1
|
McNulty P, Wu R, Yamaguchi A, Heckscher ES, Haas A, Nwankpa A, Skanata MM, Gershow M. CRASH2p: Closed-loop Two Photon Imaging in Freely Moving Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595209. [PMID: 38826435 PMCID: PMC11142166 DOI: 10.1101/2024.05.22.595209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Direct measurement of neural activity in freely moving animals is essential for understanding how the brain controls and represents behaviors. Genetically encoded calcium indicators report neural activity as changes in fluorescence intensity, but brain motion confounds quantitative measurement of fluorescence. Translation, rotation, and deformation of the brain and the movements of intervening scattering or auto-fluorescent tissue all alter the amount of fluorescent light captured by a microscope. Compared to single-photon approaches, two photon microscopy is less sensitive to scattering and off-target fluorescence, but more sensitive to motion, and two photon imaging has always required anchoring the microscope to the brain. We developed a closed-loop resonant axial-scanning high-speed two photon (CRASH2p) microscope for real-time 3D motion correction in unrestrained animals, without implantation of reference markers. We complemented CRASH2p with a novel scanning strategy and a multistage registration pipeline. We performed volumetric ratiometrically corrected functional imaging in the CNS of freely moving Drosophila larvae and discovered previously unknown neural correlates of behavior.
Collapse
Affiliation(s)
- Paul McNulty
- Department of Physics,New York University, New York, USA
| | - Rui Wu
- Department of Physics,New York University, New York, USA
| | | | - Ellie S. Heckscher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Andrew Haas
- Department of Physics,New York University, New York, USA
| | | | | | - Marc Gershow
- Department of Physics,New York University, New York, USA
- Center for Neural Science,New York University, New York, USA
- Neuroscience Institute, New York University, New York, USA
| |
Collapse
|
2
|
Xie H, Han X, Xiao G, Xu H, Zhang Y, Zhang G, Li Q, He J, Zhu D, Yu X, Dai Q. Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution. Nat Biomed Eng 2024; 8:740-753. [PMID: 38057428 PMCID: PMC11250366 DOI: 10.1038/s41551-023-01155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
Fluorescence microscopy allows for the high-throughput imaging of cellular activity across brain areas in mammals. However, capturing rapid cellular dynamics across the curved cortical surface is challenging, owing to trade-offs in image resolution, speed, field of view and depth of field. Here we report a technique for wide-field fluorescence imaging that leverages selective illumination and the integration of focal areas at different depths via a spinning disc with varying thickness to enable video-rate imaging of previously reconstructed centimetre-scale arbitrarily shaped surfaces at micrometre-scale resolution and at a depth of field of millimetres. By implementing the technique in a microscope capable of acquiring images at 1.68 billion pixels per second and resolving 16.8 billion voxels per second, we recorded neural activities and the trajectories of neutrophils in real time on curved cortical surfaces in live mice. The technique can be integrated into many microscopes and macroscopes, in both reflective and fluorescence modes, for the study of multiscale cellular interactions on arbitrarily shaped surfaces.
Collapse
Affiliation(s)
- Hao Xie
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
| | - Xiaofei Han
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Guihua Xiao
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Hanyun Xu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Guoxun Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Qingwei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Jing He
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Chen ZH, Wang X, Yang M, Ming J, Yun B, Zhang L, Wang X, Yu P, Xu J, Zhang H, Zhang F. An Extended NIR-II Superior Imaging Window from 1500 to 1900 nm for High-Resolution In Vivo Multiplexed Imaging Based on Lanthanide Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202311883. [PMID: 37860881 DOI: 10.1002/anie.202311883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000-1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500-1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500-1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.
Collapse
Affiliation(s)
- Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaohan Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mingzhu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Baofeng Yun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xusheng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jing Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
4
|
Liu Y, Zhang H, Li X. Technologies for depth scanning in miniature optical imaging systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:6542-6562. [PMID: 38420321 PMCID: PMC10898578 DOI: 10.1364/boe.507078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
Biomedical optical imaging has found numerous clinical and research applications. For achieving 3D imaging, depth scanning presents the most significant challenge, particularly in miniature imaging devices. This paper reviews the state-of-art technologies for depth scanning in miniature optical imaging systems, which include two general approaches: 1) physically shifting part of or the entire imaging device to allow imaging at different depths and 2) optically changing the focus of the imaging optics. We mainly focus on the second group of methods, introducing a wide variety of tunable microlenses, covering the underlying physics, actuation mechanisms, and imaging performance. Representative applications in clinical and neuroscience research are briefly presented. Major challenges and future perspectives of depth/focus scanning technologies for biomedical optical imaging are also discussed.
Collapse
Affiliation(s)
- Yuehan Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Haolin Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xingde Li
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
5
|
Yamaguchi A, Wu R, McNulty P, Karagyozov D, Mihovilovic Skanata M, Gershow M. Multi-neuronal recording in unrestrained animals with all acousto-optic random-access line-scanning two-photon microscopy. Front Neurosci 2023; 17:1135457. [PMID: 37389365 PMCID: PMC10303936 DOI: 10.3389/fnins.2023.1135457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
To understand how neural activity encodes and coordinates behavior, it is desirable to record multi-neuronal activity in freely behaving animals. Imaging in unrestrained animals is challenging, especially for those, like larval Drosophila melanogaster, whose brains are deformed by body motion. A previously demonstrated two-photon tracking microscope recorded from individual neurons in freely crawling Drosophila larvae but faced limits in multi-neuronal recording. Here we demonstrate a new tracking microscope using acousto-optic deflectors (AODs) and an acoustic GRIN lens (TAG lens) to achieve axially resonant 2D random access scanning, sampling along arbitrarily located axial lines at a line rate of 70 kHz. With a tracking latency of 0.1 ms, this microscope recorded activities of various neurons in moving larval Drosophila CNS and VNC including premotor neurons, bilateral visual interneurons, and descending command neurons. This technique can be applied to the existing two-photon microscope to allow for fast 3D tracking and scanning.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Department of Physics, New York University, New York, NY, United States
| | - Rui Wu
- Department of Physics, New York University, New York, NY, United States
| | - Paul McNulty
- Department of Physics, New York University, New York, NY, United States
| | - Doycho Karagyozov
- Department of Physics, New York University, New York, NY, United States
| | | | - Marc Gershow
- Department of Physics, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
6
|
Hsu CW, Lin CY, Hu YY, Chen SJ. Dual-resonant scanning multiphoton microscope with ultrasound lens and resonant mirror for rapid volumetric imaging. Sci Rep 2023; 13:161. [PMID: 36599927 DOI: 10.1038/s41598-022-27370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
A dual-resonant scanning multiphoton (DRSM) microscope incorporating a tunable acoustic gradient index of refraction lens with a resonant mirror is developed for high-speed volumetric imaging. In the proposed microscope, the pulse train signal of a femtosecond laser is used to trigger an embedded field programmable gate array to sample the multiphoton excited fluorescence signal at the rate of one pixel per laser pulse. It is shown that a frame rate of around 8000 Hz can be obtained in the x-z plane for an image region with a size of 256 × 80 pixels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 343 × 343 × 120 μm3 with an image size of 256 × 256 × 80 voxels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 256 × 256 × 80 voxels, which represents 343 × 343 × 120 μm3 in field-of-view. The rapid volumetric imaging rate eliminates the aliasing effect for observed temporal frequencies lower than 15 Hz. The practical feasibility of the DRSM microscope is demonstrated by observing the mushroom bodies of a drosophila brain and performing 3D dynamic observations of moving 10-μm fluorescent beads.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan.
