mediated ferroptosis susceptibility, providing potential strategies to eradicate recurrent breast cancer cells with mesenchymal features.
Collapse
Affiliation(s)
- Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi-Tzu Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan Chen Qu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James V. Alvarez
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA;,Correspondence: Jen-Tsan Ashley Chi, Department of Molecular Genetics and Microbiology, Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA. TEL: (919) 668-4759,
| |
Collapse
|
33
|
Kondo H, Ratcliffe CDH, Hooper S, Ellis J, MacRae JI, Hennequart M, Dunsby CW, Anderson KI, Sahai E. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep 2021; 34:108750. [PMID: 33596424 PMCID: PMC7900713 DOI: 10.1016/j.celrep.2021.108750] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Inter-cellular heterogeneity in metabolic state has been proposed to influence many cancer phenotypes, including responses to targeted therapy. Here, we track the transitions and heritability of metabolic states in single PIK3CA mutant breast cancer cells, identify non-genetic glycolytic heterogeneity, and build on observations derived from methods reliant on bulk analyses. Using fluorescent biosensors in vitro and in tumors, we have identified distinct subpopulations of cells whose glycolytic and mitochondrial metabolism are regulated by combinations of phosphatidylinositol 3-kinase (PI3K) signaling, bromodomain activity, and cell crowding effects. The actin severing protein cofilin, as well as PI3K, regulates rapid changes in glucose metabolism, whereas treatment with the bromodomain inhibitor slowly abrogates a subpopulation of cells whose glycolytic activity is PI3K independent. We show how bromodomain function and PI3K signaling, along with actin remodeling, independently modulate glycolysis and how targeting these pathways affects distinct subpopulations of cancer cells.
Collapse
Affiliation(s)
- Hiroshi Kondo
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Colin D H Ratcliffe
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steven Hooper
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Marc Hennequart
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher W Dunsby
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ, UK
| | - Kurt I Anderson
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Erik Sahai
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
34
|
Martignano F, Munagala U, Crucitta S, Mingrino A, Semeraro R, Del Re M, Petrini I, Magi A, Conticello SG. Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients. Mol Cancer 2021; 20:32. [PMID: 33579306 PMCID: PMC7881593 DOI: 10.1186/s12943-021-01327-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the "precision oncology" era the characterization of tumor genetic features is a pivotal step in cancer patients' management. Liquid biopsy approaches, such as analysis of cell-free DNA from plasma, represent a powerful and noninvasive strategy to obtain information about the genomic status of the tumor. Sequencing-based analyses of cell-free DNA, currently performed with second generation sequencers, are extremely powerful but poorly scalable and not always accessible also due to instrumentation costs. Third generation sequencing platforms, such as Nanopore sequencers, aim at overcoming these obstacles but, unfortunately, are not designed for cell-free DNA analysis.Here we present a customized workflow to exploit low-coverage Nanopore sequencing for the detection of copy number variations from plasma of cancer patients. Whole genome molecular karyotypes of 6 lung cancer patients and 4 healthy subjects were successfully produced with as few as 2 million reads, and common lung-related copy number alterations were readily detected.This is the first successful use of Nanopore sequencing for copy number profiling from plasma DNA. In this context, Nanopore represents a reliable alternative to Illumina sequencing, with the advantages of minute instrumentation costs and extremely short analysis time.The availability of protocols for Nanopore-based cell-free DNA analysis will make this analysis finally accessible, exploiting the full potential of liquid biopsy both for research and clinical purposes.
