1
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
2
|
Rashedi S, Greason CM, Sadeghipour P, Talasaz AH, O'Donoghue ML, Jimenez D, Monreal M, Anderson CD, Elkind MSV, Kreuziger LMB, Lang IM, Goldhaber SZ, Konstantinides SV, Piazza G, Krumholz HM, Braunwald E, Bikdeli B. Fibrinolytic Agents in Thromboembolic Diseases: Historical Perspectives and Approved Indications. Semin Thromb Hemost 2024; 50:773-789. [PMID: 38428841 DOI: 10.1055/s-0044-1781451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fibrinolytic agents catalyze the conversion of the inactive proenzyme plasminogen into the active protease plasmin, degrading fibrin within the thrombus and recanalizing occluded vessels. The history of these medications dates to the discovery of the first fibrinolytic compound, streptokinase, from bacterial cultures in 1933. Over time, researchers identified two other plasminogen activators in human samples, namely urokinase and tissue plasminogen activator (tPA). Subsequently, tPA was cloned using recombinant DNA methods to produce alteplase. Several additional derivatives of tPA, such as tenecteplase and reteplase, were developed to extend the plasma half-life of tPA. Over the past decades, fibrinolytic medications have been widely used to manage patients with venous and arterial thromboembolic events. Currently, alteplase is approved by the U.S. Food and Drug Administration (FDA) for use in patients with pulmonary embolism with hemodynamic compromise, ST-segment elevation myocardial infarction (STEMI), acute ischemic stroke, and central venous access device occlusion. Reteplase and tenecteplase have also received FDA approval for treating patients with STEMI. This review provides an overview of the historical background related to fibrinolytic agents and briefly summarizes their approved indications across various thromboembolic diseases.
Collapse
Affiliation(s)
- Sina Rashedi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Christie M Greason
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita H Talasaz
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York
- Department of Pharmacy, New York-Presbyterian Hospital Columbia University Medical Center, New York, New York
| | - Michelle L O'Donoghue
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Jimenez
- Respiratory Department, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Medicine Department, Universidad de Alcalá (IRYCIS), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Germans Trias i Pujol, Badalona, Spain
- Universidad Catolica de Murcia, Murcia, Spain
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, Massachusetts
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lisa M Baumann Kreuziger
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology and Center of Cardiovascular Medicine, Medical University of Vienna, Vienna, Austria
| | - Samuel Z Goldhaber
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stavros V Konstantinides
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregory Piazza
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harlan M Krumholz
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Eugene Braunwald
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behnood Bikdeli
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
| |
Collapse
|
3
|
Park HR, Azzara D, Cohen ED, Boomhower SR, Diwadkar AR, Himes BE, O'Reilly MA, Lu Q. Identification of novel NRF2-dependent genes as regulators of lead and arsenic toxicity in neural progenitor cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132906. [PMID: 37939567 PMCID: PMC10842917 DOI: 10.1016/j.jhazmat.2023.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb) and arsenic (As) are prevalent metal contaminants in the environment. Exposures to these metals are associated with impaired neuronal functions and adverse effects on neurodevelopment in children. However, the molecular mechanisms by which Pb and As impair neuronal functions remain poorly understood. Here, we identified F2RL2, TRIM16L, and PANX2 as novel targets of Nuclear factor erythroid 2-related factor 2 (NRF2)-the master transcriptional factor for the oxidative stress response-that are commonly upregulated with both Pb and As in human neural progenitor cells (NPCs). Using a ChIP (Chromatin immunoprecipitation)-qPCR assay, we showed that NRF2 directly binds to the promoter region of F2RL2, TRIM16L, and PANX2 to regulate expression of these genes. We demonstrated that F2RL2, PANX2, and TRIM16L have differential effects on cell death, proliferation, and differentiation of NPCs in both the presence and absence of metal exposures, highlighting their roles in regulating NPC function. Furthermore, the analyses of the transcriptomic data on NPCs derived from autism spectrum disorder (ASD) patients revealed that dysregulation of F2RL2, TRIM16L, and PANX2 was associated with ASD genetic backgrounds and ASD risk genes. Our findings revealed that Pb and As induce a shared NRF2-dependent transcriptional response in NPCs and identified novel genes regulating NPC function. While further in vivo studies are warranted, this study provides a novel mechanism linking metal exposures to NPC function and identifies potential genes of interest in the context of neurodevelopment.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
6
|
Verbout NG, Su W, Pham P, Jordan K, Kohs TC, Tucker EI, McCarty OJ, Sherman LS. E-WE thrombin, a protein C activator, reduces disease severity and spinal cord inflammation in relapsing-remitting murine experimental autoimmune encephalomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2802415. [PMID: 37131631 PMCID: PMC10153372 DOI: 10.21203/rs.3.rs-2802415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function. The protein C activator, E-WE thrombin is a recombinant therapeutic in clinical development for its antithrombotic and cytoprotective properties, including protection of endothelial cell barrier function. In mice, treatment with E-WE thrombin reduced neuroinflammation and extracellular fibrin formation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We therefore tested the hypothesis that E-WE thrombin could reduce disease severity in a relapsing-remitting model of EAE. Methods Female SJL mice were inoculated with proteolipid protein (PLP) peptide and treated with E-WE thrombin (25 μg/kg; iv) or vehicle at onset of detectable disease. In other experiments, E-WE thrombin was compared to methylprednisolone (100 mg/kg; iv) or the combination of both. Results Compared to vehicle, administration of E-WE thrombin significantly improved disease severity of the initial attack and relapse and delayed onset of relapse as effectively as methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment, and the combination of both treatments had an additive effect. Conclusion The data presented herein demonstrate that E-WE thrombin is protective in mice with relapsing-remitting EAE, a widely used model of MS. Our data indicate that E-WE thrombin is as effective as high-dose methylprednisolone in improving disease score and may exert additional benefit when administered in combination. Taken together, these data suggest that E-WE thrombin may be an effective alternative to high-dose methylprednisolone for managing acute MS attacks.
Collapse
Affiliation(s)
| | - Weiping Su
- Oregon National Primate Research Center, Oregon Health & Science University
| | - Peter Pham
- Oregon National Primate Research Center, Oregon Health & Science University
| | | | | | | | | | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University
| |
Collapse
|
7
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Huuskonen MT, Wang Y, Nikolakopoulou AM, Montagne A, Dai Z, Lazic D, Sagare AP, Zhao Z, Fernandez JA, Griffin JH, Zlokovic BV. Protection of ischemic white matter and oligodendrocytes in mice by 3K3A-activated protein C. J Exp Med 2022; 219:e20211372. [PMID: 34846535 PMCID: PMC8635278 DOI: 10.1084/jem.20211372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM postischemic neuroprotection remain elusive. 3K3A-activated protein C (APC) is a signaling-selective analogue of endogenous blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that 3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by activating protease-activated receptor 1 (PAR1) and PAR3. We show that PAR1 and PAR3 were also required for 3K3A-APC's suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and illustrate 3K3A-APC's potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.
