1
|
Erickson A, Zhang Q, Vakili H, Li C, Sarin S, Lamichhane S, Jia L, Fescenko I, Schwartz E, Liou SH, Shield JE, Chai G, Kovalev AA, Chen J, Laraoui A. Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers. ACS NANO 2024. [PMID: 39471305 DOI: 10.1021/acsnano.4c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion-antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.
Collapse
Affiliation(s)
- Adam Erickson
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Hamed Vakili
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Chaozhong Li
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Suchit Sarin
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Lanxin Jia
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Ilja Fescenko
- Laser Center, University of Latvia, Jelgavas St 3, Riga LV-1004, Latvia
| | - Edward Schwartz
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jeffrey E Shield
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Guozhi Chai
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Alexey A Kovalev
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Abdelghani Laraoui
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| |
Collapse
|
2
|
Ohki Y, Mochizuki M. Fundamental theory of current-induced motion of magnetic skyrmions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023003. [PMID: 39393399 DOI: 10.1088/1361-648x/ad861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
Magnetic skyrmions are topological spin textures that appear in magnets with broken spatial inversion symmetry as a consequence of competition between the (anti)ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interactions in a magnetic field. In the research of spintronics, the current-driven dynamics of skyrmions has been extensively studied aiming at their applications to next-generation spintronic devices. However, current-induced skyrmion motion exhibits diverse behaviors depending on various factors and conditions such as the type of skyrmion, driving mechanism, system geometry, direction of applied current, and type of the magnet. While this variety attracts enormous research interest of fundamental science and enriches their possibilities of technical applications, it is, at the same time, a source of difficulty and complexity that hinders their comprehensive understandings. In this article, we discuss fundamental and systematic theoretical descriptions of current-induced motion of skyrmions driven by the spin-transfer torque and the spin-orbit torque. Specifically, we theoretically describe the behaviors of current-driven skyrmions depending on the factors and conditions mentioned above by means of analyses using the Thiele equation. Furthermore, the results of the analytical theory are visually demonstrated and quantitatively confirmed by micromagnetic simulations using the Landau-Lifshitz-Gilbert-Slonczewski equation. In particular, we discuss dependence of the direction and velocity of motion on the type of skyrmion (Bloch type and Néel type) and its helicity, the system geometry (thin plate and nanotrack), the direction of applied current (length and width direction of the nanotrack) and its spin-polarization orientation, and the type of magnet (ferromagnet and antiferromagnet). The comprehensive theory provided by this article is expected to contribute significantly to research on the manipulation and control of magnetic skyrmions by electric currents for future spintronics applications.
Collapse
Affiliation(s)
- Yuto Ohki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Shang T, Xu Y, Gao S, Yang R, Shiroka T, Shi M. Experimental progress in Eu(Al,Ga) 4topological antiferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:013002. [PMID: 39270720 DOI: 10.1088/1361-648x/ad7ac0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The non-trivial magnetic and electronic phases occurring in topological magnets are often entangled, thus leading to a variety of exotic physical properties. Recently, the BaAl4-type compounds have been extensively investigated to elucidate the topological features appearing in their real- and momentum spaces. In particular, the topological Hall effect and the spin textures, typical of the centrosymmetric Eu(Al,Ga)4family, have stimulated extensive experimental and theoretical research. In this topical review, we discuss the latest findings on the Eu(Al,Ga)4topological antiferromagnets and related materials, arising from a wide range of experimental techniques. We show that Eu(Al,Ga)4represents a suitable platform to explore the interplay between lattice-, charge-, and spin degrees of freedom, and associated emergent phenomena. Finally, we address some key questions open to future investigation.
Collapse
Affiliation(s)
- Tian Shang
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yang Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Shang Gao
- Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Run Yang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Toni Shiroka
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ming Shi
- Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
4
|
Shi H, Zhang J, Xi Y, Li H, Chen J, Ahmed I, Ma Z, Cheng N, Zhou X, Jin H, Zhou X, Liu J, Sun Y, Wang J, Li J, Yu T, Hao W, Zhang S, Du Y. Dynamic Behavior of Above-Room-Temperature Robust Skyrmions in 2D Van der Waals Magnet. NANO LETTERS 2024; 24:11246-11254. [PMID: 39207036 DOI: 10.1021/acs.nanolett.4c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices. Here, we report the realization of skyrmions at above room temperature in the 2D ferromagnet Fe3GaTe2. The thickness tunability of their skyrmion size and the formation of the skyrmion lattice are revealed. Furthermore, we demonstrate that the skyrmions can be moved by a low-density current at room temperature, together with an apparent skyrmion Hall effect, which is consistent with our quantitative micromagnetic simulation. Our work offers a promising 2D material platform for harnessing magnetic skyrmions in practical device applications.
Collapse
Affiliation(s)
- Hanqing Shi
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jingwei Zhang
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | | | - Heping Li
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jingyi Chen
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Iftikhar Ahmed
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijie Ma
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Zhou
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Haonan Jin
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Xinyi Zhou
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiaqi Liu
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Ying Sun
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jianfeng Wang
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Jun Li
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Ting Yu
- School of Physical and Technology, Wuhan University, Wuhan, Hubei 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Key Laboratory of Artificial Micro- and Nano- structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Weichang Hao
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| | - Shilei Zhang
- School of Physical Science and Technology, Shanghai Tech University, Pudong New Area, Shanghai 201210, China
| | - Yi Du
- School of Physics, Beihang University, Haidian District, Beijing 100191, China
| |
Collapse
|
5
|
Xu Z, Zhu Y, Wang Y, Li X, Liu Q, Chen K, Wang J, Jiang Y, Chen L. Tailoring Dzyaloshinskii-Moriya Interaction and Spin-Hall Topological Hall Effect in Insulating Magnetic Oxides by Interface Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403852. [PMID: 38984469 PMCID: PMC11425861 DOI: 10.1002/advs.202403852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Chiral spin textures, as exotic phases in magnetic materials, hold immense promise for revolutionizing logic, and memory applications. Recently, chiral spin textures have been observed in centrosymmetric magnetic insulators (FMI), due to an interfacial Dzyaloshinskii-Moriya interaction (iDMI). However, the source and origin of this iDMI remain enigmatic in magnetic insulator systems. Here, the source and origin of the iDMI in Pt/Y3Fe5O12 (YIG)/substrate structures are deeply delved by examining the spin-Hall topological Hall effect (SH-THE), an indication of chiral spin textures formed due to an iDMI. Through carefully modifying the interfacial chemical composition of Pt/YIG/substrate with a nonmagnetic Al3+ doping, the obvious dependence of SH-THE on the interfacial chemical composition for both the heavy metal (HM)/FMI and FMI/substrate interfaces is observed. The results reveal that both interfaces contribute to the strength of the iDMI, and the iDMI arises due to strong spin-orbit coupling and inversion symmetry breaking at both interfaces in HM/FMI/substrate. Importantly, it is shown that nonmagnetic substitution and interface engineering can significantly tune the SH-THE and iDMI in ferrimagnetic iron garnets. The approach offers a viable route to tailor the iDMI and associated chiral spin textures in low-damping insulating magnetic oxides, thus advancing the field of spintronics.
Collapse
Affiliation(s)
- Zedong Xu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuanmin Zhu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yuming Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong Jiang
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Zhao L, Hua C, Song C, Yu W, Jiang W. Realization of skyrmion shift register. Sci Bull (Beijing) 2024; 69:2370-2378. [PMID: 38960814 DOI: 10.1016/j.scib.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
The big data explosion demands novel data storage technology. Among many different approaches, solitonic racetrack memory devices hold great promise for accommodating nonvolatile and low-power functionalities. As representative topological solitons, magnetic skyrmions are envisioned as potential information carriers for efficient information processing. While their advantages as memory and logic elements have been vastly exploited from theoretical perspectives, the corresponding experimental efforts are rather limited. These challenges, which are key to versatile skyrmionic devices, will be studied in this work. Through patterning concaved surface topography with designed arrays of indentations on standard Si/SiO2 substrates, we demonstrate that the resultant non-flat energy landscape could lead to the formation of hexagonal and square skyrmion lattices in Ta/CoFeB/MgO multilayers. Based on these films, one-dimensional racetrack devices are subsequently fabricated, in which a long-distance deterministic shifting of skyrmions between neighboring indentations is achieved at room temperature. Through separating the word line and the bit line, a prototype shift register device, which can sequentially generate and precisely shift complex skyrmionic data strings, is presented. The deterministic writing and long-distance shifting of skyrmionic bits can find potential applications in transformative skyrmionic memory, logic as well as the in-memory computing devices.
Collapse
Affiliation(s)
- Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chensong Hua
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Weichao Yu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Guo Y, Zhuo F, Li H. Influence of the Hall-bar geometry on texture-induced topological spin transport in two-dimensional Rashba spin-orbit ferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:415801. [PMID: 38959901 DOI: 10.1088/1361-648x/ad5eea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.