Collapse
Affiliation(s)
- Filippo Martignano
- Core Research Laboratory, ISPRO, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Uday Munagala
- Core Research Laboratory, ISPRO, Florence, Italy.,Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Mingrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberto Semeraro
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO, Florence, Italy. .,Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
35
|
Abstract
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
36
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Duffy MJ, O'Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev 2021; 94:102154. [PMID: 33524794 DOI: 10.1016/j.ctrv.2021.102154] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
The MYC gene which consists of 3 paralogs, C-MYC, N-MYC and L-MYC, is one of the most frequently deregulated driver genes in human cancer. Because of its high prevalence of deregulation and its causal role in cancer formation, maintenance and progression, targeting MYC is theoretically an attractive strategy for treating cancer. As a potential anticancer target, MYC was traditionally regarded as undruggable due to the absence of a suitable pocket for high-affinity binding by low molecular weight inhibitors. In recent years however, several compounds that directly or indirectly inhibit MYC have been shown to have anticancer activity in preclinical tumor models. Amongst the most detailed investigated strategies for targeting MYC are inhibition of its binding to its obligate interaction partner MAX, prevention of MYC expression and blocking of genes exhibiting synthetic lethality with overexpression of MYC. One of the most extensively investigated MYC inhibitors is a peptide/mini-protein known as OmoMYC. OmoMYC, which acts by blocking the binding of all 3 forms of MYC to their target promoters, has been shown to exhibit anticancer activity in a diverse range of preclinical models, with minimal side effects. Based on its broad efficacy and limited toxicity, OmoMYC is currently being developed for evaluation in clinical trials. Although no compound directly targeting MYC has yet progressed to clinical testing, APTO-253, which partly acts by decreasing expression of MYC, is currently undergoing a phase I clinical trial in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Minhong Tang
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
38
|
Zhao HF, Wu CP, Zhou XM, Diao PY, Xu YW, Liu J, Wang J, Huang XJ, Liu WL, Chen ZP, Huang GD, Li WP. Synergism between the phosphatidylinositol 3-kinase p110β isoform inhibitor AZD6482 and the mixed lineage kinase 3 inhibitor URMC-099 on the blockade of glioblastoma cell motility and focal adhesion formation. Cancer Cell Int 2021; 21:24. [PMID: 33407478 PMCID: PMC7789614 DOI: 10.1186/s12935-020-01728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
Background Glioblastoma multiforme, the most aggressive and malignant primary brain tumor, is characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Our previous studies delineated a crosstalk between PI3K/Akt and JNK signaling pathways, and a moderate anti-glioblastoma synergism caused by the combined inhibition of PI3K p110β (PI3Kβ) isoform and JNK. However, this combination strategy is not potent enough. MLK3, an upstream regulator of ERK and JNK, may replace JNK to exert stronger synergism with PI3Kβ. Methods To develop a new combination strategy with stronger synergism, the expression pattern and roles of MLK3 in glioblastoma patient’s specimens and cell lines were firstly investigated. Then glioblastoma cells and xenografts in nude mice were treated with the PI3Kβ inhibitor AZD6482 and the MLK3 inhibitor URMC-099 alone or in combination to evaluate their combination effects on tumor cell growth and motility. The combination effects on cytoskeletal structures such as lamellipodia and focal adhesions were also evaluated. Results MLK3 protein was overexpressed in both newly diagnosed and relapsing glioblastoma patients’ specimens. Silencing of MLK3 using siRNA duplexes significantly suppressed migration and invasion, but promoted attachment of glioblastoma cells. Combined inhibition of PI3Kβ and MLK3 exhibited synergistic inhibitory effects on glioblastoma cell proliferation, migration and invasion, as well as the formation of lamellipodia and focal adhesions. Furthermore, combination of AZD6482 and URMC-099 effectively decreased glioblastoma xenograft growth in nude mice. Glioblastoma cells treated with this drug combination showed reduced phosphorylation of Akt and ERK, and decreased protein expression of ROCK2 and Zyxin. Conclusion Taken together, combination of AZD6482 and URMC-099 showed strong synergistic anti-tumor effects on glioblastoma in vitro and in vivo. Our findings suggest that combined inhibition of PI3Kβ and MLK3 may serve as an attractive therapeutic approach for glioblastoma multiforme.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chang-Peng Wu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Department of Neurosurgery, People's Hospital of Longhua District, Shenzhen, 518109, China