Collapse
Affiliation(s)
- Mikko T. Huuskonen
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Zhonghua Dai
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Divna Lazic
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jose A. Fernandez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Berislav V. Zlokovic
- The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry 2022; 27:2659-2673. [PMID: 35361905 PMCID: PMC9156404 DOI: 10.1038/s41380-022-01511-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
The blood-brain barrier (BBB) is vital for maintaining brain homeostasis by enabling an exquisite control of exchange of compounds between the blood and the brain parenchyma. Moreover, the BBB prevents unwanted toxins and pathogens from entering the brain. This barrier, however, breaks down with age and further disruption is a hallmark of many age-related disorders. Several drugs have been explored, thus far, to protect or restore BBB function. With the recent connection between the BBB and gut microbiota, microbial-derived metabolites have been explored for their capabilities to protect and restore BBB physiology. This review, will focus on the vital components that make up the BBB, dissect levels of disruption of the barrier, and discuss current drugs and therapeutics that maintain barrier integrity and the recent discoveries of effects microbial-derived metabolites have on BBB physiology.
Collapse
|
11
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
12
|
Combination treatment with U0126 and rt-PA prevents adverse effects of the delayed rt-PA treatment after acute ischemic stroke. Sci Rep 2021; 11:11993. [PMID: 34099834 PMCID: PMC8184783 DOI: 10.1038/s41598-021-91469-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022] Open
Abstract
In acute ischemic stroke, the only FDA-approved drug; recombinant tissue plasminogen activator (rt-PA) is limited by restricted time-window due to an enhanced risk of hemorrhagic transformation which is thought to be caused by metalloproteinase (MMP). In experimental stroke inhibitors of the mitogen–activated protein kinase kinase extracellular signal–regulated kinase kinase (MEK) 1/2 pathways reduce the MMPs. This study evaluated whether a MEK1/2 inhibitor in combination with rt-PA can prevent the detrimental effects of delayed rt-PA therapy in stroke. Thromboembolic stroke was induced in C57 black/6J mice and the MEK1/2 inhibitor U0126 was administrated 3.5 h and rt-PA 4 h post stroke-onset. Treatment with rt-PA demonstrated enhanced MMP-9 protein levels and hemorrhagic transformation which was prevented when U0126 was given in conjunction with rt-PA. By blocking the MMP-9 with U0126 the safety of rt-PA administration was improved and demonstrates a promising adjuvant strategy to reduce the harmful effects of delayed rt-PA treatment in acute ischemic stroke.
Collapse
|
13
|
Ziliotto N, Bernardi F, Piazza F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer's disease. Neurol Sci 2021; 42:3177-3188. [PMID: 34041636 DOI: 10.1007/s10072-021-05327-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023]
Abstract
Increased cerebrovascular amyloid-β (Aβ) deposition represents the main pathogenic mechanisms characterizing Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Whereas an increasing number of studies define the contribution of fibrin(ogen) to neurodegeneration, how other hemostasis factors might be pleiotropically involved in the AD and CAA remains overlooked. Although traditionally regarded as pertaining to hemostasis, these proteins are also modulators of inflammation and angiogenesis, and exert cytoprotective functions. This review discusses the contribution of hemostasis components to Aβ cerebrovascular deposition, which settle the way to endothelial and blood-brain barrier dysfunction, vessel fragility, cerebral bleeding, and the associated cognitive changes. From the primary hemostasis, the process that refers to platelet aggregation, we discuss evidence regarding the von Willebrand factor (vWF) and its regulator ADAMTS13. Then, from the secondary hemostasis, we focus on tissue factor, which triggers the extrinsic coagulation cascade, and on the main inhibitors of coagulation, i.e., tissue factor pathway inhibitor (TFPI), and the components of protein C pathway. Last, from the tertiary hemostasis, we discuss evidence on FXIII, involved in fibrin cross-linking, and on components of fibrinolysis, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor uPA(R), and plasminogen activator inhibitor-1 (PAI-1). Increased knowledge on contributors of Aβ-related disease progression may favor new therapeutic approaches for early modifiable risk factors.
Collapse
Affiliation(s)
- Nicole Ziliotto
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
14
|
Long-term outcomes of intravitreal activated protein C injection for ischemic central retinal vein occlusion: an extension trial. Graefes Arch Clin Exp Ophthalmol 2021; 259:2919-2927. [PMID: 33893866 PMCID: PMC8478745 DOI: 10.1007/s00417-021-05072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose Our previous 1-year pilot study evaluated the efficacy of intravitreally injected activated protein C (APC) in 10 eyes with ischemic central retinal vein occlusion (CRVO). The reperfusion of the areas of retinal nonperfusion (RNP) exceeded 50% of the baseline in five (50%) eyes 1 year after the APC injection. The current study evaluated the long-term efficacy and safety of intravitreal APC. Methods The 10 eyes in the pilot study were included in this study. Other treatments were administered at the physicians’ discretion after the pilot study. We evaluated visual acuity (VA), central retinal thickness (CRT) and perfusion status, and adverse events and severity over the long term. Results The median follow-up was 60 months (range, 48–68 months). Compared with baseline, the post-treatment VA improved significantly (P < 0.001) from 1.39 to 1.06 logarithm of the minimum angle of resolution. The CRT improved significantly (P < 0.001) from 1090 to 195 μm at the last visit. The RNP areas decreased from an average 29.7 disc areas (DAs) at baseline to an average 16.5 DAs at the last examination (mean, 40 ± 6.5 months after the first APC treatment). No adverse events were related to intravitreal APC. Conclusion No complications were associated with intravitreal APC, the clinical course improved, and improved RNP was maintained for the long term, suggesting that intravitreal APC may be an alternative treatment for CRVO.
Collapse
|
15
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
16
|
Anfray A, Brodin C, Drieu A, Potzeha F, Dalarun B, Agin V, Vivien D, Orset C. Single- and two- chain tissue type plasminogen activator treatments differentially influence cerebral recovery after stroke. Exp Neurol 2021; 338:113606. [PMID: 33453214 DOI: 10.1016/j.expneurol.2021.113606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Tissue type Plasminogen Activator (tPA), named alteplase (Actilyse®) under its commercial form, is currently the only pharmacological treatment approved during the acute phase of ischemic stroke, used either alone or combined with thrombectomy. Interestingly, the commercial recombinant tPA (rtPA) contains two physiological forms of rtPA: the single chain rtPA (sc-rtPA) and the two-chains rtPA (tc-rtPA), with differential properties demonstrated in vitro. Using a relevant mouse model of thromboembolic stroke, we have investigated the overall effects of these two forms of rtPA when infused early after stroke onset (i.e. 20 min) on recanalization, lesion volumes, alterations of the integrity of the blood brain barrier and functional recovery. Our data reveal that there is no difference in the capacity of sc-rtPA and tc-rtPA to promote fibrinolysis and reperfusion of the tissue. However, compared to sc-rtPA, tc-rtPA is less efficient to reduce lesion volumes and to improve functional recovery, and is associated with an increased opening of the blood brain barrier. These data indicate better understanding of differential effects of these tPA forms might be important to ultimately improve stroke treatment.
Collapse
Affiliation(s)
- Antoine Anfray
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Camille Brodin
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Antoine Drieu
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Basile Dalarun
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Véronique Agin
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; CHU Caen, Department of Clinical Research, Caen University Hospital, Avenue de la Côte de Nacre, Caen, France.