Collapse
Affiliation(s)
- Yufei Guo
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | - Fengjun Zhuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
8
|
Lee J, Kim J. Construction of a cryogenic dual scanner magnetic force microscope equipped with piezoresistive cantilever. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073701. [PMID: 38949468 DOI: 10.1063/5.0214904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
We present a low-temperature magnetic force microscope (MFM) incorporating a piezoresistive cantilever and a dual-range scanner for experiments across a wide temperature range from cryogenic levels to room temperature. The piezoresistor-based MFM eliminates the need for optical readjustment, typically required due to thermal expansion at varying temperatures, thereby providing a more stable and precise measurement environment. The integration of a dual scanner system expands the versatility of scanning operations, enabling accurate sample positioning for detailed exploration of magnetic and superconducting properties under diverse thermal conditions. To demonstrate the capabilities of our MFM, we show detailed imaging of Fe3GaTe2, a van der Waals ferromagnet, and Yb0.7Y0.3CuAs2, a ferromagnetic cluster glass material. These studies demonstrate the potential of our MFM in revealing intricate details of magnetic domain dynamics and contribute to our understanding of materials exhibiting the anomalous Hall effect as well as superconducting phenomena.
Collapse
Affiliation(s)
- Jungsub Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jeehoon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
- Moeemotion, Change-up Ground, Pohang 37673, South Korea
| |
Collapse
|
9
|
Zhou Y, Li S, Liang X, Zhou Y. Topological Spin Textures: Basic Physics and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312935. [PMID: 38861696 DOI: 10.1002/adma.202312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/24/2024] [Indexed: 06/13/2024]
Abstract
In the face of escalating modern data storage demands and the constraints of Moore's Law, exploring spintronic solutions, particularly the devices based on magnetic skyrmions, has emerged as a promising frontier in scientific research. Since the first experimental observation of skyrmions, topological spin textures have been extensively studied for their great potential as efficient information carriers in spintronic devices. However, significant challenges have emerged alongside this progress. This review aims to synthesize recent advances in skyrmion research while addressing the major issues encountered in the field. Additionally, current research on promising topological spin structures in addition to skyrmions is summarized. Beyond 2D structures, exploration also extends to 1D magnetic solitons and 3D spin textures. In addition, a diverse array of emerging magnetic materials is introduced, including antiferromagnets and 2D van der Waals magnets, broadening the scope of potential materials hosting topological spin textures. Through a systematic examination of magnetic principles, topological categorization, and the dynamics of spin textures, a comprehensive overview of experimental and theoretical advances in the research of topological magnetism is provided. Finally, both conventional and unconventional applications are summarized based on spin textures proposed thus far. This review provides an outlook on future development in applied spintronics.
Collapse
Affiliation(s)
- Yuqing Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
10
|
Zhang C, Jiang Z, Jiang J, He W, Zhang J, Hu F, Zhao S, Yang D, Liu Y, Peng Y, Yang H, Yang H. Above-room-temperature chiral skyrmion lattice and Dzyaloshinskii-Moriya interaction in a van der Waals ferromagnet Fe 3-xGaTe 2. Nat Commun 2024; 15:4472. [PMID: 38796498 PMCID: PMC11127993 DOI: 10.1038/s41467-024-48799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
Skyrmions in existing 2D van der Waals (vdW) materials have primarily been limited to cryogenic temperatures, and the underlying physical mechanism of the Dzyaloshinskii-Moriya interaction (DMI), a crucial ingredient for stabilizing chiral skyrmions, remains inadequately explored. Here, we report the observation of Néel-type skyrmions in a vdW ferromagnet Fe3-xGaTe2 above room temperature. Contrary to previous assumptions of centrosymmetry in Fe3-xGaTe2, the atomic-resolution scanning transmission electron microscopy reveals that the off-centered FeΙΙ atoms break the spatial inversion symmetry, rendering it a polar metal. First-principles calculations further elucidate that the DMI primarily stems from the Te sublayers through the Fert-Lévy mechanism. Remarkably, the chiral skyrmion lattice in Fe3-xGaTe2 can persist up to 330 K at zero magnetic field, demonstrating superior thermal stability compared to other known skyrmion vdW magnets. This work provides valuable insights into skyrmionics and presents promising prospects for 2D material-based skyrmion devices operating beyond room temperature.
Collapse
Affiliation(s)
- Chenhui Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Ze Jiang
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Jiang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wa He
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Zhang
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Fanrui Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Shishun Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Dongsheng Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yakun Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yong Peng
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
| | - Hongxin Yang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou, 310058, China.
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
11
|
Cui Q, Zhu Y, Jiang J, Cui P, Yang H, Chang K, Wang K. Anatomy of Hidden Dzyaloshinskii-Moriya Interactions and Topological Spin Textures in Centrosymmetric Crystals. NANO LETTERS 2024. [PMID: 38739551 DOI: 10.1021/acs.nanolett.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI) is understood to be forbidden by the symmetry of centrosymmetric systems, thus restricting the candidate types for investigating many correlated physical phenomena. Here, we report the hidden DMI existing in centrosymmetric magnets driven by the local inversion symmetry breaking of specific spin sublattices. The opposite DMI spatially localized on the inverse spin sublattice favors the separated spin spiral with opposite chirality. Furthermore, we elucidate that hidden DMI widely exists in many potential candidates, from the first-principles calculations on the mature crystal database. Interestingly, novel topological spin configurations, such as the anti-chirality-locked merons and antiferromagnetic-ferromagnetic meron chains, are stabilized as a consequence of hidden DMI. Our understanding enables the effective control of DMI by symmetry operations at the atomic level and enlarges the range of currently useful magnets for topological magnetism.
Collapse
Affiliation(s)
- Qirui Cui
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yingmei Zhu
- Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311305, China
| | - Jiawei Jiang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Ping Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Yongjiang Laboratory, Ningbo 315202, China
| | - Hongxin Yang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kai Chang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu C, Zhang S, Hao H, Algaidi H, Ma Y, Zhang XX. Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe 3GaTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311022. [PMID: 38290153 DOI: 10.1002/adma.202311022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Indexed: 02/01/2024]
Abstract
2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30-180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.
Collapse
Affiliation(s)
- Chen Liu
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Senfu Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hongyuan Hao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hanin Algaidi
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Webb TA, Tamanna AN, Ding X, Verma N, Xu J, Krusin-Elbaum L, Dean CR, Basov DN, Pasupathy AN. Tunable Magnetic Domains in Ferrimagnetic MnSb 2Te 4. NANO LETTERS 2024; 24:4393-4399. [PMID: 38569084 DOI: 10.1021/acs.nanolett.3c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Highly tunable properties make Mn(Bi,Sb)2Te4 a rich playground for exploring the interplay between band topology and magnetism: On one end, MnBi2Te4 is an antiferromagnetic topological insulator, while the magnetic structure of MnSb2Te4 (MST) can be tuned between antiferromagnetic and ferrimagnetic. Motivated to control electronic properties through real-space magnetic textures, we use magnetic force microscopy (MFM) to image the domains of ferrimagnetic MST. We find that magnetic field tunes between stripe and bubble domain morphologies, raising the possibility of topological spin textures. Moreover, we combine in situ transport with domain manipulation and imaging to both write MST device properties and directly measure the scaling of the Hall response with the domain area. This work demonstrates measurement of the local anomalous Hall response using MFM and opens the door to reconfigurable domain-based devices in the M(B,S)T family.
Collapse
Affiliation(s)
- Tatiana A Webb
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Afrin N Tamanna
- Department of Physics, The City College of New York, New York, New York 10027, United States
| | - Xiaxin Ding
- Department of Physics, The City College of New York, New York, New York 10027, United States
| | - Nishchhal Verma
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Jikai Xu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Lia Krusin-Elbaum
- Department of Physics, The City College of New York, New York, New York 10027, United States
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Dmitri N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
14
|
Lu XM, Cao Y, Sun Y, Wang H, Sun W, Xu Y, Wu Y, Yang C, Wang Y. sp-Carbon-Conjugated Organic Polymer as Multifunctional Interfacial Layers for Ultra-Long Dendrite-Free Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202320259. [PMID: 38332561 DOI: 10.1002/anie.202320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Fatal issues in lithium metal anodes (LMA), such as detrimental lithium dendrites growth and fragile solid-electrolyte interphase (SEI) during the Li plating/stripping process, often hinder the practical application of Li metal batteries (LMBs). Herein, cobalt-coordinated sp-carbon-conjugated organic polymer (Co-spc-COP) is constructed as the protective layer for regulating the interface stability of LMA. The unique synergistic beneficial effect of organic functional groups (C≡C linkage, C=N units and aromatic rings) and Co sites not only regulate the Li+ coordination environment and rearrange Li+ concentration to facilitate its transport by optimizing the electronic density, enhancing the compatibility with electrolyte interface and supplying "external magnetic driving strategy", but also strengthens the interfacial stiffness with high Young's modulus to better withstand the mechanical stress. These beneficial effects and relative underlying working mode and mechanism of uniform Li plating and rapid Li+ migration on the Co-spc-COP are also revealed by various in situ/ex situ experimental technologies and theory calculation. The Co-spc-COP-based cell delivers an extraordinary lifespan of 6600 h and ultrahigh capacity retention of 78.3 % (111.9 mAh g-1) after 1000 cycles at 1 C. This demonstrated synergistic strategy in Co-coordinated organic polymer may gain new insights to regulate the uniform and non-dendritic deposition/dissolution behaviors for highly stable LMBs.