| | - Xiu-Ming Zhou
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.,Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Peng-Yu Diao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yan-Wen Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Jing Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Jing Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xian-Jian Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Wen-Lan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
39
|
Synergistic Carcinogenesis of HPV18 and MNNG in Het-1A Cells through p62-KEAP1-NRF2 and PI3K/AKT/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6352876. [PMID: 33123313 PMCID: PMC7586040 DOI: 10.1155/2020/6352876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 01/06/2023]
Abstract
N-methyl-N´-nitro-N-nitrosoguanidine is a clear carcinogen, increasing evidence that indicates an etiological role of human papillomavirus in esophageal carcinoma. Studies have reported the synergistic effect on environmental carcinogens and viruses in recent years. On the basis of establishing the malignant transformation model of Het-1A cells induced by synergistic of HPV18 and MNNG, this study was to explore the synergistic carcinogenesis of MNNG and HPV. Our research indicated that HPV&MNNG led to a significant increase in the protein-expression levels of c-Myc, cyclinD1, BCL-2, BAX, E-cadherin, N-cadherin, mTOR, LC3II, and p62, with concomitant decreases in p21 and LC3I. HPV18 and MNNG induced accumulation of p62 and its interaction with KEAP1, which promoted NRF2 nuclear translocation. p62 loss prevents growth and increases autophagy of malignant cells by activating KEAP1/NRF2-dependent antioxidative response. In addition, PI3K and p-AKT were stimulated by HPV&MNNG, and PI3K/AKT/mTOR is positively associated with cell proliferation, migration, invasion, and autophagy during malignant transformation. Taken together, MNNG&HPV regulates autophagy and further accelerates cell appreciation by activating the p62/KEAP1/NRF2 and PI3K/AKT/mTOR pathway. MNNG&HPV may improve Het-1A cell autophagy to contribute to excessive cell proliferation, reduced apoptosis, and protection from oxidative damage, thus accelerating the process of cell malignant transformation and leading to cancerous cells.
Collapse
|
40
|
Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. Nat Commun 2020; 11:5017. [PMID: 33024122 PMCID: PMC7539014 DOI: 10.1038/s41467-020-18730-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
The survival and recurrence of residual tumor cells following therapy constitutes one of the biggest obstacles to obtaining cures in breast cancer, but it remains unclear how the clonal composition of tumors changes during relapse. We use cellular barcoding to monitor clonal dynamics during tumor recurrence in vivo. We find that clonal diversity decreases during tumor regression, residual disease, and recurrence. The recurrence of dormant residual cells follows several distinct routes. Approximately half of the recurrent tumors exhibit clonal dominance with a small number of subclones comprising the vast majority of the tumor; these clonal recurrences are frequently dependent upon Met gene amplification. A second group of recurrent tumors comprises thousands of subclones, has a clonal architecture similar to primary tumors, and is dependent upon the Jak/Stat pathway. Thus the regrowth of dormant tumors proceeds via multiple routes, producing recurrent tumors with distinct clonal composition, genetic alterations, and drug sensitivities. The cellular composition of recurrent tumors can provide insight into resistance to therapy and inform on second line therapies. Here, using a genetically modified mouse, the authors perform barcoding experiments of the primary tumors to allow them to study the clonal dynamics of tumor recurrence.