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan.
| |
Collapse
|
7
|
Hsu CW, Lin CY, Hu YY, Wang CY, Chang ST, Chiang AS, Chen SJ. Three-dimensional-generator U-net for dual-resonant scanning multiphoton microscopy image inpainting and denoising. BIOMEDICAL OPTICS EXPRESS 2022; 13:6273-6283. [PMID: 36589554 PMCID: PMC9774857 DOI: 10.1364/boe.474082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
A dual-resonant scanning multiphoton (DRSM) microscope incorporating a tunable acoustic gradient index of refraction lens and a resonant mirror is developed for rapid volumetric bioimaging. It is shown that the microscope achieves a volumetric imaging rate up to 31.25 volumes per second (vps) for a scanning volume of up to 200 × 200 × 100 µm3 with 256 × 256 × 128 voxels. However, the volumetric images have a severe negative signal-to-noise ratio (SNR) as a result of a large number of missing voxels for a large scanning volume and the presence of Lissajous patterning residuals. Thus, a modified three-dimensional (3D)-generator U-Net model trained using simulated microbead images is proposed and used to inpaint and denoise the images. The performance of the 3D U-Net model for bioimaging applications is enhanced by training the model with high-SNR in-vitro drosophila brain images captured using a conventional point scanning multiphoton microscope. The trained model shows the ability to produce clear in-vitro drosophila brain images at a rate of 31.25 vps with a SNR improvement of approximately 20 dB over the original images obtained by the DRSM microscope. The training convergence time of the modified U-Net model is just half that of a general 3D U-Net model. The model thus has significant potential for 3D in-vivo bioimaging transfer learning. Through the assistance of transfer learning, the model can be extended to the restoration of in-vivo drosophila brain images with a high image quality and a rapid training time.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi-Yu Wang
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Zhou Q, Nozdriukhin D, Chen Z, Glandorf L, Hofmann UAT, Reiss M, Tang L, Deán‐Ben XL, Razansky D. Depth-Resolved Localization Microangiography in the NIR-II Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204782. [PMID: 36403231 PMCID: PMC9811471 DOI: 10.1002/advs.202204782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Detailed characterization of microvascular alterations requires high-resolution 3D imaging methods capable of providing both morphological and functional information. Existing optical microscopy tools are routinely used for microangiography, yet offer suboptimal trade-offs between the achievable field of view and spatial resolution with the intense light scattering in biological tissues further limiting the achievable penetration depth. Herein, a new approach for volumetric deep-tissue microangiography based on stereovision combined with super-resolution localization imaging is introduced that overcomes the spatial resolution limits imposed by light diffusion and optical diffraction in wide-field imaging configurations. The method capitalizes on localization and tracking of flowing fluorescent particles in the second near-infrared window (NIR-II, ≈1000-1700 nm), with the third (depth) dimension added by triangulation and stereo-matching of images acquired with two short-wave infrared cameras operating in a dual-view mode. The 3D imaging capability enabled with the proposed method facilitates a detailed visualization of microvascular networks and an accurate blood flow quantification. Experiments performed in tissue-mimicking phantoms demonstrate that high resolution is preserved up to a depth of 4 mm in a turbid medium. Transcranial microangiography of the entire murine cortex and penetrating vessels is further demonstrated at capillary level resolution.
Collapse
Affiliation(s)
- Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lukas Glandorf
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Urs A. T. Hofmann
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lin Tang
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| |
Collapse
|
9
|
Lin J, Cheng Z, Yang G, Cui M. Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging. Nat Commun 2022; 13:6564. [PMID: 36323707 PMCID: PMC9630539 DOI: 10.1038/s41467-022-34472-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
To understand the function and mechanism of biological systems, it is crucial to observe the cellular dynamics at high spatiotemporal resolutions within live animals. The recent advances in genetically encoded function indicators have significantly improved the response rate to a near millisecond time scale. However, the widely employed in vivo imaging systems often lack the temporal solution to capture the fast biological dynamics. To broadly enable the capability of high-speed in vivo deep-tissue imaging, we developed an optical gearbox. As an add-on module, the optical gearbox can convert the common multiphoton imaging systems for versatile multiscale high-throughput imaging applications. In this work, we demonstrate in vivo 2D and 3D function imaging in mammalian brains at frame rates ranging from 50 to 1000 Hz. The optical gearbox's versatility and compatibility with the widely employed imaging components will be highly valuable to a variety of deep tissue imaging applications.
Collapse
Affiliation(s)
- Jianian Lin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Zongyue Cheng
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Chen X, Li Y, Chen P, Yao H, Ye T. High speed two-photon laser scanning stereomicroscopy for three-dimension tracking multiple particles simultaneously in three-dimension. FRONTIERS IN PHOTONICS 2022; 3:985474. [PMID: 38784836 PMCID: PMC11112984 DOI: 10.3389/fphot.2022.985474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this paper, we will describe a video rate two-photon laser scanning stereomicroscopy for imaging-based three-dimensional particle tracking. Using a resonant galvanometer, we have now achieved 30 volumes per second (frame size 512 × 512) in volumetric imaging. Owing to the pulse multiplexing and demultiplexing techniques, the system does not suffer the speed loss for taking two parallax views of a volume. The switching time between left and right views is reduced to several nanoseconds. The extremely fast view switching and high volumetric imaging speed allow us to track fast transport processes of nanoparticles in deep light-scattering media. For instance, in 1%-intralipid solution and fibrillar scaffolds, the tracking penetration depth can be around 400 μm.
Collapse
Affiliation(s)
- Xun Chen
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, SC, United States
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Li
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, SC, United States
| | - Peng Chen
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, SC, United States
| | - Hai Yao
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, SC, United States
| | - Tong Ye
- Department of Bioengineering, CU-MUSC Bioengineering Program, Clemson University, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Meng Q, Li Y, Yu Y, Chu K, Smith ZJ. A Drop-in, Focus-Extending Phase Mask Simplifies Microscopic and Microfluidic Imaging Systems for Cost-Effective Point-of-Care Diagnostics. Anal Chem 2022; 94:11000-11007. [PMID: 35895976 DOI: 10.1021/acs.analchem.2c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscopic imaging and imaging flow cytometry have wide potential in point-of-care assays; however, their narrow depth of focus necessitates precise mechanical or fluidic focus control of a sample in order to acquire high-quality images that can be used for downstream analysis, increasing the cost and complexity of the imaging system. This complexity represents a barrier to miniaturization and translation of point-of-care assays based on microscopic imaging or imaging flow cytometry. To address this challenge, we present a simple drop-in phase mask with a physics-informed, circularly symmetric asphere phase profile that extends the depth of focus by >5-fold while largely preserving the image quality compared to other depth extending methods. We show that such a focus-extended system overcomes manufacturing tolerances in low-cost sample chambers, enlarges the useable field-of-view of low-cost objectives, and permits increased throughput and precision in flow imaging systems without the need for complex flow-focusing. As the image quality is preserved without the need for postacquisition image restoration, our solution is also highly appropriate for on-line applications such as cell sorting.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yaning Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
12
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Ito KN, Isobe K, Osakada F. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics. Neurosci Res 2022; 179:15-23. [DOI: 10.1016/j.neures.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
14
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Akemann W, Wolf S, Villette V, Mathieu B, Tangara A, Fodor J, Ventalon C, Léger JF, Dieudonné S, Bourdieu L. Fast optical recording of neuronal activity by three-dimensional custom-access serial holography. Nat Methods 2022; 19:100-110. [PMID: 34949810 DOI: 10.1038/s41592-021-01329-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed three-dimensional custom-access serial holography (3D-CASH). Built on a fast acousto-optic light modulator, 3D-CASH performs serial sampling at 40 kHz from neurons at freely selectable 3D locations. Motion artifacts are eliminated by targeting each neuron with a size-optimized pattern of excitation light covering the cell body and its anticipated displacement field. Spike rates inferred from GCaMP6f recordings in visual cortex of awake mice tracked the phase of a moving bar stimulus with higher spike correlation between intra compared to interlaminar neuron pairs. 3D-CASH offers access to the millisecond correlation structure of in vivo neuronal activity in 3D microcircuits.
