1
|
Henrich TJ, Bosch RJ, Godfrey C, Mar H, Nair A, Keefer M, Fichtenbaum C, Moisi D, Clagett B, Buck AM, Deitchman AN, Aweeka F, Li JZ, Kuritzkes DR, Lederman MM, Hsue PY, Deeks SG. Sirolimus reduces T cell cycling, immune checkpoint marker expression, and HIV-1 DNA in people with HIV. Cell Rep Med 2024; 5:101745. [PMID: 39321793 PMCID: PMC11513808 DOI: 10.1016/j.xcrm.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Key HIV cure strategies involve reversing immune dysfunction and limiting the proliferation of infected T cells. We evaluate the safety of sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in people with HIV (PWH) and study the impact of sirolimus on HIV-1 reservoir size and HIV-1-specific immunity in a single-arm study of 20 weeks of treatment in PWH on antiretroviral therapy (ART). Sirolimus treatment does not impact HIV-1-specific CD8 T cell responses but leads to a significant decrease in CD4+ T cell-associated HIV-1 DNA levels at 20 weeks of therapy in the primary efficacy population (n = 16; 31% decline, p = 0.008). This decline persists for at least 12 weeks following cessation of the study drug. Sirolimus treatment also leads to a significant reduction in CD4+ T cell cycling and PD-1 expression on CD8+ lymphocytes. These data suggest that homeostatic proliferation of infected cells, an important mechanism for HIV persistence, is an intriguing therapeutic target.
Collapse
Affiliation(s)
- Timothy J Henrich
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Catherine Godfrey
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Apsara Nair
- Frontier Science and Technology Research Foundation, Amherst, NY 14226, USA
| | - Michael Keefer
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Carl Fichtenbaum
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniela Moisi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian Clagett
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amanda M Buck
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; San Francisco State University, San Francisco, CA 94132, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael M Lederman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
2
|
van Pul L, Stunnenberg M, Kroeze S, van Dort KA, Boeser-Nunnink BDM, Harskamp AM, Geijtenbeek TBH, Kootstra NA. Energy demanding RNA and protein metabolism drive dysfunctionality of HIV-specific T cell changes during chronic HIV infection. PLoS One 2024; 19:e0298472. [PMID: 39356699 PMCID: PMC11446443 DOI: 10.1371/journal.pone.0298472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Antiretroviral treatment of HIV infected individuals cannot eliminate the HIV reservoir and immune control of HIV is rarely seen upon treatment interruption. In long-term non-progressors (LTNP), an effective CD8 T cell response is thought to contribute to be immune control of HIV. Here we studied the transcriptional profile of virus specific CD8 T cells during the asymptomatic phase of disease, to gain molecular insights in CD8 T cell functionality in HIV progressors and different groups of LTNP: HLA-B*57 LTNP, non-HLA-B*57 LTNP and individuals carrying the MAVS minor genotype (rs7262903/rs7269320). Principal component analysis revealed distinct overall transcriptional profiles between the groups. The transcription profile of HIV-specific CD8 T cells of LTNP groups was associated with increased cytokine/IL-12 signaling and protein/RNA metabolism pathways, indicating an increased CD8 T cell functionality. Although the transcription profile of CMV-specific CD8 T cells differed from that of HIV-specific CD8 T cells, with mainly an upregulation of gene expression in progressors, similar affected pathways were identified. Moreover, CMV-specific CD8 T cells from progressors showed increased expression of genes related to effector functions and suggests recent antigen exposure. Our data shows that changes in cytokine signaling and the energy demanding RNA and protein metabolism are related to CD8 T cell dysfunction, which may indicate that mitochondrial dysfunction is an important driver of T cell dysfunctionality during chronic HIV infection. Indeed, improvement of mitochondrial function by IL-12 and mitoTempo treatment, enhanced in vitro IFNγ release by PBMC from PWH upon HIV gag and CMV pp65 peptide stimulation. Our study provides new insights into the molecular pathways associated with CD8 T cell mediated immune control of chronic HIV infection which is important for the design of novel treatment strategies to restore or improve the HIV-specific immune response.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melissa Stunnenberg
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Brigitte D M Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lurain K, Ramaswami R, Ekwede I, Eulo V, Goyal G, Menon M, Odeny TA, Sharon E, Wagner MJ, Wang CCJ, Bhardwaj N, Friedlander PA, Abdul-Hay M, Cornejo Castro EM, Labo N, Marshall VA, Miley W, Moore K, Roshan R, Whitby D, Kask AS, Kaiser J, Han E, Wright A, Yarchoan R, Fling SP, Uldrick TS. Cancer Immunotherapy Trials Network 12: Pembrolizumab in HIV-Associated Kaposi Sarcoma. J Clin Oncol 2024:JCO2400640. [PMID: 39356983 DOI: 10.1200/jco.24.00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Cancer Immunotherapy Trials Network 12 demonstrated safety of pembrolizumab in treating advanced cancer in people with HIV. Here, we report results of the Kaposi sarcoma (KS) cohort. METHODS In this multicenter phase I trial, we enrolled participants with HIV-associated KS on antiretroviral therapy with CD4+ ≥50 cells/μL and HIV plasma RNA <200 copies/mL. Pembrolizumab 200 mg intravenously was administered once every 3 weeks for up to 35 cycles. The primary end point was safety, and the secondary end point was KS response by modified AIDS Clinical Trials Group Criteria. RESULTS Thirty-two cisgender men enrolled with baseline median CD4+ T-cell count of 274 cells/µL. All but nine participants had received previous systemic KS therapy. Participants received a median of 11 cycles of pembrolizumab (range, 1-35). Sixty-six percent had grade ≥1 treatment-emergent adverse events, including one death from polyclonal KS herpesvirus-related B-cell lymphoproliferation. Thirty-one percent had ≥one immune-mediated AEs (imAEs) with 25% requiring systemic steroids. In 29 participants with evaluable KS, the overall response rate (ORR) was 62.1% (95% CI, 42.3 to 79.3) and did not differ by CD4+ T-cell count. ORR in the eight participants with evaluable disease without previous KS therapy was 87.5% (95% CI, 47.3 to 99.7). Median duration of response (DOR) was not reached, and the Kaplan-Meier estimate of DOR of ≥12 months was 92.3% (95% CI, 56.6 to 98.8). Median progression-free survival was 28.2 months (95% CI, 4.2 to noncalculable). CONCLUSION Pembrolizumab yielded a high rate of durable responses in HIV-associated KS. imAEs were successfully managed with standard guidelines.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Irene Ekwede
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- University of Alabama at Birmingham, Birmingham, AL
| | - Gaurav Goyal
- University of Alabama at Birmingham, Birmingham, AL
| | - Manoj Menon
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Thomas A Odeny
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Dana-Farber Cancer Institute, Boston, MA
| | - Michael J Wagner
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
- Dana-Farber Cancer Institute, Boston, MA
| | | | - Nina Bhardwaj
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | | | - Maher Abdul-Hay
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| | - Elena M Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Vickie Ann Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kyle Moore
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | - Judith Kaiser
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Emma Han
- Cytel (Shanghai) Co Ltd, Shanghai, China
| | - Anna Wright
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven P Fling
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| |
Collapse
|
4
|
Pereira Ribeiro S, Strongin Z, Soudeyns H, Ten-Caten F, Ghneim K, Pacheco Sanchez G, Xavier de Medeiros G, Del Rio Estrada PM, Pelletier AN, Hoang T, Nguyen K, Harper J, Jean S, Wallace C, Balderas R, Lifson JD, Raghunathan G, Rimmer E, Pastuskova C, Wu G, Micci L, Ribeiro RM, Chan CN, Estes JD, Silvestri G, Gorman DM, Howell BJ, Hazuda DJ, Paiardini M, Sekaly RP. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat Immunol 2024; 25:1900-1912. [PMID: 39266691 PMCID: PMC11436369 DOI: 10.1038/s41590-024-01952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Human immunodeficiency virus (HIV) persistence during antiretroviral therapy (ART) is associated with heightened plasma interleukin-10 (IL-10) levels and PD-1 expression. We hypothesized that IL-10 and PD-1 blockade would lead to control of viral rebound following analytical treatment interruption (ATI). Twenty-eight ART-treated, simian immunodeficiency virus (SIV)mac239-infected rhesus macaques (RMs) were treated with anti-IL-10, anti-IL-10 plus anti-PD-1 (combo) or vehicle. ART was interrupted 12 weeks after introduction of immunotherapy. Durable control of viral rebound was observed in nine out of ten combo-treated RMs for >24 weeks post-ATI. Induction of inflammatory cytokines, proliferation of effector CD8+ T cells in lymph nodes and reduced expression of BCL-2 in CD4+ T cells pre-ATI predicted control of viral rebound. Twenty-four weeks post-ATI, lower viral load was associated with higher frequencies of memory T cells expressing TCF-1 and of SIV-specific CD4+ and CD8+ T cells in blood and lymph nodes of combo-treated RMs. These results map a path to achieve long-lasting control of HIV and/or SIV following discontinuation of ART.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hugo Soudeyns
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Viral Immunopathology Unit, Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
- Department of Microbiology, Infectiology and Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Felipe Ten-Caten
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Giuliana Xavier de Medeiros
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Timothy Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sherrie Jean
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chelsea Wallace
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gopalan Raghunathan
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Cinthia Pastuskova
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Guoxin Wu
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Luca Micci
