1
|
Ullah MA, Rittchen S, Li J, Curren BF, Namubiru P, Ahmed T, Howard DR, Rahman MM, Sikder MAA, Rashid RB, Collinson N, Lor M, Smythe ML, Phipps S. Dual therapy with corticosteroid ablates the beneficial effect of DP2 antagonism in chronic experimental asthma. Nat Commun 2024; 15:10253. [PMID: 39592603 PMCID: PMC11599388 DOI: 10.1038/s41467-024-54670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Prostaglandin D2 (PGD2) signals via the DP1 and DP2 receptors. In Phase II trials, DP2 antagonism decreased airway inflammation and airway smooth muscle (ASM) area in moderate-to-severe asthma patients. However, in Phase III, DP2 antagonism failed to lower the rate of exacerbations, and DP2 as a target was shelved. Here, using a preclinical model of chronic experimental asthma, we demonstrate that rhinovirus-induced exacerbations increase PGD2 release, mucus production, transforming growth factor (TGF)-β1 and type-2 inflammation. DP2 antagonism or DP1 agonism ablates these phenotypes, increases epithelial EGF expression and decreases ASM area via increased IFN-γ. In contrast, dual DP1-DP2 antagonism or dual corticosteroid/DP2 antagonism, which attenuates endogenous PGD2, prevented ASM resolution. We demonstrate that DP2 antagonism resolves ASM remodelling via PGD2/DP1-mediated upregulation of IFN-γ expression, and that dual DP2 antagonism/corticosteroid therapy, as often occurred in the human trials, impairs the efficacy of DP2 antagonism by suppressing endogenous PGD2 and IFN-γ production.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Sonja Rittchen
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, 8010, Austria
| | - Jia Li
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Bodie F Curren
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Daniel R Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Muhammed Mahfuzur Rahman
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Al Amin Sikder
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Natasha Collinson
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mary Lor
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mark L Smythe
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Wei W, Xie Z, Yan J, Luo R, He J. Progress in research on induced sputum in asthma: a narrative review. J Asthma 2024:1-16. [PMID: 39290080 DOI: 10.1080/02770903.2024.2395383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To explore the clinical significance of induced sputum in asthma through a retrospective analysis of induced sputum in patients with asthma. DATA SOURCES The data and references cited in this article were obtained from PubMed, Sci-Hub, and Web of Science. STUDY SELECTION Observational studies with reliable data were selected. CONCLUSIONS The cytological count, -omics, and pathogen detection of induced sputum are helpful for the clinical diagnosis of asthma and in guiding medication choices.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Zhihao Xie
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Jun Yan
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Renrui Luo
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| |
Collapse
|
3
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
4
|
Zuo X, Guo X, Zhao D, Gu Y, Zou Z, Shen Y, He C, Xu C, Rong Y, Wang F. An antibacterial, multifunctional nanogel for efficient treatment of neutrophilic asthma. J Control Release 2024; 372:31-42. [PMID: 38866241 DOI: 10.1016/j.jconrel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Asthma is a chronic and heterogeneous disease affecting the lungs and respiratory tract. In particular, the neutrophil subtype of asthma was described as persistent, more severe, and corticosteroid-resistant. Growing evidence suggested that nontypeable Haemophilus influenzae (NTHi) infection contributes to the development of neutrophilic asthma, exacerbating clinical symptoms and increasing the associated medical burden. In this work, arginine-grafted chitosan (CS-Arg) was ionically cross-linked with tris(2-carboxyethyl) phosphine (TCEP), and a highly-efficient antimicrobial agent, poly-ε-L-Lysine (ε-PLL), was incorporated to prepare ε-PLL/CS-Arg/TCEP (ECAT) composite nanogels. The results showed that ECAT nanogels exhibited highly effective inhibition against the proliferation of NTHi, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, ECAT nanogels could effectively inhibit the formation of mucins aggregates in vitro, suggesting that the nanogel might have the potential to destroy mucin in respiratory disease. Furthermore, in the ovalbumin (OVA)/NTHi-induced Balb/c mice model of neutrophilic asthma, the number of neutrophils in the alveolar lavage fluid and the percentage of inflammatory cells in the blood were effectively reduced by exposure to tower nebulized administration of ECAT nanogels, and reversing airway hyperresponsiveness (AHR) and reducing inflammation in neutrophilic asthma mice. In conclusion, the construction of ECAT nanogels was a feasible anti-infective and anti-inflammatory therapeutic strategy, which demonstrated strong potential in the clinical treatment of neutrophilic asthma.
Collapse
Affiliation(s)
- Xu Zuo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoping Guo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yinuo Gu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuanyuan Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Caina Xu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.; Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| | - Yan Rong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fang Wang
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
5
|
López DA, Griffin A, Aguilar LM, Deering-Rice C, Myers EJ, Warren KJ, Welner RS, Beaudin AE. Prenatal inflammation remodels lung immunity and function by programming ILC2 hyperactivation. Cell Rep 2024; 43:114365. [PMID: 38909363 DOI: 10.1016/j.celrep.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we examine how prenatal inflammation shapes tissue function and immunity in the lung by reprogramming tissue-resident immune cells from early development. Maternal, but not fetal, type I interferon-mediated inflammation provokes expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produce increased IL-5 and IL-13 and are associated with acute Th2 bias, decreased Tregs, and persistent lung eosinophilia into adulthood. ILC2 hyperactivation is recapitulated by adoptive transfer of fetal liver precursors following prenatal inflammation, indicative of developmental programming at the fetal progenitor level. Reprogrammed ILC2 hyperactivation and subsequent lung immune remodeling, including persistent eosinophilia, is concomitant with worsened histopathology and increased airway dysfunction equivalent to papain exposure, indicating increased asthma susceptibility in offspring. Our data elucidate a mechanism by which early-life inflammation results in increased asthma susceptibility in the presence of hyperactivated ILC2s that drive persistent changes to lung immunity during perinatal development.
Collapse
Affiliation(s)
- Diego A López
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aleah Griffin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lorena Moreno Aguilar
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Elizabeth J Myers
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Kristi J Warren
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Welner
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anna E Beaudin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
7
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Sebina I, Ngo S, Rashid RB, Alorro M, Namubiru P, Howard D, Ahmed T, Phipps S. CXCR3 + effector regulatory T cells associate with disease tolerance during lower respiratory pneumovirus infection. Immunology 2024; 172:500-515. [PMID: 38584001 DOI: 10.1111/imm.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mariah Alorro
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, Joseph M, Deering-Rice C, Reilly C, Parsons M, Brightling C, Rosenblatt J. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024; 384:66-73. [PMID: 38574138 DOI: 10.1126/science.adk2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
Affiliation(s)
- Dustin C Bagley
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Tobias Russell
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Sally Stinson
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | | | - Polly F Redd
- University of Utah, Salt Lake City, UT 84112, USA
| | - Merry Joseph
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | - Maddy Parsons
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
10
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Khojasteh-Kaffash S, Parhizkar Roudsari P, Ghaffari Jolfayi A, Samieefar N, Rezaei N. Pediatric asthma exacerbation and COVID-19 pandemic: Impacts, challenges, and future considerations. J Asthma 2024; 61:81-91. [PMID: 37610180 DOI: 10.1080/02770903.2023.2251062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Asthma, a common disease among children and adolescents, poses a great health risk when ignored; therefore, a thorough follow-up to prevent exacerbations is emphasized. The aim of the present study is to investigate asthma exacerbation in children during the Coronavirus disease 2019 (COVID-19) era. DATA SOURCES This narrative review has been done by searching the PubMed and Embase databases using Asthma, COVID-19, Pandemic, and Symptom flare up as keywords. STUDY SELECTIONS Studies related to asthma exacerbation in COVID-19 pandemic were included. RESULTS Based on studies, controlled or mild to moderate asthma has not been considered a risk factor for COVID-19 severity and has not affected hospitalization, intensive care unit (ICU) admission, and mortality. Surprisingly, emergent and non-emergent visits and asthmatic attacks decreased during the pandemic. The three main reasons for decreased incidence and exacerbation of asthma episodes in the COVID-19 era included reduced exposure to environmental allergens, increasing the acceptance of treatment by pediatrics and caregivers, and decreased risk of other respiratory viral infections. Based on the available studies, COVID-19 vaccination had no serious side effects, except in cases of uncontrolled severe asthma, and can be injected in these children. Also, there was no conclusive evidence of asthma exacerbation after the injection of COVID-19 vaccines. CONCLUSION Further studies are recommended to follow the pattern of asthma in the post-pandemic situation and to become prepared for similar future conditions.