Collapse
Affiliation(s)
- Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sébastien Wolf
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Laboratoire de Physique de l'ENS (LPENS), École Normale Supérieure, CNRS, Université PSL, Paris, France
| | - Vincent Villette
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benjamin Mathieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Astou Tangara
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jozsua Fodor
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jean-François Léger
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Stéphane Dieudonné
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
16
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Borah BJ, Lee JC, Chi HH, Hsiao YT, Yen CT, Sun CK. Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability. iScience 2021; 24:103041. [PMID: 34585109 PMCID: PMC8450254 DOI: 10.1016/j.isci.2021.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The Nyquist-Shannon criterion has never been realized in a laser-scanning mesoscopic multiphoton microscope (MPM) with a large field-of-view (FOV)-resolution ratio, especially when employing a high-frequency resonant-raster-scanning. With a high optical resolution nature, a current mesoscopic-MPM either neglects the criterion and degrades the digital resolution to twice the pixel size, or reduces the FOV and/or the raster-scanning speed to avoid aliasing. We introduce a Nyquist figure-of-merit (NFOM) parameter to characterize a laser-scanning MPM in terms of its optical-resolution retrieving ability. Based on NFOM, we define the maximum aliasing-free FOV, and subsequently, a cross-over excitation wavelength, below which the FOV becomes NFOM-constrained irrespective of an optimized optical design. We validate our idea in a custom-built mesoscopic-MPM with millimeter-scale FOV yielding an ultra-high FOV-resolution ratio of >3,000, while securing up-to a 1.6 mm Nyquist-satisfied aliasing-free FOV, a ∼400 nm lateral resolution, and a 70 M/s effective voxel-sampling rate, all at the same time. Nyquist figure-of-merit is introduced to characterize laser-scanning MPM digitization Maximum aliasing-free FOV and cross-over excitation wavelength are formulated High repetition-rate laser can enable high-speed large-FOV high-resolution MPM imaging Up-to 1.6 mm-wide non-aliased FOV and ∼400 nm digital resolution at 8 kHz line-rate
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Jye-Chang Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Hsiung Chi
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Efstathiou C, Draviam VM. Electrically tunable lenses - eliminating mechanical axial movements during high-speed 3D live imaging. J Cell Sci 2021; 134:271866. [PMID: 34409445 DOI: 10.1242/jcs.258650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The successful investigation of photosensitive and dynamic biological events, such as those in a proliferating tissue or a dividing cell, requires non-intervening high-speed imaging techniques. Electrically tunable lenses (ETLs) are liquid lenses possessing shape-changing capabilities that enable rapid axial shifts of the focal plane, in turn achieving acquisition speeds within the millisecond regime. These human-eye-inspired liquid lenses can enable fast focusing and have been applied in a variety of cell biology studies. Here, we review the history, opportunities and challenges underpinning the use of cost-effective high-speed ETLs. Although other, more expensive solutions for three-dimensional imaging in the millisecond regime are available, ETLs continue to be a powerful, yet inexpensive, contender for live-cell microscopy.
Collapse
Affiliation(s)
- Christoforos Efstathiou
- School of Biological and Chemical Sciences , Queen Mary University of London, London, E1 4NS, UK
| | - Viji M Draviam
- School of Biological and Chemical Sciences , Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
19
|
Lai QTK, Yip GGK, Wu J, Wong JSJ, Lo MCK, Lee KCM, Le TTHD, So HKH, Ji N, Tsia KK. High-speed laser-scanning biological microscopy using FACED. Nat Protoc 2021; 16:4227-4264. [PMID: 34341580 DOI: 10.1038/s41596-021-00576-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 12/28/2022]
Abstract
Laser scanning is used in advanced biological microscopy to deliver superior imaging contrast, resolution and sensitivity. However, it is challenging to scale up the scanning speed required for interrogating a large and heterogeneous population of biological specimens or capturing highly dynamic biological processes at high spatiotemporal resolution. Bypassing the speed limitation of traditional mechanical methods, free-space angular-chirp-enhanced delay (FACED) is an all-optical, passive and reconfigurable laser-scanning approach that has been successfully applied in different microscopy modalities at an ultrafast line-scan rate of 1-80 MHz. Optimal FACED imaging performance requires optimized experimental design and implementation to enable specific high-speed applications. In this protocol, we aim to disseminate information allowing FACED to be applied to a broader range of imaging modalities. We provide (i) a comprehensive guide and design specifications for the FACED hardware; (ii) step-by-step optical implementations of the FACED module including the key custom components; and (iii) the overall image acquisition and reconstruction pipeline. We illustrate two practical imaging configurations: multimodal FACED imaging flow cytometry (bright-field, fluorescence and second-harmonic generation) and kHz 2D two-photon fluorescence microscopy. Users with basic experience in optical microscope operation and software engineering should be able to complete the setup of the FACED imaging hardware and software in ~2-3 months.
Collapse
Affiliation(s)
- Queenie T K Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Gwinky G K Yip
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianglai Wu
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Chinese Institute for Brain Research, Beijing, China
| | - Justin S J Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Michelle C K Lo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Tony T H D Le
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Hayden K H So
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin New Town, Hong Kong.
| |
Collapse
|
20
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
21
|
Valera AM, Neufeldt FC, Kirkby PA, Mitchell JE, Silver RA. Precompensation of 3D field distortions in remote focus two-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:3717-3728. [PMID: 34221690 PMCID: PMC8221938 DOI: 10.1364/boe.425588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Remote focusing is widely used in 3D two-photon microscopy and 3D photostimulation because it enables fast axial scanning without moving the objective lens or specimen. However, due to the design constraints of microscope optics, remote focus units are often located in non-telecentric positions in the optical path, leading to significant depth-dependent 3D field distortions in the imaging volume. To address this limitation, we characterized 3D field distortions arising from non-telecentric remote focusing and present a method for distortion precompensation. We demonstrate its applicability for a 3D two-photon microscope that uses an acousto-optic lens (AOL) for remote focusing and scanning. We show that the distortion precompensation method improves the pointing precision of the AOL microscope to < 0.5 µm throughout the 400 × 400 × 400 µm imaging volume.
Collapse
Affiliation(s)
- Antoine M. Valera
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- These authors contributed equally
| | - Fiona C. Neufeldt
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Electronic and Electrical Engineering, University College London, Malet Place, London WC1E 7JE, UK
- These authors contributed equally
| | - Paul A. Kirkby
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - John E. Mitchell
- Department of Electronic and Electrical Engineering, University College London, Malet Place, London WC1E 7JE, UK
| | - R. Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
22
|
Wagner N, Beuttenmueller F, Norlin N, Gierten J, Boffi JC, Wittbrodt J, Weigert M, Hufnagel L, Prevedel R, Kreshuk A. Deep learning-enhanced light-field imaging with continuous validation. Nat Methods 2021; 18:557-563. [PMID: 33963344 DOI: 10.1038/s41592-021-01136-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.