- Department of Discovery Oncology, Merck & Co. Inc., Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Guido Silvestri
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Daniel M Gorman
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Bonnie J Howell
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Daria J Hazuda
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Mirko Paiardini
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Lee D, Cho M, Kim E, Seo Y, Cha JH. PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Mol Ther 2024:S1525-0016(24)00650-6. [PMID: 39342430 DOI: 10.1016/j.ymthe.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
The PD-L1/PD-1 signaling pathway is the gold standard for cancer immunotherapy. Therapeutic antibodies targeting PD-1, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), and PD-L1, including atezolizumab (Tecentriq), durvalumab (Imfinzi), and avelumab (Bavencio) have received Food and Drug Administration approval and are currently being used to treat various cancers. Traditionally, PD-L1 is known as an immune checkpoint protein that binds to the PD-1 receptor on its surface to inhibit the activity of T cells, which are the primary effector cells in antitumor immunity. However, it also plays a role in cancer progression, which goes beyond traditional understanding. Here, we highlight the multifaceted mechanisms of action of PD-L1 in cancer cell proliferation, transcriptional regulation, and systemic immune suppression. Moreover, we consider the potential role of PD-L1 in the development and pathogenesis of diseases other than cancer, explore PD-L1-focused therapeutic approaches for these diseases, and assess their clinical relevance. Through this review, we hope to provide deeper insights into the PD-L1/PD-1 signaling pathway and present a broad perspective on potential therapeutic approaches for cancer and other diseases.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Minjeong Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eunseo Kim
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Youngbin Seo
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea; Biohybrid Systems Research Center, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
Bennett C, Hoosain Z, Koen A, Lalloo U, Louw C, Maluleke V, Patel F, Benade G, Venter EL, Galbiati S, Shinde V, Madhi SA. Immunogenicity and safety of SARS-CoV-2 recombinant spike protein vaccine in South African people living with and without HIV-1 infection: A phase 2 randomised trial. J Infect 2024; 89:106285. [PMID: 39343247 DOI: 10.1016/j.jinf.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Response data for COVID-19 vaccines in immunosuppressed individuals are typically limited to standard dosing in small populations. Adjusting number or interval of doses may impact immune responses based on HIV status. METHODS This phase 2 randomised, observer-blinded, placebo-controlled South African study (2019nCoV-505/NCT05112848) enrolled medically stable people living with HIV (PLWH) and HIV-uninfected participants aged 18-65 years. PLWH were randomised 1:1:1 to receive NVX-CoV2373 on day 0 (D0) and either D21 (2-DoseD0/D21) or D70 (2-DoseD0/D70), or on D0, D21, and D70 (3-Dose). HIV-uninfected participants were randomised 1:1 to each 2-Dose regimen. PLWH were stratified into well-controlled and less-well-controlled subgroups. The primary immunologic endpoint included serum IgG and neutralising antibody responses (per geometric mean fold rise [GMFR] in titre and seroconversion rate) to ancestral SARS-CoV-2 at D35 (2-DoseD0/D21) and D84 (2-DoseD0/D70 and 3-Dose). The primary safety endpoints were participants with an unsolicited adverse event through D84, at D120, and at D180, or reactogenicity ≤7 days post-vaccination. RESULTS Of 288 PLWH, 98, 96, and 94 were randomised into the 2-DoseD0/D21, 2-DoseD0/D70, and 3-Dose groups, respectively; 96 HIV-uninfected participants were randomised to the 2-DoseD0/D21 (n = 47) or 2-DoseD0/D70 (n = 49) regimens. Most (>85%) of the population were SARS-CoV-2 positive at baseline. Ancestral anti-spike IgG GMFRs in PLWH and HIV-uninfected participants, respectively, were 12·4 and 12·9 (D35) and 12·2 and 13·6 (D84). Comparable outcomes occurred across dosing regimens and in well-controlled and less-well-controlled PLWH. Microneutralization GMFRs at D84 in PLWH and HIV-uninfected participants, respectively, were: 6·9 and 10·1 (2-DoseD0/D21), 11·0 and 11·3 (2-DoseD0/D70), and 17·2 (PLWH 3-Dose). Antibody responses against BA.1 trended similar to those against the ancestral virus. Safety outcomes were comparable among PLWH and HIV-uninfected participants. CONCLUSION This study demonstrated that NVX-CoV2373 produced consistent immunogenicity responses to SARS-CoV-2 among PLWH and HIV-uninfected participants, with no new safety signals.
Collapse
Affiliation(s)
- Chijioke Bennett
- Novavax, Inc., 700 Quince Orchard Road, Gaithersburg, MD 20878, USA.
| | - Zaheer Hoosain
- Josha Research, 28 East Burger Street, Bloemfontein 9301, South Africa
| | - Anthonet Koen
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Sherwell and Beit Street, Johannesburg, South Africa
| | - Umesh Lalloo
- KwaPhila Health Solutions (Enhancing Care), 16 Charles Strachan Road, Berea, Durban 4091, South Africa
| | - Cheryl Louw
- Madibeng Centre for Research, 40 Pienaar Street Madibeng, Brits 0250, South Africa
| | - Vongane Maluleke
- Mzansi Ethical Research Centre (MERC), 184 Cowen Ntuli St, Middelburg 1055, South Africa
| | - Faeezah Patel
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street Hillbrow, Johannesburg 2001, South Africa
| | - Gabriella Benade
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street Hillbrow, Johannesburg 2001, South Africa
| | - Esme Louise Venter
- The Aurum Institute-Pretoria CRS, 6 Mark Shuttleworth Street, Pretoria 0182, South Africa
| | - Shirley Galbiati
- Novavax, Inc., 700 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Vivek Shinde
- Novavax, Inc., 700 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Sherwell and Beit Street, Johannesburg, South Africa
| |
Collapse
|
7
|
Joseph J, Premeaux TA, Tandon R, Murphy EL, Bruhn R, Nicot C, Herrera BB, Lemenze A, Alatrash R, Baffour Tonto P, Ndhlovu LC, Jain P. Dendritic Cells Pulsed with HAM/TSP Exosomes Sensitize CD4 T Cells to Enhance HTLV-1 Infection, Induce Helper T-Cell Polarization, and Decrease Cytotoxic T-Cell Response. Viruses 2024; 16:1443. [PMID: 39339919 PMCID: PMC11436225 DOI: 10.3390/v16091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive demyelinating disease of the spinal cord due to chronic inflammation. Hallmarks of disease pathology include dysfunctional anti-viral responses and the infiltration of HTLV-1-infected CD4+ T cells and HTLV-1-specific CD8+ T cells in the central nervous system. HAM/TSP individuals exhibit CD4+ and CD8+ T cells with elevated co-expression of multiple inhibitory immune checkpoint proteins (ICPs), but ICP blockade strategies can only partially restore CD8+ T-cell effector function. Exosomes, small extracellular vesicles, can enhance the spread of viral infections and blunt anti-viral responses. Here, we evaluated the impact of exosomes isolated from HTLV-1-infected cells and HAM/TSP patient sera on dendritic cell (DC) and T-cell phenotypes and function. We observed that exosomes derived from HTLV-infected cell lines (OSP2) elicit proinflammatory cytokine responses in DCs, promote helper CD4+ T-cell polarization, and suppress CD8+ T-cell effector function. Furthermore, exosomes from individuals with HAM/TSP stimulate CD4+ T-cell polarization, marked by increased Th1 and regulatory T-cell differentiation. We conclude that exosomes in the setting of HAM/TSP are detrimental to DC and T-cell function and may contribute to the progression of pathology with HTLV-1 infection.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Thomas A Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornel Medicine, New York, NY 10021, USA
| | - Ritesh Tandon
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Edward L Murphy
- Departments of Laboratory Medicine and Epidemiology/Biostatistics, University of California, San Francisco, CA 94143, USA
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alexander Lemenze
- Molecular and Genomics Informatics Core, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Prince Baffour Tonto
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornel Medicine, New York, NY 10021, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
8
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Wu L, Zheng Z, Xun J, Liu L, Wang J, Zhang X, Shao Y, Shen Y, Zhang R, Zhang M, Sun M, Qi T, Wang Z, Xu S, Song W, Tang Y, Zhao B, Song Z, Routy JP, Lu H, Chen J. Anti-PD-L1 antibody ASC22 in combination with a histone deacetylase inhibitor chidamide as a "shock and kill" strategy for ART-free virological control: a phase II single-arm study. Signal Transduct Target Ther 2024; 9:231. [PMID: 39245675 PMCID: PMC11381521 DOI: 10.1038/s41392-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihang Zheng
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Hongzhou Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
García-López LL, Vargas-Montes M, Osorio-Méndez JF, Cardona N, Hernández De Los Ríos A, Toro-Acevedo CA, Arenas-García JC, Mantilla-Muriel LE, Torres E, Valencia-Hernández JD, Acosta-Dávila A, de-la-Torre A, Celis-Giraldo D, Mejía Oquendo M, Sepúlveda-Arias JC, Gómez-Marín JE. CD8+ T-cell Exhaustion Phenotype in Human Asymptomatic and Ocular Toxoplasmosis. Ocul Immunol Inflamm 2024; 32:1218-1227. [PMID: 37315178 DOI: 10.1080/09273948.2023.2217906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
This work analyzed exhaustion markers in CD8+ T-cell subpopulations in 21 samples of peripheral blood mononuclear cells (PBMCs) from individuals with ocular toxoplasmosis (n = 9), chronic asymptomatic toxoplasmosis (n = 7), and non-infected people (n = 5) by using RT-qPCR and flow cytometry techniques. The study found that gene expression of PD-1 and CD244, but not LAG-3, was higher in individuals with ocular toxoplasmosis versus individuals with asymptomatic infection or uninfected. Expression of PD1 in CD8+ central memory (CM) cells was higher in nine individuals with toxoplasmosis versus five uninfected individuals (p = .003). After ex vivo stimulation, an inverse correlation was found between the exhaustion markers and quantitative clinical characteristics (lesion size, recurrence index, and number of lesions). A total exhaustion phenotype was found in 55.5% (5/9) of individuals with ocular toxoplasmosis. Our results suggest that the CD8+ exhaustion phenotype is involved in the pathogenesis of ocular toxoplasmosis.