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| |
Collapse
|
17
|
Ta S, Rong X, Guo Z, Jin H, Zhang P, Li F, Li Z, Lin L, Zheng C, Gu Q, Zhang Y, Liu W, Yang Y, Chang J. Variants of WNT7A and GPR124 are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neurosci Ther 2021; 27:71-81. [PMID: 32991049 PMCID: PMC7804912 DOI: 10.1111/cns.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS The canonical Wnt signaling pathway plays an essential role in blood-brain barrier integrity and intracerebral hemorrhage in preclinical stroke models. Here, we sought to explore the association between canonical Wnt signaling and hemorrhagic transformation (HT) following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients as well as to determine the underlying cellular mechanisms. METHODS 355 consecutive AIS patients receiving IVT were included. Blood samples were collected on admission, and HT was detected at 24 hours after IVT. 117 single-nucleotide polymorphisms (SNPs) of 28 Wnt signaling genes and exon sequences of 4 core cerebrovascular Wnt signaling components (GPR124, RECK, FZD4, and CTNNB1) were determined using a customized sequencing chip. The impact of identified genetic variants was further studied in HEK 293T cells using cellular and biochemical assays. RESULTS During the study period, 80 patients experienced HT with 27 parenchymal hematoma (PH). Compared to the non-PH patients, WNT7A SNPs (rs2163910, P = .001, OR 2.727; rs1124480, P = .002, OR 2.404) and GPR124 SNPs (rs61738775, P = .012, OR 4.883; rs146016051, P < .001, OR 7.607; rs75336000, P = .044, OR 2.503) were selectively enriched in the PH patients. Interestingly, a missense variant of GPR124 (rs75336000, c.3587G>A) identified in the PH patients resulted in a single amino acid alteration (p.Cys1196Tyr) in the intracellular domain of GPR124. This variant substantially reduced the activity of WNT7B-induced canonical Wnt signaling by decreasing the ability of GPR124 to recruit cytoplasmic DVL1 to the cellular membrane. CONCLUSION Variants of WNT7A and GPR124 are associated with increased risk of PH in patients with AIS after intravenous thrombolysis, likely through regulating the activity of canonical Wnt signaling.
Collapse
Affiliation(s)
- Song Ta
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xianfang Rong
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen‐Ni Guo
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Peng Zhang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Fenge Li
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Zhihuan Li
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | - Lilong Lin
- Dongguan Enlife Stem Cell Biotechnology InstituteDongguanChina
| | | | - Qingquan Gu
- Shenzhen RealOmics Biotech Co., Ltd.ShenzhenChina
| | - Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated HospitalShenzhen University School of MedicineShenzhenChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
18
|
Ye Y, Zhang FT, Wang XY, Tong HX, Zhu YT. Antithrombotic Agents for tPA-Induced Cerebral Hemorrhage: A Systematic Review and Meta-Analysis of Preclinical Studies. J Am Heart Assoc 2020; 9:e017876. [PMID: 33283576 PMCID: PMC7955384 DOI: 10.1161/jaha.120.017876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background tPA (tissue‐type plasminogen activator) remains the only approved drug for acute ischemic stroke, with a potentially serious adverse effect: hemorrhagic transformation. The effects of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke are not clearly defined. We performed a systematic review and meta‐analysis in preclinical studies aiming to evaluate the efficacy of antithrombotic agents on tPA‐induced hemorrhagic transformation after ischemic stroke. Methods and Results We conducted a systematic review and meta‐analysis of studies testing antithrombotic agents in animal models of tPA‐induced hemorrhagic transformation. The pooled effects were calculated using random‐effects models, and heterogeneity was explored through meta‐regression and subgroup analyses. Publication bias was assessed using trim and fill method and the Egger test. The efficacy of 18 distinct interventions was described in 22 publications. The pooled data showed a significant improvement in cerebral hemorrhage, infarct size, and neurobehavioral outcome in treated compared with control animals (standardized mean difference, 0.45 [95% CI, 0.11–0.78]; standardized mean difference, 1.18 [95% CI, 0.73–1.64]; and standardized mean difference, 0.91 [95% CI, 0.49–1.32], respectively). Subgroup analysis indicated that quality score, random allocation, control of temperature, anesthetic used, stroke model used, route of drug delivery, time of drug administration, and time of assessment were significant factors that influenced the effects of interventions. Conclusions Administration with antiplatelet agents revealed statistically significant improvement in all the outcomes. Anticoagulant agents showed significant effects in infarct size and neurobehavioral score, but fibrinolytic agents did not show any significant improvement in all the outcomes. The conclusions should be interpreted cautiously given the heterogeneity and publication bias identified in this analysis.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Fu-Tao Zhang
- University of Chinese Academy of Sciences Beijing China.,Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Harbin China.,National Engineering Laboratory for Improving Quality of Arable Land Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine School of Basic Medical Sciences Peking University Beijing China.,Tasly Microcirculation Research Center Peking University Health Science Center Beijing China
| | - Hong-Xuan Tong
- Institute of Basic Theory for Chinese Medicine China Academy of Chinese Medical Sciences Beijing China
| | - Yu-Tian Zhu
- Department of Urology Peking University Third Hospital Beijing China
| |
Collapse
|
19
|
Pan XW, Wang MJ, Gong SS, Sun MH, Wang Y, Zhang YY, Li F, Yu BY, Kou JP. YiQiFuMai Lyophilized Injection ameliorates tPA-induced hemorrhagic transformation by inhibiting cytoskeletal rearrangement associated with ROCK1 and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113161. [PMID: 32730882 DOI: 10.1016/j.jep.2020.113161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/29/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombolytic therapy with tissue plasminogen activator (tPA) after ischemic stroke exacerbates blood-brain barrier (BBB) breakdown and leads to hemorrhagic transformation (HT). YiQiFuMai Lyophilized Injection (YQFM) is a modern preparation derived from Sheng-mai San (a traditional Chinese medicine). YQFM attenuates the BBB dysfunction induced by cerebral ischemia-reperfusion injury. However, whether YQFM can suppress tPA-induced HT remains unknown. AIM OF THE STUDY We investigated the therapeutic effect of YQFM on tPA-induced HT and explored the underlying mechanisms in vivo and in vitro to improve the safety of tPA use against stroke. METHODS Male C57BL/6J mice were subjected to 45 min of ischemia and 24 h of reperfusion. tPA (10 mg/kg) were infused 2 h after occlusion and YQFM (0.671 g/kg) was injected 2.5 h after occlusion. The in vitro effect of YQFM (100, 200, 400 μg/mL) on tPA (60 μg/mL)-induced dysfunction of the microvascular endothelial barrier in the brain following oxygen-glucose deprivation/reoxygenation (OGD/R) was observed in bEnd.3 cells. RESULTS YQFM suppressed tPA-induced high hemoglobin level in the brain, mortality, neurologic severity score, BBB permeability, expression and activation of matrix metalloproteinase (MMP)-9 and MMP-2, and degradation of tight-junction proteins. Furthermore, YQFM significantly blocked tPA-induced brain microvascular endothelial permeability and phosphorylation of Rho-associated kinase (ROCK)1, myosin light chain (MLC), cofilin and p65 in vivo and in vitro. CONCLUSION YQFM suppressed tPA-induced HT by inhibiting cytoskeletal rearrangement linked with ROCK-cofilin/MLC pathways and inhibiting the nuclear factor-kappa B pathway to ameliorate BBB damage caused by tPA.