Collapse
Affiliation(s)
- Xiao-Meng Lu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yingnan Cao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yi Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Haichao Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yi Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yang Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Chao Yang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| |
Collapse
|
15
|
Liu Q, Liu L, Xing G, Zhu L. Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction. Nat Commun 2024; 15:2978. [PMID: 38582790 PMCID: PMC10998899 DOI: 10.1038/s41467-024-47375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
After decades of efforts, some fundamental physics for electrical switching of magnetization is still missing. Here, we report the discovery of the long-range intralayer Dzyaloshinskii-Moriya interaction (DMI) effect, which is the chiral coupling of orthogonal magnetic domains within the same magnetic layer via the mediation of an adjacent heavy metal layer. The effective magnetic field of the long-range intralayer DMI on the perpendicular magnetization is out-of-plane and varies with the interfacial DMI constant, the applied in-plane magnetic fields, and the magnetic anisotropy distribution. Striking consequences of the effect include asymmetric current/field switching of perpendicular magnetization, hysteresis loop shift of perpendicular magnetization in the absence of in-plane direct current, and sharp in-plane magnetic field switching of perpendicular magnetization. Utilizing the intralayer DMI, we demonstrate programable, complete Boolean logic operations within a single spin-orbit torque device. These results will stimulate investigation of the long-range intralayer DMI effect in a variety of spintronic devices.
Collapse
Affiliation(s)
- Qianbiao Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhong Xing
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Zhu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Shao Q. Magnetic whirlpools offer improved data storage. Nature 2024; 627:494-495. [PMID: 38509273 DOI: 10.1038/d41586-024-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
17
|
Chen S, Lourembam J, Ho P, Toh AKJ, Huang J, Chen X, Tan HK, Yap SLK, Lim RJJ, Tan HR, Suraj TS, Sim MI, Toh YT, Lim I, Lim NCB, Zhou J, Chung HJ, Lim ST, Soumyanarayanan A. All-electrical skyrmionic magnetic tunnel junction. Nature 2024; 627:522-527. [PMID: 38509277 DOI: 10.1038/s41586-024-07131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024]
Abstract
Topological whirls or 'textures' of spins such as magnetic skyrmions represent the smallest realizable emergent magnetic entities1-5. They hold considerable promise as robust, nanometre-scale, mobile bits for sustainable computing6-8. A longstanding roadblock to unleashing their potential is the absence of a device enabling deterministic electrical readout of individual spin textures9,10. Here we present the wafer-scale realization of a nanoscale chiral magnetic tunnel junction (MTJ) hosting a single, ambient skyrmion. Using a suite of electrical and multimodal imaging techniques, we show that the MTJ nucleates skyrmions of fixed polarity, whose large readout signal-20-70% relative to uniformly magnetized states-corresponds directly to skyrmion size. The MTJ exploits complementary nucleation mechanisms to stabilize distinctly sized skyrmions at zero field, thereby realizing three non-volatile electrical states. Crucially, it can electrically write and delete skyrmions to both uniform states with switching energies 1,000 times lower than the state of the art. Here, the applied voltage emulates a magnetic field and, in contrast to conventional MTJs, it reshapes both the energetics and kinetics of the switching transition, enabling deterministic bidirectional switching. Our stack platform enables large readout and efficient switching, and is compatible with lateral manipulation of skyrmionic bits, providing the much-anticipated backbone for all-electrical skyrmionic device architectures9,10. Its wafer-scale realizability provides a springboard to harness chiral spin textures for multibit memory and unconventional computing8,11.
Collapse
Affiliation(s)
- Shaohai Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - James Lourembam
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pin Ho
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alexander K J Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jifei Huang
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Xiaoye Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hang Khume Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sherry L K Yap
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Royston J J Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - T S Suraj
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - May Inn Sim
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Yeow Teck Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Idayu Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nelson C B Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jing Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hong Jing Chung
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sze Ter Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anjan Soumyanarayanan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Bera S. Role of isotropic and anisotropic Dzyaloshinskii-Moriya interaction on skyrmions, merons and antiskyrmions in the Cnvsymmetric system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:195805. [PMID: 38316047 DOI: 10.1088/1361-648x/ad266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The lattice Hamiltonian with the presence of a chiral magnetic isotropic Dzyaloshinskii-Moriya interaction (DMI) in a square and hexagonal lattice is numerically solved to give the full phase diagram consisting of skyrmions and merons in different parameter planes. The phase diagram provides the actual regions of analytically unresolved asymmetric skyrmions and merons, and it is found that these regions are substantially larger than those of symmetric skyrmions and merons. With magnetic field, a change from meron or spin spiral (SS) to skyrmion is seen. The complete phase diagram for theCnvsymmetric system with anisotropic DMI is drawn and it is shown that this DMI helps to change the SS propagation direction. Finally, the well-defined region of a thermodynamically stable antiskyrmion phase in theCnvsymmetric system is shown.
Collapse
Affiliation(s)
- Sandip Bera
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
19
|
Liu M, Wan TL, Dou K, Zhang L, Sun W, Jiang J, Ma Y, Gu Y, Kou L. Magnetic skyrmions and their manipulations in a 2D multiferroic CuCrP 2Te 6 monolayer. Phys Chem Chem Phys 2024; 26:6189-6195. [PMID: 38305045 DOI: 10.1039/d3cp05096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Magnetic skyrmions and their effective manipulations are promising for the design of next-generation information storage and processing devices, due to their topologically protected chiral spin textures and low energy cost. They, therefore, have attracted significant interest from the communities of condensed matter physics and materials science. Herein, based on density functional theory (DFT) calculations and micromagnetic simulations, we report the spontaneous 2 nm-diameter magnetic skyrmions in the monolayer CuCrP2Te6 originating from the synergistic effect of broken inversion symmetry and strong Dzyaloshinskii-Moriya interactions (DMIs). The creation and annihilation of magnetic skyrmions can be achieved via the ferroelectric to anti-ferroelectric (FE-to-AFE) transition, due to the variation of the magnetic parameter D2/|KJ|. Moreover, we also found that the DMIs and Heisenberg isotropic exchange can be manipulated by bi-axial strain, to effectively enhance skyrmion stability. Our findings provide feasible approaches to manipulate the skyrmions, which can be used for the design of next-generation information storage devices.
Collapse
Affiliation(s)
- Minghao Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Tsz Lok Wan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, P. R. China
| | - Lei Zhang
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wei Sun
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Jiawei Jiang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, P. R. China
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
20
|
Zhu K, Bi L, Zhang Y, Zheng D, Yang D, Li J, Tian H, Cai J, Yang H, Zhang Y, Li J. Ultrafast switching to zero field topological spin textures in ferrimagnetic TbFeCo films. NANOSCALE 2024; 16:3133-3143. [PMID: 38258484 DOI: 10.1039/d3nr04529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The capability of femtosecond (fs) laser pulses to manipulate topological spin textures on a very short time scale is sparking considerable interest. This article presents the creation of high density zero field topological spin textures by fs laser excitation in ferrimagnetic TbFeCo amorphous films. The topological spin textures are demonstrated to emerge under fs laser pulse excitation through a unique ultrafast nucleation mechanism, rather than thermal effects. Notably, large intrinsic uniaxial anisotropy could substitute the external magnetic field for the creation and stabilization of topological spin textures, which is further verified by the corresponding micromagnetic simulation. The ultrafast switching between topological trivial and nontrivial magnetic states is realized at an optimum magnitude of magnetic field and laser fluence. Our results would broaden the options to generate zero-field topological spin textures from versatile magnetic states and provides a new perspective for ultrafast switching of 0/1 magnetic states in spintronic devices.
Collapse
Affiliation(s)
- Kaixin Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linzhu Bi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhao Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingguo Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu, 213300, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
21
|
Ukleev V, Ajejas F, Devishvili A, Vorobiev A, Steinke NJ, Cubitt R, Luo C, Abrudan RM, Radu F, Cros V, Reyren N, White JS. Observation by SANS and PNR of pure Néel-type domain wall profiles and skyrmion suppression below room temperature in magnetic [Pt/CoFeB/Ru] 10 multilayers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315015. [PMID: 38455384 PMCID: PMC10919321 DOI: 10.1080/14686996.2024.2315015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.
Collapse
Affiliation(s)
- Victor Ukleev
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), Villigen, Switzerland
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Fernando Ajejas
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | | | - Alexei Vorobiev
- Institut Laue-Langevin, Grenoble, France
- Department of Physics, Uppsala University, Uppsala, Sweden
| | | | | | - Chen Luo
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | | | - Florin Radu
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Vincent Cros
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Nicolas Reyren
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), Villigen, Switzerland
| |
Collapse
|
22
|
Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, Hu Y, Hu X, Liu C, Qin M, Shen X, Yu R, Gao X, Liao Z, Liu J, Hou Z, Zhu Y, Fu X. Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe 3-xGaTe 2 with ultrafast laser writability. Nat Commun 2024; 15:1017. [PMID: 38310096 PMCID: PMC10838308 DOI: 10.1038/s41467-024-45310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmions in 2D magnets remains a formidable challenge. In this study, we target room-temperature 2D magnet Fe3GaTe2 and unveil that the introduction of iron-deficient into this compound enables spatial inversion symmetry breaking, thus inducing a significant Dzyaloshinskii-Moriya interaction that brings about room-temperature Néel-type skyrmions with unprecedentedly small size. To further enhance the practical applications of this finding, we employ a homemade in-situ optical Lorentz transmission electron microscopy to demonstrate ultrafast writing of skyrmions in Fe3-xGaTe2 using a single femtosecond laser pulse. Our results manifest the Fe3-xGaTe2 as a promising building block for realizing skyrmion-based magneto-optical functionalities.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China at grant No. 2020YFA0309300, Science and Technology Projects in Guangzhou (grant No. 202201000008), the National Natural Science Foundation of China (NSFC) at grant No. 12304146, 11974191, 12127803, 52322108, 52271178, U22A20117 and 12241403, China Postdoctoral Science Foundation (2023M741828), Guangdong Basic and Applied Basic Research Foundation (grant No. 2021B1515120047 and 2023B1515020112), the Natural Science Foundation of Tianjin at grant No. 20JCJQJC00210, the 111 Project at grant No. B23045, and the “Fundamental Research Funds for the Central Universities”, Nankai University (grant No. 63213040, C029211101, C02922101, ZB22000104 and DK2300010207). This work was supported by the Synergetic Extreme Condition User Facility (SECUF).