Collapse
Affiliation(s)
- Soroush Khojasteh-Kaffash
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaffari Jolfayi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
13
|
Zhu Z. Early-life airway microbiome and childhood asthma development. Eur Respir J 2024; 63:2302187. [PMID: 38238000 DOI: 10.1183/13993003.02187-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Chung HW, Hsieh HM, Lee CH, Lin YC, Tsao YH, Feng MC, Hung CH. Air pollution after acute bronchiolitis is a risk factor for preschool asthma: a nested case-control study. Environ Health 2023; 22:83. [PMID: 38044452 PMCID: PMC10694905 DOI: 10.1186/s12940-023-01035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Acute bronchiolitis and air pollution are both risk factor of pediatric asthma. This study aimed to assess subsequent exposure to air pollutants related to the inception of preschool asthma in infants with acute bronchiolitis. This study aimed to assess subsequent exposure to air pollutants related to the inception of preschool asthma in infants with acute bronchiolitis. METHODS A nested case-control retrospective study was performed at the Kaohsiung Medical University Hospital systems between 2009 and 2019. The average concentration of PM10, PM2.5, SO2, NO, NO2, and NOX was collected for three, six, and twelve months after the first infected episode. Adjusted regression models were employed to evaluate the association between asthma and air pollution exposure after bronchiolitis. RESULTS Two thousand six hundred thirty-seven children with acute bronchiolitis were included. Exposure to PM10, PM2.5, SO2, NO, NO2, and NOX in the three, six, and twelve months following an episode of bronchiolitis was found to significantly increase the risk of preschool asthma in infants with a history of bronchiolitis.(OR, 95%CI: PM10 = 1.517-1.559, 1.354-1.744; PM2.5 = 2.510-2.603, 2.148-3.061; SO2 = 1.970-2.040, 1.724-2.342; ; NO = 1.915-1.950, 1.647-2.272; NO2 = 1.915-1.950, 1.647-2.272; NOX = 1.752-1.970, 1.508-2.252) In a sensitive analysis of hospitalized infants, only PM10, PM2.5, SO2, and NO were found to have significant effects during all time periods. (OR, 95%CI: PM10 = 1.613-1.650, 1.240-2.140; PM2.5 = 2.208-2.286, 1.568-3.061; SO2 = 1.679-1.622, 1.197-2.292; NO = 1.525-1.557, 1.094-2.181) CONCLUSION: The presence of ambient PM10, PM2.5, SO2 and NO in the three, six, and twelve months following an episode of acute bronchiolitis has been linked to the development of preschool asthma in infants with a history of acute bronchiolitis.
Collapse
Affiliation(s)
- Hao-Wei Chung
- Department of Pediatrics, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao-Tung University, Hsinchu, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Community Medicine, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hsiang Lee
- Department of Pediatrics, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung, Medical University, Kaohsiung, Taiwan
| | - Yu-Hsiang Tsao
- Department of Medical Research, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chu Feng
- Department of Dysphagia Functional Reconstructive Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Mitländer H, Yang Z, Krammer S, Grund JC, Zirlik S, Finotto S. Poly I:C Pre-Treatment Induced the Anti-Viral Interferon Response in Airway Epithelial Cells. Viruses 2023; 15:2328. [PMID: 38140569 PMCID: PMC10747011 DOI: 10.3390/v15122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Type I and III interferons are among the most important antiviral mediators. Increased susceptibility to infections has been described as being associated with impaired interferon response in asthmatic patients. In this work, we focused on the modulation of interferon dysfunction after the rhinovirus infection of airway epithelial cells. Therefore, we tested polyinosinic:polycytidylic acid (poly I:C), a TLR3 agonist, as a possible preventive pre-treatment to improve this anti-viral response. In our human study on asthma, we found a deficiency in interferon levels in the nasal epithelial cells (NEC) from asthmatics at homeostatic level and after RV infection, which might contribute to frequent airway infection seen in asthmatic patients compared to healthy controls. Finally, pre-treatment with the immunomodulatory substance poly I:C before RV infection restored IFN responses in airway epithelial cells. Altogether, we consider poly I:C pre-treatment as a promising strategy for the induction of interferon response prior to viral infections. These results might help to improve current therapeutic strategies for allergic asthma exacerbations.
Collapse
Affiliation(s)
- Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Sabine Zirlik
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| |
Collapse
|
16
|
López DA, Griffin A, Aguilar LM, Rice CD, Myers EJ, Warren KJ, Welner R, Beaudin AE. Prenatal inflammation reprograms hyperactive ILC2s that promote allergic lung inflammation and airway dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567899. [PMID: 38045298 PMCID: PMC10690173 DOI: 10.1101/2023.11.20.567899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Allergic asthma is a chronic respiratory disease that initiates in early life, but causal mechanisms are poorly understood. Here we examined how prenatal inflammation shapes allergic asthma susceptibility by reprogramming lung immunity from early development. Induction of Type I interferon-mediated inflammation during development provoked expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produced increased IL-5 and IL-13, and were associated with acute Th2 bias, eosinophilia, and decreased Tregs in the lung. The hyperactive ILC2 phenotype was recapitulated by adoptive transfer of a fetal liver precursor following exposure to prenatal inflammation, indicative of developmental programming. Programming of ILC2 function and subsequent lung immune remodeling by prenatal inflammation led to airway dysfunction at baseline and in response to papain, indicating increased asthma susceptibility. Our data provide a link by which developmental programming of progenitors by early-life inflammation drives lung immune remodeling and asthma susceptibility through hyperactivation of lung-resident ILC2s. One Sentence Summary Prenatal inflammation programs asthma susceptibility by inducing the production of hyperactivated ILC2s in the developing lung.
Collapse
|
17
|
Curren B, Ahmed T, Howard DR, Ashik Ullah M, Sebina I, Rashid RB, Al Amin Sikder M, Namubiru P, Bissell A, Ngo S, Jackson DJ, Toussaint M, Edwards MR, Johnston SL, McSorley HJ, Phipps S. IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered exacerbations of asthma. Mucosal Immunol 2023; 16:671-684. [PMID: 37506849 DOI: 10.1016/j.mucimm.2023.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/04/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Rhinovirus-induced neutrophil extracellular traps (NETs) contribute to acute asthma exacerbations; however, the molecular factors that trigger NETosis in this context remain ill-defined. Here, we sought to implicate a role for IL-33, an epithelial cell-derived alarmin rapidly released in response to infection. In mice with chronic experimental asthma (CEA), but not naïve controls, rhinovirus inoculation induced an early (1 day post infection; dpi) inflammatory response dominated by neutrophils, neutrophil-associated cytokines (IL-1α, IL-1β, CXCL1), and NETosis, followed by a later, type-2 inflammatory phase (3-7 dpi), characterised by eosinophils, elevated IL-4 levels, and goblet cell hyperplasia. Notably, both phases were ablated by HpARI (Heligmosomoides polygyrus Alarmin Release Inhibitor), which blocks IL-33 release and signalling. Instillation of exogenous IL-33 recapitulated the rhinovirus-induced early phase, including the increased presence of NETs in the airway mucosa, in a PAD4-dependent manner. Ex vivo IL-33-stimulated neutrophils from mice with CEA, but not naïve mice, underwent NETosis and produced greater amounts of IL-1α/β, IL-4, and IL-5. In nasal samples from rhinovirus-infected people with asthma, but not healthy controls, IL-33 levels correlated with neutrophil elastase and dsDNA. Our findings suggest that IL-33 blockade ameliorates the severity of an asthma exacerbation by attenuating neutrophil recruitment and the downstream generation of NETs.
Collapse
Affiliation(s)
- Bodie Curren
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - Tufael Ahmed
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| | - Daniel R Howard
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia
| | - Ridwan B Rashid
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - Md Al Amin Sikder
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - Patricia Namubiru
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - Alec Bissell
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Sylvia Ngo
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - David J Jackson
- School of Immunology & Microbial Sciences, King's College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Marie Toussaint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Queensland 4000, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, 4072 Queensland, Australia.
