1
|
Liu J, Cao H. Sub-ambient water wettability of hydrophilic and hydrophobic SiO2 surfaces. J Chem Phys 2024; 161:184701. [PMID: 39513444 DOI: 10.1063/5.0236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The wettability of SiO2 surfaces, crucial for understanding the phase transition processes of water, remains a topic of significant controversy in the literature due to uncertainties in experiments. Molecular dynamics (MD) simulations offer a promising avenue for elucidating these complexities, yet studies specifically addressing water contact angles on hydrophilic and hydrophobic SiO2 surfaces at sub-ambient temperatures are notably absent. In this study, we experimentally measured water contact angles of hydrophilic and hydrophobic SiO2 surfaces at ambient temperature and employed MD to investigate water contact angles on Q3, Q3/Q4, and Q4 SiO2 surfaces across temperatures ranging from 220 to 300 K. We investigated the effects of the distribution of hydroxyl groups, droplet size, and hydroxyl density and found that the hydroxyl density had the largest impact on contact angle. Moreover, hydrogen bond analysis uncovered enhanced water affinities of Q3 and Q3/Q4 SiO2 surfaces at lower temperatures, and the spreading rate of precursor films reduced with decreasing temperature. This comprehensive study sheds light on the intricate interaction between surface properties and water behavior, promoting our understanding of the wettability of SiO2 surfaces.
Collapse
Affiliation(s)
- Jianghui Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Joshi S, Barman P, Maan M, Goyal H, Sharma S, Kumar R, Verma G, Saini A. Development of a two-dimensional peptide functionalized-reduced graphene oxide biomaterial for wound care applications. NANOSCALE 2024. [PMID: 39463433 DOI: 10.1039/d4nr02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Increased incidences of antibiotic resistance have necessitated the development of novel wound disinfection strategies with minimal risk of resistance development. This study aimed at developing a biocompatible wound dressing biomaterial with the potential to treat acute and chronic wounds infected with multidrug-resistant Pseudomonas aeruginosa. A multifunctional antibacterial nanoconjugate was synthesized by covalently coupling a synthetically designed peptide (DP1, i.e., RFGRFLRKILRFLKK) with reduced graphene oxide (rGO). The conjugate displayed antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa. In vitro studies demonstrated 94% hemocompatibility of the nanoconjugate even at concentrations as high as 512 μg mL-1. Cytotoxicity studies on 3T3-L1 cells showed 95% cell viability, signifying biocompatibility. Owing to these properties, the biomedical applicability of the nanoconjugate was assessed as an antibacterial wound dressing agent. rGO-DP1-loaded wound dressing exhibited enhanced reduction in bacterial bioburden (6 log 10 CFU) with potential for wound re-epithelization (77.3%) compared to the uncoated bandage. Moreover, an improvement in the material properties of the bandage was observed in terms of enhanced tensile strength and decreased elongation at break (%). Collectively, these findings suggest that rGO-DP1 is an effective biomaterial that, when loaded on wound dressings, has the potential to be used as a facile, sustainable and progressive agent for bacterial wound disinfection as well as healing.
Collapse
Affiliation(s)
- Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
- Energy Research Centre, Panjab University, Chandigarh, U.T., 160014, India
| | - Panchali Barman
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, U.T., 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T., 160014, India
| | - Gaurav Verma
- Dr Shanti Swarup Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, U.T., 160014, India
- Centre for Nanoscience & Nanotechnology (U.I.E.A.S.T), Panjab University, Chandigarh, U.T., 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T., 160014, India.
| |
Collapse
|
3
|
Georgakilas VI. Water as Solvent for the Dispersion of 2D Nanostructured Materials. Chemphyschem 2024:e202400904. [PMID: 39436895 DOI: 10.1002/cphc.202400904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The development of large number of two-dimensional (2D) nanostructured materials that followed the success of graphene and the need for their handling and manipulation e. g., in inks, brought to the fore the study of solvents and substances that contribute to the stabilization of 2D nanomaterials in the liquid phase. The successful dispersion of 2D materials in solvents is combined with one of the most widespread preparation methods, that of liquid phase exfoliation. In this article, a review for the role of water in the preparation of different 2D nanostructures and their stable dispersions in the liquid phase is discussed. The use of water as a solvent or dispersant is instrumental in promoting materials with an ecological footprint, low cost, and sustainability.
Collapse
Affiliation(s)
- Vasilios I Georgakilas
- Department of Materials Science, University of Patras, University Campus, 20504, Rio Patra, Greece
| |
Collapse
|
4
|
Goutham S, Gogoi RK, Jyothilal H, Nam GH, Ismail A, Pandey SV, Keerthi A, Radha B. Electric Field Mediated Unclogging of Angstrom-Scale Channels. SMALL METHODS 2024:e2400961. [PMID: 39420692 DOI: 10.1002/smtd.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Angstrom-scale fluidic channels offer immense potential for applications in areas such as desalination, molecular sieving, biomolecular sequencing, and dialysis. Inspired by biological ion channels, nano- and angstrom (Å)-scale channels are fabricated that mimic these molecular or atomic-scale dimensions. At the Å-scale, these channels exhibit unique phenomena, including selective ion transport, osmotic energy generation, fast water and gas flows, and neuromorphic ion memory. However, practical utilization of Å-scale channels is often hindered by contamination, which can clog these nanochannels. In this context, a promising technique is introduced here for unclogging 2D channels, particularly those with sub-nanometre dimensions (≈6.8 Å). The voltage-cycling method emerges as an efficient and reliable solution for this challenge. The electric field effectively dislodges contaminants from the clogged Å-scale channels, facilitating ion and molecular transport. This study provides practical guidelines for reviving clogged nano- and Å-scale channels, thereby enhancing their applicability in various ion and molecular transport applications.
Collapse
Affiliation(s)
- Solleti Goutham
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Raj Kumar Gogoi
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Hiran Jyothilal
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Gwang-Hyeon Nam
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Abdulghani Ismail
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Siddhi Vinayak Pandey
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Ashok Keerthi
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Boya Radha
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
5
|
Choi JIJ, Cho H, Park JY. Atomic-Scale Friction and Adhesion at Ambient Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21317-21326. [PMID: 39352403 DOI: 10.1021/acs.langmuir.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
In this Perspective, we present the recent advancement and the prospects of atomic-scale friction and adhesion measurements across the pressure gap between ultrahigh vacuum and ambient pressure environments using variable-pressure atomic force microscopy (VP-AFM). We introduce the VP-AFM that enables nanotribological studies under various gas conditions with partial pressure ranging from UHV (1.0 × 10-10 mbar) to 1 bar. We highlight the frictional behaviors of ultrananocrystalline diamond surface in oxygen and water gas environments, as well as the chemical states probed with near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The atomic scale degradation processes of MA(CH3NH3)PbBr3, which is an organic-inorganic hybrid perovskite (OHP) investigated with VP-AFM are introduced. Finally, we discuss the potential works on catalytic model systems including bimetallic Pt3Ni(111) and TiO2(110) and the future perspective of nanotribology under ambient conditions.
Collapse
Affiliation(s)
- Joong Il Jake Choi
- Center for Nanomaterials and Chemical Reactions, Institute of Basic Science, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, South Korea
| | - Hunyoung Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Chaltin F, Rosenthal M, Léonard AF, Goderis B, Gommes CJ. Two-Step Wetting of Nanoporous Carbons: Small-Angle Scattering Analysis of Capillary Rise. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20604-20615. [PMID: 39303211 DOI: 10.1021/acs.langmuir.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Numerous applications of nanoporous materials require their pores to be filled with liquids. In spite of its huge technological importance, the conditions for the wetting of nanometer-sized pores and its phenomenology are still poorly understood. We report on capillary rise experiments with water in carbon xerogels, with synchrotron small-angle scattering used to follow the process in situ at the nanometer scale. The data reveal a two-step wetting process whereby water permeates first into molecular-sized micropores, which is followed by the imbibition of larger mesopores. A Cassie-Baxter analysis shows that the presence of water in the micropores is central, as it turns the mesopores from being hydrophobic to hydrophilic. Based on the so-calculated contact angles, the mesopore wetting kinetics are found to be quantitatively described by a classical Washburn model. Modeling of the experimental water profile ahead of the Washburn front reveals strong surface barriers opposing water transfer from the mesopores to the micropores.