Collapse
Affiliation(s)
- Xue-Wei Pan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Mei-Juan Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Shuai-Shuai Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Min-Hui Sun
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Yan Wang
- Departments of Neurology, University of California, Davis, School of Medicine and Shriners Hospital, Sacramento, CA, 95817, USA.
| | - Yuan-Yuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, PR China.
| |
Collapse
|
20
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2020; 42:621-646. [PMID: 33125600 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
22
|
Tuo QZ, Zou JJ, Lei P. Rodent Models of Vascular Cognitive Impairment. J Mol Neurosci 2020; 71:1-12. [DOI: 10.1007/s12031-020-01733-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
|
23
|
Roadmap for Stroke: Challenging the Role of the Neuronal Extracellular Matrix. Int J Mol Sci 2020; 21:ijms21207554. [PMID: 33066304 PMCID: PMC7589675 DOI: 10.3390/ijms21207554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.
Collapse
|
24
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
25
|
The protein C activator AB002 rapidly interrupts thrombus development in baboons. Blood 2020; 135:689-699. [PMID: 31977000 DOI: 10.1182/blood.2019002771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.
Collapse
|
26
|
Mukherjee P, Lyden P, Fernández JA, Davis TP, Pryor KE, Zlokovic BV, Griffin JH. 3K3A-Activated Protein C Variant Does Not Interfere With the Plasma Clot Lysis Activity of Tenecteplase. Stroke 2020; 51:2236-2239. [PMID: 32568648 DOI: 10.1161/strokeaha.120.028793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A recombinant engineered variant of APC (activated protein C), 3K3A-APC, lacks anticoagulant properties (<10%) while preserving APCs anti-inflammatory, anti-apoptotic, and neuroprotective functions and is very promising in clinical trials for ischemic stroke. Therapeutic intervention with single bolus administration of the third-generation tPA (tissue-type plasminogen activator), tenecteplase, is anticipated to be widely adopted for treatment of acute ischemic stroke. 3K3A-APC is well-tolerated in stroke patients dosed with alteplase, and in vitro studies show 3K3A-APC does not interfere with alteplase-induced clot lysis. The purpose of this in vitro study was to assess the influence of 3K3A-APC on tenecteplase-induced clot lysis. METHODS Tenecteplase-mediated lysis of thrombin generated plasma clots of human normal pooled plasma was monitored in the presence of varying doses of 3K3A-APC. The effects on fibrinolysis by tenecteplase and alteplase were compared. RESULTS The presence of 3K3A-APC shortened the time for clot lysis induced by tenecteplase at very low levels but not at higher therapeutic concentrations of tenecteplase. Comparisons of alteplase-mediated clot lysis to tenecteplase clot lysis showed that both thrombolytic agents behaved similarly in the presence of 3K3A-APC. CONCLUSIONS These results indicate that 3K3A-APC does not interfere with tenecteplase's clot lysis function.
Collapse
Affiliation(s)
- Purba Mukherjee
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA (P.M., J.A.F., J.H.G.)
| | - Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA (P.L.)
| | - José A Fernández
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA (P.M., J.A.F., J.H.G.)
| | - Thomas P Davis
- Department of Medical Pharmacology, University of Arizona, Tucson (T.P.D.)
| | | | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA (B.V.Z.)
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA (P.M., J.A.F., J.H.G.)
| |
Collapse
|
27
|
Zhao XY, Wilmen A, Wang D, Wang X, Bauzon M, Kim JY, Linden L, Li L, Egner U, Marquardt T, Moosmayer D, Tebbe J, Glück JM, Ellinger P, McLean K, Yuan S, Yegneswaran S, Jiang X, Evans V, Gu JM, Schneider D, Zhu Y, Xu Y, Mallari C, Hesslein A, Wang Y, Schmidt N, Gutberlet K, Ruehl-Fehlert C, Freyberger A, Hermiston T, Patel C, Sim D, Mosnier LO, Laux V. Targeted inhibition of activated protein C by a non-active-site inhibitory antibody to treat hemophilia. Nat Commun 2020; 11:2992. [PMID: 32532974 PMCID: PMC7293249 DOI: 10.1038/s41467-020-16720-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Based on the hypothesis that specific inhibition of APC’s anticoagulant but not its cytoprotective activity can be beneficial for hemophilia therapy, 2 types of inhibitory monoclonal antibodies (mAbs) are tested: A type I active-site binding mAb and a type II mAb binding to an exosite on APC (required for anticoagulant activity) as shown by X-ray crystallography. Both mAbs increase thrombin generation and promote plasma clotting. Type I blocks all APC activities, whereas type II preserves APC’s cytoprotective function. In normal monkeys, type I causes many adverse effects including animal death. In contrast, type II is well-tolerated in normal monkeys and shows both acute and prophylactic dose-dependent efficacy in hemophilic monkeys. Our data show that the type II mAb can specifically inhibit APC’s anticoagulant function without compromising its cytoprotective function and offers superior therapeutic opportunities for hemophilia. Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Here, the authors develop a monoclonal antibody that specifically inhibits APC’s anticoagulant function without compromising its cytoprotective function, and shows efficacy in animal models.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA.
| | - Andreas Wilmen
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | - Dongli Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinquan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maxine Bauzon
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ji-Yun Kim
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lars Linden
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | - Liang Li
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ursula Egner
- Structural Biology, Bayer AG, 13342, Berlin, Germany
| | | | | | - Jan Tebbe
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | | | | | - Kirk McLean
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Shujun Yuan
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | - Xiaoqiao Jiang
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Vince Evans
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian-Ming Gu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Doug Schneider
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ying Zhu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Yifan Xu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Cornell Mallari
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | - Yan Wang
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Nicole Schmidt
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | | | | | - Terry Hermiston
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Chandra Patel
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Derek Sim
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Laurent O Mosnier
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Volker Laux
- TRG-Cardiology/Hematology, Bayer AG, Aprather Weg 18a, 42113, Wuppertal, Germany.
| |
Collapse
|
28
|
Obradovic S, Begic E, Jankovic S, Romanovic R, Djenic N, Dzudovic B, Jovic Z, Malovic D, Subota V, Stavric M, Ljuca F, Kusljugic Z. Association of PC and AT levels in the early phase of STEMI treated with pPCI with LV systolic function and 6-month MACE. Acta Clin Belg 2020; 76:1-7. [PMID: 32436782 DOI: 10.1080/17843286.2020.1766850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To examine a relationship between protein C (PC) and antithrombin III (AT III) activities with ejection fraction of left ventricle (EFLV), in the early phase of acute ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI), and to investigate whether PC and AT III are associated with major adverse cardiovascular events (MACE) within 6 months following from pPCI. PATIENTS AND METHODS The research had a prospective character and included 357 patients who had, following the diagnosis of the STEMI, undergone pPCI at the Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, Belgrade, Serbia, from January 2010 until April 2019. RESULTS The EFLV positively correlated with PC values (rho = 0.229). There was a statistically significant increase in the PC values between patients with MACE compared with those without MACE at 6 months' follow-up evaluation (p < 0.0001). Also, significant difference in PC values between patients who died in hospital and those who were alive at 6 months' follow-up (p < 0.01) was observed. PC values were different across different EFLV groups (p < 0.001), increasing from the 1st to the 4th EFLV quartiles: the median and the interquartile values for the 1st, 2nd, 3rd and 4th quartiles were 1.0400IU/l ± 0.15, 1.1400IU/l ± 0.15, 1.1350IU/l ± 0.16 and 1.2200IU/l ± 0.14, respectively. CONCLUSION Increased PC activity in the early phase of STEMI is associated with higher EFLV 5 days after the pPCI as well as with MACE at 6 months after the pPCI.