Collapse
Affiliation(s)
| | - Mónica Vargas-Montes
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | | | - Néstor Cardona
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
- Faculty of Dentistry, Universidad Antonio Nariño, Armenia, Quindío, Colombia
| | | | - Carlos Andrés Toro-Acevedo
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | | - Luz Eliana Mantilla-Muriel
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Elizabeth Torres
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | | | | | - Alejandra de-la-Torre
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
- NeURos Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Celis-Giraldo
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | - Manuela Mejía Oquendo
- GEPAMOL, Biomedical Research Center, Universidad del Quindío, Armenia, Quindío, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | |
Collapse
|
11
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
12
|
Serrano-Villar S, Gala A, Bacchetti P, Hoh R, di Germanio C, Cohn LB, Henrich TJ, Hunt PW, Laird GM, Pillai SK, Deeks SG, Peluso MJ. Galectin-9 Levels as a Potential Predictor of Intact HIV Reservoir Decay. J Infect Dis 2024:jiae426. [PMID: 39207259 DOI: 10.1093/infdis/jiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND During antiretroviral therapy (ART), the HIV reservoir exhibits variability as cells with intact genomes decay faster than those with defective genomes, especially in the first years of therapy. The host factors influencing this decay are yet to be characterized. METHODS Observational study in 74 PWH on ART, of whom 70 (94.6%) were male. We used the intact proviral DNA assay to measure intact proviruses and Luminex immunoassay to measure 32 inflammatory cytokines in plasma. Linear spline models, with a knot at seven years, evaluated the impact of baseline cytokine levels and their trajectories on intact HIV kinetics over these years. RESULTS Baseline Gal-9 was the most predictive marker for intact HIV kinetics, with lower Gal-9 predicting faster decay over the subsequent seven years. For each 10-fold decrease in Gal-9 at baseline, there was a mean 45% (95%CI 14%-84%) greater decay of intact HIV genomes per year. Conversely, higher baseline ITAC, IL-17, and MIP-1α predicted faster intact HIV decreases. Longitudinal changes in MIP-3α and IL-6 levels strongly associated with intact HIV kinetics, with a 10-fold increase in MIP-3α and a 10-fold decrease in IL-6 associated with a a 9.5% and 10% faster decay of intact HIV genomes per year, respectively. CONCLUSION The pronounced association between baseline Gal-9 levels and subsequent intact HIV decay suggests that strategies reducing Gal-9 levels could accelerate reservoir decay. Additionally, the correlations of MIP-3α and IL-6 with HIV kinetics indicate a broader cytokine-mediated regulatory network, hinting at multi-targeted interventions that could modulate HIV reservoir dynamics.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
- Department of Infectious Diseases. Hospital Universitario Ramón y Cajal and IRICYS. Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Madrid, Spain
| | - Akshay Gala
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Clara di Germanio
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Lillian B Cohn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | | | - Satish K Pillai
- Vitalant Research Institute and University of California, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Assoumou L, Baldé R, Katlama C, Abbar B, Delobel P, Allegre T, Lavole A, Makinson A, Zaegel-Faucher O, Greillier L, Soulie C, Veyri M, Bertheau M, Algarte Genin M, Gibowski S, Marcelin AG, Bihan K, Baron M, Costagliola D, Lambotte O, Spano JP. Safety and tolerability of immune checkpoint inhibitors in people with HIV infection and cancer: insights from the national prospective real-world OncoVIHAC ANRS CO24 cohort study. J Immunother Cancer 2024; 12:e009728. [PMID: 39179255 PMCID: PMC11344510 DOI: 10.1136/jitc-2024-009728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been a major advance in cancer management. However, we still lack prospective real-world data regarding their usage in people with HIV infection (PWH). METHODS The ANRS CO24 OncoVIHAC study (NCT03354936) is an ongoing prospective observational cohort study in France of PWH with cancer treated with ICI. We assessed the incidence of grade ≥3 immune-related adverse events (irAEs). All grade ≥3 irAEs were reviewed by an event review. RESULTS Between January 17, 2018, and December 05, 2023, 150 participants were recruited from 33 sites and 140 were included in this analysis. At the data cut-off date of December 05, 2023, the median follow-up was 9.2 months (IQR: 3.9-18.3), with a total of 126.2 person-years.Median age was 59 years (IQR: 54-64) and 111 (79.3%) were men. Median time since HIV diagnosis was 25 years (12-31), the median duration on antiretroviral (ARV) was 19.5 years (7.7-25.4), and the CD4 nadir was 117/µL (51-240). ICI regimens comprised anti-programmed cell death protein-1 (PD-1) for 111 (79.3%) participants, anti-programmed death-ligand 1 for 25 (17.9%), a combination of anti-PD-1 and anti-cytotoxic T-lymphocyte associated protein 4 for 3 (2.1%), and anti-PD-1 along with anti-vascular endothelial growth factor receptor for 1 (0.7%). The most frequent cancers were lung (n=65), head/neck (n=15), melanoma (n=12), liver (n=11) and Hodgkin's lymphoma (n=9).During follow-up, a total of 34 grade ≥3 irAEs occurred in 20 participants, leading to an incidence rate of 26.9 per 100 person-years. The Kaplan-Meier estimates of the proportion of participants with at least one episode of grade ≥3 irAEs were 13.8% at 6 months, 15.0% at 12 months and 18.7% at 18 months. One treatment-related death due to myocarditis was reported (0.7%). Multivariable analysis of cumulative incidence showed that participants with time since HIV diagnosis >17 years (incidence rate ratio (IRR)=4.66, p=0.002), with CD4<200 cells/µL (IRR=4.39, p<0.0001), with positive cytomegalovirus (CMV) serology (IRR=2.76, p=0.034), with history of cancer surgery (IRR=3.44, p=0.001) had a higher risk of incidence of grade ≥3 irAEs. CONCLUSION This study showed that the incidence of a first episode of grade ≥3 irAE was 15.0% (95% CI: 9.6% to 22.9%) at 1 year and the cumulative incidence of all severe irAE episodes was 26.9 per 100 person-years. Low CD4 count, positive CMV serology, history of cancer surgery and a longer time since HIV diagnosis were associated with the occurrence of severe irAEs.
Collapse
Affiliation(s)
- Lambert Assoumou
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Raghiatou Baldé
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Christine Katlama
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, service des maladies infectieuses, Paris, France
| | - Baptiste Abbar
- Sorbonne University, Department of Medical Oncology Assistance Publique - Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Institut Universitaire de Cancérologie, CLIP² Galilée, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Delobel
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, INSERM, UMR1291, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Thierry Allegre
- Department of Hematology Oncology & Internal Médicine Centre Hospitalier d’Aix en Provence, Centre Hospitalier du Pays d'Aix, Aix-en-Provence, France
| | - Armelle Lavole
- GRC#04 Theranoscan, Département de Pneumologie et Oncologie Thoracique, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Alain Makinson
- INSERM U1175, Département de Maladies Infectieuses, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Olivia Zaegel-Faucher
- Aix-Marseille Université, APHM Sainte-Marguerite, Service d'immuno-hématologie Clinique, Marseille, France
| | - Laurent Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, Assistance Publique—Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Cathia Soulie
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, laboratoire de virologie, Paris, France
| | - Marianne Veyri
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département d’Oncologie Médicale, Paris, France
| | | | - Michèle Algarte Genin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | | | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, laboratoire de virologie, Paris, France
| | - Kevin Bihan
- Sorbonne University, INSERM CIC Paris-Est, AP-HP, ICAN, Regional Pharmacovigilance Centre, Department of Pharmacology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Marine Baron
- Sorbonne University, Department of Medical Oncology Assistance Publique - Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Institut Universitaire de Cancérologie, CLIP² Galilée, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Olivier Lambotte
- Département d’Immunologie Clinique, AP-HP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jean-Philippe Spano
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département d’Oncologie Médicale, Paris, France
| |
Collapse
|
15
|
Lara-Aguilar V, Llamas-Adán M, Brochado-Kith Ó, Crespo-Bermejo C, Grande-García S, Arca-Lafuente S, de Los Santos I, Prado C, Alía M, Sainz-Pinós C, Fernández-Rodríguez A, Martín-Carbonero L, Madrid R, Briz V. Low-level HIV-1 viremia affects T-cell activation and senescence in long-term treated adults in the INSTI era. J Biomed Sci 2024; 31:80. [PMID: 39160510 PMCID: PMC11334306 DOI: 10.1186/s12929-024-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Around 10% of people with HIV (PWH) exhibit a low-level viremia (LLV) under antiretroviral therapy (ART). However, its origin and clinical significance are largely unknown, particularly at viremias between 50 and 200 copies/mL and under modern ART based on integrase strand transfer inhibitors (INSTIs). Our aim was to characterize their poor immune response against HIV in comparison to individuals with suppressed viremia (SV) and non-HIV controls (NHC). METHODS Transversal observational study in 81 matched participants: 27 PWH with LLV, 27 PWH with SV, and 27 NHC. Activation (CD25, HLA-DR, and CD38) and senescence [CD57, PD1, and HAVCR2 (TIM3)] were characterized in peripheral T-cell subsets by spectral flow cytometry. 45 soluble biomarkers of systemic inflammation were evaluated by immunoassays. Differences in cell frequencies and plasma biomarkers among groups were evaluated by a generalized additive model for location, scale, and shape (GAMLSS) and generalized linear model (GLM) respectively, adjusted by age, sex at birth, and ART regimen. RESULTS The median age was 53 years and 77.8% were male. Compared to NHC, PWH showed a lower CD4+/CD8+ ratio and increased activation, senescence, and inflammation, highlighting IL-13 in LLV. In addition, LLV showed a downtrend in the frequency of CD8+ naive and effector memory (EM) type 1 compared to SV, along with higher activation and senescence in CD4+ and CD8+ EM and terminally differentiated effector memory RA+ (TEMRA) subpopulations. No significant differences in systemic inflammation were observed between PWH groups. CONCLUSION LLV between 50 and 200 copies/mL leads to reduced cytotoxic activity and T-cell dysfunction that could affect cytokine production, being unable to control and eliminate infected cells. The increase in senescence markers suggests a progressive loss of immunological memory and a reduction in the proliferative capacity of immune cells. This accelerated immune aging could lead to an increased risk of developing future comorbidities. These findings strongly advocate for heightened surveillance of these PWH to promptly identify potential future complications.