Collapse
Affiliation(s)
- Zefang Li
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Huai Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Guanqi Li
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Jiangteng Guo
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Qingping Wang
- School of Physics and Electronic and Electrical Engineering, Aba Teachers University, Wenchuan, China
| | - Ying Deng
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Yue Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Xuange Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Can Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Xi Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Richeng Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Zhimin Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Junming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, USA.
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Kong JF, Ren Y, Tey MSN, Ho P, Khoo KH, Chen X, Soumyanarayanan A. Quantifying the Magnetic Interactions Governing Chiral Spin Textures Using Deep Neural Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1025-1032. [PMID: 38156820 DOI: 10.1021/acsami.3c12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The interplay of magnetic interactions in chiral multilayer films gives rise to nanoscale topological spin textures that form attractive elements for next-generation computing. Quantifying these interactions requires several specialized, time-consuming, and resource-intensive experimental techniques. Imaging of ambient domain configurations presents a promising avenue for high-throughput extraction of parent magnetic interactions. Here, we present a machine learning (ML)-based approach to simultaneously determine the key magnetic interactions─symmetric exchange, chiral exchange, and anisotropy─governing the chiral domain phenomenology in multilayers, using a single binarized image of domain configurations. Our convolutional neural network model, trained and validated on over 10,000 domain images, achieved R2 > 0.85 in predicting the parameters and independently learned the physical interdependencies between magnetic parameters. When applied to microscopy data acquired across samples, our model-predicted parameter trends are consistent with those of independent experimental measurements. These results establish ML-driven techniques as valuable, high-throughput complements to conventional determination of magnetic interactions and serve to accelerate materials and device development for nanoscale electronics.
Collapse
Affiliation(s)
- Jian Feng Kong
- Agency for Science, Technology & Research (A*STAR), Institute of High Performance Computing, Singapore 138632, Singapore
| | - Yuhua Ren
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - M S Nicholas Tey
- Agency for Science, Technology & Research (A*STAR), Institute of Materials Research & Engineering, Singapore 138634, Singapore
| | - Pin Ho
- Agency for Science, Technology & Research (A*STAR), Institute of Materials Research & Engineering, Singapore 138634, Singapore
| | - Khoong Hong Khoo
- Agency for Science, Technology & Research (A*STAR), Institute of High Performance Computing, Singapore 138632, Singapore
| | - Xiaoye Chen
- Agency for Science, Technology & Research (A*STAR), Institute of Materials Research & Engineering, Singapore 138634, Singapore
| | - Anjan Soumyanarayanan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| |
Collapse
|
24
|
Liu C, Wang J, He W, Zhang C, Zhang S, Yuan S, Hou Z, Qin M, Xu Y, Gao X, Peng Y, Liu K, Qiu ZQ, Liu JM, Zhang X. Strain-Induced Reversible Motion of Skyrmions at Room Temperature. ACS NANO 2024; 18:761-769. [PMID: 38127497 DOI: 10.1021/acsnano.3c09090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Magnetic skyrmions are topologically protected swirling spin textures with great potential for future spintronic applications. The ability to induce skyrmion motion using mechanical strain not only stimulates the exploration of exotic physics but also affords the opportunity to develop energy-efficient spintronic devices. However, the experimental realization of strain-driven skyrmion motion remains a formidable challenge. Herein, we demonstrate that the inhomogeneous uniaxial compressive strain can induce the movement of isolated skyrmions from regions of high strain to regions of low strain at room temperature, which was directly observed using an in situ Lorentz transmission electron microscope with a specially designed nanoindentation holder. We discover that the uniaxial compressive strain can transform skyrmions into a single domain with in-plane magnetization, resulting in the coexistence of skyrmions with a single domain along the direction of the strain gradient. Through comprehensive micromagnetic simulations, we reveal that the repulsive interactions between skyrmions and the single domain serve as the driving force behind the skyrmion motion. The precise control of skyrmion motion through strain provides exciting opportunities for designing advanced spintronic devices that leverage the intricate interplay between strain and magnetism.
Collapse
Affiliation(s)
- Chen Liu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junlin Wang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
| | - Wa He
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Senfu Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shuai Yuan
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yongbing Xu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yong Peng
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kai Liu
- Physics Department, Georgetown University, Washington, D.C. 20057, United States
| | - Zi Qiang Qiu
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Jun-Ming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 211102, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Raj RK, Bindal N, Kaushik BK. Skyrmion motion under temperature gradient and application in logic devices. NANOTECHNOLOGY 2023; 35:075703. [PMID: 38014695 DOI: 10.1088/1361-6528/acfd33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Under the presence of temperature gradient (TG) on a nanotrack, it is necessary to investigate the skyrmion dynamics in various magnetic systems under the combined effect of forces due to magnonic spin transfer torque(μSTT),thermal STT (τSTT), entropic difference(dS),as well as thermal induced dipolar field (DF). Hence, in this work, the dynamics of skyrmions in ferromagnets (FM), synthetic antiferromagnets (SAF), and antiferromagnets (AFM) have been studied under different TGs and damping constants (αG). It is observed thatαGplays a major role in deciding the direction of skyrmion motion either towards the hotter or colder side in different magnetic structures. Later, FM skyrmion based logic device is proposed that consists of a cross-coupled nanotrack, where the skyrmions on horizontal and vertical nanotrack are controlled by exploiting TG and electrical STT (eSTT), respectively by taking the advantages of thermal induced skyrmion Hall effect (SkHE). The proposed device performs AND and OR logic functionalities simultaneously, when the applied current density is2×1011Am-2.Moreover, the proposed device is also able to exhibit the half adder functionality by tuning the applied current density to3×1011Am-2.The total energy consumption for AND and OR logic operation and half adder are 33.63 fJ and 25.06 fJ, respectively. This paves the way for the development of energy-efficient logic devices with ultra-high storage density.
Collapse
Affiliation(s)
- Ravish Kumar Raj
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Namita Bindal
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|
26
|
Roy P, Zhang D, Mazza AR, Cucciniello N, Kunwar S, Zeng H, Chen A, Jia Q. Manipulating topological Hall-like signatures by interface engineering in epitaxial ruthenate/manganite heterostructures. NANOSCALE 2023; 15:17589-17598. [PMID: 37873761 DOI: 10.1039/d3nr02407e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Topologically protected non-trivial spin textures (e.g. skyrmions) give rise to a novel phenomenon called the topological Hall effect (THE) and have promising implications in future energy-efficient nanoelectronic and spintronic devices. Here, we have studied the Hall effect in SrRuO3/La0.42Ca0.58MnO3 (SRO/LCMO) bilayers. Our investigation suggests that pure SRO has hard and soft magnetic characteristics but the anomalous Hall effect (AHE) in SRO is governed by the high coercivity phase. We have shown that the proximity effect of a soft magnetic LCMO on SRO plays a critical role in interfacial magnetic coupling and transport properties in SRO. Upon reducing the SRO thickness in the bilayer, the proximity effect becomes the dominant feature, enhancing the magnitude and temperature range of THE-like signatures. The THE-like features in bilayers can be explained by a diffusive Berry phase transition model in the presence of an emergent magnetic state due to interface coupling. This work provides an alternative understanding of THE-like signatures and their manipulation in SRO-based heterostructures, bilayers and superlattices.
Collapse
Affiliation(s)
- Pinku Roy
- Department of Materials Design and Innovation, University at Buffalo - The State University of New York, Buffalo, NY 14260, USA.
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Di Zhang
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Alessandro R Mazza
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Nicholas Cucciniello
- Department of Materials Design and Innovation, University at Buffalo - The State University of New York, Buffalo, NY 14260, USA.
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Sundar Kunwar
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Hao Zeng
- Department of Physics, University at Buffalo - The State University of New York, Buffalo, NY 14260, USA
| | - Aiping Chen
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Quanxi Jia
- Department of Materials Design and Innovation, University at Buffalo - The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
27
|
Dohi T, Weißenhofer M, Kerber N, Kammerbauer F, Ge Y, Raab K, Zázvorka J, Syskaki MA, Shahee A, Ruhwedel M, Böttcher T, Pirro P, Jakob G, Nowak U, Kläui M. Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force. Nat Commun 2023; 14:5424. [PMID: 37696785 PMCID: PMC10495465 DOI: 10.1038/s41467-023-40720-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.