Collapse
Affiliation(s)
- Nils Wagner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Informatics, Technical University of Munich, Garching, Germany.,Munich School for Data Science (MUDS), Munich, Germany
| | - Fynn Beuttenmueller
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Norlin
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Bioimaging Centre, Lund University, Lund, Sweden
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Department of Pediatric Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juan Carlos Boffi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy. .,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
23
|
Ren J, Han KY. 2.5D microscopy: Fast, high-throughput imaging via volumetric projection for quantitative subcellular analysis. ACS PHOTONICS 2021; 8:933-942. [PMID: 34485614 PMCID: PMC8412410 DOI: 10.1021/acsphotonics.1c00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Imaging-based single-cell analysis is essential to study the expression level and functions of biomolecules at subcellular resolution. However, its low throughput has prevented the measurement of numerous cellular features from multiples cells in a rapid and efficient manner. Here we report 2.5D microscopy that significantly improves the throughput of fluorescence imaging systems while maintaining high-resolution and single-molecule sensitivity. Instead of sequential z-scanning, volumetric information is projected onto a 2D image plane in a single shot by engineering the emitted fluorescence light. Our approach provides an improved imaging speed and uniform focal response within a specific imaging depth, which enabled us to perform quantitative single-molecule RNA measurements over a 2×2 mm2 region within an imaging depth of ~5 μm for mammalian cells in <10 min and immunofluorescence imaging at a >30 Hz volumetric frame rate with reduced photobleaching. Our microscope also offers the ability of multi-color imaging, depth control and super-resolution imaging.
Collapse
Affiliation(s)
- Jinhan Ren
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
24
|
Tsang JM, Gritton HJ, Das SL, Weber TD, Chen CS, Han X, Mertz J. Fast, multiplane line-scan confocal microscopy using axially distributed slits. BIOMEDICAL OPTICS EXPRESS 2021; 12:1339-1350. [PMID: 33796357 PMCID: PMC7984773 DOI: 10.1364/boe.417286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 05/29/2023]
Abstract
The inherent constraints on resolution, speed and field of view have hindered the development of high-speed, three-dimensional microscopy techniques over large scales. Here, we present a multiplane line-scan imaging strategy, which uses a series of axially distributed reflecting slits to probe different depths within a sample volume. Our technique enables the simultaneous imaging of an optically sectioned image stack with a single camera at frame rates of hundreds of hertz, without the need for axial scanning. We demonstrate the applicability of our system to monitor fast dynamics in biological samples by performing calcium imaging of neuronal activity in mouse brains and voltage imaging of cardiomyocytes in cardiac samples.
Collapse
Affiliation(s)
- Jean-Marc Tsang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Howard J. Gritton
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Timothy D. Weber
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| |
Collapse
|
25
|
Zhuang C, Li X, Zhang Y, Kong L, Xie H, Dai Q. Photobleaching Imprinting Enhanced Background Rejection in Line-Scanning Temporal Focusing Microscopy. Front Chem 2021; 8:618131. [PMID: 33392156 PMCID: PMC7773834 DOI: 10.3389/fchem.2020.618131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Compared with two-photon point-scanning microscopy, two-photon temporal focusing microscopy (2pTFM) provides a parallel high-speed imaging strategy with optical sectioning capability. Owing to out-of-focus fluorescence induced by scattering, 2pTFM suffers deteriorated signal-to-background ratio (SBR) for deep imaging in turbid tissue, Here, we utilized the photobleaching property of fluorophore to eliminate out-of-focus fluorescence. According to different decay rates in different focal depth, we extract the in-focus signals out of backgrounds through time-lapse images. We analyzed the theoretical foundations of photobleaching imprinting of the line-scanning temporal focusing microscopy, simulated implementation for background rejection, and demonstrated the contrast enhancement in MCF-10A human mammary epithelial cells and cleared Thy1-YFP mouse brains. More than 50% of total background light rejection was achieved, providing higher SBR images of the MCF-10A samples and mouse brains. The photobleaching imprinting method can be easily adapted to other fluorescence dyes or proteins, which may have application in studies involving relatively large and nontransparent organisms.
Collapse
Affiliation(s)
- Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
| | - Lingjie Kong
- Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology, Beijing, China.,Institute for Brain and Cognitive Science, Tsinghua University, Beijing, China.,Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| |
Collapse
|
26
|
Chien YF, Lin JY, Yeh PT, Hsu KJ, Tsai YH, Chen SK, Chu SW. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:162-172. [PMID: 33659072 PMCID: PMC7899523 DOI: 10.1364/boe.405738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 05/30/2023]
Abstract
Studying neural connections and activities in vivo is fundamental to understanding brain functions. Given the cm-size brain and three-dimensional neural circuit dynamics, deep-tissue, high-speed volumetric imaging is highly desirable for brain study. With sub-micrometer spatial resolution, intrinsic optical sectioning, and deep-tissue penetration capability, two-photon microscopy (2PM) has found a niche in neuroscience. However, the current 2PM typically relies on a slow axial scan for volumetric imaging, and the maximal penetration depth is only about 1 mm. Here, we demonstrate that by integrating a gradient-index (GRIN) lens and a tunable acoustic GRIN (TAG) lens into 2PM, both penetration depth and volume-imaging rate can be significantly improved. Specifically, an ∼ 1-cm long GRIN lens allows imaging relay from any target region of a mouse brain, while a TAG lens provides a sub-second volume rate via a 100 kHz ∼ 1 MHz axial scan. This technique enables the study of calcium dynamics in cm-deep brain regions with sub-cellular and sub-second spatiotemporal resolution, paving the way for interrogating deep-brain functional connectome.
Collapse
Affiliation(s)
- Yu-Feng Chien
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jyun-Yi Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Ting Yeh
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Kuo-Jen Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Peinado A, Bendek E, Yokoyama S, Poskanzer KE. Deformable mirror-based axial scanning for two-photon mammalian brain imaging. NEUROPHOTONICS 2021; 8:015003. [PMID: 33437848 PMCID: PMC7778453 DOI: 10.1117/1.nph.8.1.015003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Significance: To expand our understanding of the roles of astrocytes in neural circuits, there is a need to develop optical tools tailored specifically to capture their complex spatiotemporal Ca 2 + dynamics. This interest is not limited to 2D, but to multiple depths. Aim: The focus of our work was to design and evaluate the optical performance of an enhanced version of a two-photon (2P) microscope with the addition of a deformable mirror (DM)-based axial scanning system for live mammalian brain imaging. Approach: We used a DM to manipulate the beam wavefront by applying different defocus terms to cause a controlled axial shift of the image plane. The optical design and performance were evaluated by an analysis of the optical model, followed by an experimental characterization of the implemented instrument. Results: Key questions related to this instrument were addressed, including impact of the DM curvature change on vignetting, field of view size, image plane flatness, wavefront error, and point spread function. The instrument was used for imaging several neurobiological samples at different depths, including fixed brain slices and in vivo mouse cerebral cortex. Conclusions: Our implemented instrument was capable of recording z -stacks of 53 μ m in depth with a fine step size, parameters that make it useful for astrocyte biology research. Future work includes adaptive optics and intensity normalization.