| |
Collapse
|
18
|
Bagley DC, Russell T, Ortiz-Zapater E, Fox K, Redd PF, Joseph M, Rice CD, Reilly CA, Parsons M, Rosenblatt J. Bronchoconstriction damages airway epithelia by excess crowding-induced extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551943. [PMID: 37577550 PMCID: PMC10418241 DOI: 10.1101/2023.08.04.551943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic symptom is mechanical bronchoconstriction. We previously discovered a conserved process that drives homeostatic epithelial cell death in response to mechanical cell crowding called cell extrusion(1, 2). Here, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion. While relaxing airways with the rescue treatment albuterol did not impact these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these symptoms. Our findings propose a new etiology for asthma, dependent on the mechanical crowding of a bronchoconstrictive attack. Our studies suggest that blocking epithelial extrusion, instead of ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
|
19
|
Lommatzsch M, Criée CP, de Jong CCM, Gappa M, Geßner C, Gerstlauer M, Hämäläinen N, Haidl P, Hamelmann E, Horak F, Idzko M, Ignatov A, Koczulla AR, Korn S, Köhler M, Lex C, Meister J, Milger-Kneidinger K, Nowak D, Pfaar O, Pohl W, Preisser AM, Rabe KF, Riedler J, Schmidt O, Schreiber J, Schuster A, Schuhmann M, Spindler T, Taube C, Christian Virchow J, Vogelberg C, Vogelmeier CF, Wantke F, Windisch W, Worth H, Zacharasiewicz A, Buhl R. [Diagnosis and treatment of asthma: a guideline for respiratory specialists 2023 - published by the German Respiratory Society (DGP) e. V.]. Pneumologie 2023; 77:461-543. [PMID: 37406667 DOI: 10.1055/a-2070-2135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The management of asthma has fundamentally changed during the past decades. The present guideline for the diagnosis and treatment of asthma was developed for respiratory specialists who need detailed and evidence-based information on the new diagnostic and therapeutic options in asthma. The guideline shows the new role of biomarkers, especially blood eosinophils and fractional exhaled NO (FeNO), in diagnostic algorithms of asthma. Of note, this guideline is the first worldwide to announce symptom prevention and asthma remission as the ultimate goals of asthma treatment, which can be achieved by using individually tailored, disease-modifying anti-asthmatic drugs such as inhaled steroids, allergen immunotherapy or biologics. In addition, the central role of the treatment of comorbidities is emphasized. Finally, the document addresses several challenges in asthma management, including asthma treatment during pregnancy, treatment of severe asthma or the diagnosis and treatment of work-related asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Zentrum für Innere Medizin, Abt. für Pneumologie, Universitätsmedizin Rostock
| | | | - Carmen C M de Jong
- Abteilung für pädiatrische Pneumologie, Abteilung für Pädiatrie, Inselspital, Universitätsspital Bern
| | - Monika Gappa
- Klinik für Kinder und Jugendliche, Evangelisches Krankenhaus Düsseldorf
| | | | | | | | - Peter Haidl
- Abteilung für Pneumologie II, Fachkrankenhaus Kloster Grafschaft GmbH, Schmallenberg
| | - Eckard Hamelmann
- Kinder- und Jugendmedizin, Evangelisches Klinikum Bethel, Bielefeld
| | | | - Marco Idzko
- Abteilung für Pulmologie, Universitätsklinik für Innere Medizin II, Medizinische Universität Wien
| | - Atanas Ignatov
- Universitätsklinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum Magdeburg
| | - Andreas Rembert Koczulla
- Schön-Klinik Berchtesgadener Land, Berchtesgaden
- Klinik für Innere Medizin Schwerpunkt Pneumologie, Universitätsklinikum Marburg
| | - Stephanie Korn
- Pneumologie und Beatmungsmedizin, Thoraxklinik, Universitätsklinikum Heidelberg
| | - Michael Köhler
- Deutsche Patientenliga Atemwegserkrankungen, Gau-Bickelheim
| | - Christiane Lex
- Klinik für Kinder- und Jugendmedizin, Universitätsmedizin Göttingen
| | - Jochen Meister
- Klinik für Kinder- und Jugendmedizin, Helios Klinikum Aue
| | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München
| | - Oliver Pfaar
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Sektion für Rhinologie und Allergie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg
| | - Wolfgang Pohl
- Gesundheitszentrum Althietzing, Karl Landsteiner Institut für klinische und experimentelle Pneumologie, Wien
| | - Alexandra M Preisser
- Zentralinstitut für Arbeitsmedizin und Maritime Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Klaus F Rabe
- Pneumologie, LungenClinic Großhansdorf, UKSH Kiel
| | - Josef Riedler
- Abteilung für Kinder- und Jugendmedizin, Kardinal Schwarzenberg Klinikum Schwarzach
| | | | - Jens Schreiber
- Universitätsklinik für Pneumologie, Universitätsklinikum Magdeburg
| | - Antje Schuster
- Klinik für Allgemeine Pädiatrie, Neonatologie und Kinderkardiologie, Universitätsklinikum Düsseldorf
| | | | | | - Christian Taube
- Klinik für Pneumologie, Universitätsmedizin Essen-Ruhrlandklinik
| | | | - Christian Vogelberg
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden
| | | | | | - Wolfram Windisch
- Lungenklinik Köln-Merheim, Lehrstuhl für Pneumologie, Universität Witten/Herdecke
| | - Heinrich Worth
- Pneumologische & Kardiologische Gemeinschaftspraxis, Fürth
| | | | - Roland Buhl
- Klinik für Pneumologie, Zentrum für Thoraxerkrankungen, Universitätsmedizin Mainz
| |
Collapse
|
20
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
21
|
Stevenson PG, Cooper MN, Billingham W, de Klerk N, Simpson SJ, Strunk T, Moore HC. Health service utilisation for acute respiratory infections in infants graduating from the neonatal intensive care unit: a population-based cohort study. BMC Pediatr 2023; 23:335. [PMID: 37393229 PMCID: PMC10314380 DOI: 10.1186/s12887-023-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Despite advances in neonatal intensive care, babies admitted to Neonatal Intensive Care Units (NICU) suffer from adverse outcomes. We aim to describe the longer-term respiratory infectious morbidity of infants discharged from NICU using state-wide population-based linked data in Western Australia. STUDY DESIGN We used probabilistically linked population-based administrative data to analyse respiratory infection morbidity in a cohort of 23,784 infants admitted to the sole tertiary NICU, born 2002-2013 with follow up to 2015. We analysed incidence rates of secondary care episodes (emergency department presentations and hospitalisations) by acute respiratory infection (ARI) diagnosis, age, gestational age and presence of chronic lung disease (CLD). Poisson regression was used to investigate the differences in rates of ARI hospital admission between gestational age groups and those with CLD, after adjusting for age at hospital admission. RESULTS From 177,367 child-years at risk (i.e., time that a child could experience an ARI outcome), the overall ARI hospitalisation rate for infants and children aged 0-8 years was 71.4/1000 (95% confidence interval, CI: 70.1, 72.6), with the highest rates in infants aged 0-5 months (242.9/1000). For ARI presentations to emergency departments, equivalent rates were 114/1000 (95% CI: 112.4, 115.5) and 337.6/1000, respectively. Bronchiolitis was the most common diagnosis among both types of secondary care, followed by upper respiratory tract infections. Extremely preterm infants (< 28 weeks gestation at birth) were 6.5 (95% CI: 6.0, 7.0) times more likely and those with CLD were 5.0 (95% CI: 4.7, 5.4) times more likely to be subsequently admitted for ARI than those in NICU who were not preterm or had CLD after adjusting for age at hospital admission. CONCLUSIONS There is an ongoing burden of ARI in children who graduate from the NICU, especially those born extremely preterm, that persists into early childhood. Early life interventions to prevent respiratory infections in these children and understanding the lifelong impact of early ARI on later lung health are urgent priorities.
Collapse
Affiliation(s)
- Paul G Stevenson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Matthew N Cooper
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Wesley Billingham
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Nicholas de Klerk
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Shannon J Simpson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Allied Health, Curtin University, Perth, WA, Australia
| | - Tobias Strunk
- Neonatal Directorate, Child and Adolescent Health Service, Perth, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, PO Box 855, West Perth, WA, 6872, Australia
| | - Hannah C Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, PO Box 855, West Perth, WA, 6872, Australia.
- School of Population Health, Curtin University, Perth, WA, Australia.
| |
Collapse
|
22
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
23
|
Sikder MAA, Rashid RB, Ahmed T, Sebina I, Howard DR, Ullah MA, Rahman MM, Lynch JP, Curren B, Werder RB, Simpson J, Bissell A, Morrison M, Walpole C, Radford KJ, Kumar V, Woodruff TM, Ying TH, Ali A, Kaiko GE, Upham JW, Hoelzle RD, Cuív PÓ, Holt PG, Dennis PG, Phipps S. Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection. Immunity 2023; 56:1098-1114.e10. [PMID: 37003256 DOI: 10.1016/j.immuni.2023.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/28/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.
Collapse
Affiliation(s)
- Md Al Amin Sikder
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ridwan B Rashid
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tufael Ahmed
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Daniel R Howard
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Muhammed Mahfuzur Rahman
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jason P Lynch
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Bodie Curren
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Rhiannon B Werder
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jennifer Simpson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | - Alec Bissell
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Mark Morrison
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Carina Walpole
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Tan Hui Ying
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gerard E Kaiko
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - John W Upham
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia; Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Robert D Hoelzle
- The School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Páraic Ó Cuív
- Mater Research Institute, The University of Queensland, Translational Research Institute, Wolloongabba, Brisbane, QLD 4102, Australia; Microba Life Sciences, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Paul G Dennis
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia; The School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
25
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
26
|
Gisler A, Eeftens M, de Hoogh K, Vienneau D, Salem Y, Yammine S, Jakob J, Gorlanova O, Decrue F, Gehrig R, Frey U, Latzin P, Fuchs O, Usemann J, Decrue F, Frey U, Fuchs O, Gisler A, Gorlanova O, Kentgens A, Korten I, Kurz J, Latzin P, Nissen A, Oestreich M, Röösli M, Salem Y, Usemann J, Vienneau D. Pollen exposure is associated with risk of respiratory symptoms during the first year of life. Allergy 2022; 77:3606-3616. [PMID: 35302662 PMCID: PMC10078730 DOI: 10.1111/all.15284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-value 0.003). CONCLUSION Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yasmin Salem
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julian Jakob
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Primary Health Care (BIHAM), Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Regula Gehrig
- Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, University Children's Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li H, Ma L, Li W, Zheng B, Wang J, Chen S, Wang Y, Ge F, Qin B, Zheng X, Deng Y, Zeng R. Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood of mice. Front Immunol 2022; 13:977235. [PMID: 36211408 PMCID: PMC9533174 DOI: 10.3389/fimmu.2022.977235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.
