1
|
Chappell L, Peguero R, Conner WR, Fowler S, Cooper B, Pfarr K, Hoerauf A, Lustigman S, Sakanari J, Sullivan W. Fexinidazole and Corallopyronin A target Wolbachia -infected sheath cells present in filarial nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634442. [PMID: 39896488 PMCID: PMC11785234 DOI: 10.1101/2025.01.23.634442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The discovery of the endosymbiotic bacteria Wolbachia as an obligate symbiont of filarial nematodes has led to antibiotic-based treatments for filarial diseases. While lab and clinical studies have yielded promising results, recent animal studies reveal that Wolbachia levels may rebound following treatment with suboptimal doses of the antibiotic rifampicin. Previous work showed that a likely source of the bacterial rebound in females were dense clusters of Wolbachia in ovarian tissue. The number, size, and density of these Wolbachia clusters were not diminished despite antibiotic treatment. Here we define the cellular characteristics of the Wolbachia clusters in Brugia pahangi (wBp) and identify drugs that also target them. We have evidence that the Wolbachia clusters originate from newly formed sheath cells adjacent to the ovarian Distal Tip Cells. The dramatically enlarged volume of an infected sheath cell is strikingly similar to endosymbiont-induced bacteriocytes found in many insect species. Ultrastructural analysis reveals that the clustered Wolbachia present within the sheath cells exhibit a distinct morphology and form direct connections with the oocyte membrane and possibly the cytoplasm. This includes membrane-based channels providing a connection between Wolbachia -infected sheath cells and oocytes. We also determined that the Wolbachia within the sheath cells are either quiescent or replicating at a very low rate. Screens of known antibiotics and other drugs revealed that two drugs, Fexinidazole and Corallopyronin A, significantly reduced the number of clustered Wolbachia located within the sheath cells.
Collapse
|
2
|
Campos TL, Korhonen PK, Young ND, Chang BC, Gasser RB. Inference of essential genes in Brugia malayi and Onchocerca volvulus by machine learning and the implications for discovering new interventions. Comput Struct Biotechnol J 2024; 23:3081-3089. [PMID: 39185442 PMCID: PMC11342751 DOI: 10.1016/j.csbj.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have substantially improved our knowledge and understanding of biological processes and pathways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery and characterisation of 'essential' genes that are critical for the survival of these organisms. Recently, we showed that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-predicted essential genes within the phylum Nematoda - between C. elegans and the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experimental validation in the laboratory.
Collapse
Affiliation(s)
- Túlio L. Campos
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz., Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE CEP 50740–465, Brazil
| | - Pasi K. Korhonen
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Quek S, Hadermann A, Wu Y, De Coninck L, Hegde S, Boucher JR, Cresswell J, Foreman E, Steven A, LaCourse EJ, Ward SA, Wanji S, Hughes GL, Patterson EI, Wagstaff SC, Turner JD, Parry RH, Kohl A, Heinz E, Otabil KB, Matthijnssens J, Colebunders R, Taylor MJ. Diverse RNA viruses of parasitic nematodes can elicit antibody responses in vertebrate hosts. Nat Microbiol 2024; 9:2488-2505. [PMID: 39232205 PMCID: PMC11445058 DOI: 10.1038/s41564-024-01796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Parasitic nematodes have an intimate, chronic and lifelong exposure to vertebrate tissues. Here we mined 41 published parasitic nematode transcriptomes from vertebrate hosts and identified 91 RNA viruses across 13 virus orders from 24 families in ~70% (28 out of 41) of parasitic nematode species, which include only 5 previously reported viruses. We observe widespread distribution of virus-nematode associations across multiple continents, suggesting an ancestral acquisition event and host-virus co-evolution. Characterization of viruses of Brugia malayi (BMRV1) and Onchocerca volvulus (OVRV1) shows that these viruses are abundant in reproductive tissues of adult parasites. Importantly, the presence of BMRV1 RNA in B. malayi parasites mounts an RNA interference response against BMRV1 suggesting active viral replication. Finally, BMRV1 and OVRV1 were found to elicit antibody responses in serum samples from infected jirds and infected or exposed humans, indicating direct exposure to the immune system.