Collapse
Affiliation(s)
- Takaaki Dohi
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany.
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan.
| | - Markus Weißenhofer
- Fachbereich Physik, Universität Konstanz, DE-78457, Konstanz, Germany.
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S-751 20, Uppsala, Sweden.
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany.
| | - Nico Kerber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Fabian Kammerbauer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Yuqing Ge
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Klaus Raab
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jakub Zázvorka
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague, 12116, Czech Republic
| | - Maria-Andromachi Syskaki
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Singulus Technologies AG, 63796, Kahl am Main, Germany
| | - Aga Shahee
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Moritz Ruhwedel
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Tobias Böttcher
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Philipp Pirro
- Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 46, 67663, Kaiserslautern, Germany
| | - Gerhard Jakob
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Ulrich Nowak
- Fachbereich Physik, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany.
- Graduate School of Excellence Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany.
| |
Collapse
|
28
|
Ghosh S, Low A, Ghorai S, Mandal K, Thirupathaiah S. Tuning of electrical, magnetic, and topological properties of magnetic Weyl semimetal Mn3+xGe by Fe doping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:485701. [PMID: 37604158 DOI: 10.1088/1361-648x/acf262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
We report on the tuning of electrical, magnetic, and topological properties of the magnetic Weyl semimetal (Mn3+xGe) by Fe doping at the Mn site, Mn(3+x)-δFeδGe (δ= 0, 0.30, and 0.62). Fe doping significantly changes the electrical and magnetic properties of Mn3+xGe. The resistivity of the parent compound displays metallic behavior, the system withδ= 0.30 of Fe doping exhibits semiconducting or bad-metallic behavior, and the system withδ= 0.62 of Fe doping demonstrates a metal-insulator transition at around 100 K. Further, we observe that the Fe doping increases in-plane ferromagnetism, magnetocrystalline anisotropy, and induces a spin-glass state at low temperatures. Surprisingly, topological Hall state has been noticed at a Fe doping ofδ= 0.30 that is not found in the parent compound or withδ= 0.62 of Fe doping. In addition, spontaneous anomalous Hall effect observed in the parent system is significantly reduced with increasing Fe doping concentration.
Collapse
Affiliation(s)
- Susanta Ghosh
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Achintya Low
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soumya Ghorai
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Kalyan Mandal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Setti Thirupathaiah
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| |
Collapse
|
29
|
Liu C, Jiang J, Zhang C, Wang Q, Zhang H, Zheng D, Li Y, Ma Y, Algaidi H, Gao X, Hou Z, Mi W, Liu J, Qiu Z, Zhang X. Controllable Skyrmionic Phase Transition between Néel Skyrmions and Bloch Skyrmionic Bubbles in van der Waals Ferromagnet Fe 3-δ GeTe 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303443. [PMID: 37505392 PMCID: PMC10520623 DOI: 10.1002/advs.202303443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The van der Waals (vdW) ferromagnet Fe3-δ GeTe2 has garnered significant research interest as a platform for skyrmionic spin configurations, that is, skyrmions and skyrmionic bubbles. However, despite extensive efforts, the origin of the Dzyaloshinskii-Moriya interaction (DMI) in Fe3-δ GeTe2 remains elusive, making it challenging to acquire these skyrmionic phases in a controlled manner. In this study, it is demonstrated that the Fe content in Fe3-δ GeTe2 has a profound effect on the crystal structure, DMI, and skyrmionic phase. For the first time, a marked increase in Fe atom displacement with decreasing Fe content is observed, transforming the original centrosymmetric crystal structure into a non-centrosymmetric symmetry, leading to a considerable DMI. Additionally, by varying the Fe content and sample thickness, a controllable transition between Néel-type skyrmions and Bloch-type skyrmionic bubbles is achieved, governed by a delicate interplay between dipole-dipole interaction and the DMI. The findings offer novel insights into the variable skyrmionic phases in Fe3-δ GeTe2 and provide the impetus for developing vdW ferromagnet-based spintronic devices.
Collapse
Affiliation(s)
- Chen Liu
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jiawei Jiang
- Tianjin Key Laboratory of Low‐Dimensional Materials Physics and Preparation Technology, School of ScienceTianjin UniversityTianjin300354China
| | - Chenhui Zhang
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Qingping Wang
- College of Electronic Information and AutomationAba Teachers UniversityPixian StreetSichuan623002China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Huai Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Dongxing Zheng
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yan Li
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Hanin Algaidi
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low‐Dimensional Materials Physics and Preparation Technology, School of ScienceTianjin UniversityTianjin300354China
| | - Jun‐ming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing211102China
| | - Ziqiang Qiu
- Department of PhysicsUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Xixiang Zhang
- Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
30
|
He Z, Du W, Dou K, Dai Y, Huang B, Ma Y. Ferroelectrically tunable magnetic skyrmions in two-dimensional multiferroics. MATERIALS HORIZONS 2023; 10:3450-3457. [PMID: 37345913 DOI: 10.1039/d3mh00572k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Magnetic skyrmions are topologically protected entities that are promising for information storage and processing. Currently, an essential challenge for future advances of skyrmionic devices lies in achieving effective control of skyrmion properties. Here, through first-principles and Monte-Carlo simulations, we report the identification of nontrivial topological magnetism in two-dimensional multiferroics of Co2NF2. Because of ferroelectricity, monolayer Co2NF2 exhibits a large Dzyaloshinskii-Moriya interaction. This together with exchange interaction can stabilize magnetic skyrmions with the size of sub-10 nm under a moderate magnetic field. Importantly, arising from the magnetoelectric coupling effect, the chirality of magnetic skyrmions is ferroelectrically tunable, producing the four-fold degenerate skyrmions. When interfacing with monolayer MoSe2, the creation and annihilation of magnetic skyrmions, as well as phase transition between skyrmion and skyrmion lattice, can be realized in a ferroelectrically controllable fashion. A dimensionless parameter κ' is further proposed as the criterion for stabilizing magnetic skyrmions in such multiferroic lattices. Our work greatly enriches the two-dimensional skyrmionics and multiferroics research.
Collapse
Affiliation(s)
- Zhonglin He
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Wenhui Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
| |
Collapse
|
31
|
Bao H, Tian H, Li X, Ma X, Xu C, Yang Y, Wu D. Manipulating two-dimensional magnetic states via electric field and pressure. Phys Chem Chem Phys 2023; 25:22244-22249. [PMID: 37577831 DOI: 10.1039/d3cp02043f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Topological spin configurations have been an intriguing topic due to the exotic transport properties and promising applications in spintronic devices. The discovery of two-dimensional (2D) magnetic materials such as CrI3 provides new platforms for manipulating magnetic structures. Here, by first-principles calculations and Monte Carlo methods, we investigated the exchange interaction and magnetic states of 2D van der Waals ferromagnetic/ferroelectric heterostructure CrI3/In2Se3. By switching the polarization in the ferroelectric In2Se3 layer under an electric field and changing the interlayer distance between CrI3 and In2Se3 under pressure, four spin configurations, ferromagnetic states, topological domain wall skyrmions, topological bimerons, and stripe domains can be realized. These striking tunable magnetic states can be understood from the Dzyaloshinskii-Moriya interaction and single-ion anisotropy parameters being modified by switching the polarization and changing the interlayer distance. Our results of controllable topological/non-topological spin states broaden the spin phenomena and potential of spintronic applications in van der Waals heterostructures.
Collapse
Affiliation(s)
- Hengxing Bao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Hao Tian
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Xu Li
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Xingyue Ma
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Changsong Xu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
| | - Di Wu
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
32
|
Li S, Lin X, Li P, Zhao S, Si Z, Wei G, Koopmans B, Lavrijsen R, Zhao W. Ultralow Power and Shifting-Discretized Magnetic Racetrack Memory Device Driven by Chirality Switching and Spin Current. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39946-39955. [PMID: 37581258 DOI: 10.1021/acsami.3c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Magnetic racetrack memory has significantly evolved and developed since its first experimental verification and is considered one of the most promising candidates for future high-density on-chip solid-state memory. However, both the lack of a fast and precise magnetic domain wall (DW) shifting mechanism and the required extremely high DW motion (DWM) driving current make the racetrack difficult to commercialize. Here, we propose a method for coherent DWM that is free from the above issues, which is driven by chirality switching (CS) and an ultralow spin-orbit-torque (SOT) current. The CS, as the driving force of DWM, is achieved by the sign change of the Dzyaloshinskii-Moriya interaction, which is further induced by a ferroelectric switching voltage. The SOT is used to break the symmetry when the magnetic moment is rotated in the Bloch direction. We numerically investigate the underlying principle and the effect of key parameters on the DWM by micromagnetic simulations. Under the CS mechanism, a fast (∼102 m/s), ultralow energy (∼5 attoJoule), and precisely discretized DWM can be achieved. Considering that skyrmions with topological protection and smaller size are also promising for future racetracks, we similarly evaluate the feasibility of applying such a CS mechanism to a skyrmion. However, we find that the CS causes it to "breathe" instead of moving. Our results demonstrate that the CS strategy is suitable for future DW racetrack memory with ultralow power consumption and discretized DWM.