Collapse
Affiliation(s)
- Hanglin Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Linyan Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Boyang Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Shunyan Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Fei Ge
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Beibei Qin
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Clinical Lab, Hebei Provincial People’s Hospital, Shijiazhuang, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ruihong Zeng,
| |
Collapse
|
28
|
Kostara M, Chondrou V, Fotopoulos V, Sgourou A, Tsabouri S. Epigenetic/genetic variations in CG-rich elements of immune-related genes contribute to food allergy development during childhood. Pediatr Allergy Immunol 2022; 33:e13812. [PMID: 35754135 DOI: 10.1111/pai.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genetic areas of FOXP3 TSDR, human leukocyte antigen-G (HLA-G) upstream of CpG island 96, CpG41 and CpG73 islands of the HLA-DRB1 and HLA-DQB1 genes respectively, previously documented to display immune-modulatory properties, were subjected to epigenetic/genetic analysis to assess their influence in IgE-mediated food allergy (FA) development in children. METHODS Sixty-four orally challenged and IgE-tested food allergic subjects together with 44 controls were recruited. Targeted pyrosequencing analysis to detect DNA methylation status and genetic variations was utilized and experimental results obtained were analyzed by a statistical software platform and correlated to clinical data. Also, transcription factor (TF) binding sites in study areas were unmasked by the JASPAR prediction database. RESULTS Parents' smoking was significantly correlated with aberrant methylation patterns, regardless of food allergic or control status. HLA-G promoter region showed a trend for hypomethylation in food allergic subjects, with one of the CG sites displaying significantly decreased methylation values. Rs1233333, residing within the HLA-G promoter region preserved a protective role toward DNA methylation. Variable methylation patterns were recorded for CpG41 of the HLA-DRB1 gene and hypermethylation of the region was significantly correlated with the presence of single nucleotide polymorphisms (SNPs). TFs' recognition sites, located in studied genetic areas and exerting pivotal regulatory biological roles, are potentially affected by divergent DNA methylation status. CONCLUSIONS We propose that HLA-G expression is triggered by food-derived allergens, providing a TregFoxP3-/HLA-G+ subpopulation generation to promote direct immune tolerance. Furthermore, clear evidence is provided for the underlying co-operation of genetic polymorphisms with epigenetic events, mainly at the CpG41 island of the HLA-DRB1 gene, which needs an extended investigation and elucidation.
Collapse
Affiliation(s)
- Maria Kostara
- Department of Paediatrics, Ioannina University Hospital, Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Vassilis Fotopoulos
- Digital Systems Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Sophia Tsabouri
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
29
|
Williams TC, Loo SL, Nichol KS, Reid AT, Veerati PC, Esneau C, Wark PAB, Grainge CL, Knight DA, Vincent T, Jackson CL, Alton K, Shimkets RA, Girkin JL, Bartlett NW. IL-25 blockade augments antiviral immunity during respiratory virus infection. Commun Biol 2022; 5:415. [PMID: 35508632 PMCID: PMC9068710 DOI: 10.1038/s42003-022-03367-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression. Analysis of immune transcriptome of rhinovirus-infected differentiated asthmatic bronchial epithelial cells (BECs) treated with an anti-IL-25 monoclonal antibody (LNR125) revealed a re-calibrated response defined by increased type I/III IFN and reduced expression of type-2 immune genes CCL26, IL1RL1 and IL-25 receptor. LNR125 treatment also increased type I/III IFN expression by coronavirus infected BECs. Exogenous IL-25 treatment increased viral load with suppressed innate immunity. In vivo LNR125 treatment reduced IL-25/type 2 cytokine expression and increased IFN-β expression and reduced lung viral load. We define a new immune-regulatory role for IL-25 that directly inhibits virus induced airway epithelial cell innate anti-viral immunity.
Collapse
Affiliation(s)
- Teresa C Williams
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Su-Ling Loo
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kristy S Nichol
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew T Reid
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Punnam C Veerati
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Camille Esneau
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter A B Wark
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Christopher L Grainge
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- UBC Providence Health Care Research Institute, Vancouver, BC, Canada
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Vincent
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Kirby Alton
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Jason L Girkin
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nathan W Bartlett
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
30
|
Kyvsgaard JN, Ralfkiaer U, Følsgaard N, Jensen TM, Hesselberg LM, Schoos AMM, Bønnelykke K, Bisgaard H, Stokholm J, Chawes B. Azithromycin and high-dose vitamin D for treatment and prevention of asthma-like episodes in hospitalised preschool children: study protocol for a combined double-blind randomised controlled trial. BMJ Open 2022; 12:e054762. [PMID: 35418427 PMCID: PMC9014042 DOI: 10.1136/bmjopen-2021-054762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Previous randomised controlled trials (RCTs) suggest antibiotics for treating episodes of asthma-like symptoms in preschool children. Further, high-dose vitamin D supplementation has been shown to reduce the rate of asthma exacerbations among adults with asthma, while RCTs in preschool children are lacking. The aims of this combined RCT are to evaluate treatment effect of azithromycin on episode duration and the preventive effect of high-dose vitamin D supplementation on subsequent episodes of asthma-like symptoms among hospitalised preschoolers. METHODS AND ANALYSIS Eligible participants, 1-5 years old children with a history of recurrent asthma-like symptoms hospitalised due to an acute episode, will be randomly allocated 1:1 to azithromycin (10 mg/kg/day) or placebo for 3 days (n=250). Further, independent of the azithromycin intervention participants will be randomly allocated 1:1 to high-dose vitamin D (2000 IU/day+ standard dose 400 IU/day) or standard dose (400 IU/day) for 1 year (n=320). Participants are monitored with electronic diaries for asthma-like symptoms, asthma medication, adverse events and sick-leave. The primary outcome for the azithromycin intervention is duration of asthma-like symptoms after treatment. Secondary outcomes include duration of hospitalisation and antiasthmatic treatment. The primary outcome for the vitamin D intervention is the number of exacerbations during the treatment period. Secondary outcomes include time to first exacerbation, symptom burden, asthma medication and safety. ETHICS AND DISSEMINATION The RCTs are approved by the Danish local ethical committee and conducted in accordance with the guiding principles of the Declaration of Helsinki. The Danish Medicines Agency has approved the azithromycin RCT, which is monitored by the local Unit for Good Clinical Practice. The vitamin D RCT has been reviewed and is not considered a medical intervention. Results will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBERS NCT05028153, NCT05043116.
Collapse
Affiliation(s)
- Julie Nyholm Kyvsgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Ulrik Ralfkiaer
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nilofar Følsgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Trine Mølbæk Jensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Laura Marie Hesselberg
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Ann-Marie M Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
31
|
Esmaeilzadeh H, Sanaei Dashti A, Mortazavi N, Fatemian H, Vali M. Persistent cough and asthma-like symptoms post COVID-19 hospitalization in children. BMC Infect Dis 2022; 22:244. [PMID: 35279094 PMCID: PMC8917254 DOI: 10.1186/s12879-022-07252-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Backgrounds Respiratory viruses are the main triggers of asthma. Coronavirus is shown to contribute to respiratory tract infections that can lead to prolonged cough and asthma. Objectives Present study aimed to determine the risk of developing Persistent cough and asthma-like symptoms in hospitalized children due to COVID-19. Methods This prospective study was carried out in a tertiary referral center. During the COVID-19 pandemic, 69 hospitalized pediatric patients admitted with COVID-19 were observed from February 2020 to January 2021. Clinical and laboratory data were recorded, and after discharge, patients were followed and visited for cough and asthma evaluation one, 2 and 6 months later. Patients with asthma-like diagnoses in follow up defined as asthma-like groups, and patients without any sign of asthma were categorized as the non-asthma group. Asthma-like co-morbids and risk factors were evaluated and compared between the two groups. Results In follow-up, most of the COVID-19 hospitalized patients (N = 42) (58.5%) were not affected by asthma-like symptoms. 60.9% of the COVID-19 patients were male. The asthma-like group cases had a significantly familial history of asthma (63.0%), past medical history of asthma (33.3%), and Allergic rhinitis (85.2%). Rates of signs and symptoms during hospitalization were significantly higher in patients with COVID-19 and past medical history of asthma. Conclusions We found an asthma-like prevalence of 41.5% in the cohort of COVID-19 hospitalized children. Family history of asthma and previous history of asthma and allergic rhinitis are risk factors for asthma-like after COVID-19 hospitalization. COVID-19 presentations are more severe in the asthma-like group.
Collapse
|
32
|
Teoh ST, Leimanis-Laurens ML, Comstock SS, Winters JW, Vandenbosch NL, Prokop JW, Bachmann AS, Lunt SY, Rajasekaran S. Combined Plasma and Urinary Metabolomics Uncover Metabolic Perturbations Associated with Severe Respiratory Syncytial Viral Infection and Future Development of Asthma in Infant Patients. Metabolites 2022; 12:metabo12020178. [PMID: 35208252 PMCID: PMC8875115 DOI: 10.3390/metabo12020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
A large percentage of infants develop viral bronchiolitis needing medical intervention and often develop further airway disease such as asthma. To characterize metabolic perturbations in acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate and severe RSV patients versus sedation controls. RSV patients were classified as moderate or severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite profiles were clustered according to severity, characterized by unique metabolic changes in both plasma and urine. Plasma metabolites that correlated with severity included intermediates in the sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides. Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for developing asthma.