Collapse
Affiliation(s)
- Alba Peinado
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
| | - Eduardo Bendek
- National Aeronautics and Space Administration, AMES Research Center, Moffet Field, California, United States
| | - Sae Yokoyama
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
| | - Kira E. Poskanzer
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California, United States
- Kavli Institute for Fundamental Neuroscience, San Francisco, California, United States
| |
Collapse
|
28
|
Cosco ED, Spearman AL, Ramakrishnan S, Lingg JGP, Saccomano M, Pengshung M, Arús BA, Wong KCY, Glasl S, Ntziachristos V, Warmer M, McLaughlin RR, Bruns OT, Sletten EM. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat Chem 2020; 12:1123-1130. [PMID: 33077925 PMCID: PMC7680456 DOI: 10.1038/s41557-020-00554-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350-700 nm) and near-infrared (700-1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000-2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anthony L Spearman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shyam Ramakrishnan
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jakob G P Lingg
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mara Saccomano
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Monica Pengshung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kelly C Y Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Glasl
- Institute of Biomedical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Martin Warmer
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ryan R McLaughlin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
May MA, Bawart M, Langeslag M, Bernet S, Kress M, Ritsch-Marte M, Jesacher A. High-NA two-photon single cell imaging with remote focusing using a diffractive tunable lens. BIOMEDICAL OPTICS EXPRESS 2020; 11:7183-7191. [PMID: 33408989 PMCID: PMC7747902 DOI: 10.1364/boe.405863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Fast, volumetric structural and functional imaging of cellular and sub-cellular dynamics inside the living brain is one of the most desired capabilities in the neurosciences, but still faces serious challenges. Specifically, while few solutions for rapid 3D scanning exist, it is generally much easier to facilitate fast in-plane scanning than it is to scan axially at high speeds. Remote focusing in which the imaging plane is shifted along the optical axis by a tunable lens while maintaining the position of the sample and objective is a promising approach to increase the axial scan speed, but existing techniques often introduce severe optical aberrations in high-NA imaging systems, eliminating the possibility of diffraction-limited single-cell imaging. Here, we demonstrate near diffraction-limited, volumetric two-photon fluorescence microscopy in which we resolve the deep sub-micron structures of single microglia cells with axial scanning performed using a novel high-NA remote focusing method. Image contrast is maintained to within 7% compared to mechanical sample stepping and the focal volume remains nearly diffraction-limited over an axial range greater than 86 µm.
Collapse
Affiliation(s)
- Molly A. May
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Martin Bawart
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Michiel Langeslag
- Institute of Physiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Stefan Bernet
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Monika Ritsch-Marte
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Alexander Jesacher
- Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Jiang H, Wang C, Wei B, Gan W, Cai D, Cui M. Long-range remote focusing by image-plane aberration correction. OPTICS EXPRESS 2020; 28:34008-34014. [PMID: 33182878 PMCID: PMC7679183 DOI: 10.1364/oe.409225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning plays an important role in a broad range of applications. Toward 3D aberration-free scanning, a remote focusing technique has been developed for high-speed imaging applications. However, the implementation of remote focusing often suffers from a limited axial scan range as a result of unknown aberration. Through simple analysis, we show that the sample-to-image path length conservation is crucially important to the remote focusing performance. To enhance the axial scan range, we propose and demonstrate an image-plane aberration correction method. Using a static correction, we can effectively improve the focus quality over a large defocusing range. Experimentally, we achieved ∼three times greater defocusing range than that of conventional methods. This technique can broadly benefit the implementations of high-speed large-volume 3D imaging.
Collapse
Affiliation(s)
- Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chenmao Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Bowen Wei
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Dawen Cai
- Department of Cell and Development Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Deguchi T, Bianchini P, Palazzolo G, Oneto M, Diaspro A, Duocastella M. Volumetric Lissajous confocal microscopy with tunable spatiotemporal resolution. BIOMEDICAL OPTICS EXPRESS 2020; 11:6293-6310. [PMID: 33282491 PMCID: PMC7687945 DOI: 10.1364/boe.400777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 05/29/2023]
Abstract
Dynamic biological systems present challenges to existing three-dimensional (3D) optical microscopes because of their continuous temporal and spatial changes. Most techniques are rigid in adapting the acquisition parameters over time, as in confocal microscopy, where a laser beam is sequentially scanned at a predefined spatial sampling rate and pixel dwell time. Such lack of tunability forces a user to provide scan parameters, which may not be optimal, based on the best assumption before an acquisition starts. Here, we developed volumetric Lissajous confocal microscopy to achieve unsurpassed 3D scanning speed with a tunable sampling rate. The system combines an acoustic liquid lens for continuous axial focus translation with a resonant scanning mirror. Accordingly, the excitation beam follows a dynamic Lissajous trajectory enabling sub-millisecond acquisitions of image series containing 3D information at a sub-Nyquist sampling rate. By temporal accumulation and/or advanced interpolation algorithms, the volumetric imaging rate is selectable using a post-processing step at the desired spatiotemporal resolution for events of interest. We demonstrate multicolor and calcium imaging over volumes of tens of cubic microns with 3D acquisition speeds of 30 Hz and frame rates up to 5 kHz.
Collapse
Affiliation(s)
- Takahiro Deguchi
- Nanoscopy & NIC@IIT, Center for Human Technologies, Istituto Italiano di Tecnologia, via E. Melen 83B, 16152 Genoa, Italy
| | - Paolo Bianchini
- Nanoscopy & NIC@IIT, Center for Human Technologies, Istituto Italiano di Tecnologia, via E. Melen 83B, 16152 Genoa, Italy
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Michele Oneto
- Nanoscopy & NIC@IIT, Center for Human Technologies, Istituto Italiano di Tecnologia, via E. Melen 83B, 16152 Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Center for Human Technologies, Istituto Italiano di Tecnologia, via E. Melen 83B, 16152 Genoa, Italy
- Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Martí Duocastella
- Nanoscopy & NIC@IIT, Center for Human Technologies, Istituto Italiano di Tecnologia, via E. Melen 83B, 16152 Genoa, Italy
- Departament de Física Aplicada, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Lin P, Ni H, Li H, Vickers NA, Tan Y, Gong R, Bifano T, Cheng JX. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. OPTICS EXPRESS 2020; 28:30210-30221. [PMID: 33114904 PMCID: PMC7679187 DOI: 10.1364/oe.404869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.
Collapse
Affiliation(s)
- Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Huate Li
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Nicholas A. Vickers
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
| | - Ruyi Gong
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Thomas Bifano
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| |
Collapse
|
33
|
Bawart M, May MA, Öttl T, Roider C, Bernet S, Schmidt M, Ritsch-Marte M, Jesacher A. Diffractive tunable lens for remote focusing in high-NA optical systems. OPTICS EXPRESS 2020; 28:26336-26347. [PMID: 32906907 DOI: 10.1364/oe.400784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Remote focusing means to translate the focus position of an imaging system along the optical axis without moving the objective lens. The concept gains increasing importance as it allows for quick 3D focus steering in scanning microscopes, leaves the sample region unperturbed and is compatible with conjugated adaptive optics. Here we present a novel remote focusing approach that can be used in conjunction with high numerical aperture optics. Our method is based on a pair of diffractive elements, which jointly act as a tunable auxiliary lens. By changing the mutual rotation angle between the two elements, we demonstrate an axial translation of the focal spot produced by a NA = 0.95 air objective (corresponding to NA = 1.44 for an oil immersion lens) over more than 140 µm with largely maintained focus quality. We experimentally show that for the task of focus shifting, the wavefront produced by the high-NA design is superior to those produced by a parabolic lens design or a regular achromatic lens doublet.