Collapse
|
41
|
PIK3CA C-terminal frameshift mutations are novel oncogenic events that sensitize tumors to PI3K-α inhibition. Proc Natl Acad Sci U S A 2020; 117:24427-24433. [PMID: 32929011 DOI: 10.1073/pnas.2000060117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PIK3CA hotspot mutation is well established as an oncogenic driver event in cancer and its durable and efficacious inhibition is a focus in the development and testing of clinical cancer therapeutics. However, hundreds of cancer-associated PIK3CA mutations remain uncharacterized, their sensitivity to PI3K inhibitors unknown. Here, we describe a series of PIK3CA C-terminal mutations, primarily nucleotide insertions, that produce a frame-shifted protein product with an extended C terminus. We report that these mutations occur at a low frequency across multiple cancer subtypes, including breast, and are sufficient to drive oncogenic transformation in vitro and in vivo. We demonstrate that the oncogenicity of these mutant p110α proteins is dependent on p85 but not Ras association. P110α-selective pharmacologic inhibition blocks transformation in cells and mammary tumors characterized by PIK3CA C-terminal mutation. Taken together, these results suggest patients with breast and other tumors characterized by PIK3CA C-terminal frameshift mutations may derive benefit from p110α-selective inhibitors, including the recently FDA-approved alpelisib.
Collapse
|
42
|
The PI3Kα inhibitor DFX24 suppresses tumor growth and metastasis in non-small cell lung cancer via ERK inhibition and EPHB6 reactivation. Pharmacol Res 2020; 160:105147. [PMID: 32814167 DOI: 10.1016/j.phrs.2020.105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
EPHB6 is a metastasis inhibitory gene that is frequently decreased or deficiency in non-small cell lung cancer (NSCLC), which contributed to the subsequent development of distant metastasis. These suggested the possibility that reactivation of EPHB6 might prevent the metastasis of NSCLC. Nevertheless, EPHB6 expression might also promote cancer cell growth and inhibit cell apoptosis by activating Akt and ERK pathway, apart from inhibition of migration and invasion. In the present study, we developed a novel quinazolin-4(3H)-one analog (DFX24) as a potential PI3Kα inhibitor, which inhibited both cell proliferation and metastasis of NSCLC cell lines. Investigation to the molecular mechanisms revealed DFX24 inhibited the cell growth and metastasis via inhibition of PI3Kα and ERK activity, as well as the increase in EPHB6 expression. In addition, DFX24 also induced cell cycle arrest and tumor cell apoptosis by inhibiting PI3K/Akt pathway and activating mitochondria-dependent pathway, respectively. These findings suggested that DFX24 might be considered as a novel drug candidate and may provide a potential therapy for NSCLC.
Collapse
|
43
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
44
|
Wei SJ, Nguyen TH, Yang IH, Mook DG, Makena MR, Verlekar D, Hindle A, Martinez GM, Yang S, Shimada H, Reynolds CP, Kang MH. MYC transcription activation mediated by OCT4 as a mechanism of resistance to 13-cisRA-mediated differentiation in neuroblastoma. Cell Death Dis 2020; 11:368. [PMID: 32409685 PMCID: PMC7224192 DOI: 10.1038/s41419-020-2563-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023]
Abstract
Despite the improvement in clinical outcome with 13-cis-retinoic acid (13-cisRA) + anti-GD2 antibody + cytokine immunotherapy given in first response ~40% of high-risk neuroblastoma patients die of recurrent disease. MYCN genomic amplification is a biomarker of aggressive tumors in the childhood cancer neuroblastoma. MYCN expression is downregulated by 13-cisRA, a differentiating agent that is a component of neuroblastoma therapy. Although MYC amplification is rare in neuroblastoma at diagnosis, we report transcriptional activation of MYC medicated by the transcription factor OCT4, functionally replacing MYCN in 13-cisRA-resistant progressive disease neuroblastoma in large panels of patient-derived cell lines and xenograft models. We identified novel OCT4-binding sites in the MYC promoter/enhancer region that regulated MYC expression via phosphorylation by MAPKAPK2 (MK2). OCT4 phosphorylation at the S111 residue by MK2 was upstream of MYC transcriptional activation. Expression of OCT4, MK2, and c-MYC was higher in progressive disease relative to pre-therapy neuroblastomas and was associated with inferior patient survival. OCT4 or MK2 knockdown decreased c-MYC expression and restored the sensitivity to 13-cisRA. In conclusion, we demonstrated that high c-MYC expression independent of genomic amplification is associated with disease progression in neuroblastoma. MK2-mediated OCT4 transcriptional activation is a novel mechanism for activating the MYC oncogene in progressive disease neuroblastoma that provides a therapeutic target.