Collapse
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - Mara L. Leimanis-Laurens
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - John W. Winters
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Nikita L. Vandenbosch
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.Y.L.); (S.R.)
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
- Correspondence: (S.Y.L.); (S.R.)
| |
Collapse
|
33
|
Troy NM, Strickland D, Serralha M, de Jong E, Jones AC, Read J, Galbraith S, Islam Z, Kaur P, Mincham KT, Holt BJ, Sly PD, Bosco A, Holt PG. Protection against severe infant lower respiratory tract infections by immune training: Mechanistic studies. J Allergy Clin Immunol 2022; 150:93-103. [PMID: 35177255 DOI: 10.1016/j.jaci.2022.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Results from recent clinical studies suggest potential efficacy of immune training (IT)-based approaches for protection against severe lower respiratory tract infections in infants, but underlying mechanisms are unclear. OBJECTIVE We used systems-level analyses to elucidate IT mechanisms in infants in a clinical trial setting. METHODS Pre- and posttreatment peripheral blood mononuclear cells from a placebo-controlled trial in which winter treatment with the IT agent OM85 reduced infant respiratory infection frequency and/or duration were stimulated for 24 hours with the virus/bacteria mimics polyinosinic:polycytidylic acid/lipopolysaccharide. Transcriptomic profiling via RNA sequencing, pathway and upstream regulator analyses, and systems-level gene coexpression network analyses were used sequentially to elucidate and compare responses in treatment and placebo groups. RESULTS In contrast to subtle changes in antivirus-associated polyinosinic:polycytidylic acid response profiles, the bacterial lipopolysaccharide-triggered gene coexpression network responses exhibited OM85 treatment-associated upregulation of IFN signaling. This was accompanied by network rewiring resulting in increased coordination of TLR4 expression with IFN pathway-associated genes (especially master regulator IRF7); segregation of TNF and IFN-γ (which potentially synergize to exaggerate inflammatory sequelae) into separate expression modules; and reduced size/complexity of the main proinflammatory network module (containing, eg, IL-1,IL-6, and CCL3). Finally, we observed a reduced capacity for lipopolysaccharide-induced inflammatory cytokine (eg, IL-6 and TNF) production in the OM85 group. CONCLUSION These changes are consistent with treatment-induced enhancement of bacterial pathogen detection/clearance capabilities concomitant with enhanced capacity to regulate ensuing inflammatory response intensity and duration. We posit that IT agents exemplified by OM85 potentially protect against severe lower respiratory tract infections in infants principally by effects on innate immune responses targeting the bacterial components of the mixed respiratory viral/bacterial infections that are characteristic of this age group.
Collapse
Affiliation(s)
- Niamh M Troy
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Deborah Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Anya C Jones
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - James Read
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sally Galbraith
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Zahir Islam
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Kyle T Mincham
- National Hearth and Lung Institute, Imperial College London, London, United Kingdom
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
34
|
Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications. Viruses 2022; 14:278. [PMID: 35215871 PMCID: PMC8876576 DOI: 10.3390/v14020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Education, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
35
|
Wang CJ, Cheng SL, Kuo SH. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life (Basel) 2022; 12:life12020153. [PMID: 35207441 PMCID: PMC8874771 DOI: 10.3390/life12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Management of patients with asthma during the coronavirus disease 2019 (COVID-19) pandemic is a concern, especially since asthma predisposes patients to respiratory problems. Interestingly, asthma characterized by type 2 inflammation, also known as T-helper type 2-high endotype, displays a cellular and molecular profile that may confer protective effects against COVID-19. The results of experimental and clinical studies have established the actions of immunoglobulin E (IgE) in inducing airway hyperreactivity and weakening an interferon-mediated antiviral response following respiratory viral infection. Robust evidence supports the beneficial effect of the anti-IgE biologic treatment omalizumab on reducing respiratory virus-induced asthma exacerbations and reducing the frequency, duration, and severity of respiratory viral illness in patients with asthma. Indeed, accumulating reports of patients with severe asthma treated with omalizumab during the pandemic have reassuringly shown that continuing omalizumab treatment during COVID-19 is safe, and in fact may help prevent the severe course of COVID-19. Accordingly, guidance issued by the Global Initiative for Asthma recommends that all patients with asthma continue taking their prescribed asthma medications, including biologic therapy, during the COVID-19 pandemic. The impact of biologic treatments on patients with asthma and COVID-19 will be better understood as more evidence emerges.
Collapse
Affiliation(s)
- Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Department of Chemical Engineering and Materials Science, Yuab Ze University, Taoyuan City 32003, Taiwan
| | - Sow-Hsong Kuo
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Correspondence:
| |
Collapse
|
36
|
Huang Q, Zheng Y, Zhang C, Wang W, Liao T, Xiao X, Wang J, Wang J. Association between asthma and dry eye disease: a meta-analysis based on observational studies. BMJ Open 2021; 11:e045275. [PMID: 34893481 PMCID: PMC8666867 DOI: 10.1136/bmjopen-2020-045275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE This study aimed to systematically review the relationship between dry eye disease (DED) and asthma based on published population-based studies. DATA SOURCES PubMed, EMBASE and ISI Web of Science from their inception were searched up to October 2019. STUDY SELECTION Observational studies addressing the association between asthma and DED will be eligible. DATA EXTRACTION AND SYNTHESIS Two reviewers independently conducted the data extraction and quality assessment. We used a random-effects model for all analyses. Subgroup analysis according to ethnicity was performed to test the influence of ethnicity on the association. MAIN OUTCOMES AND MEASURES Six independent studies (a total of 45 215 patients with asthma and 232 864 control subjects) were included in this review and had an average of seven stars by the Newcastle-Ottawa Scale. Our current findings suggest that the prevalence of DED was higher in the asthma group than in the control group (Z=7.42, p<0.00001; OR 1.29, 95% CI 1.20 to 1.38). In the subgroup analysis by ethnicity, Australian, Caucasian and Asian patients with asthma showed an increased risk of DED.
Collapse
Affiliation(s)
- Qun Huang
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanlin Zheng
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wanjie Wang
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xili Xiao
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Wang
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Juan Wang
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Górska A, Jabłońska E, Reszka E, Niedoszytko M, Lange M, Gruchała‐Niedoszytko M, Jarczak J, Strapagiel D, Górska‐Ponikowska M, Bastian P, Pelikant‐Małecka I, Kalinowski L, Nedoszytko B. DNA methylation profile in patients with indolent systemic mastocytosis. Clin Transl Allergy 2021; 11:e12074. [PMID: 34754417 PMCID: PMC8561632 DOI: 10.1002/clt2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mastocytosis is a clinically heterogeneous, usually acquired disease of the mast cells with a survival time that depends on the onset of the disease and ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The crucial element in pathogenesis is the presence of oncogenic KIT somatic mutation D816V. Further epigenetic alterations are responsible for regulating the expression of genes. It is essential to identify indicators of disease progression, and the specific clinical picture to establish an appropriate therapeutic strategy. OBJECTIVE The aim of this study was to analyze the relation of mastocytosis symptoms and epigenetic changes, and to identify epigenetic predictors of the disease. METHODS Global DNA methylation profile analysis was performed in peripheral blood collected from 73 patients with indolent systemic mastocytosis (ISM) and 43 healthy adult volunteers. Levels of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were determined using an ELISA-based method, while the methylation of the Alu and LINE-1 repeats were assayed with the quantitative methylation-specific PCR technique. A questionnaire interview was conducted among the study participants to collect data on possible epigenetic modifiers. Additionally, the methylation profile was compared between three human mast cell lines: ROSA KIT D816V, ROSA KIT WT, and HMC-1.1 KIT V560G, in order to assess the association between KIT mutations and methylation profile. RESULTS A significantly lower level of DNA hydroxymethylation (5-hmC) in the blood was found in patients with ISM as compared to the controls (0.022% vs. 0.042%, p = 0.0001). Differences in the markers of global DNA methylation (5-mC, Alu, LINE-1) were not statistically significant, although they did indicate generally higher DNA methylation in patients with mastocytosis. The 5-hmC level was significantly associated with allergy (p = 0.011) in patients with ISM, showing a higher level of 5-hmC in patients with allergy as compared to patients without allergy. The in vitro study revealed significant differences between the studied cell lines at the level of 5-mC, Alu, and LINE-1. CONCLUSIONS This study confirms that epigenetic changes are involved in mastocytosis, and suggests that allergy may be an important epigenetic modifier of the disease. A possible association between KIT mutations and methylation status observed in human mast cell lines requires further investigation in human studies. CLINICAL IMPLICATIONS Epigenetic alterations are involved in mastocytosis pathology. The possible role of allergy as an important epigenetic modifier suggests the more impaired function of mast cells in ISM patients without allergy. CAPSULE SUMMARY Decreased DNA demethylation in the blood DNA of patients with ISM confirms that epigenetic alterations are involved in mastocytosis pathology. We observed a possible role of allergy as an important epigenetic modifier. There is a possible association between KIT mutations and the methylation status observed in human mast cell lines.