Collapse
Affiliation(s)
| | - Manuel Llamas-Adán
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Óscar Brochado-Kith
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | | | | | - Sonia Arca-Lafuente
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Ignacio de Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- La Princesa University Hospital, Madrid, Spain
| | - Carmen Prado
- Flow Cytometry Unit, Institute of Health Carlos III, Madrid, Spain
| | - Mario Alía
- Flow Cytometry Unit, Institute of Health Carlos III, Madrid, Spain
| | - Coral Sainz-Pinós
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Luz Martín-Carbonero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- La Paz University Hospital (IdiPAZ), Madrid, Spain
| | | | - Verónica Briz
- National Center of Microbiology, Institute of Health Carlos III, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Lurain K, Zarif TE, Ramaswami R, Nassar AH, Adib E, Abdel-Wahab N, Chintapally N, Drolen CE, Feldman T, Haykal T, Nebhan CA, Kambhampati S, Li M, Mittra A, Lorentsen M, Kim C, Drakaki A, Morse M, Johnson DB, Mangla A, Dittus C, Ravi P, Baiocchi RA, Chiao EY, Rubinstein PG, Yellapragada SV, LaCasce AS, Sonpavde GP, Naqash AR, Herrera AF. Real-World Multicenter Study of PD-1 Blockade in HIV-Associated Classical Hodgkin Lymphoma Across the United States. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:523-530. [PMID: 38714474 PMCID: PMC11283942 DOI: 10.1016/j.clml.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Despite a higher risk of classical Hodgkin lymphoma (cHL) in people with HIV and the demonstrated safety and efficacy of PD-1 blockade in cHL, there are limited data on the use of these agents in HIV-associated cHL (HIV-cHL). PATIENTS/METHODS We retrospectively identified patients with HIV-cHL from the "Cancer Therapy using Checkpoint inhibitors in People with HIV-International (CATCH-IT)" database who received nivolumab or pembrolizumab, alone or in combination with other agents, and reviewed records for demographics, disease characteristics, immune-mediated adverse events (imAEs), and treatment outcomes. Changes in CD4+ T-cell counts with treatment were measured via Wilcoxon signed-rank tests. Overall response rate (ORR) was defined as the proportion of patients with partial or complete response (PR/CR) per 2014 Lugano classification. RESULTS We identified 23 patients with HIV-cHL who received a median of 6 cycles of PD-1 blockade: 1 as 1st-line, 6 as 2nd-line, and 16 as ≥3rd-line therapy. Seventeen (74%) patients received monotherapy, 5 (22%) received nivolumab plus brentuximab vedotin, and 1 received nivolumab plus ifosfamide, carboplatin, and etoposide. The median baseline CD4+ T-cell count was 155 cells/µL, which increased to 310 cells/µL at end-of-treatment (P = .009). Three patients had grade 3 imAEs; none required treatment discontinuation. The ORR was 83% with median duration of response of 19.7 months. The median progression-free survival was 21.2 months and did not differ between patients with <200 versus ≥200 CD4+ cells/µL (P = .95). CONCLUSION Our findings support the use of PD-1 blockade in HIV-cHL for the same indications as the general population with cHL.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | | | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Elio Adib
- Brigham and Women's Hospital, Department of Radiation Oncology, Boston, MA
| | | | | | - Claire E Drolen
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | | | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC; Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Mingjia Li
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Arjun Mittra
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Chul Kim
- Medstar Georgetown University Hospital, Washington, DC
| | - Alexandra Drakaki
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Michael Morse
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | | | - Ankit Mangla
- University Hospital Seidman Cancer Center, Cleveland, OH
| | | | | | | | | | | | - Sarvari V Yellapragada
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine & Michael E. DeBakey VA Medical Center, Houston, TX
| | | | | | | | | |
Collapse
|
17
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Strongin Z, Raymond Marchand L, Deleage C, Pampena MB, Cardenas MA, Beusch CM, Hoang TN, Urban EA, Gourves M, Nguyen K, Tharp GK, Lapp S, Rahmberg AR, Harper J, Del Rio Estrada PM, Gonzalez-Navarro M, Torres-Ruiz F, Luna-Villalobos YA, Avila-Rios S, Reyes-Teran G, Sekaly R, Silvestri G, Kulpa DA, Saez-Cirion A, Brenchley JM, Bosinger SE, Gordon DE, Betts MR, Kissick HT, Paiardini M. Distinct SIV-specific CD8 + T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat Immunol 2024; 25:1245-1256. [PMID: 38886592 DOI: 10.1038/s41590-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laurence Raymond Marchand
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth A Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mael Gourves
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Perla M Del Rio Estrada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio Gonzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comision Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Rafick Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Asier Saez-Cirion
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Sugiyama FHC, Dietz LL, Søgaard OS. Utilizing immunotherapy towards achieving a functional cure for HIV-1. Curr Opin HIV AIDS 2024; 19:187-193. [PMID: 38686856 DOI: 10.1097/coh.0000000000000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW Advancements in antiretroviral therapy (ART) have positively impacted the life expectancy and possibility of living a normal life for people with HIV-1. However, lifelong daily medication is necessary to prevent disease progression. To this end, immunotherapeutic strategies are being tested with the aim of developing a functional cure in which the immune system effectively controls HIV-1 in the absence of ART. RECENT FINDINGS The most promising advances in achieving sustained HIV-1 remission or cure include broadly neutralizing antibodies (bNAbs) that are administered alone or in combination with other agents. Newer and more innovative approaches redirecting T cells or natural killer cells to kill HIV-1 infected cells have also shown promising results. Finally, multiple ongoing trials focus on combining bNAbs with other immune-directed therapies to enhance both innate and adaptive immunity. SUMMARY While immunotherapies as an alternative to conventional ART have generally proven to be well tolerated, these therapeutic approaches have largely been unsuccessful in inducing ART-free control of HIV-1. However, promising results from recent trials involving bNAbs that have reported durable HIV-1 control among a subset of participants, provide reason for cautious optimism that we with further optimization of these treatment strategies may be able to achieve functional cure for HIV-1.
Collapse
Affiliation(s)
- Fabrícia Heloisa Cavicchioli Sugiyama
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo, Ribeirão Preto, Brazil
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Lee J, Whitney JB. Immune checkpoint inhibition as a therapeutic strategy for HIV eradication: current insights and future directions. Curr Opin HIV AIDS 2024; 19:179-186. [PMID: 38747727 DOI: 10.1097/coh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective prophylactic vaccine. Combination antiretroviral therapy (ART) suppresses HIV replication, but latent viral reservoirs allow the virus to persist and reignite active replication if ART is discontinued. Moreover, inflammation and immune disfunction persist despite ART-mediated suppression of HIV. Immune checkpoint molecules facilitate immune dysregulation and viral persistence. However, their therapeutic modulation may offer an avenue to enhance viral immune control for patients living with HIV-1 (PLWH). RECENT FINDINGS The success of immune checkpoint inhibitor (ICI) therapy in oncology suggests that targeting these same immune pathways might be an effective therapeutic approach for treating PLWH. Several ICIs have been evaluated for their ability to reinvigorate exhausted T cells, and possibly reverse HIV latency, in both preclinical and clinical HIV-1 studies. SUMMARY Although there are very encouraging findings showing enhanced CD8 + T-cell function with ICI therapy in HIV infection, it remains uncertain whether ICIs alone could demonstrably impact the HIV reservoir. Moreover, safety concerns and significant clinical adverse events present a hurdle to the development of ICI approaches. This review provides an update on the current knowledge regarding the development of ICIs for the remission of HIV-1 in PWH. We detail recent findings from simian immunodeficiency virus (SIV)-infected rhesus macaque models, clinical trials in PLWH, and the role of soluble immune checkpoint molecules in HIV pathogenesis.
Collapse
Affiliation(s)
- Jina Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | |
Collapse
|
21
|
Webb GM, Pessoa CT, McCullen AJ, Hwang JM, Humkey MC, Thormin-Odum R, Kukula KA, Smedley J, Fischer M, Sciurba J, Bochart RM, Shriver-Munsch C, Ndhlovu LC, Sacha JB. Immune restoration by TIGIT blockade is insufficient to control chronic SIV infection. J Virol 2024; 98:e0027324. [PMID: 38775481 PMCID: PMC11237531 DOI: 10.1128/jvi.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
TIGIT is a negative immune checkpoint receptor associated with T cell exhaustion in cancer and HIV. TIGIT upregulation in virus-specific CD8+ T cells and NK cells during HIV/SIV infection results in dysfunctional effector capabilities. In vitro studies targeting TIGIT on CD8+ T cells suggest TIGIT blockade as a viable strategy to restore SIV-specific T cell responses. Here, we extend these studies in vivo using TIGIT blockage in nonhuman primates in an effort to reverse T cell and NK cell exhaustion in the setting of SIV infection. We demonstrate that in vivo administration of a humanized anti-TIGIT monoclonal antibody (mAb) is well tolerated in both cynomolgus macaques and rhesus macaques. Despite sustained plasma concentrations of anti-TIGIT mAb, we observed no consistent improvement in NK or T cell cytolytic capacity. TIGIT blockade minimally enhanced T cell proliferation and virus-specific T cell responses in both magnitude and breadth though plasma viral loads in treated animals remained stable indicating that anti-TIGIT mAb treatment alone was insufficient to increase anti-SIV CD8+ T cell function. The enhancement of virus-specific T cell proliferative responses observed in vitro with single or dual blockade of TIGIT and/or PD-1 highlights TIGIT as a potential target to reverse T cell dysfunction. Our studies, however, reveal that targeting the TIGIT pathway alone may be insufficient in the setting of viremia and that combining immune checkpoint blockade with other immunotherapeutics may be a future path forward for improved viral control or elimination of HIV.IMPORTANCEUpregulation of the immune checkpoint receptor TIGIT is associated with HIV-mediated T cell dysfunction and correlates with HIV disease progression. Compelling evidence exists for targeting immune checkpoint receptor pathways that would potentially enhance immunity and refocus effector cell efforts toward viral clearance. In this report, we investigate TIGIT blockade as an immunotherapeutic approach to reverse immune exhaustion during chronic SIV/SHIV infection in a nonhuman primate model of HIV infection. We show that interfering with the TIGIT signaling axis alone is insufficient to improve viral control despite modest improvement in T cell immunity. Our data substantiate the use of targeting multiple immune checkpoint receptors to promote synergy and ultimately eliminate HIV-infected cells.