Collapse
Affiliation(s)
- Shen Li
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Xiaoyang Lin
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Pingzhi Li
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Suteng Zhao
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhizhong Si
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Guodong Wei
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Bert Koopmans
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Reinoud Lavrijsen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Weisheng Zhao
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| |
Collapse
|
33
|
Chen X, Wang H, Li M, Hao Q, Cai M, Dai H, Chen H, Xing Y, Liu J, Wang X, Zhai T, Zhou X, Han J. Manipulation and Optical Detection of Artificial Topological Phenomena in 2D Van der Waals Fe 5 GeTe 2 /MnPS 3 Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207617. [PMID: 37327250 PMCID: PMC10401167 DOI: 10.1002/advs.202207617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Indexed: 06/18/2023]
Abstract
2D ferromagnet is a good platform to investigate topological effects and spintronic devices owing to its rich spin structures and excellent external-field tunability. The appearance of the topological Hall Effect (THE) is often regarded as an important sign of the generation of chiral spin textures, like magnetic vortexes or skyrmions. Here, interface engineering and an in-plane current are used to modulate the magnetic properties of the nearly room-temperature 2D ferromagnet Fe5 GeTe2 . An artificial topology phenomenon is observed in the Fe5 GeTe2 /MnPS3 heterostructure by using both anomalous Hall Effect and reflective magnetic circular dichroism (RMCD) measurements. Through tuning the applied current and the RMCD laser wavelength, the amplitude of the humps and dips observed in the hysteresis loops can be modulated accordingly. Magnetic field-dependent hysteresis loops demonstrate that the observed artificial topological phenomena are induced by the generation and annihilation of the magnetic domains. This work provides an optical method for investigating the topological-like effects in magnetic structures and proposes an effective way to modulate the magnetic properties of magnetic materials, which is important for developing magnetic and spintronic devices in van der Waals magnetic materials.
Collapse
Affiliation(s)
- Xiaodie Chen
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Manshi Li
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Qinghua Hao
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Menghao Cai
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Hongwei Dai
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Hongjing Chen
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuntong Xing
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xia Wang
- School of Elementary EducationWuhan City Polytechnic CollegeWuhan430074P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jun‐Bo Han
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
34
|
Xu T, Zhang Y, Wang Z, Bai H, Song C, Liu J, Zhou Y, Je SG, N'Diaye AT, Im MY, Yu R, Chen Z, Jiang W. Systematic Control of Ferrimagnetic Skyrmions via Composition Modulation in Pt/Fe 1-xTb x/Ta Multilayers. ACS NANO 2023; 17:7920-7928. [PMID: 37010987 DOI: 10.1021/acsnano.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic skyrmions are topological spin textures that can be used as memory and logic components for advancing the next generation spintronics. In this regard, control of nanoscale skyrmions, including their sizes and densities, is of particular importance for enhancing the storage capacity of skyrmionic devices. Here, we propose a viable route for engineering ferrimagnetic skyrmions via tuning the magnetic properties of the involved ferrimagnets Fe1-xTbx. Via tuning the composition of Fe1-xTbx that alters the magnetic anisotropy and the saturation magnetization, the size of the ferrimagnetic skyrmion (ds) and the average density (ηs) can be effectively tailored in [Pt/Fe1-xTbx/Ta]10 multilayers. In particular, a stabilization of sub-50 nm skyrmions with a high density is demonstrated at room temperature. Our work provides an effective approach for designing ferrimagnetic skyrmions with the desired size and density, which could be useful for enabling high-density ferrimagnetic skyrmionics.
Collapse
Affiliation(s)
- Teng Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yuxuan Zhang
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zidong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Hao Bai
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jiahao Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Soong-Geun Je
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Alpha T N'Diaye
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Mi-Young Im
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Rong Yu
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
35
|
Li SZ, Rahman A, Ma CL, Zhao X, Sun ZY, Liu MF, Wang XZ, Xu XF, Liu JM. Exchange bias effect in polycrystalline Bi 0.5Sr 0.5Fe 0.5Cr 0.5O 3 bulk. Sci Rep 2023; 13:6333. [PMID: 37072459 PMCID: PMC10113268 DOI: 10.1038/s41598-023-32734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Bulk Bi0.5Sr0.5Fe0.5Cr0.5O3 (BSFCO) is a new compound comprising the R3c structure. The structural, magnetic property and exchange bias (EB) details are investigated. The material was in the super-paramagnetic (SP) state at room temperature. Exchange bias usually occurs at the boundary between different magnetic states after field cooling (HFC) acts on the sample. Here the result shows that changing HFC from 1 to 6 T reduces the HEB value by 16% at 2 K at the same time. Meanwhile, HEB diminishes as the ferromagnetic layer thickness increases. The variation of (the thickness of ferromagnetic layer) tFM with the change of HFC leads to the tuning of HEB by HFC in BSFCO bulk. These effects are obviously different from the phenomenon seen in other oxide types.
Collapse
Affiliation(s)
- S Z Li
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430048, China.
| | - A Rahman
- Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - C L Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - X Zhao
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Z Y Sun
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430048, China
| | - M F Liu
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, China
| | - X Z Wang
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, China
| | - X F Xu
- Institution of Quatum Material, Hubei Polytechnic University, Huangshi, 435003, China
| | - J M Liu
- Nanjing National Laboratory of Microstructure, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
36
|
Han YT, Ji WX, Wang PJ, Li P, Zhang CW. Strain-tunable skyrmions in two-dimensional monolayer Janus magnets. NANOSCALE 2023; 15:6830-6837. [PMID: 36960752 DOI: 10.1039/d2nr06870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI), which only exists in noncentrosymmetric systems, plays an important role in the formation of exotic chiral magnetic states. However, the absence of the DMI occurs in most two-dimensional (2D) magnetic materials due to their intrinsic inversion symmetry. Here, by using first-principles calculations, we demonstrate that a significant DMI can be obtained in a series of Janus monolayers of dichalcogenides XSeTe (X = Nb, Re) in which the difference between Se and Te on the opposite sides of X breaks the inversion symmetry. Remarkably, the DMI amplitudes of NbSeTe (1.78 meV) and ReSeTe (4.82 meV) are larger than the experimental value of Co/graphene (0.16 meV), and NbSeTe and ReSeTe monolayers have a high Curie temperature of 1023 K and 689 K, respectively. Through the micromagnetic simulation of XSeTe (X= Nb, Re) simulations, we also find that the ReSeTe monolayer can performance for skyrmion states by applying an external magnetic field, and importantly, the skyrmion states can be regulated and controlled under external strain. The findings pave the way for device concepts using chiral magnetic structures in specially designed 2D ferromagnetic materials.
Collapse
Affiliation(s)
- Yue-Tong Han
- School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Pei-Ji Wang
- School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Ping Li
- School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
37
|
Zhang D, Li A, Zhang B, Zhou W, Duan H, Ouyang F. Combined piezoelectricity, valley splitting and Dzyaloshinskii-Moriya interaction in Janus GdXY (X, Y = Cl, Br, I) magnetic semiconductors. Phys Chem Chem Phys 2023; 25:8600-8607. [PMID: 36891810 DOI: 10.1039/d2cp04482j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Janus materials, as a family of multifunctional materials with broken mirror symmetry, have played a great role in piezoelectric, valley-related, and Rashba spin-orbit coupling (SOC) applications. Using first-principles calculations, it is predicted that monolayer 2H-GdXY (X, Y = Cl, Br, I) will combine giant piezoelectricity, intrinsic valley splitting and a strong Dzyaloshinskii-Moriya interaction (DMI), resulting from the intrinsic electric polarization, spontaneous spin polarization and strong spin-orbit coupling. Opposite Berry curvatures and unequal Hall conductivities at the K- and K'-valleys of monolayer GdXY are promising for storing information through the anomalous valley Hall effect (AVHE). Through construction of the spin Hamiltonian and micromagnetic model, we obtained the primary magnetic parameters of monolayer GdXY as a function of the biaxial strain. Due to the dimensionless parameter κ having strong tunability, monolayer GdClBr is promising to host isolated skyrmions. The present results are expected to enable the application of Janus materials in piezoelectricity, spin- and valley-tronics and the formation of chiral magnetic structures.
Collapse
Affiliation(s)
- Dehe Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China
| | - Aolin Li
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China.
| | - Bei Zhang
- School of Physics and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
| | - Wenzhe Zhou
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China.
| | - Haiming Duan
- School of Physics and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
| | - Fangping Ouyang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China
- State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, People's Republic of China.
- School of Physics and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.
| |
Collapse
|
38
|
Li P, Ga Y, Cui Q, Liang J, Yu D, Yang H. Hole doping induced ferromagnetism and Dzyaloshinskii-Moriya interaction in the two-dimensional group-IVA oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:204003. [PMID: 36867875 DOI: 10.1088/1361-648x/acc15c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Based on the first-principles calculations, we examine the effect of hole doping on the ferromagnetism and Dzyaloshinskii-Moriya interaction (DMI) for PbSnO2, SnO2and GeO2monolayers. The nonmagnetic to ferromagnetic transition and the DMI can emerge simultaneously in the three two-dimensional IVA oxides. By increasing the hole doping concentration, we find the ferromagnetism can be strengthened for the three oxides. Due to different inversion symmetry breaking, isotropic DMI is found in PbSnO2, whereas anisotropic DMI presents in SnO2and GeO2. More appealingly, for PbSnO2with different hole concentrations, DMI can induce a variety of topological spin textures. Interestingly, a peculiar feature of synchronously switch of magnetic easy axis and DMI chirality upon hole doping is found in PbSnO2. Hence, Néel-type skyrmions can be tailored via changing hole density in PbSnO2. Furthermore, we demonstrate that both SnO2and GeO2.with different hole concentrations can host antiskyrmions or antibimerons (in-plane antiskyrmions). Our findings demonstrate the presence and tunability of topological chiral structures in p-type magnets and open up new possibility for spintronics.