Collapse
Affiliation(s)
- François Chaltin
- Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| | - Martin Rosenthal
- Dual-Belgian-Beamline (DUBBLE, BM26), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, Grenoble 38043, Cedex 9, France
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Alexandre F Léonard
- CARPOR, Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| | - Bart Goderis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Cedric J Gommes
- Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| |
Collapse
|
7
|
Loubet NA, Verde AR, Appignanesi GA. A structural determinant of the behavior of water at hydration and nanoconfinement conditions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:61. [PMID: 39343851 DOI: 10.1140/epje/s10189-024-00454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The molecular nature of the phases that conform the two-liquid scenario is elucidated in this work in the light of a molecular principle governing water structuring, which unveils the relevance of the contraction and reorientation of the second molecular shell to allow for the existence of coordination defects in water's hydrogen bond network. In turn, such principle is shown to also determine the behavior of hydration and nanoconfined water while enabling to define conditions for wettability (quantifying hydrophobicity and predicting drying transitions), thus opening the possibility to unravel the active role of water in central fields of research.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
8
|
Soares RRA, Milião GL, Pola CC, Jing D, Opare-Addo J, Smith E, Claussen JC, Gomes CL. Insights into solid-contact ion-selective electrodes based on laser-induced graphene: Key performance parameters for long-term and continuous measurements. Mikrochim Acta 2024; 191:615. [PMID: 39311973 DOI: 10.1007/s00604-024-06672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
This work aims to serve as a comprehensive guide to properly characterize solid-contact ion-selective electrodes (SC-ISEs) for long-term use as they advance toward calibration-free sensors. The lack of well-defined SC-ISE performance criteria limits the ability to compare results and track progress in the field. Laser-induced graphene (LIG) is a rapid and scalable method that, by adjusting the CO2 laser parameters, can create LIG substrates with tunable surface properties, including wettability, surface chemistry, and morphology. Herein, we fabricate laser-induced graphene (LIG) solid-contact electrodes using different laser settings and subsequently convert them into ion-selective sensors using a potassium-selective membrane. We measure the aforementioned tunable surface properties and correlate them with resultant low-frequency capacitance and water layer formation in an effort to pinpoint their effects on the sensitivity (Nernstian response), reproducibility (E°' variation), and potential stability of the LIG-based SC-ISEs. More specifically, we demonstrate that the surface wettability of the LIG substrate, which can be tuned by controlling the lasing parameters, can be modified to exhibit hydrophobic (contact angle > 90°) and even highly hydrophobic surfaces (contact angle ≈ 130°) to help reduce sensor drift. Recommendations are also provided to ensure proper and robust characterization of SC-ISEs for long-term and continuous measurements. Ultimately, we believe that a comprehensive understanding of the correlation between LIG tunable surface properties and SC-ISE performance can be used to improve the electrochemical behavior and stability of SC-ISEs designed with a wide range of materials beyond LIG.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo L Milião
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Emily Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Bilichenko M, Iannuzzi M, Tocci G. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. ACS NANO 2024; 18:24118-24127. [PMID: 39172927 DOI: 10.1021/acsnano.4c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We investigate the interfacial transport of water and hydrophobic solutes on van der Waals bilayers and heterostructures formed by stacking graphene, hBN, and MoS2 using extensive ab initio molecular dynamics simulations. We compute water slippage and the diffusio-osmotic transport coefficient of hydrophobic particles at the interface by combining hydrodynamics and the theory of the hydrophobic effect. We find that slippage is dominated by the layer that is in direct contact with water and only marginally altered by the second layer, leading to a so-called "slip opacity". The screening of the lateral forces, where the liquid does not feel the forces coming from the second nearest layer, is one of the factors leading to the "slip opacity" in our systems. The diffusio-osmotic transport of small hydrophobes (with a radius below 2.5 Å) is also affected by the slip opacity, being dramatically enhanced by slippage. Furthermore, the direction of diffusio-osmotic flow is controlled by the solute size, with the flow in the opposite direction of the concentration gradient for smaller hydrophobes, and vice versa for larger ones. We connect our findings to the wetting properties of two-dimensional materials, and we propose that slippage and wetting can be controlled separately: whereas the slippage is mostly determined by the layer in closer proximity to water, wetting can be finely tuned by stacking different two-dimensional materials. Our study advances the computational design of two-dimensional materials and van der Waals heterostructures, enabling precise control over wetting and slippage properties for applications in coatings and water purification membranes.
Collapse
Affiliation(s)
- Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Xu C, Qiao GG, Nan N, Bao L. Environmental Influence on Stripe Formation at the Graphite-Water Interface. Chemphyschem 2024:e202400641. [PMID: 39143859 DOI: 10.1002/cphc.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Understanding the characteristics of graphite-water interfaces is of scientific significance and practical importance. Ordered stripe structures have been observed at this interface, with their origins debated between condensed gas molecules and airborne hydrocarbons. Atomic force microscopy (AFM) studies have revealed variations in the morphology, formation and growth of these ordered structures. Here, we investigate the graphite-water interface under different environmental conditions using PeakForce Quantitative Nanomechanical (PF-QNM) AFM. Our findings reveal that stripe structures with 4 nm width and 0.5 nm periodicity, form and grow under wet laboratory conditions but not in pure inert gas or cleanroom environments. These stripes appear more readily when the graphite surface is immersed in water, with growth associated with gas nanodomains on the surface. This suggests that atmospheric contaminants migrate to the water-graphite interface, potentially facilitated by gas states. These findings underscore the impact of environmental conditions on graphitic materials, providing new insights into the mechanisms underlying stripe formation and growth.
Collapse
Affiliation(s)
- Chenglong Xu
- School of Engineering, STEM College, RMIT University, Australia Micro Nano Research Facility, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Chemical and Biomolecular Engineer, University of Melbourne, Parkville, Victoria, 3010, Australia
- Micro Nano Research Facility, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Greg G Qiao
- Department of Chemical and Biomolecular Engineer, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nan Nan
- School of Engineering, STEM College, RMIT University, Australia Micro Nano Research Facility, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Australia Micro Nano Research Facility, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
11
|
Accordino SR, Alarcón LM, Loubet NA, Appignanesi GA. Water at the nanoscale: From filling or dewetting hydrophobic pores and carbon nanotubes to "sliding" on graphene. J Chem Phys 2024; 161:044504. [PMID: 39037145 DOI: 10.1063/5.0215579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, we study the effect of nanoconfinement on the hydration properties of model hydrophobic pores and carbon nanotubes, determining their wetting propensity and the conditions for geometrically induced dehydration. By employing a recently introduced water structural index, we aim at two main goals: (1) to accurately quantify the local hydrophobicity and predict the drying transitions in such systems, and (2) to provide a molecular rationalization of the wetting process. In this sense, we will further discuss the number and strength of the interactions required by the water molecules to promote wetting. In the case of graphene-like surfaces, an explanation for their unexpectedly significant hydrophilicity will also be provided. On the one hand, the structural index will show that the net attraction to the dense carbon network that a water molecule experiences through several simultaneous weak interactions is sufficient to give rise to hydrophilic behavior. On the other hand, we will show that an additional effect is also at play: the hydrating water molecule is retained on the surface by a smooth exchange of such simultaneous weak interactions, as if "sliding" on graphene.