Collapse
Affiliation(s)
- Gabriela M. Webb
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Cleiton T. Pessoa
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Allyson J. McCullen
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Joseph M. Hwang
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Matthew C. Humkey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Raymond Thormin-Odum
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kaitlyn A. Kukula
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Joseph Sciurba
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Jonah B. Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
22
|
Alexandrova Y, Yero A, Olivenstein R, Orlova M, Schurr E, Estaquier J, Costiniuk CT, Jenabian MA. Dynamics of pulmonary mucosal cytotoxic CD8 T-cells in people living with HIV under suppressive antiretroviral therapy. Respir Res 2024; 25:240. [PMID: 38867225 PMCID: PMC11170847 DOI: 10.1186/s12931-024-02859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) suffer from a high burden of pulmonary diseases, even after accounting for their smoking status. Cytotoxic CD8 T-cells are likely implicated in this phenomenon and may act as a double-edged sword. While being essential in viral infection control, their hyperactivation can also contribute to lung mucosal tissue damage. The effects of HIV and smoking on pulmonary mucosal CD8 T-cell dynamics has been a neglected area of research, which we address herein. METHODS Bronchoalveolar lavage (BAL) fluid were obtained from ART-treated PLWH (median duration of supressed viral load: 9 years; smokers: n = 14; non-smokers: n = 21) and HIV-uninfected controls (smokers: n = 11; non-smokers: n = 20) without any respiratory symptoms or active infection. Lymphocytes were isolated and CD8 T-cell subsets and homing markers were characterized by multiparametric flow cytometry. RESULTS Both smoking and HIV infection were independently associated with a significant increase in frequencies of total pulmonary mucosal CD8 T-cell. BAL CD8 T-cells were primarily CD69 + expressing CD103 and/or CD49a, at least one of the two granzymes (GzmA/GzmB), and little Perforin. Higher expression levels of CD103, CD69, and GzmB were observed in smokers versus non-smokers. The ex vivo phenotype of GzmA + and GzmB + cells revealed increased expression of CD103 and CXCR6 in smokers, while PLWH displayed elevated levels of CX3CR1 compared to controls. CONCLUSION Smoking and HIV could promote cytotoxic CD8 T-cell retention in small airways through different mechanisms. Smoking likely increases recruitment and retention of GzmB + CD8 Trm via CXCR6 and CD103. Heightened CX3CR1 expression could be associated with CD8 non-Trm recruitment from the periphery in PLWH.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, QC, Canada
| | - Jerome Estaquier
- Centre de recherche de CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada.
| |
Collapse
|
23
|
Shalekoff S, Dias BDC, Loubser S, Strehlau R, Kuhn L, Tiemessen CT. Higher CCR5 density on CD4 + T-cells in mothers and infants is associated with increased risk of in-utero HIV-1 transmission. AIDS 2024; 38:945-954. [PMID: 38329228 PMCID: PMC11064911 DOI: 10.1097/qad.0000000000003857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE CCR5-tropic viruses are preferentially transmitted during perinatal HIV-1 infection. CCR5 density on CD4 + T-cells likely impacts susceptibility to HIV-1 infection. DESIGN Fifty-two mother-infant dyads were enrolled. All mothers were living with HIV-1, 27 of the infants acquired HIV-1 in utero and 25 infants remained uninfected. METHODS CCR5 density, together with frequencies of CD4 + and CD8 + T-cells expressing immune activation (CCR5, ICOS and HLA-DR) and immune checkpoint (TIGIT and PD-1) markers, were measured in whole blood from the dyads close to delivery. RESULTS Compared with mothers who did not transmit, mothers who transmitted HIV-1 had less exposure to ART during pregnancy ( P = 0.015) and higher plasma viral load close to delivery ( P = 0.0005). These mothers, additionally, had higher CCR5 density on CD4 + and CD8 + T-cells and higher frequencies of CCR5, ICOS and TIGIT-expressing CD8 + T-cells. Similarly, compared with infants without HIV-1, infants with HIV-1 had higher CCR5 density on CD4 + and CD8 + T-cells and higher frequencies of CCR5, TIGIT, and PD-1-expressing CD4 + and CD8 + T-cells as well as higher frequencies of HLA-DR-expressing CD8 + T-cells. CCR5 density on maternal CD4 + T-cells remained significantly associated with transmission after adjusting for maternal viral load and CD4 + T cell counts. Mother-infant dyads with shared high CCR5 density phenotypes had the highest risk of transmission/acquisition of infection compared with dyads with shared low-CCR5 density phenotypes. CONCLUSION This study provides strong evidence of a protective role for a combined mother-infant low CD4 + T-cell CCR5 density phenotype in in-utero transmission/acquisition of HIV-1.
Collapse
Affiliation(s)
- Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bianca Da Costa Dias
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Renate Strehlau
- VIDA Nkanyezi Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Caetano DG, Toledo TS, de Lima ACS, Giacoia-Gripp CBW, de Almeida DV, de Lima SMB, Azevedo ADS, Morata M, Grinsztejn B, Cardoso SW, da Costa MD, Brandão LGP, Bispo de Filippis AM, Scott-Algara D, Coelho LE, Côrtes FH. Impact of HIV-Related Immune Impairment of Yellow Fever Vaccine Immunogenicity in People Living with HIV-ANRS 12403. Vaccines (Basel) 2024; 12:578. [PMID: 38932307 PMCID: PMC11209244 DOI: 10.3390/vaccines12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The yellow fever (YF) vaccine is one of the safest and most effective vaccines currently available. Still, its administration in people living with HIV (PLWH) is limited due to safety concerns and a lack of consensus regarding decreased immunogenicity and long-lasting protection for this population. The mechanisms associated with impaired YF vaccine immunogenicity in PLWH are not fully understood, but the general immune deregulation during HIV infection may play an important role. To assess if HIV infection impacts YF vaccine immunogenicity and if markers of immune deregulation could predict lower immunogenicity, we evaluated the association of YF neutralization antibody (NAb) titers with the pre-vaccination frequency of activated and exhausted T cells, levels of pro-inflammatory cytokines, and frequency of T cells, B cells, and monocyte subsets in PLWH and HIV-negative controls. We observed impaired YF vaccine immunogenicity in PLWH with lower titers of YF-NAbs 30 days after vaccination, mainly in individuals with CD4 count <350 cells/mm3. At the baseline, those individuals were characterized by having a higher frequency of activated and exhausted T cells and tissue-like memory B cells. Elevated levels of those markers were also observed in individuals with CD4 count between 500 and 350 cells/mm3. We observed a negative correlation between the pre-vaccination level of CD8+ T cell exhaustion and CD4+ T cell activation with YF-NAb titers at D365 and the pre-vaccination level of IP-10 with YF-NAb titers at D30 and D365. Our results emphasize the impact of immune activation, exhaustion, and inflammation in YF vaccine immunogenicity in PLWH.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Thais Stelzer Toledo
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Ana Carolina Souza de Lima
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Carmem Beatriz Wagner Giacoia-Gripp
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Dalziza Victalina de Almeida
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-Clínico (DEDEP), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular (LANIM), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Michelle Morata
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Marcellus Dias da Costa
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | - Luciana Gomes Pedro Brandão
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | | | | | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| |
Collapse
|
25
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
26
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
27
|
Yang P, Bian ZQ, Song ZB, Yang CY, Wang L, Yao ZX. Dominant mechanism in spinal cord injury-induced immunodeficiency syndrome (SCI-IDS): sympathetic hyperreflexia. Rev Neurosci 2024; 35:259-269. [PMID: 37889575 DOI: 10.1515/revneuro-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Clinical studies have shown that individuals with spinal cord injury (SCI) are particularly susceptible to infectious diseases, resulting in a syndrome called SCI-induced immunodeficiency syndrome (SCI-IDS), which is the leading cause of death after SCI. It is believed that SCI-IDS is associated with exaggerated activation of sympathetic preganglionic neurons (SPNs). After SCI, disruption of bulbospinal projections from the medulla oblongata C1 neurons to the SPNs results in the loss of sympathetic inhibitory modulation from the brain and brainstem and the occurrence of abnormally high levels of spinal sympathetic reflexes (SSR), named sympathetic hyperreflexia. As the post-injury survival time lengthens, mass recruitment and anomalous sprouting of excitatory interneurons within the spinal cord result in increased SSR excitability, resulting in an excess sympathetic output that disrupts the immune response. Therefore, we first analyze the structural underpinnings of the spinal cord-sympathetic nervous system-immune system after SCI, then demonstrate the progress in highlighting mechanisms of SCI-IDS focusing on norepinephrine (NE)/Beta 2-adrenergic receptor (β2-AR) signal pathways, and summarize recent preclinical studies examining potential means such as regulating SSR and inhibiting β2-AR signal pathways to improve immune function after SCI. Finally, we present research perspectives such as to promote the effective regeneration of C1 neurons to rebuild the connection of C1 neurons with SPNs, to regulate excitable or inhibitory interneurons, and specifically to target β2-AR signal pathways to re-establish neuroimmune balance. These will help us design effective strategies to reverse post-SCI sympathetic hyperreflexia and improve the overall quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi-Qun Bian
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhen-Bo Song
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng-Ying Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
28
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
29
|
de Castro FDOF, Guilarde AO, Souza LCS, Guimarães RF, Pereira AJCS, Romão PRT, Pfrimer IAH, Fonseca SG. Polarization of HIV-1- and CMV-Specific IL-17-Producing T Cells among People with HIV under Antiretroviral Therapy with Cannabis and/or Cocaine Usage. Pharmaceuticals (Basel) 2024; 17:465. [PMID: 38675425 PMCID: PMC11054529 DOI: 10.3390/ph17040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE This study evaluated the influence of cannabis and/or cocaine use in human immunodeficiency virus (HIV)- and cytomegalovirus (CMV)-specific T-cell responses of people with HIV (PWH). RESULTS There was a higher percentage of IL-17-producing HIV-Gag-specific CD8+ T-cells in all drug users than that in PWH non-drug users. Stratifying the drug-user groups, increased percentages of IL-17-producing HIV-Gag-specific CD4+ and CD8+ T-cells were found in PWH cannabis plus cocaine users compared to PWH non-drug users. In response to CMV, there were higher percentage of IL-17-producing CMV-specific CD8+ T-cell in PWH cocaine users than that in PWH non-drug users. Considering all drug users together, there was a higher percentage of SEB-stimulated IL-17-producing CD4+ T-cells than that in PWH non-drug users, whereas cannabis users had higher percentages of IL-17-producing CD4+ T-cells compared to non-drug users. METHODS Cryopreserved peripheral blood mononuclear cells from 37 PWH undergoing antiretroviral therapy (ART) using cannabis (10), cocaine (7), or cannabis plus cocaine (10) and non-drug users (10) were stimulated with HIV-1 Gag or CMV-pp65 peptide pools, or staphylococcal enterotoxin B (SEB) and evaluated for IFN-γ- and/or IL-17A-producing CD4+ and CD8+ T-cells using flow cytometry. CONCLUSIONS Cannabis plus cocaine use increased HIV-specific IL-17 producing T-cells and cocaine use increased IL-17 CMV-specific CD8+ T-cell responses which could favor the inflammatory conditions associated with IL-17 overproduction.