Collapse
Affiliation(s)
- Sung-Jen Wei
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Thinh H Nguyen
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - In-Hyoung Yang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Dustin G Mook
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Monish Ram Makena
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dattesh Verlekar
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ashly Hindle
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Gloria M Martinez
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Shengping Yang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Biostatistics Department, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Hiroyuki Shimada
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - C Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Min H Kang
- Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
45
|
Shin N, Stubbs M, Koblish H, Yue EW, Soloviev M, Douty B, Wang KH, Wang Q, Gao M, Feldman P, Yang G, Hall L, Hansbury M, O'Connor S, Leffet L, Collins R, Katiyar K, He X, Waeltz P, Collier P, Lu J, Li YL, Li Y, Liu PCC, Burn T, Covington M, Diamond S, Shuey D, Roberts A, Yeleswaram S, Hollis G, Metcalf B, Yao W, Huber R, Combs A, Newton R, Scherle P. Parsaclisib Is a Next-Generation Phosphoinositide 3-Kinase δ Inhibitor with Reduced Hepatotoxicity and Potent Antitumor and Immunomodulatory Activities in Models of B-Cell Malignancy. J Pharmacol Exp Ther 2020; 374:211-222. [PMID: 32345620 DOI: 10.1124/jpet.120.265538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.
Collapse
Affiliation(s)
- Niu Shin
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Eddy W Yue
- Incyte Research Institute, Wilmington, Delaware
| | | | - Brent Douty
- Incyte Research Institute, Wilmington, Delaware
| | | | - Qian Wang
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | | - Leslie Hall
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Lynn Leffet
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Xin He
- Incyte Research Institute, Wilmington, Delaware
| | - Paul Waeltz
- Incyte Research Institute, Wilmington, Delaware
| | | | - Jin Lu
- Incyte Research Institute, Wilmington, Delaware
| | - Yun-Long Li
- Incyte Research Institute, Wilmington, Delaware
| | - Yanlong Li
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | | | | - Dana Shuey
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Greg Hollis
- Incyte Research Institute, Wilmington, Delaware
| | | | - Wenqing Yao
- Incyte Research Institute, Wilmington, Delaware
| | - Reid Huber
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | |
Collapse
|
46
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
47
|
Ying Z, Beronja S. Embryonic Barcoding of Equipotent Mammary Progenitors Functionally Identifies Breast Cancer Drivers. Cell Stem Cell 2020; 26:403-419.e4. [PMID: 32059806 PMCID: PMC7104873 DOI: 10.1016/j.stem.2020.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Identification of clinically relevant drivers of breast cancers in intact mammary epithelium is critical for understanding tumorigenesis yet has proven challenging. Here, we show that intra-amniotic lentiviral injection can efficiently transduce progenitor cells of the adult mammary gland and use that as a platform to functionally screen over 500 genetic lesions for functional roles in tumor formation. Targeted progenitors establish long-term clones of both luminal and myoepithelial lineages in adult animals, and via lineage tracing with stable barcodes, we found that each mouse mammary gland is generated from a defined number of ∼120 early progenitor cells that expand uniformly with equal growth potential. We then designed an in vivo screen to test genetic interactions in breast cancer and identified candidates that drove not only tumor formation but also molecular subtypes. Thus, this methodology enables rapid and high-throughput cancer driver discovery in mammary epithelium.