Collapse
|
34
|
Lin J, Cheng Z, Gan W, Cui M. Jitter suppression for resonant galvo based high-throughput laser scanning systems. OPTICS EXPRESS 2020; 28:26414-26420. [PMID: 32906914 PMCID: PMC7679194 DOI: 10.1364/oe.402883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Laser scanning has been widely used in material processing and optical imaging. Among the established scanners, resonant galvo scanners offer high scanning throughput and 100% duty cycle and have been employed in various laser scanning microscopes. However, the common applications of resonant galvo often suffer from position jitters which could introduce substantial measurement artifacts. In this work, we systematically quantify the impact of position sensor, data acquisition system and air turbulence and provide a simple solution to achieve jitter free high-throughput measurement.
Collapse
Affiliation(s)
- Jianian Lin
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Cheng Z, Jiang H, Gan W, Cui M. Pupil plane actuated remote focusing for rapid focal depth control. OPTICS EXPRESS 2020; 28:26407-26413. [PMID: 32906913 PMCID: PMC7679197 DOI: 10.1364/oe.402787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning is widely employed in imaging and material processing. Common laser scanners are often fast for 2D transverse scanning. Rapid focal depth control is highly desired in many applications. Although remote focusing has been developed to achieve fast focal depth control, the implementation is limited by the laser damage to the actuator near laser focus. Here, we present a new method named pupil plane actuated remote focusing, which enables sub-millisecond response time while avoiding laser damage. We demonstrate its application by implementing a dual-plane two-photon laser scanning fluorescence microscope for in vivo recording of calcium transient of neurons in mouse neocortex.
Collapse
Affiliation(s)
- Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat Biotechnol 2020; 39:74-83. [PMID: 32778840 DOI: 10.1038/s41587-020-0628-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
A detailed understanding of the function of neural networks and how they are supported by a dynamic vascular system requires fast three-dimensional imaging in thick tissues. Here we present confocal light field microscopy, a method that enables fast volumetric imaging in the brain at depths of hundreds of micrometers. It uses a generalized confocal detection scheme that selectively collects fluorescent signals from the in-focus volume and provides optical sectioning capability to improve imaging resolution and sensitivity in thick tissues. We demonstrate recording of whole-brain calcium transients in freely swimming zebrafish larvae and observe behaviorally correlated activities in single neurons during prey capture. Furthermore, in the mouse brain, we detect neural activities at depths of up to 370 μm and track blood cells at 70 Hz over a volume of diameter 800 μm × thickness 150 μm and depth of up to 600 μm.
Collapse
|
37
|
Meng Q, Xu T, Smith ZJ, Chu K. Optical volumetric projection with large NA objectives for fast high-resolution 3D imaging of neural signals. BIOMEDICAL OPTICS EXPRESS 2020; 11:3769-3782. [PMID: 33014565 PMCID: PMC7510921 DOI: 10.1364/boe.393494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 05/09/2023]
Abstract
One critical challenge in studying neural circuits of freely behaving model organisms is to record neural signals distributed within the whole brain, yet simultaneously maintaining cellular resolution. However, due to the dense packing of neuron cells in animal brains, high numerical aperture (NA) objectives are often required to differentiate neighboring neurons with the consequent need for axial scanning for whole brain imaging. Extending the depth of focus (EDoF) will be beneficial for fast 3D imaging of those neurons. However, current EDoF-enabled microscopes are primarily based on objectives with small NAs (≤0.3 ) such that the paraxial approximation can be applied. In this paper, we started from a nonparaxial approximation of the defocus aberration and derived a new phase mask that was appropriate for large NA microscopic systems. We validated the performance experimentally with a spatial light modulator (SLM) to create the designed phase mask. The performance was tested on different samples such as multilayered fluorescence beads and thick brain tissues, as well as with different objectives. Results confirmed that our design has extended the depth of focus about 10 fold and the image quality is much higher than those based on the most common EDoF method, the cubic phase method, popularly used to generate Airy beams. Meanwhile, our phase mask is rotationally symmetric and easy to fabricate. We fabricated one such phase plate and tested it on the pan-neuronal labeled Caenorhabditis elegans (C.elegans). The imaging performance demonstrated that we can capture all neurons in the whole brain with one snapshot and with cellular resolution, while the imaging speed is increased about 3 fold compared to the system using SLM. Thus we have shown that our method can not only provide the required imaging speed and resolution for studying neural activities in model animals, but also can be implemented as a low-cost, add-on module that can immediately augment existing fluorescence microscopes with only minor system modifications, and yielding substantially higher photon efficiency than SLM-based methods.
Collapse
Affiliation(s)
- Qi Meng
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027, Hefei, China
| | - Zachary J. Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| | - Kaiqin Chu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| |
Collapse
|
38
|
Griffiths VA, Valera AM, Lau JY, Roš H, Younts TJ, Marin B, Baragli C, Coyle D, Evans GJ, Konstantinou G, Koimtzis T, Nadella KMNS, Punde SA, Kirkby PA, Bianco IH, Silver RA. Real-time 3D movement correction for two-photon imaging in behaving animals. Nat Methods 2020; 17:741-748. [PMID: 32483335 PMCID: PMC7370269 DOI: 10.1038/s41592-020-0851-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022]
Abstract
Two-photon microscopy is widely used to investigate brain function across multiple spatial scales. However, measurements of neural activity are compromised by brain movement in behaving animals. Brain motion-induced artifacts are typically corrected using post hoc processing of two-dimensional images, but this approach is slow and does not correct for axial movements. Moreover, the deleterious effects of brain movement on high-speed imaging of small regions of interest and photostimulation cannot be corrected post hoc. To address this problem, we combined random-access three-dimensional (3D) laser scanning using an acousto-optic lens and rapid closed-loop field programmable gate array processing to track 3D brain movement and correct motion artifacts in real time at up to 1 kHz. Our recordings from synapses, dendrites and large neuronal populations in behaving mice and zebrafish demonstrate real-time movement-corrected 3D two-photon imaging with submicrometer precision.
Collapse
Affiliation(s)
- Victoria A Griffiths
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Antoine M Valera
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Joanna Yn Lau
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Hana Roš
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Thomas J Younts
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Bóris Marin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Chiara Baragli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- , Paris, France
| | - Diccon Coyle
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Geoffrey J Evans
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Department of Engineering, Sencon (UK) Ltd., Droitwich, UK
| | - George Konstantinou
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Theo Koimtzis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Optical Metrology Service, Stansted, UK
| | | | - Sameer A Punde
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Paul A Kirkby
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
39
|
Straub BB, Lah DC, Schmidt H, Roth M, Gilson L, Butt HJ, Auernhammer GK. Versatile high-speed confocal microscopy using a single laser beam. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033706. [PMID: 32259986 DOI: 10.1063/1.5122311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We present a new flexible high speed laser scanning confocal microscope and its extension by an astigmatism particle tracking velocimetry (APTV) device. Many standard confocal microscopes use either a single laser beam to scan the sample at a relatively low overall frame rate or many laser beams to simultaneously scan the sample and achieve a high overall frame rate. The single-laser-beam confocal microscope often uses a point detector to acquire the image. To achieve high overall frame rates, we use, next to the standard 2D probe scanning unit, a second 2D scan unit projecting the image directly onto a 2D CCD-sensor (re-scan configuration). Using only a single laser beam eliminates crosstalk and leads to an imaging quality that is independent of the frame rate with a lateral resolution of 0.235 µm. The design described here is suitable for a high frame rate, i.e., for frame rates well above the video rate (full frame) up to a line rate of 32 kHz. The dwell time of the laser focus on any spot in the sample (122 ns) is significantly shorter than those in standard confocal microscopes (in the order of milli- or microseconds). This short dwell time reduces phototoxicity and bleaching of fluorescent molecules. The new design opens up further flexibility and facilitates coupling to other optical methods. The setup can easily be extended by an APTV device to measure three dimensional dynamics while being able to show high resolution confocal structures. Thus, one can use the high resolution confocal information synchronized with an APTV dataset.