Collapse
Affiliation(s)
- Sebastián R Accordino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Laureano M Alarcón
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
12
|
Wang H, Randeniya M, Houston A, Duscher G, Gu G. Ultraclean Suspended Graphene by Radiolysis of Adsorbed Water. NANO LETTERS 2024; 24:8866-8871. [PMID: 38976330 DOI: 10.1021/acs.nanolett.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Access to intrinsic properties of a 2D material is challenging due to the absence of a bulk that would dominate over surface contamination, and this lack of bulk also precludes effective conventional cleaning methods that are almost always sacrificial. Suspended graphene and carbon contaminants represent the most salient challenge. This work has achieved ultraclean graphene, attested by electron energy loss (EEL) spectra unprecedentedly exhibiting fine-structure features expected from bonding and band structure. In the cleaning process in a transmission electron microscope, radicals generated by radiolysis of intentionally adsorbed water remove organic contaminants, which would otherwise be feedstock of the notorious electron irradiation induced carbon deposition. This method can be readily adapted to other experimental settings and other materials to enable previously inhibited undertakings that rely on the intrinsic properties or ultimate thinness of 2D materials. Importantly, the method is surprisingly simple and robust, easily implementable with common lab equipment.
Collapse
Affiliation(s)
- Hao Wang
- Min H. Kao Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Milinda Randeniya
- Department of Physics & Astronomy, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Austin Houston
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Gerd Duscher
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Gong Gu
- Min H. Kao Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee 37916, United States
| |
Collapse
|
13
|
Metlay AS, Chyi B, Sheehan CJ, Shallenberger JR, Mallouk TE. Fast Outer-Sphere Electron Transfer and High Specific Capacitance at Covalently Modified Carbon Electrodes. J Am Chem Soc 2024; 146:20086-20091. [PMID: 38980188 DOI: 10.1021/jacs.4c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Carbon electrodes typically display sluggish electron transfer kinetics due to the adsorption of adventitious molecules that effectively insulate the surface. Here, we describe a method for rendering graphitic carbon electrodes permanently hydrophilic by functionalization with 4-(diazonium)benzenesulfonic acid. In aqueous electrolytes, these hydrophilic carbon electrodes exhibit metal-like specific capacitance (∼40 μF/cm2) as measured by cyclic voltammetry, suggesting a change in the double-layer structure at the carbon surface. Additionally, the modified electrodes show fast charge transfer kinetics to outer-sphere one-electron redox couples such as ferro-/ferricyanide as well as improved electron transfer kinetics in alkaline aqueous redox flow batteries.
Collapse
Affiliation(s)
- Amy S Metlay
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brandon Chyi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colton J Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey R Shallenberger
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba Ibaraki 305-0044, Japan
| |
Collapse
|
14
|
Yang F, Thompson AG, McQuain AD, Gundurao D, Stando G, Kim MA, Liu H, Li L. Wetting Transparency of Single-Layer Graphene on Liquid Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403820. [PMID: 38720475 DOI: 10.1002/adma.202403820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Indexed: 05/15/2024]
Abstract
Graphene's wetting transparency offers promising avenues for creating multifunctional devices by allowing real-time wettability control on liquid substrates via the flow of different liquids beneath graphene. Despite its potential, direct measurement of floating graphene's wettability remains a challenge, hindering the exploration of these applications. The current study develops an experimental methodology to assess the wetting transparency of single-layer graphene (SLG) on liquid substrates. By employing contact angle measurements and Neumann's Triangle model, the challenge of evaluating the wettability of floating free-suspended single-layer graphene is addressed. The research reveals that for successful contact angle measurements, the testing and substrate liquids must be immiscible. Using diiodomethane as the testing liquid and ammonium persulfate solution as liquid substrate, the study demonstrates the near-complete wetting transparency of graphene. Furthermore, it successfully showcases the feasibility of real-time wettability control using graphene on liquid substrates. This work not only advances the understanding of graphene's interaction with liquid interfaces but also suggests a new avenue for the development of multifunctional materials and devices by exploiting the unique wetting transparency of graphene.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Annette G Thompson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Alex D McQuain
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Dhruthi Gundurao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Grzegorz Stando
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Min A Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Lei Li
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
15
|
Carlson S, Schullian O, Becker MR, Netz RR. Modeling Water Interactions with Graphene and Graphite via Force Fields Consistent with Experimental Contact Angles. J Phys Chem Lett 2024; 15:6325-6333. [PMID: 38856977 PMCID: PMC11194815 DOI: 10.1021/acs.jpclett.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Accurate simulation models for water interactions with graphene and graphite are important for nanofluidic applications, but existing force fields produce widely varying contact angles. Our extensive review of the experimental literature reveals extreme variation among reported values of graphene-water contact angles and a clustering of graphite-water contact angles into groups of freshly exfoliated (60° ± 13°) and not-freshly exfoliated graphite surfaces. The carbon-oxygen dispersion energy for a classical force field is optimized with respect to this 60° graphite-water contact angle in the infinite-force-cutoff limit, which in turn yields a contact angle for unsupported graphene of 80°, in agreement with the mean of the experimental results. Interaction force fields for finite cutoffs are also derived. A method for calculating contact angles from pressure tensors of planar equilibrium simulations that is ideally suited to graphite and graphene surfaces is introduced. Our methodology is widely applicable to any liquid-surface combination.
Collapse
Affiliation(s)
- Shane
R. Carlson
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Otto Schullian
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Maximilian R. Becker
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
16
|
Chen L, Peng RQ, Deng W, Huang JA, Li D. All-in-One Electrokinetic Strategy Coupled with a Miniaturized Chip for SERS Detection of Multipesticides. Anal Chem 2024; 96:9834-9841. [PMID: 38832651 DOI: 10.1021/acs.analchem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Complexed and tiresome pretreatment processes have significantly impeded in-field analysis of environmental specimens. Herein, an all-in-one sample separation and enrichment strategy based on a compact charge-selective capture/nanoconfined enrichment (CSC/NCE) device is exploited for marker-free surface-enhanced Raman spectroscopy (SERS) detection of charged pesticides in matrix specimens. This tactic incorporating in situ separations, seizing, and nanoconfined enhancement can greatly elevate the effectiveness of sample pretreatment. Importantly, CSC/NCE with excellent adsorption performances and excellent plasmonic features facilitates concentration and signal amplification of electrically charged pesticides. With the introduction of an electric field on this integrated CSC/NCE, the matrix effect in samples could be significantly eradicated, and a distinct SERS response is witnessed for targeted analytes. Accurate quantification of multipesticides is achieved by synergizing the CSC/NCE chip and chemometrics, and the contents found by the CSC/NCE-based sensing strategy agree with those obtained from chromatography assays with relative deviations lower than 10%. The facile and versatile all-in-one tactic infused in a compact chip exhibits enormous potential for field-test application in chemical measurement and food safety.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Rui-Qi Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
17
|
Almeida CM, Ptak F, Prioli R. Observation of the early stages of environmental contamination in graphene by friction force. J Chem Phys 2024; 160:214701. [PMID: 38828823 DOI: 10.1063/5.0200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Exposure to ambient air contaminates the surface of graphene sheets. Contamination may arise from different sources, and its nature alters the frictional behavior of the material. These changes in friction enable the observation of the early stages of contaminants' adsorption in graphene. Using a friction force microscope, we show that molecular adsorption initiates at the edges and mechanical defects in the monolayer. Once the monolayer is covered, the contaminants spread over the additional graphene layers. With this method, we estimate the contamination kinetics. In monolayer graphene, the surface area covered with adsorbed molecules increases with time of air exposure at a rate of 10-14 m2/s, while in bilayer graphene, it is one order of magnitude smaller. Finally, as the contaminants cover the additional graphene layers, friction no longer has a difference concerning the number of graphene layers.