Collapse
Affiliation(s)
- Slobodan Obradovic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- School of Medicine, University of Defense, Belgrade, Serbia
| | - Edin Begic
- Department of Cardiology, General Hospital "Prim.Dr. Abdulah Nakas", Sarajevo, Bosnia and Herzegovina
- Department of Pharmacology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Slobodan Jankovic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Radoslav Romanovic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- School of Medicine, University of Defense, Belgrade, Serbia
| | - Nemanja Djenic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- School of Medicine, University of Defense, Belgrade, Serbia
| | - Boris Dzudovic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Zoran Jovic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- School of Medicine, University of Defense, Belgrade, Serbia
| | - Dragana Malovic
- Clinic of Cardiology and Emergency Internal Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Vesna Subota
- School of Medicine, University of Defense, Belgrade, Serbia
- Institute of Biochemistry, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milena Stavric
- Institute of Biochemistry, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Farid Ljuca
- Department of Physiology, Faculty of Medicine Tuzla, Tuzla, Bosnia and Herzegovina
| | - Zumreta Kusljugic
- Department for Science, Teaching and Clinical Trials, University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| |
Collapse
|
29
|
Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 2020; 40:555-567. [PMID: 31836968 DOI: 10.1007/s10571-019-00753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at - 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nasrin Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Hajmohammmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The serine protease activated protein C (aPC) was initially characterized as an endogenous anticoagulant, but in addition conveys anti-inflammatory, barrier-protective, and pro cell-survival functions. Its endogenous anticoagulant function hampered the successful and continuous implantation of aPC as a therapeutic agent in septic patients. However, it became increasingly apparent that aPC controls cellular function largely independent of its anticoagulant effects through cell-specific and context-specific receptor complexes and intracellular signaling pathways. The purpose of this review is to outline the mechanisms of aPC-dependent cell signaling and its intracellular molecular targets. RECENT FINDINGS With the advent of new therapeutic agents either modulating directly and specifically the activity of coagulation proteases or interfering with protease-activated receptor signaling a better understanding not only of the receptor mechanisms but also of the intracellular signaling mechanisms controlled by aPC in a disease-specific and context-specific fashion, is required to tailor new therapeutic approaches based on aPC's anti-inflammatory, barrier-protective, and pro cell-survival functions. SUMMARY This review summarizes recent insights into the intracellular signaling pathways controlled by aPC in a cell-specific and context-specific fashion. We focus on aPC-mediated barrier protection, inhibition of inflammation, and cytoprotecting within this review.
Collapse
|
32
|
Arora K, Maheshwari N, Sahni G. Design of a thrombin inhibitory staphylokinase based plasminogen activator with anti-reocclusion potential. Int J Biol Macromol 2020; 144:791-800. [DOI: 10.1016/j.ijbiomac.2019.11.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
33
|
Jin R, Xiao AY, Li J, Wang M, Li G. PI3Kγ (Phosphoinositide 3-Kinase-γ) Inhibition Attenuates Tissue-Type Plasminogen Activator-Induced Brain Hemorrhage and Improves Microvascular Patency After Embolic Stroke. Hypertension 2019; 73:206-216. [PMID: 30571560 DOI: 10.1161/hypertensionaha.118.12001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic and pharmacological inhibition of the PI3Kγ (phosphoinositide 3-kinase-γ) exerts anti-inflammatory and protective effects in a number of inflammatory and autoimmune diseases. SHRs (spontaneously hypertensive rats) subjected to embolic middle cerebral occlusion were treated with AS605240 (30 mg/kg) at 2 or 4 hours, tPA (tissue-type plasminogen activator; 10 mg/kg) at 2 or 6 hours, or AS605240 at 4 hours plus tPA at 6 hours. Infarct volume, brain hemorrhage, neurological function, microvascular thrombosis, and cerebral microvessel patency were examined. We found that treatment with AS605240 alone at 2 hours or the combination treatment with AS605240 at 4 hours and tPA at 6 hours significantly reduced infarct volume and neurological deficits at 3 days after stroke compared with ischemic rats treated with saline, AS605240 alone at 4 hours, and tPA alone at 6 hours. Moreover, the combination treatment effectively prevented the delayed tPA-induced cerebral hemorrhage. These protective effects are associated with reduced disruption of the blood-brain barrier, reduced downstream microvascular thrombosis, and improved microvascular patency by AS605240. Inhibition of the NF-κB (nuclear transcription factor-κB)-dependent MMP (matrix metalloproteinase)-9 and PAI-1 (plasminogen activator inhibitor-1) in the ischemic brain endothelium may underlie the neurovascular protective effect of AS605240. In addition, the combination treatment significantly reduced circulating platelet P-selectin expression and platelet-leukocyte aggregation compared with ischemic rats treated with saline or tPA alone at 6 hours. In conclusion, inhibition of PI3Kγ with AS605240 reduces delayed tPA-induced intracerebral hemorrhage and improves microvascular patency, which likely contributes to neuroprotective effect of the combination treatment.
Collapse
Affiliation(s)
- Rong Jin
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| | - Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport (A.Y.X.)