Collapse
Affiliation(s)
- Fernanda de Oliveira Feitosa de Castro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC-Goiás), Goiânia 74605-140, GO, Brazil
| | - Adriana Oliveira Guilarde
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
| | - Luiz Carlos Silva Souza
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
| | | | | | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, RS, Brazil;
| | | | - Simone Gonçalves Fonseca
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil; (F.d.O.F.d.C.); (A.O.G.); (L.C.S.S.)
- iii-INCT-Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, São Paulo 05403-900, SP, Brazil
| |
Collapse
|
30
|
Eichholz K, Fukazawa Y, Peterson CW, Haeseleer F, Medina M, Hoffmeister S, Duell DM, Varco-Merth BD, Dross S, Park H, Labriola CS, Axthelm MK, Murnane RD, Smedley JV, Jin L, Gong J, Rust BJ, Fuller DH, Kiem HP, Picker LJ, Okoye AA, Corey L. Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. J Clin Invest 2024; 134:e169309. [PMID: 38557496 PMCID: PMC10977982 DOI: 10.1172/jci169309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Collapse
Affiliation(s)
- Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Francoise Haeseleer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Manuel Medina
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shelby Hoffmeister
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin D. Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sandra Dross
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Robert D. Murnane
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jiaxin Gong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Deborah H. Fuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Ji M, Hu J, Zhang D, Huang B, Xu S, Jiang N, Chen Y, Wang Y, Wu X, Wu Z. Inhibition of SFTSV replication in humanized mice by a subcutaneously administered anti-PD1 nanobody. EMBO Mol Med 2024; 16:575-595. [PMID: 38366162 PMCID: PMC10940662 DOI: 10.1038/s44321-024-00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jiaqian Hu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Doudou Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China.
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Gay CL, Bosch RJ, McKhann A, Cha R, Morse GD, Wimbish CL, Campbell DM, Moseley KF, Hendrickx S, Messer M, Benson CA, Overton ET, Paccaly A, Jankovic V, Miller E, Tressler R, Li JZ, Kuritzkes DR, Macatangay BJC, Eron JJ, Hardy WD. Safety and Immune Responses Following Anti-PD-1 Monoclonal Antibody Infusions in Healthy Persons With Human Immunodeficiency Virus on Antiretroviral Therapy. Open Forum Infect Dis 2024; 11:ofad694. [PMID: 38449916 PMCID: PMC10917183 DOI: 10.1093/ofid/ofad694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024] Open
Abstract
Background T cells in people with human immunodeficiency virus (HIV) demonstrate an exhausted phenotype, and HIV-specific CD4+ T cells expressing programmed cell death 1 (PD-1) are enriched for latent HIV, making antibody to PD-1 a potential strategy to target the latent reservoir. Methods This was a phase 1/2, randomized (4:1), double-blind, placebo-controlled study in adults with suppressed HIV on antiretroviral therapy with CD4+ counts ≥350 cells/μL who received 2 infusions of cemiplimab versus placebo. The primary outcome was safety, defined as any grade 3 or higher adverse event (AE) or any immune-related AE (irAE). Changes in HIV-1-specific polyfunctional CD4+ and CD8+ T-cell responses were evaluated. Results Five men were enrolled (median CD4+ count, 911 cells/μL; median age, 51 years); 2 received 1 dose of cemiplimab, 2 received 2 doses, and 1 received placebo. One participant had a probable irAE (thyroiditis, grade 2); another had a possible irAE (hepatitis, grade 3), both after a single low-dose (0.3 mg/kg) infusion. The Safety Monitoring Committee recommended no further enrollment or infusions. All 4 cemiplimab recipients were followed for 48 weeks. No other cemiplimab-related serious AEs, irAEs, or grade 3 or higher AEs occurred. One 2-dose recipient of cemiplimab had a 6.2-fold increase in polyfunctional, Gag-specific CD8+ T-cell frequency with supportive increases in plasma HIV RNA and decreases in total HIV DNA. Conclusions One of 4 participants exhibited increased HIV-1-specific T-cell responses and transiently increased HIV-1 expression following 2 cemiplimab infusions. The occurrence of irAEs after a single, low dose may limit translating the promising therapeutic results of cemiplimab for cancer to immunotherapeutic and latency reversal strategies for HIV. Clinical Trials Registration. NCT03787095.
Collapse
Affiliation(s)
- Cynthia L Gay
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J Bosch
- Department of Biostatistics, Center for Biostatistics and AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ashley McKhann
- Department of Biostatistics, Center for Biostatistics and AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond Cha
- Center for Integrated Global Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gene D Morse
- Center for Integrated Global Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Chanelle L Wimbish
- Department of Clinical Research, Social and Scientific Systems, Inc, a DLH Company, Silver Spring, Maryland, USA
| | - Danielle M Campbell
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kendall F Moseley
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven Hendrickx
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Michael Messer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Constance A Benson
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Edgar T Overton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- North America Medical Affairs, ViiV Healthcare, Durham, North Carolina, USA
| | - Anne Paccaly
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Vladimir Jankovic
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Elizabeth Miller
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Randall Tressler
- HIV Research Branch, Division of AIDS, National Institute of AIDS, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bernard J C Macatangay
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - W David Hardy
- Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Clutton GT, Weideman AMK, Mischell MA, Kallon S, Conrad SZ, Shaw FR, Warren JA, Lin L, Kuruc JD, Xu Y, Gay CM, Armistead PM, G. Hudgens M, Goonetilleke NP. CD3 downregulation identifies high-avidity human CD8 T cells. Clin Exp Immunol 2024; 215:279-290. [PMID: 37950348 PMCID: PMC10876116 DOI: 10.1093/cei/uxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
CD8 T cells recognize infected and cancerous cells via their T-cell receptor (TCR), which binds peptide-MHC complexes on the target cell. The affinity of the interaction between the TCR and peptide-MHC contributes to the antigen sensitivity, or functional avidity, of the CD8 T cell. In response to peptide-MHC stimulation, the TCR-CD3 complex and CD8 co-receptor are downmodulated. We quantified CD3 and CD8 downmodulation following stimulation of human CD8 T cells with CMV, EBV, and HIV peptides spanning eight MHC restrictions, observing a strong correlation between the levels of CD3 and CD8 downmodulation and functional avidity, regardless of peptide viral origin. In TCR-transduced T cells targeting a tumor-associated antigen, changes in TCR-peptide affinity were sufficient to modify CD3 and CD8 downmodulation. Correlation analysis and generalized linear modeling indicated that CD3 downmodulation was the stronger correlate of avidity. CD3 downmodulation, simply measured using flow cytometry, can be used to identify high-avidity CD8 T cells in a clinical context.
Collapse
Affiliation(s)
- Genevieve T Clutton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Mischell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallay Kallon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shayla Z Conrad
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fiona R Shaw
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lin Lin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn D Kuruc
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Gay
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nilu P Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Burkhart Colorado AS, Lazzaro A, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert JC, Campbell TB, Borok M, Palmer BE, Lozupone C. Differential effects of antiretroviral treatment on immunity and gut microbiome composition in people living with HIV in rural versus urban Zimbabwe. MICROBIOME 2024; 12:18. [PMID: 38310301 PMCID: PMC10837999 DOI: 10.1186/s40168-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.