Collapse
Affiliation(s)
- Shannon Quek
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Amber Hadermann
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Yang Wu
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Shrilakshmi Hegde
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jordan R Boucher
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jessica Cresswell
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ella Foreman
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - E James LaCourse
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen A Ward
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Grant L Hughes
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Edward I Patterson
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Simon C Wagstaff
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joseph D Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rhys H Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Kenneth Bentum Otabil
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Mark J Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
5
|
Rothmann-Meyer W, Naidoo K, de Waal PJ. Spirocerca lupi draft genome, vaccine and anthelmintic targets. Mol Biochem Parasitol 2024; 259:111632. [PMID: 38834134 DOI: 10.1016/j.molbiopara.2024.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.
Collapse
Affiliation(s)
- Wiekolize Rothmann-Meyer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa; Thermo Fisher Scientific, Hybrid Field Application Scientist & Field Service Engineer, South Africa
| | - Pamela J de Waal
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
6
|
Chunda VC, Fombad FF, Kien CA, Ebai R, Esofi F, Ntuh AN, Ouam E, Gandjui NVT, Ekanya R, Nietcho F, Nchang LC, Magha C, Njouendou AJ, Enyong P, Hoerauf A, Wanji S, Ritter M. Comparative development of human filariae Loa loa, Onchocerca volvulus and Mansonella perstans in immunocompromised mouse strains. FRONTIERS IN TROPICAL DISEASES 2024; 5:1293632. [PMID: 38655273 PMCID: PMC7615855 DOI: 10.3389/fitd.2024.1293632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction Mouse models of human filarial infections are not only urgently needed to investigate the biology of the nematodes and their modulation of the host's immunity, but will also provide a platform to screen and test novel anti-filarial drugs. Recently, murine Loa loa infection models have been stablished using immunocompromised mouse strains, whereas murine Mansonella perstans infections have not been implemented until now. Methods Therefore, we aim to establish experimental M. perstans infections using the immunocompromised mouse strains RAG2IL-2Rγ-/- (lack B, T and natural killer cells), IL-4Rα/IL-5-/- (impaired IL-4/5 signalling and eosinophil activation) and NOD.Cg-PrkdcscidIl2rgtm1Wj l/SzJ (NOD scid gamma, NSG) BALB/c mice (lack mature lymphocytes) through subcutaneous (s.c.) or intraperitoneal (i.p.) inoculation of infective stage 3 larvae (L3) isolated from engorged vectors. Results In total, 145 immunocompromised mice have been inoculated with 3,250 M. perstans, 3,337 O. volvulus, and 2,720 Loa loa L3 to comparatively analyse which immunocompromised mouse strain is susceptible to human filarial infections. Whereas, no M. perstans and O. volvulus L3 could be recovered upon 2-63 days post-inoculation, a 62-66% Loa loa L3 recovery rate could be achieved in the different mouse strains. Gender of mice, type of inoculation (s.c. or i.p.) or time point of analysis (2-63 days post inoculation) did not interfere with the success of L3 recovery. In addition, administration of the immune suppressants hydrocortisone, prednisolone and cyclophosphamide did not restore M. perstans L3 recovery rates. Discussion These findings show that RAG2IL-2Rg-/-BALB/c and C57BL/6, IL-4Rα/IL-5-/- BALB/c and NSG mice were not susceptible to M. perstans and O. volvulus L3 inoculation using the applied methods, whereas Loa loa infection could be maintained. Further studies should investigate if humanized immunocompromised mice might be susceptible to M. perstans. and O. volvulus.