Collapse
Affiliation(s)
- Peng Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yonglong Ga
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qirui Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Jinghua Liang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dongxing Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Hongxin Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
39
|
Zhao Y, Wang J, Xu L, Yu P, Hou M, Meng F, Xie S, Meng Y, Zhu R, Hou Z, Yang M, Luo J, Wu J, Xu Y, Gao X, Feng C, Yu G. Local Manipulation of Skyrmion Nucleation in Microscale Areas of a Thin Film with Nitrogen-Ion Implantation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36888898 DOI: 10.1021/acsami.3c00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precise manipulation of skyrmion nucleation in microscale or nanoscale areas of thin films is a critical issue in developing high-efficient skyrmionic memories and logic devices. Presently, the mainstream controlling strategies focus on the application of external stimuli to tailor the intrinsic attributes of charge, spin, and lattice. This work reports effective skyrmion manipulation by controllably modifying the lattice defect through ion implantation, which is potentially compatible with large-scale integrated circuit technology. By implanting an appropriate dose of nitrogen ions into a Pt/Co/Ta multilayer film, the defect density was effectively enhanced to induce an apparent modulation of magnetic anisotropy, consequently boosting the skyrmion nucleation. Furthermore, the local control of skyrmions in microscale areas of the macroscopic film was realized by combining the ion implantation with micromachining technology, demonstrating a potential application in both binary storage and multistate storage. These findings provide a new approach to advancing the functionalization and application of skyrmionic devices.
Collapse
Affiliation(s)
- Yongkang Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junlin Wang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
| | - Lianxin Xu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Peiyue Yu
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing 100029, China
| | - Mingxuan Hou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuai Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufei Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronggui Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Meiyin Yang
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing 100029, China
| | - Jun Luo
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing 100029, China
| | - Jing Wu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- York-Nanjing International Center of Spintronics (YNICS), York University, York YO10 3LT, U.K
| | - Yongbing Xu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- York-Nanjing International Center of Spintronics (YNICS), York University, York YO10 3LT, U.K
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Chun Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guanghua Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
40
|
Dai B, Wu D, Razavi SA, Xu S, He H, Shu Q, Jackson M, Mahfouzi F, Huang H, Pan Q, Cheng Y, Qu T, Wang T, Tai L, Wong K, Kioussis N, Wang KL. Electric field manipulation of spin chirality and skyrmion dynamic. SCIENCE ADVANCES 2023; 9:eade6836. [PMID: 36791189 PMCID: PMC9931210 DOI: 10.1126/sciadv.ade6836] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry. We design heterostructures with a 3d-5d atomic orbital interface to demonstrate the gate bias control of the DMI energy and thus transform the DMI between opposite chiralities. Furthermore, we use this voltage-controlled DMI (VCDMI) to manipulate the skyrmion spin texture. As a result, a type of intermediate skyrmion with a unique helicity is created, and its motion can be controlled and made to go straight. Our work shows the effective control of spin chirality, skyrmion helicity, and skyrmion dynamics by VCDMI. It promotes the emerging field of voltage-controlled chiral interactions and voltage-controlled skyrmionics.
Collapse
Affiliation(s)
- Bingqian Dai
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Di Wu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Seyed Armin Razavi
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shijie Xu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haoran He
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qingyuan Shu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Malcolm Jackson
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farzad Mahfouzi
- Department of Physics and Astronomy, California State University, Northridge, Los Angeles, CA 91330-8268, USA
| | - Hanshen Huang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quanjun Pan
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Cheng
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tao Qu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tianyi Wang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lixuan Tai
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kin Wong
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas Kioussis
- Department of Physics and Astronomy, California State University, Northridge, Los Angeles, CA 91330-8268, USA
| | - Kang L. Wang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Zhang W, Huang TX, Hehn M, Malinowski G, Verges M, Hohlfeld J, Remy Q, Lacour D, Wang XR, Zhao GP, Vallobra P, Xu Y, Mangin S, Zhao WS. Optical Creation of Skyrmions by Spin Reorientation Transition in Ferrimagnetic CoHo Alloys. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5608-5619. [PMID: 36689950 DOI: 10.1021/acsami.2c19411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Manipulating magnetic skyrmions by means of a femtosecond (fs) laser pulse has attracted great interest due to their promising applications in efficient information-storage devices with ultralow energy consumption. However, the mechanism underlying the creation of skyrmions induced by an fs laser is still lacking. As a result, a key challenge is to reveal the pathway for the massive reorientation of magnetization from trivial to nontrivial topological states. Here, we studied a series of ferrimagnetic CoHo alloys and investigated the effect of a single laser pulse on the magnetic states. Thanks to the time-resolved magneto-optical Kerr effect and imaging techniques, we demonstrate that the laser-induced phase transitions from single domains into a topological skyrmion phase are mediated by the transient in-plane magnetization state, in real time and space domains, respectively. Combining experiments and micromagnetic simulations, we propose a two-step process for creating skyrmions through laser pulse irradiation: (i) the electron temperature enhancement induces a spin reorientation transition on a picosecond (ps) timescale due to the suppression of perpendicular magnetic anisotropy (PMA) and (ii) the PMA slowly restores, accompanied by out-of-plane magnetization recovery, leading to the generation of skyrmions with the help of spin fluctuations. This work provides a route to control skyrmion patterns using an fs laser, thereby establishing the foundation for further exploration of topological magnetism at ultrafast timescales.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Michel Hehn
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Maxime Verges
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Quentin Remy
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | - Daniel Lacour
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | - Xin Ran Wang
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | - Guo Ping Zhao
- College of Physics and Electronic Engineering and Institute of Solid State Physics, Sichuan Normal University, Chengdu610066, China
| | - Pierre Vallobra
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
| | - Yong Xu
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | | | - Wei Sheng Zhao
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| |
Collapse
|
42
|
Qi J, Zhao Y, Huang H, Zhang Y, Lyu H, Yang G, Zhang J, Shao B, Jin K, Zhang Y, Wei H, Shen B, Wang S. Tailoring of the Interfacial Dzyaloshinskii-Moriya Interaction in Perpendicularly Magnetized Epitaxial Multilayers by Crystal Engineering. J Phys Chem Lett 2023; 14:637-644. [PMID: 36634038 DOI: 10.1021/acs.jpclett.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interplay between the interfacial crystalline structure and Dzyaloshinskii-Moriya interaction (DMI) was investigated by Fe insertion in epitaxial Pt/Co/Ir perpendicular magnetized multilayers. The experimental results with the support of first-principles calculation indicate that the Fe/Ir interface exhibits a positive interfacial DMI (iDMI) originating from the fcc crystalline structure inserted by 2 monolayers (ML) Fe, while a negative one from the structure with a layer shifting of 1-ML Fe insertion. The total iDMI of the multilayers increases (decreases) due to the additive enhancement (competitive counteraction) between the iDMI of Fe/Ir and Pt/Co interfaces. Comparing the iDMI of single-crystalline and textured multilayers, the iDMI of multilayers is found to be particularly sensitive to the crystallinity nearby the heterointerfaces. This work is of vital importance to reveal a deeper insight into the physical mechanism of the iDMI and provides a viable strategy for tailoring the iDMI of the multilayers by crystal engineering.
Collapse
Affiliation(s)
- Jie Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Yunchi Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - He Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Haochang Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Guang Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | - Jingyan Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Bokai Shao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Kui Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, China
| | - Hongxiang Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Shouguo Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China
- School of Materials Science and Engineering, Anhui University, Hefei230601, China
| |
Collapse
|
43
|
He Z, Dou K, Du W, Dai Y, Huang B, Ma Y. Multiple Topological Magnetism in van der Waals Heterostructure of MnTe 2/ZrS 2. NANO LETTERS 2023; 23:312-318. [PMID: 36576995 DOI: 10.1021/acs.nanolett.2c04388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Topological magnetism in low-dimensional systems is of fundamental and practical importance in condensed-matter physics and material science. Here, using first-principles and Monte Carlo simulations, we present that multiple topological magnetism (i.e., skyrmion and bimeron) can survive in van der Waals heterostructure MnTe2/ZrS2. Arising from interlayer coupling, MnTe2/ZrS2 can harbor a large Dzyaloshinskii-Moriya interaction. This, combined with exchange interaction, yields an intriguing skyrmion phase under a tiny magnetic field of 75 mT. Meanwhile, upon harnessing a small electric field, magnetic bimeron can be observed in MnTe2/ZrS2, suggesting the existence of multiple topological magnetism. Through interlayer sliding, both topological magnetisms can be switched on-off. In addition, the impacts of d∥ and Keff on these spin textures are revealed, and a dimensionless parameter κ is utilized to describe their joint effect. These explored phenomena and insights not only are useful for fundamental research in topological magnetism but also enable novel applications in nanodevices.