Collapse
Affiliation(s)
- Clara M Almeida
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020, Brazil
| | - Felipe Ptak
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| | - Rodrigo Prioli
- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil
| |
Collapse
|
18
|
Liang X, Ma C, Jiao S. Study on Confined Water in Flexible Graphene/GO Nanochannels. J Phys Chem B 2024; 128:5472-5480. [PMID: 38805383 DOI: 10.1021/acs.jpcb.4c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The structural evolution of flexible nanochannels within a 2D material membrane, influenced by the ingress of water molecules, plays a crucial role in the membrane's filtration and structural stability. However, the experimental observation of nanoscale water is challenging, and current studies mostly focus on rigid nanochannels. Further investigation on the nanoconfined water is urgently needed, considering the flexibility and deformation of the channel. In this work, MD simulations and theoretical analyses are conducted to investigate the water structure and thermodynamic properties when confined within both rigid and flexible graphene/graphene oxide (GO) nanochannels. In free rigid graphene nanochannels, the interlayer distance exhibits a quantized increase with the number of water molecules, along with sudden changes in entropy, potential energy, and free energy of the water molecules. Meanwhile, in flexible graphene nanochannels, the average interlayer space increases linearly with the number of water molecules. In free rigid GO nanochannels, with the increase of oxidation concentration, the quantized increase in the interlayer space gradually diminishes, accompanied by a decrease in both potential energy and free energy. This work provides insights into the configurational evolution of flexible nanochannels within water, offering guidance in fields such as desalination and mass transport of 2D material membranes.
Collapse
Affiliation(s)
- Xingfu Liang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| | - Chengpeng Ma
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| | - Shuping Jiao
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| |
Collapse
|
19
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
20
|
Verma AK, Sharma BB. Experimental and Theoretical Insights into Interfacial Properties of 2D Materials for Selective Water Transport Membranes: A Critical Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7812-7834. [PMID: 38587122 DOI: 10.1021/acs.langmuir.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Interfacial properties, such as wettability and friction, play critical roles in nanofluidics and desalination. Understanding the interfacial properties of two-dimensional (2D) materials is crucial in these applications due to the close interaction between liquids and the solid surface. The most important interfacial properties of a solid surface include the water contact angle, which quantifies the extent of interactions between the surface and water, and the water slip length, which determines how much faster water can flow on the surface beyond the predictions of continuum fluid mechanics. This Review seeks to elucidate the mechanism that governs the interfacial properties of diverse 2D materials, including transition metal dichalcogenides (e.g., MoS2), graphene, and hexagonal boron nitride (hBN). Our work consolidates existing experimental and computational insights into 2D material synthesis and modeling and explores their interfacial properties for desalination. We investigated the capabilities of density functional theory and molecular dynamics simulations in analyzing the interfacial properties of 2D materials. Specifically, we highlight how MD simulations have revolutionized our understanding of these properties, paving the way for their effective application in desalination. This Review of the synthesis and interfacial properties of 2D materials unlocks opportunities for further advancement and optimization in desalination.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
21
|
Loubet NA, Verde AR, Appignanesi GA. A water structure indicator suitable for generic contexts: Two-liquid behavior at hydration and nanoconfinement conditions and a molecular approach to hydrophobicity and wetting. J Chem Phys 2024; 160:144502. [PMID: 38587223 DOI: 10.1063/5.0203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
In a recent work, we have briefly introduced a new structural index for water that, unlike previous indicators, was devised specifically for generic contexts beyond bulk conditions, making it suitable for hydration and nanoconfinement settings. In this work, we shall study this metric in detail, demonstrating its ability to reveal the existence of a fine-tuned interplay between the local structure and energetics in liquid water. This molecular principle enables the establishment of an extended hydrogen bond network, while simultaneously allowing for the existence of network defects by compensating for uncoordinated sites. By studying different water models and different temperatures encompassing both the normal liquid and the supercooled regime, this molecular mechanism will be shown to underlie the two-state behavior of bulk water. In addition, by studying functionalized self-assembled monolayers and diverse graphene-like surfaces, we shall show that this principle is also operative at hydration and nanoconfinement conditions, thus generalizing the validity of the two-liquid scenario of water to these contexts. This approach will allow us to define conditions for wettability, providing an accurate measure of hydrophobicity and a reliable predictor of filling and drying transitions. Hence, it might open the possibility of elucidating the active role of water in the broad fields of biophysics and materials science. As a preliminary step, we shall study the hydration structure and hydrophilicity of graphene-like systems (parallel graphene sheets and carbon nanotubes) as a function of the confinement dimensionality.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
22
|
Behrent A, Borggraefe V, Baeumner AJ. Laser-induced graphene trending in biosensors: understanding electrode shelf-life of this highly porous material. Anal Bioanal Chem 2024; 416:2097-2106. [PMID: 38082134 PMCID: PMC10950954 DOI: 10.1007/s00216-023-05082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/21/2024]
Abstract
Laser-induced graphene (LIG) has received much attention in recent years as a possible transducer material for electroanalytical sensors. Its simplicity of fabrication and good electrochemical performance are typically highlighted. However, we found that unmodified and untreated LIG electrodes had a limited shelf-life for certain electroanalytical applications, likely due to the adsorption of adventitious hydrocarbons from the storage environment. Electrode responses did not change immediately after exposure to ambient conditions but over longer periods of time, probably due to the immense specific surface area of the LIG material. LIG shelf-life is seldomly discussed prominently in the literature, yet overall trends for solutions to this challenge can be identified. Such findings from the literature regarding the long-term storage stability of LIG electrodes, pure and modified, are discussed here along with explanations for likely protective mechanisms. Specifically, applying a protective coating on LIG electrodes after manufacture is possibly the easiest method to preserve electrode functionality and should be identified as a trend for well-performing LIG electrodes in the future. Furthermore, suggested influences of the accompanying LIG microstructure/morphology on electrode characteristics are evaluated.
Collapse
Affiliation(s)
- Arne Behrent
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Veronika Borggraefe
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
23
|
Yang F, McQuain AD, Kumari A, Gundurao D, Liu H, Li L. Understanding the Intrinsic Water Wettability of Hexagonal Boron Nitride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6445-6452. [PMID: 38483123 DOI: 10.1021/acs.langmuir.3c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The water wettability of hexagonal boron nitride (hBN) has attracted a lot of research interest in the past 15 years. Experimentally, the static water contact angle (WCA) has been widely utilized to characterize the intrinsic water wettability of hBN. In the current study, we have investigated the effect of airborne hydrocarbons and defects on both static and dynamic WCAs of hBN. Our results showed that the static WCA is impacted by defects, which suggests that previously reported static WCAs do not characterize the intrinsic water wettability of hBN since the state-of-the-art hBN samples always have relatively high defect density. Instead, we found that the advancing WCA of freshly exfoliated hBN is not affected by the defects and airborne hydrocarbons. As a result, the advancing WCA on freshly exfoliated hBN, determined to be 79 ± 3°, best represents the intrinsic water wettability of hBN. A qualitative model has been proposed to describe the effect of airborne hydrocarbons and defects on the static and dynamic WCA of hBN, which is well supported by the experimental results. The finding here has important implications for the water wettability of 2D materials.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alex D McQuain
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anumita Kumari
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dhruthi Gundurao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lei Li
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
24
|
Gentile M, Bellani S, Zappia MI, Gamberini A, Mastronardi V, Abruzzese M, Gabatel L, Pasquale L, Marras S, Bagheri A, Beydaghi H, Papadopoulou EL, Lanzani G, Bonaccorso F. Hydrogen-Assisted Thermal Treatment of Electrode Materials for Electrochemical Double-Layer Capacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13706-13718. [PMID: 38458613 PMCID: PMC10958450 DOI: 10.1021/acsami.3c18629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The capacitance of electrode materials used in electrochemical double-layer capacitors (EDLCs) is currently limited by several factors, including inaccessible isolated micropores in high-surface area carbons, the finite density of states resulting in a quantum capacitance in series to Helmholtz double-layer capacitance, and the presence of surface impurities, such as functional groups and adsorbed species. To unlock the full potential of EDLC active materials and corresponding electrodes, several post-production treatments are commonly proposed to improve their capacitance and, thus, the energy density of the corresponding devices. In this work, we report a systematic study of the effect of a prototypical treatment, namely H2-assisted thermal treatment, on the chemical, structural, and thermal properties of activated carbon and corresponding electrodes. By combining multiple characterization techniques, we clarify the actual origins of the improvement of the performance (e.g., > +35% energy density for the investigated power densities in the 0.5-45 kW kg-1 range) of the EDLCs based on treated electrodes compared to the case based on the pristine electrodes. Contrary to previous works supporting a questionable graphitization of the activated carbon at temperatures <1000 °C, we found that a "surface graphitization" of the activated carbon, detected by spectroscopic analysis, is mainly associated with the desorption of surface contaminants. The elimination of surface impurities, including adsorbed species, improves the surface capacitance of the activated carbon (CsurfAC) by +37.1 and +36.3% at specific currents of 1 and 10 A g-1, respectively. Despite the presence of slight densification of the activated carbon upon the thermal treatment, the latter still improves the cell gravimetric capacitance normalized on the mass of the activated carbon only (CgAC), e.g., + 28% at 1 A g-1. Besides, our holistic approach identifies the change in the active material and binder contents as a concomitant cause of the increase of cell gravimetric capacitance (Cg), accounting for the mass of all of the electrode materials measured for treated electrodes compared to pristine ones. Overall, this study provides new insights into the relationship between the modifications of the electrode materials induced by H2-assisted thermal treatments and the performance of the resulting EDLCs.