| | | | - Min Wang
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| | - Guohong Li
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| |
Collapse
|
34
|
Halder SK, Matsunaga H, Ueda H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage following cerebral ischemia. J Neurochem 2019; 153:772-789. [PMID: 31454420 DOI: 10.1111/jnc.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) administration beyond 4.5 h of stroke symptoms is beneficial for patients but has an increased risk of cerebral hemorrhage. Thus, increasing the therapeutic window of tPA is important for stroke recovery. We previously showed that prothymosin alpha (ProTα) or its mimetic hexapeptide (P6Q) has anti-ischemic activity. Here, we examined the beneficial effects of ProTα or P6Q against delayed tPA-induced brain damage following middle cerebral artery occlusion (MCAO) or photochemically induced thrombosis in mice. Brain hemorrhage was observed by tPA administration during reperfusion at 4.5 and 6 h after MCAO. Co-administration of ProTα with tPA at 4.5 h inhibited hemorrhage and motor dysfunction 2-4 days, but not 7 days after MCAO. ProTα administration at 2 and 4.5 h after MCAO significantly inhibited tPA (4.5 h)-induced motor dysfunction and death more than 7 days. Administration of tPA caused the loss of tight junction proteins, zona occulden-1 and occludin, and up-regulation of matrix metalloproteinase-2/9, in a ProTα-reversible manner. P6Q administration abolished tPA (4.5 h)-induced hemorrhage and reversed tPA (6 h)-induced vascular damage and matrix metalloproteinase-2 and 9 up-regulation. Twice administrations of P6Q at 2 h alone and 6 h with tPA significantly improved motor dysfunction more than 7 days. In photochemically induced thrombosis ischemia, similar vascular leakage and neuronal damage (infarction and motor dysfunction) by late tPA (4.5 or 6 h) were also inhibited by P6Q. Thus, these studies suggest that co-administration with ProTα or P6Q would be beneficial to inhibit delayed tPA-induced hemorrhagic mechanisms in acute ischemic stroke.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
35
|
Ishrat T, Fouda AY, Pillai B, Eldahshan W, Ahmed H, Waller JL, Ergul A, Fagan SC. Dose-response, therapeutic time-window and tPA-combinatorial efficacy of compound 21: A randomized, blinded preclinical trial in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 2019; 39. [PMID: 29537907 PMCID: PMC6681526 DOI: 10.1177/0271678x18764773] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this translational, randomized, controlled, blinded preclinical trial was to determine the effect of compound 21 (C21) in embolic stroke. Rats were subjected to embolic-middle cerebral artery occlusion (eMCAO). They received C21 (0.01, 0.03 and 0.06 mg/kg/d) or saline (orally) for five days, with the first-dose given IV at 3 h post-eMCAO. For the time-window study, the optimal-dose of C21 was initiated at 3, 6 or 24 h post-eMCAO and continued for five days. For the combinatorial study, animals received IV-tissue plasminogen activator (tPA) at either 2 or 4 h, with IV-C21 (0.01 mg/kg) or saline at 3 h post-eMCAO and daily thereafter for five days. After performing the behavior tests, brains were collected for analyses. The dose-response study showed significant motor improvements with the lowest-dose (0.01 mg/kg) of C21. In the time-window study, this same dose resulted in improvements when given 6 h and 24 h post-eMCAO. Moreover, C21-treated animals performed better on the novel object recognition test. Neither the single treatment with C21 or tPA (4 h) nor the combination therapy was effective in reducing the hemorrhage or infarct size, although C21 alone lowered sensorimotor deficit scores post-eMCAO. Future studies should focus on the long-term cognitive benefits of C21, rather than acute neuroprotection.
Collapse
Affiliation(s)
- Tauheed Ishrat
- 1 Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN, USA
| | - Abdelrahman Y Fouda
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Bindu Pillai
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Wael Eldahshan
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Heba Ahmed
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Jennifer L Waller
- 3 Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, USA
| | - Adviye Ergul
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,4 Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,5 Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
37
|
Kim JS. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J Stroke 2019; 21:160-174. [PMID: 31161761 PMCID: PMC6549064 DOI: 10.5853/jos.2019.00584] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only therapeutic agent approved to treat patients with acute ischemic stroke. The clinical benefits of tPA manifest when the agent is administered within 4.5 hours of stroke onset. However, tPA administration, especially delayed administration, is associated with increased intracranial hemorrhage (ICH), hemorrhagic transformation (HT), and mortality. In the ischemic brain, vascular remodeling factors are upregulated and microvascular structures are destabilized. These factors disrupt the blood brain barrier (BBB). Delayed recanalization of the vessels in the presence of relatively matured infarction appears to damage the BBB, resulting in HT or ICH, also known as reperfusion injury. Moreover, tPA itself activates matrix metalloproteases, further aggravating BBB disruption. Therefore, attenuation of edema, HT, or ICH after tPA treatment is an important therapeutic strategy that may enable clinicians to extend therapeutic time and increase the probability of excellent outcomes. Recently, numerous agents with various mechanisms have been developed to interfere with various steps of ischemia/ reperfusion injuries or BBB destabilization. These agents successfully reduce infarct volume and decrease the incidence of ICH and HT after delayed tPA treatment in various animal stroke models. However, only some have entered into clinical trials; the results have been intriguing yet unsatisfactory. In this narrative review, I describe such drugs and discuss the problems and future directions. These “tPA helpers” may be clinically used in the future to increase the efficacy of tPA in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Rajput PS, Lamb JA, Fernández JÁ, Bai J, Pereira BR, Lei IF, Leung J, Griffin JH, Lyden PD. Neuroprotection and vasculoprotection using genetically targeted protease-ligands. Brain Res 2019; 1715:13-20. [PMID: 30880117 DOI: 10.1016/j.brainres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Thrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties. We measured vascular disruption and neuronal degeneration after a standard rodent filament stroke model. For comparison to a robust anticoagulant, we used a GpIIb/IIIa inhibitor, GR144053. During 2 h MCAo both WT murine APC and its mutant, 5A-APC, significantly decreased neuronal death 30 min after reperfusion. During 4 h MCAo, only 5A-APC significantly protected neurons but both WT-APC and 5A-APC exacerbated vascular disruption during 4 h MCAo. Human APC mutants appeared to reduce 24 h neuronal injury significantly when given after 2 h delay after MCAo. In contrast, 24 h vascular damage was worsened by high doses of WT and mutant APCs, although only statistically significantly for high dose 3K3A-APC. Mutated thrombin worsened vascular damage significantly without affecting neuron damage. GR144053 failed to ameliorate vascular disruption or neuronal injury despite significant anticoagulation. Differential effects on neurons and the vasculature were demonstrated using wild-type and mutated proteases. The mutants murine 3K3A-APC and 5A-APC protected neurons in this rodent model but in high doses worsened vascular leakage. Cytoactive effects of plasma proteases may be separated from their coagulation effects. Further studies should explore impact of dose and timing on cytoactive and vasculoactive properties of these drugs.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jessica A Lamb
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jose Á Fernández
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jilin Bai
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Benedict R Pereira
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - I-Farn Lei
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jennifer Leung
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Patrick D Lyden
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States.
| |
Collapse
|
39
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|
40
|
Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med 2019; 216:279-293. [PMID: 30647119 PMCID: PMC6363429 DOI: 10.1084/jem.20181035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
3K3A-activated protein C (APC), a cell-signaling analogue of endogenous blood serine protease APC, exerts vasculoprotective, neuroprotective, and anti-inflammatory activities in rodent models of stroke, brain injury, and neurodegenerative disorders. 3K3A-APC is currently in development as a neuroprotectant in patients with ischemic stroke. Here, we report that 3K3A-APC inhibits BACE1 amyloidogenic pathway in a mouse model of Alzheimer's disease (AD). We show that a 4-mo daily treatment of 3-mo-old 5XFAD mice with murine recombinant 3K3A-APC (100 µg/kg/d i.p.) prevents development of parenchymal and cerebrovascular amyloid-β (Aβ) deposits by 40-50%, which is mediated through NFκB-dependent transcriptional inhibition of BACE1, resulting in blockade of Aβ generation in neurons overexpressing human Aβ-precursor protein. Consistent with reduced Aβ deposition, 3K3A-APC normalized hippocampus-dependent behavioral deficits and cerebral blood flow responses, improved cerebrovascular integrity, and diminished neuroinflammatory responses. Our data suggest that 3K3A-APC holds potential as an effective anti-Aβ prevention therapy for early-stage AD.