Collapse
Affiliation(s)
- Valerine C. Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frederick Esofi
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Anna Ning Ntuh
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Emmanuel Ouam
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Relindis Ekanya
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Franck Nietcho
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Lucy Cho Nchang
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Peter Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
7
|
Gandasegui J, Power RI, Curry E, Lau DCW, O'Neill CM, Wolstenholme A, Prichard R, Šlapeta J, Doyle SR. Genome structure and population genomics of the canine heartworm Dirofilaria immitis. Int J Parasitol 2024; 54:89-98. [PMID: 37652224 DOI: 10.1016/j.ijpara.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
The heartworm, Dirofilaria immitis, is a filarial parasitic nematode responsible for significant morbidity and mortality in wild and domesticated canids. Resistance to macrocyclic lactone drug prevention represents a significant threat to parasite control and has prompted investigations to understand the genetic determinants of resistance. This study aimed to improve the genomic resources of D. immitis to enable a more precise understanding of how genetic variation is distributed within and between parasite populations worldwide, which will inform the likelihood and rate by which parasites, and in turn, resistant alleles, might spread. We have guided the scaffolding of a recently published genome assembly for D. immitis (ICBAS_JMDir_1.0) using the chromosomal-scale reference genomes of Brugia malayi and Onchocerca volvulus, resulting in an 89.5 Mb assembly composed of four autosomal- and one sex-linked chromosomal-scale scaffolds representing 99.7% of the genome. Publicly available and new whole-genome sequencing data from 32 D. immitis samples from Australia, Italy and the USA were assessed using principal component analysis, nucleotide diversity (Pi) and absolute genetic divergence (Dxy) to characterise the global genetic structure and measure within- and between-population diversity. These population genetic analyses revealed broad-scale genetic structure among globally diverse samples and differences in genetic diversity between populations; however, fine-scale subpopulation analysis was limited and biased by differences between sample types. Finally, we mapped single nucleotide polymorphisms previously associated with macrocyclic lactone resistance in the new genome assembly, revealing the physical linkage of high-priority variants on chromosome 3, and determined their frequency in the studied populations. This new chromosomal assembly for D. immitis now allows for a more precise investigation of selection on genome-wide genetic variation and will enhance our understanding of parasite transmission and the spread of genetic variants responsible for resistance to treatment.
Collapse
Affiliation(s)
- Javier Gandasegui
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, Spain.
| | - Rosemonde I Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Emily Curry
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Adrian Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roger Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom.
| |
Collapse
|
8
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
9
|
Stevens L, Kieninger M, Chan B, Wood JMD, Gonzalez de la Rosa P, Allen J, Blaxter M. The genome of Litomosoides sigmodontis illuminates the origins of Y chromosomes in filarial nematodes. PLoS Genet 2024; 20:e1011116. [PMID: 38227589 PMCID: PMC10817185 DOI: 10.1371/journal.pgen.1011116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/26/2024] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
Heteromorphic sex chromosomes are usually thought to have originated from a pair of autosomes that acquired a sex-determining locus and subsequently stopped recombining, leading to degeneration of the sex-limited chromosome. The majority of nematode species lack heteromorphic sex chromosomes and determine sex using an X-chromosome counting mechanism, with males being hemizygous for one or more X chromosomes (XX/X0). Some filarial nematode species, including important parasites of humans, have heteromorphic XX/XY karyotypes. It has been assumed that sex is determined by a Y-linked locus in these species. However, karyotypic analyses suggested that filarial Y chromosomes are derived from the unfused homologue of an autosome involved in an X-autosome fusion event. Here, we generated a chromosome-level reference genome for Litomosoides sigmodontis, a filarial nematode with the ancestral filarial karyotype and sex determination mechanism (XX/X0). By mapping the assembled chromosomes to the rhabditid nematode ancestral linkage (or Nigon) elements, we infer that the ancestral filarial X chromosome was the product of a fusion between NigonX (the ancestrally X-linked element) and NigonD (ancestrally autosomal). In the two filarial lineages with XY systems, there have been two independent X-autosome chromosome fusion events involving different autosomal Nigon elements. In both lineages, the region shared by the neo-X and neo-Y chromosomes is within the ancestrally autosomal portion of the X, confirming that the filarial Y chromosomes are derived from the unfused homologue of the autosome. Sex determination in XY filarial nematodes therefore likely continues to operate via the ancestral X-chromosome counting mechanism, rather than via a Y-linked sex-determining locus.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Brian Chan
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | | | | | - Judith Allen
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
10
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