Collapse
Affiliation(s)
- Zhe Ying
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Slobodan Beronja
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
48
|
Kennedy SP, O'Neill M, Cunningham D, Morris PG, Toomey S, Blanco-Aparicio C, Martinez S, Pastor J, Eustace AJ, Hennessy BT. Preclinical evaluation of a novel triple-acting PIM/PI3K/mTOR inhibitor, IBL-302, in breast cancer. Oncogene 2020; 39:3028-3040. [PMID: 32042115 PMCID: PMC7118022 DOI: 10.1038/s41388-020-1202-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
The proviral integration of Moloney virus (PIM) family of protein kinases are overexpressed in many haematological and solid tumours. PIM kinase expression is elevated in PI3K inhibitor-treated breast cancer samples, suggesting a major resistance pathway for PI3K inhibitors in breast cancer, potentially limiting their clinical utility. IBL-302 is a novel molecule that inhibits both PIM and PI3K/AKT/mTOR signalling. We thus evaluated the preclinical activity of IBL-302, in a range of breast cancer models. Our results demonstrate in vitro efficacy of IBL-302 in a range of breast cancer cell lines, including lines with acquired resistance to trastuzumab and lapatinib. IBL-302 demonstrated single-agent, anti-tumour efficacy in suppression of pAKT, pmTOR and pBAD in the SKBR-3, BT-474 and HCC-1954 HER2+/PIK3CA-mutated cell lines. We have also shown the in vivo single-agent efficacy of IBL-302 in the subcutaneous BT-474 and HCC-1954 xenograft model in BALB/c nude mice. The combination of trastuzumab and IBL-302 significantly increased the anti-proliferative effect in HER2+ breast cancer cell line, and matched trastuzumab-resistant line, relative to testing either drug alone. We thus believe that the novel PIM and PI3K/mTOR inhibitor, IBL-302, represents an exciting new potential treatment option for breast cancer, and that it should be considered for clinical investigation.
Collapse
Affiliation(s)
- Sean P Kennedy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.
| | - Michael O'Neill
- Inflection Biosciences, Anglesea House, Blackrock, Dublin, Ireland
| | | | - Patrick G Morris
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.,Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Martinez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joaquin Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alex J Eustace
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.,Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland.,Cancer Trials Ireland, Innovation House, Old Finglas Road, Botanic, Dublin, Ireland
| |
Collapse
|
49
|
Chen Z, Wang C, Dong H, Wang X, Gao F, Zhang S, Zhang X. Aspirin has a better effect on PIK3CA mutant colorectal cancer cells by PI3K/Akt/Raptor pathway. Mol Med 2020; 26:14. [PMID: 32000660 PMCID: PMC6993447 DOI: 10.1186/s10020-020-0139-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Aspirin, as a non-steroidal anti-inflammatory drug, can improve the survival rate of patients with colorectal cancer, while aspirin is effective in patients with PIK3CA mutant colorectal cancer (CRC). However, the mechanism of aspirin in the treatment of PIK3CA mutated CRC patients remains unclear. Methods In this study, immunohistochemistry was used to detect the expression levels of PI3K and Raptor in colorectal cancer patients with PIK3CA mutation and PIK3CA wild-type patients. To demonstrate that aspirin has a better effect on the CRC of PIK3CA mutations in association with the PI3K/Akt/Raptor pathway, we used aspirin to treat PIK3CA mutant CRC cells (HCT-116 and RKO). Subsequently, the CCK8 assay and flow cytometry assay were used to detect the apoptosis of PIK3CA mutant CRC cells before and after aspirin use. Western blot was used to detect the changes of PI3K/Akt/Raptor-associated protein, autophagy protein microtubule associated protein 1 light chain 3 alpha (MAP1LC3A, LC3), beclin 1 (BECN1) and apoptosis protein BCL2-associated X protein/ BCL2 apoptosis regulator (Bax/Bcl2), Caspase 3 after treatment of CRC cells with PIK3CA mutation by aspirin. Results Phosphoinositide-3-kinase (PI3K) and regulatory associated protein of MTOR complex 1 (Raptor) protein expression levels were higher in