Collapse
Affiliation(s)
- Divna Lazic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Abhay P Sagare
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Angeliki M Nikolakopoulou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John H Griffin
- The Scripps Research Institute, La Jolla, CA.,Department of Medicine, University of California, San Diego, San Diego, CA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA .,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
41
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
42
|
Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood 2018; 133:193-204. [PMID: 30442679 DOI: 10.1182/blood-2018-06-856062] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of Krit1 (Krit1 ECKO ) or Pdcd10 (Pdcd10 ECKO ), which cause CCM formation, results in increased levels of vascular TM and EPCR, as well as in enhanced generation of activated protein C (APC) on endothelial cells. Increased TM expression is due to upregulation of transcription factors KLF2 and KLF4 consequent to the loss of KRIT1 or PDCD10. Increased TM expression contributes to CCM hemorrhage, because genetic inactivation of 1 or 2 copies of the Thbd gene decreases brain hemorrhage in Pdcd10 ECKO mice. Moreover, administration of blocking antibodies against TM and EPCR significantly reduced CCM hemorrhage in Pdcd10 ECKO mice. Thus, a local increase in the endothelial cofactors that generate anticoagulant APC can contribute to bleeding in CCMs, and plasma soluble TM may represent a biomarker for hemorrhagic risk in CCMs.
Collapse
|
43
|
Garg N, Joshi R, Medhi B. Cracking novel shared targets between epilepsy and Alzheimer's disease: need of the hour. Rev Neurosci 2018; 29:425-442. [PMID: 29329108 DOI: 10.1515/revneuro-2017-0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Epilepsy and Alzheimer's disease (AD) are interconnected. It is well known that seizures are linked with cognitive impairment, and there are various shared etiologies between epilepsy and AD. The connection between hyperexcitability of neurons and cognitive dysfunction in the progression of AD or epileptogenesis plays a vital role for improving selection of treatment for both diseases. Traditionally, seizures occur less frequently and in later stages of age in patients with AD which in turn implies that neurodegeneration causes seizures. The role of seizures in early stages of pathogenesis of AD is still an issue to be resolved. So, it is well timed to analyze the common pathways involved in pathophysiology of AD and epilepsy. The present review focuses on similar potential underlying mechanisms which may be related to the causes of seizures in epilepsy and cognitive impairment in AD. The proposed review will focus on many possible newer targets like abnormal expression of various enzymes like GSK-3β, PP2A, PKC, tau hyperphosphorylation, MMPs, caspases, neuroinflammation and oxidative stress associated with number of neurodegenerative diseases linked with epilepsy. The brief about the prospective line of treatment of both diseases will also be discussed in the present review.
Collapse
Affiliation(s)
- Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India, e-mail:
| |
Collapse
|
44
|
Lu D, Liu Y, Mai H, Zang J, Shen L, Zhang Y, Xu A. Rosuvastatin Reduces Neuroinflammation in the Hemorrhagic Transformation After rt-PA Treatment in a Mouse Model of Experimental Stroke. Front Cell Neurosci 2018; 12:225. [PMID: 30116175 PMCID: PMC6082938 DOI: 10.3389/fncel.2018.00225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hemorrhagic transformation (HT) is a serious complication that stimulates inflammation during reperfusion therapy after acute ischemic stroke. Rosuvastatin, a 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, might improve the outcome of HT by inhibiting neuroinflammation. This study aimed to explore the protective effects of rosuvastatin against HT after recombinant tissue plasminogen activator (rt-PA) treatment in mice with experimental stroke via the attenuation of inflammation. A total of one hundred sixty-nine male BALB/c mice were used in the experiment. HT was successfully established in 70 mice that were subjected to 3 h of middle cerebral artery occlusion (MCAO) followed by a 10 mg/kg rt-PA injection over 10 min and reperfusion for 24 h. The mice were then administered rosuvastatin (1 mg/kg, 5 mg/kg) or saline (vehicle). The brain water content and neurological deficits (wire hang and adhesive removal somatosensory tests) were assessed at 24 h after rt-PA reperfusion following MCAO surgery. The morphology, blood-brain barrier (BBB) permeability and number of astrocytes and microglia were assessed by immunohistochemistry, electron microscopy and western blotting at 24 h after rt-PA reperfusion following MCAO surgery. Rosuvastatin protected against impaired neurological function and reversed the BBB leakage observed in the HT group. The increased activation of astrocytes and microglia and secretion of inflammatory factors caused by HT damage were significantly attenuated by high-dose rosuvastatin treatment vs. normal-dose rosuvastatin treatment. Related inflammatory pathways, such as the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were downregulated in the rosuvastatin-treated groups compared with the HT group. In conclusion, our results indicate that rosuvastatin is a promising therapeutic agent for HT after rt-PA reperfusion following MCAO surgery in mice, as it attenuates neuroinflammation. Additionally, high-dose rosuvastatin treatment could have a greater anti-inflammatory effect on HT than normal-dose rosuvastatin treatment.
Collapse
Affiliation(s)
- Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yanfang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Lingling Shen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Ni HY, Song YX, Wu HY, Chang L, Luo CX, Zhu DY. 2-Methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine, an edaravone analog, exerts neuroprotective effects against acute ischemic injury via inhibiting oxidative stress. J Biomed Res 2018; 32:270-280. [PMID: 30008465 PMCID: PMC6117603 DOI: 10.7555/jbr.32.20180014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress plays an indispensable role in the pathogenesis of cerebral ischemia. Inhibiting oxidative stress has been considered as an effective approach for stroke treatment. Edaravone, a free radical scavenger, has been shown to prevent cerebral ischemic injury. However, the clinical efficacy of edaravone is limited because it has a low scavenging activity for superoxide anions (O2·-). Here, we report that 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine, a novel small-molecule compound structurally related to edaravone, showed a stronger inhibitory effect on oxidative stress in vitro. In vivo, 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine reversed transient middle cerebral artery occlusion-induced dysfunctions of superoxide dismutases and malondialdehyde, two proteins crucial for oxidative stress, suggesting a strengthened antioxidant system. Moreover, 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased blood brain barrier permeability. Then, we found that 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine had a stronger neuroprotective effect than edaravone. More importantly, 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased not only infarct size and neurological deficits in the acute phase but also modified neurological severity score and escape latency in Morris water maze task in the delayed period, indicating enhanced neuroprotection, sensorimotor function and spatial memory. Together, these findings suggest that 2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine could be a preferable option for stroke treatment.