Collapse
Affiliation(s)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Charles Preston Neff
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole Nusbacher
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn Boyd
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, England
| | - Suzanne Fiorillo
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Martin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Janet C Siebert
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas B Campbell
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Margaret Borok
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brent E Palmer
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
37
|
Cabral-Piccin MP, Briceño O, Papagno L, Liouville B, White E, Perdomo-Celis F, Autaa G, Volant S, Llewellyn-Lacey S, Fromentin R, Chomont N, Price DA, Sáez-Cirión A, Lambotte O, Katlama C, Appay V. CD8 + T-cell priming is quantitatively but not qualitatively impaired in people with HIV-1 on antiretroviral therapy. AIDS 2024; 38:161-166. [PMID: 37800637 DOI: 10.1097/qad.0000000000003746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND The induction of de novo CD8 + T-cell responses is essential for protective antiviral immunity, but this process is often impaired in people with HIV-1 (PWH). We investigated the extent to which the immune competence of naive CD8 + T cells, a key determinant of priming efficacy, could be preserved or restored in PWH via long-term antiretroviral therapy (ART). METHODS We used flow cytometry, molecular analyses of gene transcription and telomere length, and a fully validated priming assay to characterize naive CD8 + T cells ex vivo and evaluate the induction of antigen-specific effector/memory CD8 + T cells in vitro , comparing age-matched healthy uninfected donors (HUDs), PWH on ART, and natural HIV-1 controllers (HICs). RESULTS We found that naive CD8 + T cells were numerically reduced and exhibited a trend toward shorter telomere lengths in PWH on ART compared with HUDs and HICs. These features associated with impaired priming efficacy. However, we also found that naive CD8 + T cells were fully equipped proliferatively and transcriptionally in PWH on ART, enabling the generation of antigen-specific effector/memory CD8 + T cells with functional and phenotypic attributes comparable to those primed from HUDs. CONCLUSION Our data suggest that naive CD8 + T cells in PWH on ART are intrinsically capable of generating functionally and phenotypically intact effector/memory CD8 + T cells in response to antigen, despite evidence of senescence and an overall numerical reduction that compromises priming efficacy relative to HUDs and HICs.
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Briceño
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benjamin Liouville
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | - Gaëlle Autaa
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP Hôpitaux Universitaires Paris Saclay, Service de Médecine Interne, Bicêtre (UMR 1184), CEA (IDMIT Department, IBFJ), INSERM, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre
| | - Christine Katlama
- Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne Université, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
38
|
Omar A, Marques N, Crawford N. Cancer and HIV: The Molecular Mechanisms of the Deadly Duo. Cancers (Basel) 2024; 16:546. [PMID: 38339297 PMCID: PMC10854577 DOI: 10.3390/cancers16030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The immune deficiency associated with human immunodeficiency virus (HIV) infection causes a distinct increased risk of developing certain cancer types. Kaposi sarcoma (KS), invasive cervical cancer and non-Hodgkin's lymphoma (NHL) are the prominent malignancies that manifest as a result of opportunistic viral infections in patients with advanced HIV infection. Despite the implementation of antiretroviral therapy (ART), the prevalence of these acquired immunodeficiency syndrome (AIDS)-defining malignancies (ADMs) remains high in developing countries. In contrast, developed countries have experienced a steady decline in the occurrence of these cancer types. However, there has been an increased mortality rate attributed to non-ADMs. Here, we provide a review of the molecular mechanisms that are responsible for the development of ADMs and non-ADMs which occur in HIV-infected individuals. It is evident that ART alone is not sufficient to fully mitigate the potential for ADMs and non-ADMs in HIV-infected individuals. To enhance the diagnosis and treatment of both HIV and malignancies, a thorough comprehension of the mechanisms driving the development of such cancers is imperative.
Collapse
Affiliation(s)
- Aadilah Omar
- Division of Oncology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | | | | |
Collapse
|
39
|
Wang G, Wei W, Luo Q, Chen L, Bao X, Tao X, He X, Zhan B, Liang H, Jiang J, Ye L. The role and mechanisms of PD-L1 in immune evasion during Talaromyces marneffei infection. Int Immunopharmacol 2024; 126:111255. [PMID: 37984251 DOI: 10.1016/j.intimp.2023.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Talaromycosis, caused by Talaromyces marneffei (T. marneffei), is a systemic fungal disease that involves dissemination throughout the body. The ability of T. marneffei to evade the immune system is considered a crucial factor in its persistent infection, although the specific mechanisms are not yet fully understood. This study aims to investigate the molecular mechanisms underlying the occurrence of latent T. marneffei infection and immune evasion. The gene expression profile analysis in T. marneffei-infected mouse revealed that Pd-l1 exhibited the highest correlation strength with other hub genes, with a median of 0.60 (IQR: 0.50-0.69). T. marneffei infection upregulated the expression of PD-1 and PD-L1 in PBMCs from HIV patients, which was also observed in the T. marneffei-infected mouse and macrophage models. Treatment with a PD-L1 inhibitor significantly reduced fungal burden in the liver and spleen tissues of infected mice and in the kupffer-CTLL-2 co-culture system. PD-L1 inhibitor treatment increased CTLL-2 cell proliferation and downregulated the expression of PD-1, SHP-2, and p-SHP-2, indicating the activation of T cell viability and T cell receptor signaling pathway. Additionally, treatment with a PI3K inhibitor downregulated PD-L1 in T. marneffei-infected kupffer cells. Similar results were observed with treatment using the T. marneffei cell wall virulence factor β-glucan. Overall, T. marneffei infection upregulated PD-L1 expression in HIV / T. marneffei patients, mice, and kupffer cells. Treatment with a PD-L1 inhibitor significantly reduced fungal burden, while activating T cell activity and proliferation, thereby promoting fungal clearance. Furthermore, the PI3K signaling pathway may be involved in the regulation of PD-L1 by T. marneffei.
Collapse
Affiliation(s)
- Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiang Luo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaotao He
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Baili Zhan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
40
|
Sasaki H, Umezawa N, Itakura T, Iwai H, Yasuda S. Pathogenicity of functionally activated PD-1 +CD8 + cells and counterattacks by muscular PD-L1 through IFNγ in myositis. J Autoimmun 2024; 142:103131. [PMID: 37931332 DOI: 10.1016/j.jaut.2023.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Programmed-cell-death 1 (PD-1) expression is associated not only with T-cell activation but with exhaustion. Specifically, PD-1+ T cells present an exhausted phenotype in conditions of chronic antigen exposure, such as tumor microenvironments and chronic viral infection. However, the immune status regarding exhaustion of PD-1+CD8+ T cells in chronic autoimmune diseases including idiopathic inflammatory myopathies (IIMs) remains unclear. We aimed to clarify the role of PD-1+CD8+ T cells and PD-1 ligand (PD-L1) in IIMs. We showed that PD-1+ cells infiltrated into PD-L1-expressing muscles in patients with IIMs and immune checkpoint inhibitor-related myopathy. According to the peripheral blood immunophenotyping, the PD-1+CD8+ cell proportions were comparable between the active and inactive patients. Of note, PD-1+CD8+ cells in the active patients highly expressed cytolytic molecules, indicating their activation, while PD-1-CD8+ cells expressed low levels of cytolytic molecules in the active and inactive patients. A part of PD-1+CD8+ cells expressed the HMG-box transcription factor TOX highly and presented the exhausted phenotype in the active patients. Among PD-1+CD4+ T cells, PD-1highCXCR5-CD45RO+CD4+ peripheral helper T cells were increased in the active patients. PD-L1-deficient mice developed severer C-protein-induced myositis (CIM), a model of polymyositis, with abundant infiltration of PD-1+CD8+ cells expressing cytolytic molecules than wild-type mice, indicating pathogenicity of the PD-1+CD8+ cells and the protective role of PD-L1. The deficiency of IFNγ, a general PD-L1-inducer, impaired muscular PD-L1 expression and exacerbated CIM, indicating IFNγ-dependent muscular PD-L1 regulation. IFNγ-induced PD-L1 on myotubes was protective in an established muscle injury model. In conclusion, PD-1+CD8+ T cells rather than PD-1-CD8+ T cells were a pathogenic subset of IIMs. Muscular PD-L1 was regulated by IFNγ and exerted protective properties in IIMs.
Collapse
Affiliation(s)
- Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuji Itakura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
41
|
Maecker HT. Multiparameter Flow Cytometry Monitoring of T Cell Responses. Methods Mol Biol 2024; 2807:325-342. [PMID: 38743238 DOI: 10.1007/978-1-0716-3862-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multiparameter flow cytometry is a common tool for assessing responses of T, B, and other cells to pathogens or vaccines. Such responses are likely to be important for predicting the efficacy of an HIV vaccine, despite the elusive findings in HIV vaccine trials to date. Fortunately, flow cytometry has evolved to be capable of readily measuring 30-40 parameters, providing the ability to dissect detailed phenotypes and functions that may be correlated with disease protection. Nevertheless, technical hurdles remain, and standardization of assays is still largely lacking. Here an optimized protocol for antigen-specific T cell monitoring is presented, with specific variations for particular markers. It covers the analysis of multiple cytokines, cell surface proteins, and other functional markers such as CD107, CD154, CD137, etc. References are given to published panels of 8-28 colors.