11
|
Doherty M, Grant JR, Pilotte N, Bennuru S, Fischer K, Fischer PU, Lustigman S, Nutman TB, Pfarr K, Hoerauf A, Unnasch TR, Hassan HK, Wanji S, Lammie PJ, Ottesen E, Mackenzie C, Williams SA. Optimized strategy for real-time qPCR detection of Onchocerca volvulus DNA in pooled Simulium sp. blackfly vectors. PLoS Negl Trop Dis 2023; 17:e0011815. [PMID: 38096317 PMCID: PMC10754622 DOI: 10.1371/journal.pntd.0011815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/28/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Onchocerca volvulus is a filarial parasite that is a major cause of dermatitis and blindness in endemic regions primarily in sub-Saharan Africa. Widespread efforts to control the disease caused by O. volvulus infection (onchocerciasis) began in 1974 and in recent years, following successful elimination of transmission in much of the Americas, the focus of efforts in Africa has moved from control to the more challenging goal of elimination of transmission in all endemic countries. Mass drug administration (MDA) with ivermectin has reached more than 150 million people and elimination of transmission has been confirmed in four South American countries, with at least two African countries having now stopped MDA as they approach verification of elimination. It is essential that accurate data for active transmission are used to assist in making the critical decision to stop MDA, since missing low levels of transmission and infection can lead to continued spread or recrudescence of the disease. METHODOLOGY/PRINCIPAL FINDINGS Current World Health Organization guidelines for MDA stopping decisions and post-treatment surveillance include screening pools of the Simulium blackfly vector for the presence of O. volvulus larvae using a PCR-ELISA-based molecular technique. In this study, we address the potential of an updated, practical, standardized molecular diagnostic tool with increased sensitivity and species-specificity by comparing several candidate qPCR assays. When paired with heat-stable reagents, a qPCR assay with a mitochondrial DNA target (OvND5) was found to be more sensitive and species-specific than an O150 qPCR, which targets a non-protein coding repetitive DNA sequence. The OvND5 assay detected 19/20 pools of 100 blackfly heads spiked with a single L3, compared to 16/20 for the O150 qPCR assay. CONCLUSIONS/SIGNIFICANCE Given the improved sensitivity, species-specificity and resistance to PCR inhibitors, we identified OvND5 as the optimal target for field sample detection. All reagents for this assay can be shipped at room temperature with no loss of activity. The qPCR protocol we propose is also simpler, faster, and more cost-effective than the current end-point molecular assays.
Collapse
Affiliation(s)
- Mary Doherty
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jessica R. Grant
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Nils Pilotte
- Department of Biological Sciences, Quinnipiac University, Hamden, Connecticut, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kerstin Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Hassan K. Hassan
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Samuel Wanji
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon
| | - Patrick J. Lammie
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
| | - Eric Ottesen
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
| | - Charles Mackenzie
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
- RLMF, The END Fund, New York, New York, United States of America
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
12
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
13
|
Hedtke SM, Choi YJ, Kode A, Chalasani GC, Sirwani N, Jada SR, Hotterbeekx A, Mandro M, Siewe Fodjo JN, Amambo GN, Abong RA, Wanji S, Kuesel AC, Colebunders R, Mitreva M, Grant WN. Assessing Onchocerca volvulus Intensity of Infection and Genetic Diversity Using Mitochondrial Genome Sequencing of Single Microfilariae Obtained before and after Ivermectin Treatment. Pathogens 2023; 12:971. [PMID: 37513818 PMCID: PMC10385737 DOI: 10.3390/pathogens12070971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Onchocerciasis is a neglected tropical disease targeted for elimination using ivermectin mass administration. Ivermectin kills the microfilariae and temporarily arrests microfilariae production by the macrofilariae. We genotyped 436 microfilariae from 10 people each in Ituri, Democratic Republic of the Congo (DRC), and Maridi County, South Sudan, collected before and 4-5 months after ivermectin treatment. Population genetic analyses identified 52 and 103 mitochondrial DNA haplotypes among the microfilariae from DRC and South Sudan, respectively, with few haplotypes shared between people. The percentage of genotype-based correct assignment to person within DRC was ~88% and within South Sudan ~64%. Rarefaction and extrapolation analysis showed that the genetic diversity in DRC, and even more so in South Sudan, was captured incompletely. The results indicate that the per-person adult worm burden is likely higher in South Sudan than DRC. Analyses of haplotype data from a subsample (n = 4) did not discriminate genetically between pre- and post-treatment microfilariae, confirming that post-treatment microfilariae are not the result of new infections. With appropriate sampling, mitochondrial haplotype analysis could help monitor changes in the number of macrofilariae in a population as a result of treatment, identify cases of potential treatment failure, and detect new infections as an indicator of continuing transmission.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Young-Jun Choi
- Department of Medicine, Washington University in St. Louis and McDonnell Genome Institute, St. Louis, MO 63108, USA; (Y.-J.C.); (M.M.)