Collapse
Affiliation(s)
- Huan-Yu Ni
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi-Xuan Song
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hai-Yin Wu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lei Chang
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chun-Xia Luo
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dong-Ya Zhu
- Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,The Key Laboratory of Precision Medicine of Cardiovascular Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
46
|
Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018; 132:159-169. [PMID: 29866816 PMCID: PMC6043978 DOI: 10.1182/blood-2018-02-769026] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Protein C is a plasma serine protease zymogen whose active form, activated protein C (APC), exerts potent anticoagulant activity. In addition to its antithrombotic role as a plasma protease, pharmacologic APC is a pleiotropic protease that activates diverse homeostatic cell signaling pathways via multiple receptors on many cells. Engineering of APC by site-directed mutagenesis provided a signaling selective APC mutant with 3 Lys residues replaced by 3 Ala residues, 3K3A-APC, that lacks >90% anticoagulant activity but retains normal cell signaling activities. This 3K3A-APC mutant exerts multiple potent neuroprotective activities, which require the G-protein-coupled receptor, protease activated receptor 1. Potent neuroprotection in murine ischemic stroke models is linked to 3K3A-APC-induced signaling that arises due to APC's cleavage in protease activated receptor 1 at a noncanonical Arg46 site. This cleavage causes biased signaling that provides a major explanation for APC's in vivo mechanism of action for neuroprotective activities. 3K3A-APC appeared to be safe in ischemic stroke patients and reduced bleeding in the brain after tissue plasminogen activator therapy in a recent phase 2 clinical trial. Hence, it merits further clinical testing for its efficacy in ischemic stroke patients. Recent studies using human fetal neural stem and progenitor cells show that 3K3A-APC promotes neurogenesis in vitro as well as in vivo in the murine middle cerebral artery occlusion stroke model. These recent advances should encourage translational research centered on signaling selective APC's for both single-agent therapies and multiagent combination therapies for ischemic stroke and other neuropathologies.
Collapse
Affiliation(s)
- John H Griffin
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California, San Diego, CA; and
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | | |
Collapse
|
47
|
Zuo W, Yan F, Zhang B, Hu X, Mei D. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 2018; 830:128-138. [PMID: 29626425 DOI: 10.1016/j.ejphar.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Cerebral ischemia causes blood-brain barrier (BBB) injury and thus increases the risk of complications secondary to thrombolysis, which limited its clinical application. This study aims to clarify the role and mechanism of salidroside (SALD) in alleviating brain ischemic injury and whether pretreatment of it could improve prognosis of delayed treatment of tissue plasminogen activator (t-PA). Rats were subjected to 3 h of middle cerebral artery occlusion (MCAO) and were intraperitoneally administered with 10, 20 or 40 mg/kg SALD before ischemia. 1.5% 5-triphenyl-2H-tetrazolium chloride (TTC) staining and neurological studies were performed to observe the effectiveness of SALD. The expressions and the distribution of phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling were analyzed. Experiments were further conducted in isolated microvessels and human brain microvascular endothelial cells (HBMECs) to explore the protective mechanism of SALD. Finally, rats were subjected to 6 h of MCAO and 24 h of reperfusion. tPA was given with or without the pretreatment of SALD. Various approaches including gelatin zymography, western blot and immunofluorescence were used to evaluate the effect of this combination therapy. SALD could reduce cerebral ischemic injury and enhance HBMECs viability subjected to OGD. In vivo and in vitro studies showed the mechanism might be related to the activation of PI3K/Akt signaling by phosphorylating Akt on Ser473. Pretreatment of SALD could alleviate BBB injury and improve the outcome of delayed treatment of tPA. These results provide evidence that SALD might be an effective adjuvant to reduce the complications induced by delayed tPA treatment for brain ischemia.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Feng Yan
- Center for Brain Disorders Research, Capital Mexical University, PR China; Beijing Institute for Brain Disorders, PR China; Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
48
|
Li J, Hu XS, Zhou FF, Li S, Lin YS, Qi WQ, Qi CF, Zhang X. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke. Neural Regen Res 2018; 13:1585-1593. [PMID: 30127119 PMCID: PMC6126140 DOI: 10.4103/1673-5374.237122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain. Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leakage. Therefore, studies have suggested that protecting the blood-brain barrier may be an effective method for treating acute stroke. To examine this possibility, stroke model rats were established by middle cerebral artery occlusion and reperfusion. Remote ischemic postconditioning was immediately induced by three cycles of 10-minute ischemia/10-minute reperfusion of bilateral hind limbs at the beginning of middle cerebral artery occlusion reperfusion. Neurological function of rat models was evaluated using Zea Longa’s method. Permeability of the blood-brain barrier was assessed by Evans blue leakage. Infarct volume and brain edema were evaluated using 2,3,5-triphenyltetrazolium chloride staining. Expression of matrix metalloproteinase-9 and claudin-5 mRNA was determined by real-time quantitative reverse transcription-polymerase chain reaction. Expression of matrix metalloproteinase-9 and claudin-5 protein was measured by western blot assay. The number of matrix metalloproteinase-9- and claudin-5-positive cells was analyzed using immunohistochemistry. Our results showed that remote ischemic postconditioning alleviated disruption of the blood-brain barrier, reduced infarct volume and edema, decreased expression of matrix metalloproteinase-9 mRNA and protein and the number of positive cells, increased expression of claudin-5 mRNA and protein and the number of positive cells, and remarkably improved neurological function. These findings confirm that by suppressing expression of matrix metalloproteinase-9 and claudin-5 induced by acute ischemia/reperfusion, remote ischemic postconditioning reduces blood-brain barrier injury, mitigates ischemic injury, and exerts protective effects on the brain.
Collapse
Affiliation(s)
- Juan Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiao-Song Hu
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Fang-Fang Zhou
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Shuai Li
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - You-Sheng Lin
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Wen-Qian Qi
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Cun-Fang Qi
- Department of Anatomy, Qinghai University, Xining, Qinghai Province, China
| | - Xiao Zhang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
49
|
Wildhagen K, Lutgens E, Loubele S, Cate HT, Nicolaes G. The structure-function relationship of activated protein C. Thromb Haemost 2017; 106:1034-45. [DOI: 10.1160/th11-08-0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/22/2011] [Indexed: 11/05/2022]
Abstract
SummaryProtein C is the central enzyme of the natural anticoagulant pathway and its activated form APC (activated protein C) is able to proteolyse non-active as well as active coagulation factors V and VIII. Proteolysis renders these cofactors inactive, resulting in an attenuation of thrombin formation and overall down-regulation of coagulation. Presences of the APC cofactor, protein S, thrombomodulin, endothelial protein C receptor and a phospholipid surface are important for the expression of anticoagulant APC activity. Notably, APC also has direct cytoprotective effects on cells: APC is able to protect the endothelial barrier function and expresses anti-inflammatory and anti-apoptotic activities. Exact molecular mechanisms have thus far not been completely described but it has been shown that both the protease activated receptor 1 and EPCR are essential for the cytoprotective activity of APC. Recently it was shown that also other receptors like sphingosine 1 phosphate receptor 1, Cd11b/CD18 and tyrosine kinase with immunoglobulin-like and EGFlike domains 2 are likewise important for APC signalling. Mutagenesis studies are being performed to map the various APC functions and interactions onto its 3D structure and to dissect anticoagulant and cytoprotective properties. The results of these studies have provided a wealth of structure-function information. With this review we describe the state-of-the-art of the intricate structure-function relationships of APC, a protein that harbours several important functions for the maintenance of both humoral and tissue homeostasis.Lessons from natural and engineered mutations
Collapse
|
50
|
Li X, Guo H, Zhao L, Wang B, Liu H, Yue L, Bai H, Jiang H, Gao L, Feng D, Qu Y. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3265-3276. [DOI: 10.1016/j.bbadis.2017.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|