Collapse
Affiliation(s)
- Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
42
|
Jin J, Wang X, Li Y, Yang X, Wang H, Han X, Sun J, Ma Z, Duan J, Zhang G, Huang T, Zhang T, Wu H, Zhang X, Su B. Weak SARS-CoV-2-specific responses of TIGIT-expressing CD8 + T cells in people living with HIV after a third dose of a SARS-CoV-2 inactivated vaccine. Chin Med J (Engl) 2023; 136:2938-2947. [PMID: 37963586 PMCID: PMC10752475 DOI: 10.1097/cm9.0000000000002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), an inhibitory receptor expressed on T cells, plays a dysfunctional role in antiviral infection and antitumor activity. However, it is unknown whether TIGIT expression on T cells influences the immunological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccines. METHODS Forty-five people living with HIV (PLWH) on antiretroviral therapy (ART) for more than two years and 31 healthy controls (HCs), all received a third dose of a SARS-CoV-2 inactivated vaccine, were enrolled in this study. The amounts, activation, proportion of cell subsets, and magnitude of the SARS-CoV-2-specific immune response of TIGIT + CD4 + and TIGIT + CD8 + T cells were investigated before the third dose but 6 months after the second vaccine dose (0W), 4 weeks (4W) and 12 weeks (12W) after the third dose. RESULTS Compared to that in HCs, the frequency of TIGIT + CD8 + T cells in the peripheral blood of PLWH increased at 12W after the third dose of the inactivated vaccine, and the immune activation of TIGIT + CD8 + T cells also increased. A decrease in the ratio of both T naïve (T N ) and central memory (T CM ) cells among TIGIT + CD8 + T cells and an increase in the ratio of the effector memory (T EM ) subpopulation were observed at 12W in PLWH. Interestingly, particularly at 12W, a higher proportion of TIGIT + CD8 + T cells expressing CD137 and CD69 simultaneously was observed in HCs than in PLWH based on the activation-induced marker assay. Compared with 0W, SARS-CoV-2-specific TIGIT + CD8 + T-cell responses in PLWH were not enhanced at 12W but were enhanced in HCs. Additionally, at all time points, the SARS-CoV-2-specific responses of TIGIT + CD8 + T cells in PLWH were significantly weaker than those of TIGIT - CD8 + T cells. However, in HCs, the difference in the SARS-CoV-2-specific responses induced between TIGIT + CD8 + T cells and TIGIT - CD8 + T cells was insignificant at 4W and 12W, except at 0W. CONCLUSIONS TIGIT expression on CD8 + T cells may hinder the T-cell immune response to a booster dose of an inactivated SARS-CoV-2 vaccine, suggesting weakened resistance to SARS-CoV-2 infection, especially in PLWH. Furthermore, TIGIT may be used as a potential target to increase the production of SARS-CoV-2-specific CD8 + T cells, thereby enhancing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
43
|
Kasamatsu T. Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel) 2023; 15:5835. [PMID: 38136380 PMCID: PMC10742305 DOI: 10.3390/cancers15245835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
T-cell senescence is thought to result from the age-related loss of the ability to mount effective responses to pathogens and tumor cells. In addition to aging, T-cell senescence is caused by repeated antigenic stimulation and chronic inflammation. Moreover, we demonstrated that T-cell senescence was induced by treatment with DNA-damaging chemotherapeutic agents. The characteristics of therapy-induced senescent T (TIS-T) cells and general senescent T cells are largely similar. Senescent T cells demonstrate an increase in the senescence-associated beta-galactosidase-positive population, cell cycle arrest, secretion of senescence-associated secretory phenotypic factors, and metabolic reprogramming. Furthermore, senescent T cells downregulate the expression of the co-stimulatory molecules CD27 and CD28 and upregulate natural killer cell-related molecules. Moreover, TIS-T cells showed increased PD-1 expression. However, the loss of proliferative capacity and decreased expression of co-stimulatory molecules associated with T-cell senescence cause a decrease in T-cell immunocompetence. In this review, we discuss the characteristics of senescent T-cells, including therapy-induced senescent T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Gunma, Japan
| |
Collapse
|
44
|
Benito JM, Restrepo C, García-Foncillas J, Rallón N. Immune checkpoint inhibitors as potential therapy for reverting T-cell exhaustion and reverting HIV latency in people living with HIV. Front Immunol 2023; 14:1270881. [PMID: 38130714 PMCID: PMC10733458 DOI: 10.3389/fimmu.2023.1270881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The immune system of people living with HIV (PLWH) is persistently exposed to antigens leading to systemic inflammation despite combination antiretroviral treatment (cART). This inflammatory milieu promotes T-cell activation and exhaustion. Furthermore, it produces diminished effector functions including loss of cytokine production, cytotoxicity, and proliferation, leading to disease progression. Exhausted T cells show overexpression of immune checkpoint molecules (ICs) on the cell surface, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial role in T-cell exhaustion by reducing the immune response to cancer antigens. Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the management of a diversity of cancers. Additionally, the interest in exploring this approach in the setting of HIV infection has increased, including AIDS-defining cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic suggests that ICI-based therapies in PLWH could be a safe and effective approach. In this review, we provide an overview of the current literature on the potential role of ICI-based immunotherapy not only in cancer remission in PLWH but also as a therapeutic intervention to restore immune response against HIV, revert HIV latency, and attain a functional cure for HIV infection.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Jesús García-Foncillas
- Department of Oncology and Cancer Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
45
|
Muñoz-Muela E, Trujillo-Rodríguez M, Serna-Gallego A, Saborido-Alconchel A, Ruiz-Mateos E, López-Cortés LF, Gutiérrez-Valencia A. HIV-1-specific T-cell responses and exhaustion profiles in people with HIV after switching to dual therapy vs. maintaining triple therapy based on integrase inhibitors. Biomed Pharmacother 2023; 168:115750. [PMID: 37871555 DOI: 10.1016/j.biopha.2023.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Dual therapy (DT) has shown comparable results to triple therapy (TT) in efficacy and other immunological aspects. However, there are still some concerns about DT, including several immunological features. Therefore, we evaluated whether HIV-1-specific memory T-cell responses and exhaustion phenotypes are adversely influenced after simplification to DT. METHODS HIV-1-specific CD4+ and CD8+ T-cell responses were assessed by intracellular cytokine and degranulation marker staining, and polyfunctionality indexes after stimulation with a Gag peptide pool. Exhaustion phenotypes were evaluated by PD-1, TIM-3, and LAG-3 expression in CD4+ and CD8+ T cells. RESULTS Forty participants in the TRIDUAL trial (ClinicalTrials.gov: NCT03447873) who were randomized to continue integrase inhibitor-based TT (n = 20) or to switch to DT (dolutegravir or darunavir/cobicistat plus lamivudine) (n = 20). After 96 weeks, the magnitude of CD4+ and CD8+ T-cell responses was similar in both treatment arms (p = 0.221 and p = 0.602, respectively). The CD4+ polyfunctionality index decreased in the TT arm (p = 0.013) and remained stable in the DT arm, while the polyfunctionality of CD8+ T cells was unchanged in both arms. There was a significant decrease in the expression of PD-1, TIM-3, and the co-expression of PD-1+TIM-3+LAG-3+, and PD-1 +TIM-3 + in both CD4+ and CD8+ T cells. However, the decrease in the expression of exhaustion markers did not improve HIV-1-specific T-cell responses. CONCLUSIONS Our results suggest that simplification to DT does not negatively influence the HIV-1-specific T-cell response or the exhaustion phenotype after 96 weeks of follow-up.
Collapse
Affiliation(s)
- Esperanza Muñoz-Muela
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - María Trujillo-Rodríguez
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ana Serna-Gallego
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Abraham Saborido-Alconchel
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ezequiel Ruiz-Mateos
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Luis F López-Cortés
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Alicia Gutiérrez-Valencia
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| |
Collapse
|
46
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Evangelous TD, Berry M, Venkatayogi S, LeMaster C, Geanes ES, De Naeyer N, DeMarco T, Shen X, Li H, Hora B, Solomonis N, Misamore J, Lewis MG, Denny TN, Montefiori D, Shaw GM, Wiehe K, Bradley T, Williams WB. Host immunity associated with spontaneous suppression of viremia in therapy-naïve young rhesus macaques following neonatal SHIV infection. J Virol 2023; 97:e0109423. [PMID: 37874153 PMCID: PMC10688376 DOI: 10.1128/jvi.01094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Collapse
Affiliation(s)
- Tyler D. Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cas LeMaster
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Eric S. Geanes
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Nicole De Naeyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd Bradley
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, Missouri, USA
- Departments of Pediatrics and Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
48
|
Byanova KL, Abelman R, North CM, Christenson SA, Huang L. COPD in People with HIV: Epidemiology, Pathogenesis, Management, and Prevention Strategies. Int J Chron Obstruct Pulmon Dis 2023; 18:2795-2817. [PMID: 38050482 PMCID: PMC10693779 DOI: 10.2147/copd.s388142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by airflow limitation and persistent respiratory symptoms. People with HIV (PWH) are particularly vulnerable to COPD development; PWH have demonstrated both higher rates of COPD and an earlier and more rapid decline in lung function than their seronegative counterparts, even after accounting for differences in cigarette smoking. Factors contributing to this HIV-associated difference include chronic immune activation and inflammation, accelerated aging, a predilection for pulmonary infections, alterations in the lung microbiome, and the interplay between HIV and inhalational toxins. In this review, we discuss what is known about the epidemiology and pathobiology of COPD among PWH and outline screening, diagnostic, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Katerina L Byanova
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Abelman
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laurence Huang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Gubser C, Pascoe RD, Chang J, Chiu C, Solomon A, Cao R, Rasmussen TA, Lewin SR. GITR activation ex vivo impairs CD8 T cell function in people with HIV on antiretroviral therapy. iScience 2023; 26:108165. [PMID: 38026168 PMCID: PMC10660494 DOI: 10.1016/j.isci.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a co-stimulatory immune checkpoint molecule constitutively expressed on regulatory T cells (Tregs) and on activated T conventional cells (Tconv). In blood collected from PWH on suppressive ART, GITR expression was reduced in multiple activated CD4 and CD8 T cell subsets but was increased in Tregs. HIV specific CD8 T cells expressed higher levels of GITR and programmed cell death protein 1 (PD-1) compared to total CD8 T cells. Following stimulation with HIV peptides and GITR-ligand (L), we demonstrated a significant decrease in killing by HIV specific CD8 T cells and an increased exhausted profile. T cell receptor co-stimulation with GITR-L abrogated Treg suppression and induced expansion of CD4 Tconv. We conclude that GITR activation is an additional factor contributing to an impaired HIV immune response in PWH on ART and that GITR agonist antibodies should not be pursued for HIV cure strategies.
Collapse
Affiliation(s)
- Céline Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rachel D. Pascoe
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Chris Chiu
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ajantha Solomon
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rosalyn Cao
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|