Collapse
Affiliation(s)
- Matteo Gentile
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | | | | | - Agnese Gamberini
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
| | | | - Matteo Abruzzese
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
| | - Luca Gabatel
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
- Department
of Mechanical, Energy, Management and Transport Engineering - DIME, Università di Genova, Via all’Opera Pia 15, Genova 16145, Italy
| | - Lea Pasquale
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Sergio Marras
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Ahmad Bagheri
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Center for
Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and
Food Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
| | - Hossein Beydaghi
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
| | | | - Guglielmo Lanzani
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano 20133, Italy
| | - Francesco Bonaccorso
- BeDimensional
S.p.A., Via Lungotorrente
Secca 30R, Genova 16163, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
25
|
Liu B, Ma S. Precise synthesis of graphene by chemical vapor deposition. NANOSCALE 2024; 16:4407-4433. [PMID: 38291992 DOI: 10.1039/d3nr06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Graphene, a typical representative of the family of two-dimensional (2D) materials, possesses a series of phenomenal physical properties. To date, numerous inspiring discoveries have been made on its structures, properties, characterization, synthesis, transfer and applications. The real practical applications of this magic material indeed require large-scale synthesis and precise control over its structures, such as size, crystallinity, layer number, stacking order, edge type and contamination levels. Nonetheless, studies on the precise synthesis of graphene are far from satisfactory currently. Our review aims to deal with the precise synthesis of four critical graphene structures, including single-crystal graphene (SCG), AB-stacked bilayer graphene (AB-BLG), etched graphene and clean graphene. Meanwhile, existing problems and future directions in the precise synthesis of graphene are also briefly discussed.
Collapse
Affiliation(s)
- Bing Liu
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| | - Siguang Ma
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| |
Collapse
|
26
|
Orejon D, Oh J, Preston DJ, Yan X, Sett S, Takata Y, Miljkovic N, Sefiane K. Ambient-mediated wetting on smooth surfaces. Adv Colloid Interface Sci 2024; 324:103075. [PMID: 38219342 DOI: 10.1016/j.cis.2023.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
A consensus was built in the first half of the 20th century, which was further debated more than 3 decades ago, that the wettability and condensation mechanisms on smooth solid surfaces are modified by the adsorption of organic contaminants present in the environment. Recently, disagreement has formed about this topic once again, as many researchers have overlooked contamination due to its difficulty to eliminate. For example, the intrinsic wettability of rare earth oxides has been reported to be hydrophobic and non-wetting to water. These materials were subsequently shown to display dropwise condensation with steam. Nonetheless, follow on research has demonstrated that the intrinsic wettability of rare earth oxides is hydrophilic and wetting to water, and that a transition to hydrophobicity occurs in a matter of hours-to-days as a consequence of the adsorption of volatile organic compounds from the ambient environment. The adsorption mechanisms, kinetics, and selectivity, of these volatile organic compounds are empirically known to be functions of the substrate material and structure. However, these mechanisms, which govern the surface wettability, remain poorly understood. In this contribution, we introduce current research demonstrating the different intrinsic wettability of metals, rare earth oxides, and other smooth materials, showing that they are intrinsically hydrophilic. Then we provide details on research focusing on the transition from wetting (hydrophilicity) to non-wetting (hydrophobicity) on somooth surfaces due to adsorption of volatile organic compounds. A state-of-the-art figure of merit mapping the wettability of different smooth solid surfaces to ambient exposure as a function of the surface carbon content has also been developed. In addition, we analyse recent works that address these wetting transitions so to shed light on how such processes affect droplet pinning and lateral adhesion. We then conclude with objective perspectives about research on wetting to non-wetting transitions on smooth solid surfaces in an attempt to raise awareness regarding this surface contamination phenomenon within the engineering, interfacial science, and physical chemistry domains.
Collapse
Affiliation(s)
- Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Junho Oh
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Xiao Yan
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Soumyadip Sett
- Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Yasuyuki Takata
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nenad Miljkovic
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Khellil Sefiane
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK
| |
Collapse
|
27
|
Huskić M, Kepić D, Kleut D, Mozetič M, Vesel A, Anžlovar A, Bogdanović DB, Jovanović S. The Influence of Reaction Conditions on the Properties of Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:281. [PMID: 38334554 PMCID: PMC10856647 DOI: 10.3390/nano14030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The present study focuses on correlations between three parameters: (1) graphite particle size, (2) the ratio of graphite to oxidizing agent (KMnO4), and (3) the ratio of graphite to acid (H2SO4 and H3PO4), with the reaction yield, structure, and properties of graphene oxide (GO). The correlations are a challenge, as these three parameters can hardly be separated from each other due to the variations in the viscosity of the system. The larger the graphite particles, the higher the viscosity of GO. Decreasing the ratio of graphite to KMnO4 from 1:4 to 1:6 generally leads to a higher degree of oxidation and a higher reaction yield. However, the differences are very small. Increasing the graphite-to-acid-volume ratio from 1 g/60 mL to 1 g/80 mL, except for the smallest particles, reduced the degree of oxidation and slightly reduced the reaction yield. However, the reaction yield mainly depends on the extent of purification of GO by water, not on the reaction conditions. The large differences in the thermal decomposition of GO are mainly due to the bulk particle size and less to other parameters.
Collapse
Affiliation(s)
- Miroslav Huskić
- Faculty of Polymer Technology, 2380 Slovenj Gradec, Slovenia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia (S.J.)
| | - Duška Kleut
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia (S.J.)
| | - Miran Mozetič
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.M.); (A.V.)
| | - Alenka Vesel
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.M.); (A.V.)
| | - Alojz Anžlovar
- National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | | | - Svetlana Jovanović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia (S.J.)
| |
Collapse
|
28
|
Kitsawat V, Siri S, Phisalaphong M. Electrically Conductive Natural Rubber Composite Films Reinforced with Graphite Platelets. Polymers (Basel) 2024; 16:288. [PMID: 38276696 PMCID: PMC10819126 DOI: 10.3390/polym16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Green natural rubber (NR) composites reinforced with synthetic graphite platelets, using alginate as a thickening and dispersing agent, were successfully developed to improve mechanical properties, chemical resistance, and electrical conductivity. The fabrication was performed using a latex aqueous microdispersion process. The research demonstrated the effective incorporation of graphite platelets into the NR matrix up to 60 parts per hundred rubbers (phr) without causing agglomeration or phase separation. Graphite incorporation significantly improved the mechanical strength of the composite films. NR with 60 phr of graphite exhibited the highest Young's modulus of 12.3 MPa, roughly 100 times that of the neat NR film. The reinforcement also strongly improved the hydrophilicity of the composite films, resulting in a higher initial water absorption rate compared to the neat NR film. Moreover, the incorporation of graphite significantly improved the chemical resistance of the composite films against nonpolar solvents, such as toluene. The composite films exhibited biodegradability at about 21% to 30% after 90 days in soil. The electrical conductivity of the composite films was considerably enhanced up to 2.18 × 10-4 S/cm at a graphite loading of 60 phr. According to the improved properties, the developed composites have potential applications in electronic substrates.