Collapse
Affiliation(s)
- Benedikt B Straub
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - David C Lah
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Henrik Schmidt
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Marcel Roth
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Laurent Gilson
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Günter K Auernhammer
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
40
|
Simultaneous multiplane imaging with reverberation two-photon microscopy. Nat Methods 2020; 17:283-286. [PMID: 32042186 DOI: 10.1038/s41592-019-0728-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
Abstract
Multiphoton microscopy has gained enormous popularity because of its unique capacity to provide high-resolution images from deep within scattering tissue. Here, we demonstrate video-rate multiplane imaging with two-photon microscopy by performing near-instantaneous axial scanning while maintaining three-dimensional micrometer-scale resolution. Our technique, termed reverberation microscopy, enables the monitoring of neuronal populations over large depth ranges and can be implemented as a simple add-on to a conventional design.
Collapse
|
41
|
Lecoq J, Orlova N, Grewe BF. Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of In Vivo Neuronal Activity. J Neurosci 2019; 39:9042-9052. [PMID: 31578235 PMCID: PMC6855689 DOI: 10.1523/jneurosci.1527-18.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023] Open
Abstract
Multiphoton microscopy (MPM) has emerged as one of the most powerful and widespread technologies to monitor the activity of neuronal networks in awake, behaving animals over long periods of time. MPM development spanned across decades and crucially depended on the concurrent improvement of calcium indicators that report neuronal activity as well as surgical protocols, head fixation approaches, and innovations in optics and microscopy technology. Here we review the last decade of MPM development and highlight how in vivo imaging has matured and diversified, making it now possible to concurrently monitor thousands of neurons across connected brain areas or, alternatively, small local networks with sampling rates in the kilohertz range. This review includes different laser scanning approaches, such as multibeam technologies as well as recent developments to image deeper into neuronal tissues using new, long-wavelength laser sources. As future development will critically depend on our ability to resolve and discriminate individual neuronal spikes, we will also describe a simple framework that allows performing quantitative comparisons between the reviewed MPM instruments. Finally, we provide our own opinion on how the most recent MPM developments can be leveraged at scale to enable the next generation of discoveries in brain function.
Collapse
Affiliation(s)
- Jérôme Lecoq
- Allen Institute for Brain Science, Seattle 98109, Washington,
| | - Natalia Orlova
- Allen Institute for Brain Science, Seattle 98109, Washington
| | - Benjamin F Grewe
- Institute of Neuroinformatics, UZH and ETH Zurich, Zurich 8057, Switzerland
- Department of Electrical Engineering and Information Technology, ETH Zurich, Zurich 8092, Switzerland, and
- Faculty of Sciences, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
42
|
Huang C, Tai CY, Yang KP, Chang WK, Hsu KJ, Hsiao CC, Wu SC, Lin YY, Chiang AS, Chu SW. All-Optical Volumetric Physiology for Connectomics in Dense Neuronal Structures. iScience 2019; 22:133-146. [PMID: 31765994 PMCID: PMC6883334 DOI: 10.1016/j.isci.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
All-optical physiology (AOP) manipulates and reports neuronal activities with light, allowing for interrogation of neuronal functional connections with high spatiotemporal resolution. However, contemporary high-speed AOP platforms are limited to single-depth or discrete multi-plane recordings that are not suitable for studying functional connections among densely packed small neurons, such as neurons in Drosophila brains. Here, we constructed a 3D AOP platform by incorporating single-photon point stimulation and two-photon high-speed volumetric recordings with a tunable acoustic gradient-index (TAG) lens. We demonstrated the platform effectiveness by studying the anterior visual pathway (AVP) of Drosophila. We achieved functional observation of spatiotemporal coding and the strengths of calcium-sensitive connections between anterior optic tubercle (AOTU) sub-compartments and >70 tightly assembled 2-μm bulb (BU) microglomeruli in 3D coordinates with a single trial. Our work aids the establishment of in vivo 3D functional connectomes in neuron-dense brain areas. All-optical volumetric physiology = precise stimulation + fast volumetric recording Precise single-photon point stimulation among genetically defined neurons 3D two-photon imaging by an acoustic gradient-index lens for dense neural structures Observation of 3D functional connectivity in Drosophila anterior visual pathway
Collapse
Affiliation(s)
- Chiao Huang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chu-Yi Tai
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kai-Ping Yang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Kun Chang
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kuo-Jen Hsu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Ching-Chun Hsiao
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Yen-Yin Lin
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan.
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Kavli Institute for Brain and Mind, University of California, San Diego, CA 92161, USA.
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
43
|
Zhang T, Hernandez O, Chrapkiewicz R, Shai A, Wagner MJ, Zhang Y, Wu CH, Li JZ, Inoue M, Gong Y, Ahanonu B, Zeng H, Bito H, Schnitzer MJ. Kilohertz two-photon brain imaging in awake mice. Nat Methods 2019; 16:1119-1122. [PMID: 31659327 PMCID: PMC9438750 DOI: 10.1038/s41592-019-0597-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023]
Abstract
Two-photon microscopy is a mainstay technique for imaging in scattering media and normally provides frame-acquisition rates of ~10–30 Hz. To track high-speed phenomena, we created a two-photon microscope with 400 illumination beams that collectively sample 95,000–211,000 μm2 areas at rates up to 1 kHz. Using this microscope, we visualized microcirculatory flow, fast venous constrictions, and neuronal Ca2+ spiking with millisecond-scale timing resolution in the brains of awake mice.
Collapse
|
44
|
Abstract
Among optical imaging techniques light sheet fluorescence microscopy is one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. However light sheet microscopes are limited by volume scanning rate and/or camera speed. We present speed-optimized Objective Coupled Planar Illumination (OCPI) microscopy, a fast light sheet technique that avoids compromising image quality or photon efficiency. Our fast scan system supports 40 Hz imaging of 700 μm-thick volumes if camera speed is sufficient. We also address the camera speed limitation by introducing Distributed Planar Imaging (DPI), a scaleable technique that parallelizes image acquisition across cameras. Finally, we demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced artifact, removable when the imaging rate exceeds 15 Hz. These advances extend the reach of fluorescence microscopy for monitoring fast processes in large volumes. Light sheet microscopy holds potential for imaging dynamics in 3D biological specimens, but is limited by scan speed and camera acquisition rate. Here the authors address both issues by developing speed-optimized Objective Coupled Planar Illumination and parallelizing image acquisition across cameras to achieve 40 Hz imaging over thick samples.
Collapse
|
45
|
Liu R, Ball N, Brockill J, Kuan L, Millman D, White C, Leon A, Williams D, Nishiwaki S, de Vries S, Larkin J, Sullivan D, Slaughterbeck C, Farrell C, Saggau P. Aberration-free multi-plane imaging of neural activity from the mammalian brain using a fast-switching liquid crystal spatial light modulator. BIOMEDICAL OPTICS EXPRESS 2019; 10:5059-5080. [PMID: 31646030 PMCID: PMC6788611 DOI: 10.1364/boe.10.005059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/03/2019] [Indexed: 05/27/2023]
Abstract
We report a novel two-photon fluorescence microscope based on a fast-switching liquid crystal spatial light modulator and a pair of galvo-resonant scanners for large-scale recording of neural activity from the mammalian brain. The spatial light modulator is used to achieve fast switching between different imaging planes in multi-plane imaging and correct for intrinsic optical aberrations associated with this imaging scheme. The utilized imaging technique is capable of monitoring the neural activity from large populations of neurons with known coordinates spread across different layers of the neocortex in awake and behaving mice, regardless of the fluorescent labeling strategy. During each imaging session, all visual stimulus driven somatic activity could be recorded in the same behavior state. We observed heterogeneous response to different types of visual stimuli from ∼ 3,300 excitatory neurons reaching from layer II/III to V of the striate cortex.