PIK3CA-mutant patients than in IK3CA wild-type patients. The expression of Bax/Bcl2 increased after treatment indicates that aspirin can induce apoptosis of PIK3CA-mutant CRC cells. The expression level of MAP1LC3 (LC3) in cells increases with the concentration of aspirin demonstrates that aspirin can induce autophagy in CRC cells. After 48 h of treatment with aspirin, the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase B1 (S6K1) was reduced, cell proliferation has been inhibited. After treatment with aspirin, as phosphorylation of PI3K and Protein kinase B (PKB, Akt) was decreased, Raptor expression was also decreased. Conclusion Aspirin can regulate the proliferation, apoptosis and autophagy of CRC cells through the PI3K/Akt/Raptor pathway, affecting PIK3CA-mutant CRC.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Hao Dong
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xing Wang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolong Zhang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
50
|
Yuan W, Goldstein LD, Durinck S, Chen YJ, Nguyen TT, Kljavin NM, Sokol ES, Stawiski EW, Haley B, Ziai J, Modrusan Z, Seshagiri S. S100a4 upregulation in Pik3caH1047R;Trp53R270H;MMTV-Cre-driven mammary tumors promotes metastasis. Breast Cancer Res 2019; 21:152. [PMID: 31881983 PMCID: PMC6935129 DOI: 10.1186/s13058-019-1238-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background PIK3CA mutations are frequent in human breast cancer. Pik3caH1047R mutant expression in mouse mammary gland promotes tumorigenesis. TP53 mutations co-occur with PIK3CA mutations in human breast cancers. We previously generated a conditionally activatable Pik3caH1047R;MMTV-Cre mouse model and found a few malignant sarcomatoid (spindle cell) carcinomas that had acquired spontaneous dominant-negative Trp53 mutations. Methods A Pik3caH1047R;Trp53R270H;MMTV-Cre double mutant mouse breast cancer model was generated. Tumors were characterized by histology, marker analysis, transcriptional profiling, single-cell RNA-seq, and bioinformatics. Cell lines were developed from mutant tumors and used to identify and confirm genes involved in metastasis. Results We found Pik3caH1047R and Trp53R270H cooperate in driving oncogenesis in mammary glands leading to a shorter latency than either alone. Double mutant mice develop multiple histologically distinct mammary tumors, including adenocarcinoma and sarcomatoid (spindle cell) carcinoma. We found some tumors to be invasive and a few metastasized to the lung and/or the lymph node. Single-cell RNA-seq analysis of the tumors identified epithelial, stromal, myeloid, and T cell groups. Expression analysis of the metastatic tumors identified S100a4 as a top candidate gene associated with metastasis. Metastatic tumors contained a much higher percentage of epithelial–mesenchymal transition (EMT)-signature positive and S100a4-expressing cells. CRISPR/CAS9-mediated knockout of S100a4 in a metastatic tumor-derived cell line disrupted its metastatic potential indicating a role for S100a4 in metastasis. Conclusions Pik3caH1047R;Trp53R270H;MMTV-Cre mouse provides a preclinical model to mimic a subtype of human breast cancers that carry both PIK3CA and TP53 mutations. It also allows for understanding the cooperation between the two mutant genes in tumorigenesis. Our model also provides a system to study metastasis and develop therapeutic strategies for PIK3CA/TP53 double-positive cancers. S100a4 found involved in metastasis in this model can be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ying-Jiun Chen
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Thong T Nguyen
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Noelyn M Kljavin
- Department of Cancer Signaling, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ethan S Sokol
- Foundation Medicine Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Eric W Stawiski
- Research and Development Department, MedGenome Inc., Foster City, CA, 94404, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - James Ziai
- Department of Pathology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA. .,SciGenom Research Foundation, Bangalore, 560099, India.
| |
Collapse
|