Collapse
Affiliation(s)
| | - Ewa Jabłońska
- Department of Translational ResearchNofer Institute of Occupational MedicineLodzPoland
| | - Edyta Reszka
- Department of Translational ResearchNofer Institute of Occupational MedicineLodzPoland
| | | | - Magdalena Lange
- Department of Dermatology, Venerology and AllergologyMedical University of GdanskGdanskPoland
| | | | - Justyna Jarczak
- Department of Molecular BiophysicsUniversity of LodzLodzPoland
| | | | | | - Paulina Bastian
- Department of Medical ChemistryMedical University of GdanskGdanskPoland
| | | | - Leszek Kalinowski
- Department of Clinical AnalyticsMedical University of GdanskGdanskPoland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venerology and AllergologyMedical University of GdanskGdanskPoland
- Invicta Fertility and Reproductive CenterMolecular LaboratorySopotPoland
| |
Collapse
|
38
|
Fiocchi A, Knol J, Koletzko S, O’Mahony L, Papadopoulos NG, Salminen S, Szajewska H, Nowak-Węgrzyn A. Early-Life Respiratory Infections in Infants with Cow's Milk Allergy: An Expert Opinion on the Available Evidence and Recommendations for Future Research. Nutrients 2021; 13:3795. [PMID: 34836050 PMCID: PMC8621023 DOI: 10.3390/nu13113795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Acute respiratory infections are a common cause of morbidity in infants and young children. This high rate of respiratory infections in early life has a major impact on healthcare resources and antibiotic use, with the associated risk of increasing antibiotic resistance, changes in intestinal microbiota composition and activity and, consequently, on the future health of children. An international group of clinicians and researchers working in infant nutrition and cow's milk allergy (CMA) met to review the available evidence on the prevalence of infections in healthy infants and in those with allergies, particularly CMA; the factors that influence susceptibility to infection in early life; links between infant feeding, CMA and infection risk; and potential strategies to modulate the gut microbiota and infection outcomes. The increased susceptibility of infants with CMA to infections, and the reported potential benefits with prebiotics, probiotics and synbiotics with regard to improving infection outcomes and reducing antibiotic usage in infants with CMA, makes this a clinically important issue that merits further research.
Collapse
Affiliation(s)
- Alessandro Fiocchi
- Translational Research in Pediatric Specialities Area, Division of Allergy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands;
- The Laboratory of Microbiology, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Sibylle Koletzko
- Dr von Hauner Kinderspital, University Hospital, LMU Klinikum, 80337 Munich, Germany;
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Liam O’Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland National University of Ireland, T12 K8AF Cork, Ireland;
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9WL, UK;
- Allergy Department, 2nd Pediatric Clinic, University of Athens, 11527 Athens, Greece
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland;
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Anna Nowak-Węgrzyn
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Children’s Hospital, New York, NY 10016, USA
| |
Collapse
|
39
|
Li N, Mirzakhani H, Kiefer A, Koelle J, Vuorinen T, Rauh M, Yang Z, Krammer S, Xepapadaki P, Lewandowska-Polak A, Lukkarinen H, Zhang N, Stanic B, Zimmermann T, Kowalski ML, Jartti T, Bachert C, Akdis M, Papadopoulos NG, Raby BA, Weiss ST, Finotto S. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience 2021; 24:103163. [PMID: 34693221 PMCID: PMC8511896 DOI: 10.1016/j.isci.2021.103163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022] Open
Abstract
RANTES is implicated in allergic asthma and in T cell-dependent clearance of infection. RANTES receptor family comprises CCR1, CCR3, and CCR5, which are G-protein-coupled receptors consisting of seven transmembrane helices. Infections with respiratory viruses like Rhinovirus cause induction of RANTES production by epithelial cells. Here, we studied the role of RANTES in the peripheral blood mononuclear cells in cohorts of children with and without asthma and validated and extended this study to the airways of adults with and without asthma. We further translated these studies to a murine model of asthma induced by house dust mite allergen in wild-type RANTES and CCR5-deficient mice. Here we show an unpredicted therapeutic role of RANTES in the resolution of allergen-induced asthma by orchestrating the transition of effector GATA-3+CD4+ T cells into immune-regulatory-type T cells and inflammatory eosinophils into resident eosinophils as well as increased IL-10 production in the lung.
Collapse
Affiliation(s)
- Nina Li
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hoomann Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Kiefer
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Manfred Rauh
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Theodor Zimmermann
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Poland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Nikolaos G. Papadopoulos
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, University of Manchester, Manchester, UK
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Asthma and COVID-19: Emphasis on Adequate Asthma Control. Can Respir J 2021; 2021:9621572. [PMID: 34457096 PMCID: PMC8397565 DOI: 10.1155/2021/9621572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthmatics are at an increased risk of developing exacerbations after being infected by respiratory viruses such as influenza virus, parainfluenza virus, and human and severe acute respiratory syndrome coronaviruses (SARS-CoV). Asthma, especially when poorly controlled, is an independent risk factor for developing pneumonia. A subset of asthmatics can have significant defects in their innate, humoral, and cell-mediated immunity arms, which may explain the increased susceptibility to infections. Adequate asthma control is associated with a significant decrease in episodes of exacerbation. Because of their wide availability and potency to promote adequate asthma control, glucocorticoids, especially inhaled ones, are the cornerstone of asthma management. The current COVID-19 pandemic affects millions of people worldwide and possesses mortality several times that of seasonal influenza; therefore, it is necessary to revisit this subject. The pathogenesis of SARS-CoV-2, the virus that causes COVID-19, can potentiate the development of acute asthmatic exacerbation with the potential to worsen the state of chronic airway inflammation. The relationship is evident from several studies that show asthmatics experiencing a more adverse clinical course of SARS-CoV-2 infection than nonasthmatics. Recent studies show that dexamethasone, a potent glucocorticoid, and other inhaled corticosteroids significantly reduce morbidity and mortality among hospitalized COVID-19 patients. Hence, while we are waiting for more studies with higher level of evidence that further narrate the association between COVID-19 and asthma, we advise clinicians to try to achieve adequate disease control in asthmatics as it may reduce incidences and severity of exacerbations especially from SARS-CoV-2 infection.
Collapse
|
41
|
Holt P, Strickland D. Innate Immune Training for Prevention of Recurrent Wheeze in Early Childhood. Am J Respir Crit Care Med 2021; 204:392-394. [PMID: 33844949 PMCID: PMC8480254 DOI: 10.1164/rccm.202103-0698ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Patrick Holt
- Telethon Kids Institute The University of Western Australia Nedlands, Western Australia, Australia
| | - Deborah Strickland
- Telethon Kids Institute The University of Western Australia Nedlands, Western Australia, Australia
| |
Collapse
|
42
|
Dodi G, Attanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms 2021; 9:microorganisms9071357. [PMID: 34201449 PMCID: PMC8307813 DOI: 10.3390/microorganisms9071357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
More recently, increasing attention has been directed to exploring the function of the global virome in health and disease. Currently, by new molecular techniques, such as metagenomic DNA sequencing, the virome has been better unveiled. By investigating the human lung virome, we could provide novel insights into respiratory diseases. The virome, as a part of the microbiome, is characterized by a constant change in composition related to the type of diet, environment, and our genetic code, and other incalculable factors. The virome plays a substantial role in modulating human immune defenses and contributing to the inflammatory processes. Anelloviruses (AVs) are new components of the virome. AVs are already present during early life and reproduce without apparently causing harm to the host. The role of AVs is still unknown, but several reports have shown that AVs could activate the inflammasomes, intracellular multiprotein oligomers of the innate immune system, which show a crucial role in the host defense to several pathogens. In this narrative revision, we summarize the epidemiological data related to the possible link between microbial alterations and chronic respiratory diseases in children. Briefly, we also describe the characteristics of the most frequent viral family present in the lung virome, Anelloviridae. Furthermore, we discuss how AVs could modulate the immune system in children, affecting the development of chronic respiratory diseases, particularly asthma, the most common chronic inflammatory disease in childhood.
Collapse
|
43
|
Michael H, Li Y, Wang Y, McCusker CT. Trained immunity induced by in vivo peptide-based STAT6 inhibition prevents ragweed allergy in mice. Allergy Asthma Clin Immunol 2021; 17:42. [PMID: 33883042 PMCID: PMC8059037 DOI: 10.1186/s13223-021-00542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trained immunity is the ability of the innate immune system to form immune memory responses to provide support the formation of appropriate adaptive responses. Allergic airways disease (AAD) is a maladapted immune response to allergens, initiated and maintained by the type 2 (T2) inflammatory pathway. It is predicated by the elaboration of cytokines IL-4 and IL-13 and follows activation of the STAT6 transcription factor. OBJECTIVE To investigate the role of trained immunity in mucosal immune responses following neonatal vaccination with the STAT6 inhibitory peptide (STAT6-IP), in preventing the development of ragweed-induced AAD. METHODS We demonstrate that transfer of CD4+ T cells or dendritic cells (DC) from STAT6-IP vaccinated wild-type BALB/c mice to naïve mice, that were subsequently chronically exposed to sensitizing doses of ragweed allergen, is sufficient to prevent development of T2 responses in recipients. RESULTS Our results demonstrate significant reductions in; airways hyperresponsiveness (AHR); ragweed-specific IgE; pulmonary inflammation; T2 cytokines; and inflammatory gene expressions in recipient mice. Expression of IDO, TGFβ and T regulatory cells were all significantly increased. Anti-TGFβ treatment during the ragweed sensitization phase re-constituted the pro-inflammatory T2 immune response. We show that tolerance can be attained via DC trained in the STAT6-IP-mediated tolerant milieu. This effect is not restricted to a particular allergen and does not require antigen-mediated T cell activation prior to transfer. CONCLUSION Adoptive transfer experiments suggest that STAT6-IP treatment trains dendritic and cells to mediate tolerant immunity to chronic ragweed exposure in the airways. This indicates that early transient STAT6-inhibition constitutes an effective immunomodulatory airways allergy preventative strategy.