Collapse
Affiliation(s)
- Rui Liu
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
- Now with GE Healthcare Bio-Sciences Corp, 1040 12th Ave NW, Issaquah, WA, 98027, USA
| | - Neil Ball
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - James Brockill
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Daniel Millman
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Cassandra White
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Arielle Leon
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Derric Williams
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Shig Nishiwaki
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Saskia de Vries
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Josh Larkin
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - David Sullivan
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | | | - Colin Farrell
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
| | - Peter Saggau
- Allen Institute for Brain Science, 615 Westlake Ave, Seattle, WA 98109, USA
- Now with Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
46
|
Zhang Y, Zhou T, Hu X, Li X, Xie H, Fang L, Kong L, Dai Q. Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction. OPTICS EXPRESS 2019; 27:20117-20132. [PMID: 31510112 DOI: 10.1364/oe.27.020117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Compared to point-scanning multiphoton microscopy, line-scanning temporal focusing microscopy (LTFM) is competitive in high imaging speed while maintaining tight axial confinement. However, considering its wide-field detection mode, LTFM suffers from shallow penetration depth as a result of the crosstalk induced by tissue scattering. In contrast to the spatial filtering based on confocal slit detection, here we propose the extended detection LTFM (ED-LTFM), the first wide-field two-photon imaging technique to extract signals from scattered photons and thus effectively extend the imaging depth. By recording a succession of line-shape excited signals in 2D and reconstructing signals under Hessian regularization, we can push the depth limitation of wide-field imaging in scattering tissues. We validate the concept with numerical simulations, and demonstrate the performance of enhanced imaging depth in in vivo imaging of mouse brains.
Collapse
|
47
|
Tehrani KF, Latchoumane CV, Southern WM, Pendleton EG, Maslesa A, Karumbaiah L, Call JA, Mortensen LJ. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:3591-3604. [PMID: 31360606 PMCID: PMC6640832 DOI: 10.1364/boe.10.003591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 05/08/2023]
Abstract
Multi-photon scanning microscopy provides a robust tool for optical sectioning, which can be used to capture fast biological events such as blood flow, mitochondrial activity, and neuronal action potentials. For many studies, it is important to visualize several different focal planes at a rate akin to the biological event frequency. Typically, a microscope is equipped with mechanical elements to move either the sample or the objective lens to capture volumetric information, but these strategies are limited due to their slow speeds or inertial artifacts. To overcome this problem, remote focusing methods have been developed to shift the focal plane axially without physical movement of the sample or the microscope. Among these methods is liquid lens technology, which adjusts the focus of the lens by changing the wettability of the liquid and hence its curvature. Liquid lenses are inexpensive active optical elements that have the potential for fast multi-photon volumetric imaging, hence a promising and accessible approach for the study of biological systems with complex dynamics. Although remote focusing using liquid lens technology can be used for volumetric point scanning multi-photon microscopy, optical aberrations and the effects of high energy laser pulses have been concerns in its implementation. In this paper, we characterize a liquid lens and validate its use in relevant biological applications. We measured optical aberrations that are caused by the liquid lens, and calculated its response time, defocus hysteresis, and thermal response to a pulsed laser. We applied this method of remote focusing for imaging and measurement of multiple in-vivo specimens, including mesenchymal stem cell dynamics, mouse tibialis anterior muscle mitochondrial electrical potential fluctuations, and mouse brain neural activity. Our system produces 5 dimensional (x,y,z,λ,t) data sets at the speed of 4.2 volumes per second over volumes as large as 160 x 160 x 35 µm3.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Charles V. Latchoumane
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - W. Michael Southern
- Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
- Currently with: Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ana Maslesa
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Kinesiology, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
48
|
Nevozhay D, Weiger M, Friedl P, Sokolov KV. Spatiotemporally controlled nano-sized third harmonic generation agents. BIOMEDICAL OPTICS EXPRESS 2019; 10:3301-3316. [PMID: 31360600 PMCID: PMC6640828 DOI: 10.1364/boe.10.003301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 05/09/2023]
Abstract
Here, we present a new class of third harmonic generation (THG) imaging probes that can be activated with precise spatiotemporal control using non-linear excitation. These probes consist of lipid-coated perfluorocarbon nanodroplets with embedded visible chromophores. The droplets undergo phase transition from liquid to gas upon heating mediated by two-photon absorption of NIR light by the embedded dyes. Resulting microbubbles provide a sharp, local refractive index mismatch, which makes an excellent source of THG signal. Potential applications of these probes include activatable THG agents for biological imaging and "on-demand" delivery of various compounds under THG monitoring.
Collapse
Affiliation(s)
- Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russia
- Equal contribution
| | - Michael Weiger
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Equal contribution
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre, (CGC.nl), 3584 Utrecht, Netherlands
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
49
|
Hsu KJ, Lin YY, Lin YY, Su K, Feng KL, Wu SC, Lin YC, Chiang AS, Chu SW. Millisecond two-photon optical ribbon imaging for small-animal functional connectome study. OPTICS LETTERS 2019; 44:3190-3193. [PMID: 31259918 DOI: 10.1364/ol.44.003190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
We developed a high-speed two-photon optical ribbon imaging system, which combines galvo-mirrors for an arbitrary curve scan on a lateral plane and a tunable acoustic gradient-index lens for a 100 kHz-1 MHz axial scan. The system provides micrometer/millisecond spatiotemporal resolutions, which enable continuous readout of functional dynamics from small and densely packed neurons in a living adult Drosophila brain. Compared to sparse sampling techniques, the ribbon imaging modality avoids motion artifacts. Combined with a Drosophila anatomical connectome database, which is the most complete among all model animals, this technique paves the way toward establishing whole-brain functional connectome.
Collapse
|
50
|
Badon A, Bensussen S, Gritton HJ, Awal MR, Gabel CV, Han X, Mertz J. Video-rate large-scale imaging with Multi-Z confocal microscopy. OPTICA 2019; 6:389-395. [PMID: 34504902 PMCID: PMC8425499 DOI: 10.1364/optica.6.000389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fast, volumetric imaging over large scales has been a long-standing challenge in biological microscopy. To address this challenge, we report an augmented variant of confocal microscopy that uses a series of reflecting pinholes axially distributed in the detection space, such that each pinhole probes a different depth within the sample. We thus obtain simultaneous multiplane imaging without the need for axial scanning. Our microscope technique is versatile and configured here to provide two-color fluorescence imaging with a field of view larger than a millimeter at video rate. Its general applicability is demonstrated with neuronal imaging of both Caenorhabditis elegans and mouse brains in vivo.
Collapse
Affiliation(s)
- Amaury Badon
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Corresponding author:
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Howard J. Gritton
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Mehraj R. Awal
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02218, USA
| | - Christopher V. Gabel
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02218, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Boston University Photonics Center, Boston, Massachusetts 02215, USA
| |
Collapse
|