Collapse
Affiliation(s)
- Zhonglin He
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| | - Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| | - Wenhui Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan250100, China
| |
Collapse
|
44
|
Ahrens V, Kiesselbach C, Gnoli L, Giuliano D, Mendisch S, Kiechle M, Riente F, Becherer M. Skyrmions Under Control-FIB Irradiation as a Versatile Tool for Skyrmion Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207321. [PMID: 36255142 DOI: 10.1002/adma.202207321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Magnetic data storage and processing offer certain advances over conventional technologies, amongst which nonvolatility and low power operation are the most outstanding ones. Skyrmions are a promising candidate as a magnetic data carrier. However, the sputtering of skyrmion films and the control of the skyrmion nucleation, motion, and annihilation remains challenging. This work demonstrates that using optimized focused ion beam irradiation and annealing protocols enables the skyrmion phase in W/CoFeB/MgO thin films to be accessed easily. By analyzing ion-beam-engineered skyrmion hosting wires, excited by sub-100 ns current pulses, possibilities to control skyrmion nucleation, guide their motion, and control their annihilation unfold. Overall, the key elements needed to develop extensive skyrmion networks are presented.
Collapse
Affiliation(s)
- Valentin Ahrens
- Department of Electrical and Computer Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Clara Kiesselbach
- Department of Electrical and Computer Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Luca Gnoli
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, 10129, Italy
| | - Domenico Giuliano
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, 10129, Italy
| | - Simon Mendisch
- Department of Electrical and Computer Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Martina Kiechle
- Department of Electrical and Computer Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Fabrizio Riente
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, 10129, Italy
| | - Markus Becherer
- Department of Electrical and Computer Engineering, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
45
|
Zhang C, Liu C, Zhang J, Yuan Y, Wen Y, Li Y, Zheng D, Zhang Q, Hou Z, Yin G, Liu K, Peng Y, Zhang XX. Room-Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self-Intercalation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205967. [PMID: 36245330 DOI: 10.1002/adma.202205967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Collapse
Affiliation(s)
- Chenhui Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Liu
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Junwei Zhang
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Youyou Yuan
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Li
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Zhang
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Gen Yin
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Kai Liu
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Yong Peng
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Aldarawsheh A, Fernandes IL, Brinker S, Sallermann M, Abusaa M, Blügel S, Lounis S. Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films. Nat Commun 2022; 13:7369. [DOI: 10.1038/s41467-022-35102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
AbstractAntiferromagnetic (AFM) skyrmions are envisioned as ideal localized topological magnetic bits in future information technologies. In contrast to ferromagnetic (FM) skyrmions, they are immune to the skyrmion Hall effect, might offer potential terahertz dynamics while being insensitive to external magnetic fields and dipolar interactions. Although observed in synthetic AFM structures and as complex meronic textures in intrinsic AFM bulk materials, their realization in non-synthetic AFM films, of crucial importance in racetrack concepts, has been elusive. Here, we unveil their presence in a row-wise AFM Cr film deposited on PdFe bilayer grown on fcc Ir(111) surface. Using first principles, we demonstrate the emergence of single and strikingly interpenetrating chains of AFM skyrmions, which can co-exist with the rich inhomogeneous exchange field, including that of FM skyrmions, hosted by PdFe. Besides the identification of an ideal platform of materials for intrinsic AFM skyrmions, we anticipate the uncovered knotted solitons to be promising building blocks in AFM spintronics.
Collapse
|
47
|
Dou K, Du W, He Z, Dai Y, Huang B, Ma Y. Theoretical Prediction of Antiferromagnetic Skyrmion Crystal in Janus Monolayer CrSi 2N 2As 2. ACS NANO 2022; 17:1144-1152. [PMID: 36448916 DOI: 10.1021/acsnano.2c08544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An antiferromagnetic skyrmion crystal (AF-SkX), a regular array of antiferromagnetic skyrmions, is a fundamental phenomenon in the field of condensed-matter physics. So far, very few proposals have been made to realize the AF-SkX, and most have been based on three-dimensional (3D) materials. Herein, using first-principles calculations and Monte Carlo simulations, we report the identification of AF-SkX in a two-dimensional lattice of the Janus monolayer CrSi2N2As2. Arising from the broken inversion symmetry and strong spin-orbit coupling, a large Dzyaloshinskii-Moriya interaction is obtained in the Janus monolayer CrSi2N2As2. This, combined with the geometric frustration of its triangular lattice, gives rise to the skyrmion physics and long-sought AF-SkX in the presence of an external magnetic field. More intriguingly, this system presents two different antiferromagnetic skyrmion phases, and such a phenomenon is distinct from those reported in 3D systems. Furthermore, by contacting with Sc2CO2, the creation and annihilation of AF-SkX in Janus monolayer CrSi2N2As2 can be achieved through ferroelectricity. These findings greatly enrich the research on antiferromagnetic skyrmions.
Collapse
Affiliation(s)
- Kaiying Dou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| | - Wenhui Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| | - Zhonglin He
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan250100, People's Republic of China
| |
Collapse
|
48
|
He M, Xu T, Gao Y, Hu C, Cai J, Zhang Y. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8272. [PMID: 36431758 PMCID: PMC9698406 DOI: 10.3390/ma15228272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate the generation of mixed-type skyrmions (all are about 200 nm) that are primarily Bloch-type, hybrid-type, and a negligible amount of Néel-type in symmetric Pt/Co(1.55)/Pt multilayers at room temperature. The magnetic field dependence of skyrmion evolution is reversible. Brillouin light-scattering is used to quantitatively quantify the Dzyaloshinskii-Moriya interaction constant D in order to comprehend the mechanism. Interestingly, the D value is high enough to generate skyrmions in a symmetric sandwich structure. Micromagnetic simulations show that Néel-type skyrmions transform into Bloch-type skyrmions as the D value decreases. The interface-induced non-uniform D may be the cause to generate mixed-type skyrmions. This work broadens the flexibility to generate skyrmions by engineering skyrmion-based devices with nominally symmetric multilayers without the requirement of very large DMI.
Collapse
Affiliation(s)
- Min He
- School of Physics and Electronic Information, Yantai University, Yantai 264005, China
| | - Tiankuo Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaoqun Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
49
|
Cubukcu M, Pöllath S, Tacchi S, Stacey A, Darwin E, Freeman CWF, Barton C, Hickey BJ, Marrows CH, Carlotti G, Back CH, Kazakova O. Manipulation of Magnetic Skyrmion Density in Continuous Ir/Co/Pt Multilayers. MICROMACHINES 2022; 13:1911. [PMID: 36363931 PMCID: PMC9693305 DOI: 10.3390/mi13111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
We show that magnetic skyrmions can be stabilised at room temperature in continuous [Ir/Co/Pt]5 multilayers on SiO2/Si substrates without the prior application of electric current or magnetic field. While decreasing the Co thickness, a transition of the magnetic domain patterns from worm-like state to separated stripes is observed. The skyrmions are clearly imaged in both states using magnetic force microscopy. The density of skyrmions can be significantly enhanced after applying the "in-plane field procedure". Our results provide means to manipulate magnetic skyrmion density, further allowing for the optimised engineering of skyrmion-based devices.
Collapse
Affiliation(s)
- M. Cubukcu
- National Physical Laboratory, Teddington TW11 0LW, UK
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - S. Pöllath
- Institut für Experimentelle Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - S. Tacchi
- Istituto Officina dei Materiali del CNR (CNR-IOM), Sede Secondaria di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - A. Stacey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - E. Darwin
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - C. W. F. Freeman
- National Physical Laboratory, Teddington TW11 0LW, UK
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - C. Barton
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - B. J. Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - C. H. Marrows
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - G. Carlotti
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | - C. H. Back
- Physik-Department, Technical University Munich, 85748 Garching, Germany
| | - O. Kazakova
- National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
50
|
Tai L, Dai B, Li J, Huang H, Chong SK, Wong KL, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, He H, Wu D, Xu S, Davydov A, Wu R, Wang KL. Distinguishing the Two-Component Anomalous Hall Effect from the Topological Hall Effect. ACS NANO 2022; 16:17336-17346. [PMID: 36126321 DOI: 10.1021/acsnano.2c08155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE. In sharp contrast, the artifact "THE" or two-component AHE occurs well beyond the saturation of the "AHE component" (under the false assumption of THE + AHE). Furthermore, we distinguish artifact "THE" from genuine THE by three methods: (1) minor loops, (2) temperature dependence, and (3) gate dependence. Minor loops of genuine THE with AHE are always within the full loop, while minor loops of the artifact "THE" may reveal a single loop that cannot fit into the "AHE component". In addition, the temperature or gate dependence of the artifact "THE" may also be accompanied by a polarity change of the "AHE component", as the nonmonotonic features vanish, while the temperature dependence of genuine THE with AHE reveals no such change. Our work may help future researchers to exercise caution and use these methods for careful examination in order to ascertain the genuine THE.
Collapse
Affiliation(s)
- Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Hanshen Huang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Kin L Wong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Huairuo Zhang
- Theiss Research, Inc., La Jolla, California 92037, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Christopher Eckberg
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Fibertek, Inc., Herndon, Virginia 20171, United States
- US Army Research Laboratory, Adelphi, Maryland 20783, United States
- US Army Research Laboratory, Playa Vista, California 90094, United States
| | - Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Haoran He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Di Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Shijie Xu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Albert Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|