Collapse
Affiliation(s)
| | | | - Muenduen Phisalaphong
- Bio-Circular-Green Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (V.K.); (S.S.)
| |
Collapse
|
29
|
Guo Y, Zhu B, Tang CY, Zhou Q, Zhu Y. Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis. Nat Commun 2024; 15:428. [PMID: 38200002 PMCID: PMC10781792 DOI: 10.1038/s41467-024-44700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Rapid mass transfer in solid-solid reactions is crucial for catalysis. Although phoretic nanoparticles offer potential for increased collision efficiency between solids, their implementation is hindered by limited interaction ranges. Here, we present a self-driven long-range electrophoresis of organic nanocrystals facilitated by a rationally designed photogenerated outer electric field (OEF) on their surface. Employing perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecular nanocrystals as a model, we demonstrate that a directional OEF with an intensity of 13.6-0.4 kV m-1 across a range of 25-200 μm. This OEF-driven targeted electrophoresis of PTCDA nanocrystals onto the microplastic surface enhances the activity for subsequent decomposition of microplastics (196.8 mg h-1) into CO2 by solid-solid catalysis. As supported by operando characterizations and theoretical calculations, the OEF surrounds PTCDA nanocrystals initially, directing from the electron-rich (0 1 1) to the hole-rich [Formula: see text] surface. Upon surface charge modulation, the direction of OEF changes toward the solid substrate. The OEF-driven electrophoretic effect in organic nanocrystals with anisotropic charge enrichment characteristics indicates potential advancements in realizing effective solid-solid photocatalysis.
Collapse
Affiliation(s)
- Yan Guo
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Bowen Zhu
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100032, Beijing, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, 999077, China.
| | - Qixin Zhou
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Wang P, Misra RP, Zhang C, Blankschtein D, Wang Y. Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:159-169. [PMID: 38095654 DOI: 10.1021/acs.langmuir.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
31
|
Barria-Urenda M, Ruiz-Fernandez A, Gonzalez C, Oostenbrink C, Garate JA. Size Matters: Free-Energy Calculations of Amino Acid Adsorption over Pristine Graphene. J Chem Inf Model 2023; 63:6642-6654. [PMID: 37909535 DOI: 10.1021/acs.jcim.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is still growing interest in graphene interactions with proteins, both for its possible biological applications and due to concerns over detrimental effects at the cellular level. As with any process involving proteins, an understanding of amino acid composition is desirable. In this work, we systematically studied the adsorption process of amino acids onto pristine graphene via rigorous free-energy calculations. We characterized the free energy, potential energy, and entropy of the adsorption of all proteinogenic amino acids. The energetic components were further separated into pair interaction contributions. A linear correlation was found between the free energy and the solvent accessible surface area change during adsorption (ΔSASAads) over pristine graphene and uncharged amino acids. Free energies over pristine graphene were compared with adsorption onto graphene oxide, finding an almost complete loss of the favorability of amino acid adsorption onto graphene. Finally, the correlation with ΔSASAads was used to successfully predict the free energy of adsorption of several penta-l-peptides in different structural states and sequences. Due to the relative ease of calculating the ΔSASAads compared to free-energy calculations, it could prove to be a cost-effective predictor of the free energy of adsorption for proteins onto nonpolar surfaces.
Collapse
Affiliation(s)
- Mateo Barria-Urenda
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Doctorado en Ciencias, Mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Alvaro Ruiz-Fernandez
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
| | - Carlos Gonzalez
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, 7510602 Santiago, Chile
| |
Collapse
|
32
|
Liu J, Yang X, Fang H, Yan W, Ouyang W, Liu Z. In Situ Twistronics: A New Platform Based on Superlubricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305072. [PMID: 37867201 DOI: 10.1002/adma.202305072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Indexed: 10/24/2023]
Abstract
Twistronics, an emerging field focused on exploring the unique electrical properties induced by twist interface in graphene multilayers, has garnered significant attention in recent years. The general manipulation of twist angle depends on the assembly of van der Waals (vdW) layered materials, which has led to the discovery of unconventional superconductivity, ferroelectricity, and nonlinear optics, thereby expanding the realm of twistronics. Recently, in situ tuning of interlayer conductivity in vdW layered materials has been achieved based on scanning probe microscope. In this Perspective, the advancements in in situ twistronics are focused on by reviewing the state-of-the-art in situ manipulating technology, discussing the underlying mechanism based on the concept of structural superlubricity, and exploiting the real-time twistronic tests under scanning electron microscope (SEM). It is shown that the real-time manipulation under SEM allows for visualizing and monitoring the interface status during in situ twistronic testing. By harnessing the unique tribological properties of vdW layered materials, this novel platform not only enhances the fabrication of twistronic devices but also facilitates the fundamental understanding of interface phenomena in vdW layered materials. Moreover, this platform holds great promise for the application of twistronic-mechanical systems, providing avenues for the integration of twistronics into various mechanical frameworks.
Collapse
Affiliation(s)
- Jianxin Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaoqi Yang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Weidong Yan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
33
|
Kyrkjebø S, Cassidy A, Lambrick S, Jardine A, Holst B, Hornekær L. 3He spin-echo scattering indicates hindered diffusion of isolated water molecules on graphene-covered Ir(111). Front Chem 2023; 11:1229546. [PMID: 37867993 PMCID: PMC10587411 DOI: 10.3389/fchem.2023.1229546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The dynamics of water diffusion on carbon surfaces are of interest in fields as diverse as furthering the use of graphene as an industrial-coating technology and understanding the catalytic role of carbon-based dust grains in the interstellar medium. The early stages of water-ice growth and the mobility of water adsorbates are inherently dependent on the microscopic mechanisms that facilitate water diffusion. Here, we use 3He spin-echo quasi-inelastic scattering to probe the microscopic mechanisms responsible for the diffusion of isolated water molecules on graphene-covered and bare Ir(111). The scattering of He atoms provides a non-invasive and highly surface-sensitive means to measure the rate at which absorbates move around on a substrate at very low coverage. Our results provide an approximate upper limit on the diffusion coefficient for water molecules on GrIr(111) of < 10 - 12 m2/s, an order of magnitude lower than the coefficient that describes the diffusion of water molecules on the bare Ir(111) surface. We attribute the hindered diffusion of water molecules on the GrIr(111) surface to water trapping at specific areas of the corrugated moiré superstructure. Lower mobility of water molecules on a surface is expected to lead to a lower ice nucleation rate and may enhance the macroscopic anti-icing properties of a surface.