Collapse
Affiliation(s)
- Husheem Michael
- Meakins-Christie Laboratories, McGill University and the McGill University Health Care-Research Institute, Block E, RI-MUHC, EM3.2219, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Yuanyi Li
- Meakins-Christie Laboratories, McGill University and the McGill University Health Care-Research Institute, Block E, RI-MUHC, EM3.2219, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Yufa Wang
- Meakins-Christie Laboratories, McGill University and the McGill University Health Care-Research Institute, Block E, RI-MUHC, EM3.2219, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Christine T McCusker
- Meakins-Christie Laboratories, McGill University and the McGill University Health Care-Research Institute, Block E, RI-MUHC, EM3.2219, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
44
|
The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges. J Allergy Clin Immunol 2021; 147:781-793. [PMID: 33678251 DOI: 10.1016/j.jaci.2020.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
In asthma, a significant portion of the interaction between genetics and environment occurs through microbiota. The proposed mechanisms behind this interaction are complex and at times contradictory. This review covers recent developments in our understanding of this interaction: the "microbial hypothesis" and the "farm effect"; the role of endotoxin and genetic variation in pattern recognition systems; the interaction with allergen exposure; the additional involvement of host gut and airway microbiota; the role of viral respiratory infections in interaction with the 17q21 and CDHR3 genetic loci; and the importance of in utero and early-life timing of exposures. We propose a unified framework for understanding how all these phenomena interact to drive asthma pathogenesis. Finally, we point out some future challenges for continued research in this field, in particular the need for multiomic integration, as well as the potential utility of asthma endotyping.
Collapse
|
45
|
Amaral R, Jácome C, Almeida R, Pereira AM, Alves-Correia M, Mendes S, Rodrigues JCC, Carvalho J, Araújo L, Costa A, Silva A, Teixeira MF, Ferreira-Magalhães M, Alves RR, Moreira AS, Fernandes RM, Ferreira R, Pinto PL, Neuparth N, Bordalo D, Bom AT, Cálix MJ, Ferreira T, Gomes J, Vidal C, Mendes A, Vasconcelos MJ, Silva PM, Ferraz J, Morête A, Pinto CS, Santos N, Loureiro CC, Arrobas A, Marques ML, Lozoya C, Lopes C, Cardia F, Loureiro CC, Câmara R, Vieira I, da Silva S, Silva E, Rodrigues N, Fonseca JA. Profiling Persistent Asthma Phenotypes in Adolescents: A Longitudinal Diagnostic Evaluation from the INSPIRERS Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031015. [PMID: 33498858 PMCID: PMC7908090 DOI: 10.3390/ijerph18031015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
We aimed to identify persistent asthma phenotypes among adolescents and to evaluate longitudinally asthma-related outcomes across phenotypes. Adolescents (13–17 years) from the prospective, observational, and multicenter INSPIRERS studies, conducted in Portugal and Spain, were included (n = 162). Latent class analysis was applied to demographic, environmental, and clinical variables, collected at a baseline medical visit. Longitudinal differences in clinical variables were assessed at a 4-month follow-up telephone contact (n = 128). Three classes/phenotypes of persistent asthma were identified. Adolescents in class 1 (n = 87) were highly symptomatic at baseline and presented the highest number of unscheduled healthcare visits per month and exacerbations per month, both at baseline and follow-up. Class 2 (n = 32) was characterized by female predominance, more frequent obesity, and uncontrolled upper/lower airways symptoms at baseline. At follow-up, there was a significant increase in the proportion of controlled lower airway symptoms (p < 0.001). Class 3 (n = 43) included mostly males with controlled lower airways symptoms; at follow-up, while keeping symptom control, there was a significant increase in exacerbations/month (p = 0.015). We have identified distinct phenotypes of persistent asthma in adolescents with different patterns in longitudinal asthma-related outcomes, supporting the importance of profiling asthma phenotypes in predicting disease outcomes that might inform targeted interventions and reduce future risk.
Collapse
Affiliation(s)
- Rita Amaral
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Cardiovascular and Respiratory Sciences, Porto Health School, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
- Department of Women’s and Children’s Health, Paediatric Research, Uppsala University, SE-751 05 Uppsala, Sweden
- Correspondence: ; Tel.: +351-917-006-669
| | - Cristina Jácome
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Rute Almeida
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Margarida Pereira
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Allergy Unit, CUF Porto Hospital and Institute, 4100-180 Porto, Portugal; (M.A.-C.); (L.A.)
| | - Magna Alves-Correia
- Allergy Unit, CUF Porto Hospital and Institute, 4100-180 Porto, Portugal; (M.A.-C.); (L.A.)
| | - Sandra Mendes
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
| | - José Carlos Cidrais Rodrigues
- Serviço de Pediatria, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, 4464-513 Matosinhos, Portugal; (J.C.C.R.); (J.C.); (C.L.)
| | - Joana Carvalho
- Serviço de Pediatria, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, 4464-513 Matosinhos, Portugal; (J.C.C.R.); (J.C.); (C.L.)
| | - Luís Araújo
- Allergy Unit, CUF Porto Hospital and Institute, 4100-180 Porto, Portugal; (M.A.-C.); (L.A.)
| | - Alberto Costa
- Serviço de Pediatria, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal; (A.C.); (A.S.)
| | - Armandina Silva
- Serviço de Pediatria, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal; (A.C.); (A.S.)
| | - Maria Fernanda Teixeira
- Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
| | - Manuel Ferreira-Magalhães
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
| | - Rodrigo Rodrigues Alves
- Serviço de Imunoalergologia, Hospital do Divino Espírito Santo, 9500-370 Ponta Delgada, Portugal;
| | - Ana Sofia Moreira
- Unidade de Imunoalergologia, Hospital do Divino Espírito Santo, 9500-370 Ponta Delgada, Portugal;
| | - Ricardo M. Fernandes
- Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (R.M.F.); (R.F.); (A.M.)
| | - Rosário Ferreira
- Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (R.M.F.); (R.F.); (A.M.)
| | - Paula Leiria Pinto
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisboa, Portugal; (P.L.P.); (N.N.)
| | - Nuno Neuparth
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisboa, Portugal; (P.L.P.); (N.N.)
- Pathophysiology, CHRC/CEDOC, High Burden and High Mortality Diseases Thematic Line Coordinator, Nova Medical School, 1150-190 Lisboa, Portugal
| | - Diana Bordalo
- Serviço de Pediatria, Unidade Hospitalar de Famalicão, Centro Hospitalar do Médio Ave, 4780-371 Vila Nova de Famalicão, Portugal;
| | - Ana Todo Bom
- Serviço de Imunoalergologia, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Maria José Cálix
- Serviço de Pediatria, Hospital de São Teotónio, Centro Hospitalar Tondela–Viseu, 3504-509 Viseu, Portugal;
| | - Tânia Ferreira
- Unidade de Saúde Familiar Progresso e Saúde, ACeS Baixo Mondego, 3060-716 Tocha, Portugal;
| | - Joana Gomes
- Serviço de Imunoalergologia, Unidade I, Centro Hospitalar Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal;
| | - Carmen Vidal
- Servicio de Alergia, Complejo Hospitalario Universitario de Santiago, 15706 Santiago De Compostela, Spain;
| | - Ana Mendes
- Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, 1649-035 Lisboa, Portugal; (R.M.F.); (R.F.); (A.M.)
| | - Maria João Vasconcelos
- Serviço de Imunoalergologia, Centro Hospitalar Universitário de São João, 4200–319 Porto, Portugal;
| | | | - José Ferraz
- Imunoalergologia, Hospital Privado de Alfena, Trofa Saúde, 4445-243 Alfena, Portugal;
| | - Ana Morête
- Serviço de Imunoalergologia, Hospital Infante D. Pedro, Centro Hospitalar Baixo Vouga, 3814-501 Aveiro, Portugal;
| | - Claúdia Sofia Pinto
- Serviço de Pneumologia, Hospital São Pedro de Vila Real, Centro Hospitalar De Trás-Os-Montes E Alto Douro, 5000-508 Vila Real, Portugal;
| | - Natacha Santos
- Serviço de Imunoalergologia, Centro Hospitalar Universitário do Algarve, 8000-386 Portimão, Portugal;
| | | | - Ana Arrobas
- Serviço de Pneumologia, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Maria Luís Marques
- Serviço de Imunoalergologia, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
| | - Carlos Lozoya
- Serviço de Imunoalergologia, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
| | - Cristina Lopes
- Serviço de Pediatria, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, 4464-513 Matosinhos, Portugal; (J.C.C.R.); (J.C.); (C.L.)