Collapse
Affiliation(s)
- Signe Kyrkjebø
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Andrew Cassidy
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Sam Lambrick
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Jardine
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Bodil Holst
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| | - Liv Hornekær
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Tarábková H, Janda P. Effect of Graphite Aging on Its Wetting Properties and Surface Blocking by Gaseous Nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14154-14161. [PMID: 37734043 PMCID: PMC10552534 DOI: 10.1021/acs.langmuir.3c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Early works considered basal planes of highly ordered pyrolytic graphite (HOPG) as hydrophobic, relatively inert materials with low electrocatalytic activity due to nonpolar sp2 carbon. On the contrary, a freshly prepared HOPG surface exhibits intrinsically mildly hydrophilic properties, with a low contact angle of water, which increases after exposure to an ambient atmosphere. This process, called aging, ascribed to adsorption of airborne hydrocarbons, is reportedly accompanied by strong decay of electron transfer kinetics, the mechanism of which is not yet fully understood. Examining both freshly prepared and aged basal plane HOPG immersed in water by PeakForce quantitative nanomechanical imaging, we have found that aged HOPG is occupied by ambient gaseous nanodomains, the existence of which is explained by incomplete wetting. They cover up to 60% of the immersed surface and their incidence is in direct relation with graphite aging time. In contrast with aged graphite, gaseous nanodomains were absent on the freshly stripped HOPG surface. It can be concluded that ambient gaseous nanodomains can prevent aged basal plane HOPG from contact with aqueous media and may thus affect processes at the solid-liquid interface.
Collapse
Affiliation(s)
- Hana Tarábková
- Department of Electrochemical
Materials, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic
| | - Pavel Janda
- Department of Electrochemical
Materials, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic
| |
Collapse
|
35
|
Sun J, Zhu L, Liu Z. Preparation of a Wear-Resistant, Superhydrophobic SiO 2/Polymethyl Methacrylate Composite Coating on Aluminum Surface Processed with Nanosecond Laser. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6485. [PMID: 37834622 PMCID: PMC10573194 DOI: 10.3390/ma16196485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Superhydrophobic coatings are limited by complex preparation processes and poor mechanical durability in practical applications. In this study, a mechanically robust superhydrophobic composite coating was applied to an aluminum surface that underwent processing with a nanosecond laser (referred to as a superhydrophobic aluminum surface). It exhibits a high water contact angle (WCA) of 158.81°, a low sliding angle (SA) of less than 5°, and excellent self-cleaning ability. The wear test shows its durability, and the corrosion test shows its excellent corrosion resistance. This study provides a framework for the preparation of robust superhydrophobic surfaces that may have potential applications in many fields.
Collapse
Affiliation(s)
| | - Lin Zhu
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
| | - Zhuang Liu
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
36
|
Bai R, Tolman NL, Peng Z, Liu H. Influence of Atmospheric Contaminants on the Work Function of Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12159-12165. [PMID: 37581604 PMCID: PMC10469443 DOI: 10.1021/acs.langmuir.3c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Indexed: 08/16/2023]
Abstract
Airborne hydrocarbon contamination occurs rapidly on graphitic surfaces and negatively impact many of their material properties, yet much of the molecular details of the contamination remains unknown. We use Kelvin probe force microscopy (KPFM) to study the time evolution of the surface potential of graphite exposed to ambient. After exfoliation in air, the surface potential of graphite is not homogeneous and contains features that are absent in the topography image. In addition, the heterogeneity of the surface potential images increased in the first few days followed by a decrease at longer exposure times. These observations are strong support of slow conformation change, phase separation, and/or dynamic displacement of the adsorbed airborne contaminants.
Collapse
Affiliation(s)
- Ruobing Bai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathan L. Tolman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenbo Peng
- Chemical
Engineering College, Ningbo Polytechnic, Ningbo, Zhejiang 315806, P. R. China
| | - Haitao Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
Grassetti AV, May MB, Davis JH. Application of monolayer graphene to cryo-electron microscopy grids for high-resolution structure determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550908. [PMID: 37546934 PMCID: PMC10402136 DOI: 10.1101/2023.07.28.550908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In cryogenic electron microscopy (cryo-EM), purified macromolecules are typically applied to a grid bearing a holey carbon foil, blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice that is suspended across roughly 1 μm-wide foil holes. The resulting sample is then imaged using cryogenic transmission electron microscopy and, after substantial image processing, near-atomic resolution structures can be determined. Despite cryo-EM's widespread adoption, sample preparation remains a severe bottleneck in cryo-EM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryo-EM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryo-EM grids, and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of an exemplar Cas9 complex using a highly pure sample at a relatively low concentration.
Collapse
Affiliation(s)
- Andrew V. Grassetti
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mira B. May
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
38
|
Tonel MZ, Abal JPK, Fagan SB, Barbosa MC. Ab initio study of water anchored in graphene pristine and vacancy-type defects. J Mol Model 2023; 29:198. [PMID: 37268861 DOI: 10.1007/s00894-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - João Pedro Kleinubing Abal
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| | - Solange Binotto Fagan
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Marcia Cristina Barbosa
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
39
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
40
|
Ganjeh-Anzabi P, Jahandideh H, Kedzior SA, Trifkovic M. Precise quantification of nanoparticle surface free energy via colloidal probe atomic force microscopy. J Colloid Interface Sci 2023; 641:404-413. [PMID: 36940596 DOI: 10.1016/j.jcis.2023.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Interfacial interactions of nanoparticles (NPs) in colloids are greatly influenced by the NP surface free energy (SFE). Due to the intrinsic physical and chemical heterogeneity of the NP surface, measuring SFE is nontrivial. The use of direct force measurement methods, such as colloidal probe atomic force microscopy (CP-AFM), have been proven to be effective for the determination of SFE on relatively smooth surfaces, but fail to provide reliable measurements for rough surfaces generated by NPs. Here, we developed a reliable approach to determine the SFE of NPs by adopting Persson's contact theory to include the effect of surface roughness on the measurements in CP-AFM experiments. We obtain the SFE for a range of materials varying in surface roughness and surface chemistry. The reliability of the proposed method is verified by the SFE determination of polystyrene. Subsequently, the SFE of bare and functionalized silica, graphene oxide, and reduced graphene oxide were quantified and validity of the results was demonstrated. The presented method unlocks the potential of CP-AFM as a robust and reliable method of the SFE determination of nanoparticles with a heterogeneous surface, which is challenging to obtain with conventionally implemented experimental techniques.
Collapse
Affiliation(s)
- Pejman Ganjeh-Anzabi
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heidi Jahandideh
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
41
|
Bala M, Singh V. Facile fabrication of robust self-cleaning fluorine-free reduced graphene oxide based superhydrophobic surfaces. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
42
|
Tam J, Brodersen PM, Ohta H, Erb U. Contamination of rare earth oxide surfaces stored in vacuum environment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Carpenter J, Kim H, Suarez J, van der Zande A, Miljkovic N. The Surface Energy of Hydrogenated and Fluorinated Graphene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2429-2436. [PMID: 36563177 DOI: 10.1021/acsami.2c18329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The surface energy of graphene and its chemical derivatives governs fundamental interfacial interactions like molecular assembly, wetting, and doping. However, quantifying the surface energy of supported two-dimensional (2D) materials, such as graphene, is difficult because (1) they are so thin that electrostatic interactions emanating from the underlying substrate are not completely screened, (2) the contribution from the monolayer is sensitive to its exact chemical state, and (3) the adsorption of airborne contaminants, as well as contaminants introduced during transfer processing, screens the electrostatic interactions from the monolayer and underlying substrate, changing the determined surface energy. Here, we determine the polar and dispersive surface energy of bare, fluorinated, and hydrogenated graphene through contact angle measurements with water and diiodomethane. We accounted for many contributing factors, including substrate surface energies and combating adsorption of airborne contaminants. Hydrogenating graphene raises its polar surface energy with little effect on its dispersive surface energy. Fluorinating graphene lowers its dispersive surface energy with a substrate-dependent effect on its polar surface energy. These results unravel how changing the chemical structure of graphene modifies its surface energy, with applications for hybrid nanomaterials, bioadhesion, biosensing, and thin-film assembly.