- Imunologia Básica e Clínica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Francisca Cardia
- Unidade de Saúde Familiar Terras de Azurara, ACES Dão Lafões, 3530-113 Mangualde, Portugal;
| | - Carla Chaves Loureiro
- Departamento de Pediatria, Serviço de Pediatria Ambulatória, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Raquel Câmara
- Serviço de Pneumologia, Hospital Nossa Senhora do Rosário, Centro Hospitalar Barreiro Montijo, 2834-003 Barreiro, Portugal;
| | - Inês Vieira
- UCSP Dr. Arnaldo Sampaio, ACES Pinhal Litoral, 2419-014 Leiria, Portugal;
| | - Sofia da Silva
- USF Cuidarte, Unidade Local de Saúde do Alto Minho, 4925-083 Portuzelo, Portugal;
| | - Eurico Silva
- Unidade de Saúde Familiar João Semana, ACeS Baixo Vouga, 3880-225 Ovar, Portugal;
| | - Natalina Rodrigues
- Unidade de Saúde Familiar Mondego, ACES Baixo Mondego, 3045-059 Coimbra, Portugal;
| | - João A. Fonseca
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.J.); (R.A.); (A.M.P.); (S.M.); (J.A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Allergy Unit, CUF Porto Hospital and Institute, 4100-180 Porto, Portugal; (M.A.-C.); (L.A.)
| |
Collapse
|
46
|
DP1 prostanoid receptor activation increases the severity of an acute lower respiratory viral infection in mice via TNF-α-induced immunopathology. Mucosal Immunol 2021; 14:963-972. [PMID: 33879829 PMCID: PMC8057290 DOI: 10.1038/s41385-021-00405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) bronchiolitis is a leading cause of infant hospitalization and mortality. We previously identified that prostaglandin D2 (PGD2), released following RSV infection of primary human airway epithelial cells or pneumonia virus of mice (PVM) infection of neonatal mice, elicits pro- or antiviral innate immune responses as a consequence of D-type prostanoid receptor 2 (DP2) or DP1 activation, respectively. Here, we sought to determine whether treatment with the DP1 agonist BW245c decreases the severity of bronchiolitis in PVM-infected neonatal mice. Consistent with previous findings, BW245c treatment increased IFN-λ production and decreased viral load in week 1 of the infection. However, unexpectedly, BW245c treatment increased mortality in week 2 of the infection. This increased morbidity was associated with viral spread to the parenchyma, an increased cellular infiltrate of TNF-α-producing cells (neutrophils, monocytes, and CD4+ T cells), and the heightened production of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. These phenotypes, as well as the increased mortality, were significantly attenuated following the administration of anti-TNF-α to PVM-infected, BW245c-treated mice. In summary, pharmacological activation of the DP1 receptor in PVM-infected neonatal mice boosts antiviral innate and adaptive immunity, however, this is ultimately detrimental, as a consequence of increased TNF-α-induced morbidity and mortality.
Collapse
|
47
|
Ko YK, Zhang YL, Wee JH, Han DH, Kim HJ, Rhee CS. Human Rhinovirus Infection Enhances the Th2 Environment in Allergic and Non-allergic Patients with Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2020; 14:217-224. [PMID: 32911880 PMCID: PMC8111390 DOI: 10.21053/ceo.2020.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/09/2020] [Indexed: 12/01/2022] Open
Abstract
Objectives. This study was conducted to determine whether patients with allergic rhinitis might be more susceptible to human rhinovirus (HRV) infection and whether the effects of infection on the elicited immune responses are different in allergic and non-allergic patients with chronic rhinosinusitis (CRS). Methods. Uncinate process tissues were obtained from 61 CRS patients (of whom 39 had allergies and 22 did not) and were infected with HRV-16 using an air-liquid interface organ culture system. The expression levels of programmed cell death-ligand (PD-L)1, PD-L2, intracellular adhesion molecule 1, interferon-gamma (IFN-γ), interleukin (IL)-4, IL-5, and IL-10 were evaluated in the infected nasal mucosa. Results. The HRV infection rates were not significantly different between the allergy (74.4%) and non-allergy (72.7%) groups. In the allergy group, the expression of PD-L1 (P=0.013) and IL-10 (P=0.040) was significantly elevated in the HRV-infected tissues, and there was a strong correlation between PD-L1 and IL-10 (r=0.868, P<0.001). In contrast, infected tissues from the non-allergy group displayed increased levels of IL-4 (P=0.039), IL-5 (P=0.023), and IFN-γ (P=0.031), as well as an increased IL-4/IFN-γ ratio, after HRV infection (P=0.043). Conclusion. This study showed that HRV infection rates were similar in the nasal mucosa of patients with CRS regardless of the presence of allergic rhinitis. HRV infection enhanced the Th2 environment by modulating PD-L1 and PD-L2 expression levels in allergic mucosa and by increasing the IL-4/IFN-γ ratio in non-allergic mucosa.
Collapse
Affiliation(s)
- Young-Kyung Ko
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yu-Lian Zhang
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Jee Hye Wee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chae-Seo Rhee
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Sensory Organs Research Center, Seoul National University Medical Research Center, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
48
|
Feng X, Zhao C, Li L, Feng J, He W, Shi T, Li N, Jie Z, Su X. iNKT cells with high PLZF expression are recruited into the lung via CCL21-CCR7 signaling to facilitate the development of asthma tolerance in mice. Eur J Immunol 2020; 51:414-432. [PMID: 32712954 DOI: 10.1002/eji.202048798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023]
Abstract
Establishment of immune tolerance is crucial to protect humans against asthma. Promyelocytic leukemia zinc finger (PLZF) is an emerging suppressor of inflammatory responses. CCL21-CCR7 signaling mediates tolerance development. However, whether PLZF and CCL21-CCR7 are required for the development of asthma tolerance is unknown. Here, we found that Zbtb16 (coding PLZF) and Ccl21 were upregulated in OVA-induced asthma tolerance (OT) lungs by RNA-seq. PLZF physically interacted with GATA3 and its expression was higher in GATA3+ Th2 cells and ILC2s in OT lungs. Zbtb16-knockdown in lymphocytes promoted the differentiation of CD3e+ CD4+ T cells, particularly those producing IL-4 and IL-5. Moreover, iNKT cells with high expression of PLZF were recruited into the lungs via draining lymph nodes during tolerance. Blockade of CCL21-CCR7 signaling in OT mice decreased the PLZF+ cell population, abolished CCR7-induced PLZF+ iNKT recruitment to the lungs, enhanced Th2responses and exacerbated lung pathology. In OT mice, respiratory syncytial virus (RSV) infection impeded PLZF+ cell and CCR7+ PLZF+ iNKT cellrecruitment to the lungs and increased airway resistance. Collectively, these results indicate that PLZF could interact with GATA3 and restrain differentiation of IL-4- and IL-5-producing T cells, iNKT cells with high PLZF expression are recruited to the lungs via CCL21-CCR7 signaling to facilitate the development of asthma tolerance.
Collapse
Affiliation(s)
- Xintong Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wei He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
49
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
50
|
Loh Z, Simpson J, Ullah A, Zhang V, Gan WJ, Lynch JP, Werder RB, Sikder AA, Lane K, Sim CB, Porrello E, Mazzone SB, Sly PD, Steptoe RJ, Spann KM, Sukkar MB, Upham JW, Phipps S. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. PLoS Pathog 2020; 16:e1008651. [PMID: 32658914 PMCID: PMC7377495 DOI: 10.1371/journal.ppat.1008651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022] Open
Abstract
Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling. Asthma can start at any time in life, although most often begins in early childhood. Wheezy viral bronchiolitis is a major independent risk factor for subsequent asthma. However, key knowledge gaps exist in relation to the sequelae of severe viral bronchiolitis and the pathogenic processes that promote type-2 inflammation and airway wall remodelling, cardinal features of asthma. Our study addresses this gap by identifying high-mobility group box 1 as a pathogenic cytokine that contributes to group 2 innate lymphoid cell-induced airway smooth muscle growth.
Collapse
Affiliation(s)
- Zhixuan Loh
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Jennifer Simpson
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ashik Ullah
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Vivian Zhang
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Wan J. Gan
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Jason P. Lynch
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Rhiannon B. Werder
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Al Amin Sikder
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Katie Lane
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Choon Boon Sim
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Enzo Porrello
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Stuart B. Mazzone
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Peter D. Sly
- Children’s Health and Environment Program, Child Health Research Centre, University of Queensland, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Raymond J. Steptoe
- UQ Diamantina Institute, The University of Queensland, Queensland, Australia
| | - Kirsten M. Spann
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Maria B. Sukkar
- Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - John W. Upham
- UQ Diamantina Institute, The University of Queensland, Queensland, Australia
| | - Simon Phipps
- School of Biomedical Sciences, The University of Queensland, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
- * E-mail:
| |
Collapse
|