Collapse
Affiliation(s)
- James Carpenter
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jules Suarez
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Arend van der Zande
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Garcia R. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS NANO 2023; 17:51-69. [PMID: 36507725 PMCID: PMC10664075 DOI: 10.1021/acsnano.2c10215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The optical, electronic, and mechanical properties of graphite, few-layer, and two-dimensional (2D) materials have prompted a considerable number of applications. Biosensing, energy storage, and water desalination illustrate applications that require a molecular-scale understanding of the interfacial water structure on 2D materials. This review introduces the most recent experimental and theoretical advances on the structure of interfacial liquid water on graphite-like and 2D materials surfaces. On pristine conditions, atomic-scale resolution experiments revealed the existence of 1-3 hydration layers. Those layers were separated by ∼0.3 nm. The experimental data were supported by molecular dynamics simulations. However, under standard working conditions, atomic-scale resolution experiments revealed the presence of 2-3 hydrocarbon layers. Those layers were separated by ∼0.5 nm. Linear alkanes were the dominant molecular specie within the hydrocarbon layers. Paradoxically, the interface of an aged 2D material surface immersed in water does not have water molecules on its vicinity. Free-energy considerations favored the replacement of water by alkanes.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales
de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049Madrid, Spain
| |
Collapse
|
45
|
Pálinkás A, Kálvin G, Vancsó P, Kandrai K, Szendrő M, Németh G, Németh M, Pekker Á, Pap JS, Petrik P, Kamarás K, Tapasztó L, Nemes-Incze P. The composition and structure of the ubiquitous hydrocarbon contamination on van der Waals materials. Nat Commun 2022; 13:6770. [PMID: 36351922 PMCID: PMC9646725 DOI: 10.1038/s41467-022-34641-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
The behavior of single layer van der Waals (vdW) materials is profoundly influenced by the immediate atomic environment at their surface, a prime example being the myriad of emergent properties in artificial heterostructures. Equally significant are adsorbates deposited onto their surface from ambient. While vdW interfaces are well understood, our knowledge regarding atmospheric contamination is severely limited. Here we show that the common ambient contamination on the surface of: graphene, graphite, hBN and MoS2 is composed of a self-organized molecular layer, which forms during a few days of ambient exposure. Using low-temperature STM measurements we image the atomic structure of this adlayer and in combination with infrared spectroscopy identify the contaminant molecules as normal alkanes with lengths of 20-26 carbon atoms. Through its ability to self-organize, the alkane layer displaces the manifold other airborne contaminant species, capping the surface of vdW materials and possibly dominating their interaction with the environment. Here, the authors attribute the ambient surface contamination of van der Waals materials to a self-organized molecular layer of normal alkanes with lengths of 20-26 carbon atoms. The alkane adlayer displaces the manifold other airborne contaminant species, capping the surface of graphene, graphite, hBN and MoS2.
Collapse
|
46
|
Fang H, Geng Z, Guan N, Zhou L, Zhang L, Hu J. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. SOFT MATTER 2022; 18:8251-8261. [PMID: 36278324 DOI: 10.1039/d2sm00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spherical nanobubbles and flat micropancakes are two typical states of gas aggregation on solid-liquid surfaces. Micropancakes, which are quasi-two-dimensional gaseous structures, are often produced accompanied by surface nanobubbles. Compared with surface nanobubbles, the intrinsic properties of micropancakes are barely understood due to the challenge of the highly efficient preparation and characterization of such structures. The hydrophobicity of the substrate and gas saturation of solvents are two crucial factors for the nucleation and stability of interfacial gas domains. Herein, we investigated the synergistic effect of the surface hydrophobicity and gas saturation on the generation of interfacial gas structures. Different surface hydrophobicities were achieved by the aging process of highly oriented pyrolytic graphite (HOPG). The results indicated that higher surface hydrophobicity and gas oversaturation could create surface nanobubbles and micropancakes with higher efficiency. Strong surface hydrophobicity could promote nanobubble nucleation and higher gas saturation would induce bigger nanobubbles. Degassed experiments could remove most of these structures and prove that they are actually gaseous domains. Finally, we draw a region diagram to describe the formation conditions of nanobubbles, micropancakes based on observations. These results would be very helpful for further understanding the formation of interfacial gas structures on the hydrophobic surface under different gas saturation.
Collapse
Affiliation(s)
- Hengxin Fang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
47
|
Esser TK, Böhning J, Fremdling P, Bharat T, Gault J, Rauschenbach S. Cryo-EM samples of gas-phase purified protein assemblies using native electrospray ion-beam deposition. Faraday Discuss 2022; 240:67-80. [PMID: 36065984 PMCID: PMC9641999 DOI: 10.1039/d2fd00065b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An increasing number of studies on biomolecular function indirectly combine mass spectrometry (MS) with imaging techniques such as cryo electron microscopy (cryo-EM). This approach allows information on the homogeneity, stoichiometry, shape, and interactions of native protein complexes to be obtained, complementary to high-resolution protein structures. We have recently demonstrated TEM sample preparation via native electrospray ion-beam deposition (ES-IBD) as a direct link between native MS and cryo-EM. This workflow forms a potential new route to the reliable preparation of homogeneous cryo-EM samples and a better understanding of the relation between native solution-phase and native-like gas-phase structures. However, many aspects of the workflow need to be understood and optimized to obtain performance comparable to that of state-of-the-art cryo-EM. Here, we expand on the previous discussion of key factors by probing the effects of substrate type and deposition energy. We present and discuss micrographs from native ES-IBD samples with amorphous carbon, graphene, and graphene oxide, as well as landing energies in the range between 2 and 150 eV per charge.
Collapse
Affiliation(s)
- Tim K. Esser
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Jan Böhning
- Sir William Dunn School of Pathology, University of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Paul Fremdling
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Tanmay Bharat
- Sir William Dunn School of Pathology, University of OxfordSouth Parks RoadOxfordOX1 3REUK,Structural Studies Division, MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUK
| | - Joseph Gault
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Stephan Rauschenbach
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK,Max Planck Institute for Solid State ResearchHeisenbergstrasse 1StuttgartDE-70569Germany
| |
Collapse
|
48
|
Park C, Robinson F, Kim D. Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene. MICROMACHINES 2022; 13:1786. [PMID: 36296139 PMCID: PMC9607007 DOI: 10.3390/mi13101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In the present work, the effects on water transport due to the orientation of the layer in the multilayered porous graphene and the different patterns formed when the layer is oriented to some degrees are studied for both circular and non-circular pore configurations. Interestingly, the five-layered graphene membrane with a layer separation of 3.5 Å used in this study shows that the water transport through multilayered porous graphene can be augmented by introducing an angle to certain layers of the multilayered membrane system.
Collapse
|
49
|
Dong Y, Li J, Yang XY. Reactions between graphene oxide sheets cause irreversible agglomeration. Sci Bull (Beijing) 2022; 67:1943-1945. [PMID: 36546200 DOI: 10.1016/j.scib.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying Dong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan 430070, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Evaluation and characterization of starch nanoparticles for adsorption of urea from dialysates. Int J Biol Macromol 2022; 221:965-975. [PMID: 36113595 DOI: 10.1016/j.ijbiomac.2022.09.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Abstract
Starch nanoparticles (SNPs) was produced from type-A, B and C native starches (corn, potato and Trichosanthes kirilowii pulp starches respectively), via the nanoprecipitation method. The SNPs showed different amylose contents, water contact angles, surface morphologies and urea clearance performances. In this work, to examine the parameters of SNPs that may change the urea adsorption capacity, urea adsorption performance in adsorption environments with different pH values, urea concentrations, and adsorption times was examined. Thereafter, the characteristics of SNPs were tested by water contact angle measurements (WCA), transmission electron microscopy, specific surface area measurements, gel permeation chromatography, and zeta potential analysis. The results showed that the Trichosanthes kirilowii pulp (C) SNPs show better adsorption than the corn (A) and potato (B) SNPs. The hydrophobicity of SNPs promotes the urea adsorption of the SNPs. Using grey relational analysis, it was found that WCA and Mn are the critical parameter affecting the adsorption performance, with WCA and Mn within the ranges of 31-33° and 1900-2100 kDa, respectively, were found to be the conditions for optimal urea adsorption.
Collapse
|