| | - Anusha Kode
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Gowtam C. Chalasani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | | | - An Hotterbeekx
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Michel Mandro
- Provincial Health Division Ituri, Ministry of Health, Bunia P.O. Box 57, Democratic Republic of the Congo;
| | - Joseph N. Siewe Fodjo
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Glory Ngongeh Amambo
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
| | - Raphael A. Abong
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
- Research Foundation for Tropical Diseases and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Samuel Wanji
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
- Research Foundation for Tropical Diseases and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1202 Geneva, Switzerland;
| | - Robert Colebunders
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis and McDonnell Genome Institute, St. Louis, MO 63108, USA; (Y.-J.C.); (M.M.)
| | - Warwick N. Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| |
Collapse
|
14
|
Taj B, Adeolu M, Xiong X, Ang J, Nursimulu N, Parkinson J. MetaPro: a scalable and reproducible data processing and analysis pipeline for metatranscriptomic investigation of microbial communities. MICROBIOME 2023; 11:143. [PMID: 37370188 DOI: 10.1186/s40168-023-01562-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Whole microbiome RNASeq (metatranscriptomics) has emerged as a powerful technology to functionally interrogate microbial communities. A key challenge is how best to process, analyze, and interpret these complex datasets. In a typical application, a single metatranscriptomic dataset may comprise from tens to hundreds of millions of sequence reads. These reads must first be processed and filtered for low quality and potential contaminants, before being annotated with taxonomic and functional labels and subsequently collated to generate global bacterial gene expression profiles. RESULTS Here, we present MetaPro, a flexible, massively scalable metatranscriptomic data analysis pipeline that is cross-platform compatible through its implementation within a Docker framework. MetaPro starts with raw sequence read input (single-end or paired-end reads) and processes them through a tiered series of filtering, assembly, and annotation steps. In addition to yielding a final list of bacterial genes and their relative expression, MetaPro delivers a taxonomic breakdown based on the consensus of complementary prediction algorithms, together with a focused breakdown of enzymes, readily visualized through the Cytoscape network visualization tool. We benchmark the performance of MetaPro against two current state-of-the-art pipelines and demonstrate improved performance and functionality. CONCLUSIONS MetaPro represents an effective integrated solution for the processing and analysis of metatranscriptomic datasets. Its modular architecture allows new algorithms to be deployed as they are developed, ensuring its longevity. To aid user uptake of the pipeline, MetaPro, together with an established tutorial that has been developed for educational purposes, is made freely available at https://github.com/ParkinsonLab/MetaPro . The software is freely available under the GNU general public license v3. Video Abstract.
Collapse
Affiliation(s)
- Billy Taj
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mobolaji Adeolu
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jordan Ang
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Nirvana Nursimulu
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - John Parkinson
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3G4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3G4, Canada.
| |
Collapse
|
15
|
Das B, Kumar N, Solanki JB, Jadav MM, Kalyani IH. Morphological and molecular characterization of Haemonchus contortus isolated from the small ruminants of south Gujarat, India. Helminthologia 2023; 60:175-188. [PMID: 37745222 PMCID: PMC10516478 DOI: 10.2478/helm-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/30/2023] [Indexed: 09/26/2023] Open
Abstract
The successful design of strategic control measures against the blood-sucking gastrointestinal nematode, Haemonchus contortus in small ruminants can be facilitated by revealing its general features from morphology to the molecular level. In the south Gujarat region of India, a total of 2408 H. contortus were collected from 84 slaughtered sheep's abomasum, consisting of 347 males and 2061 females (1:6 ratio) (p<0.05). Furthermore, 726 H. contortus were collected from 61 goats, comprising 145 males and 581 females (1:4 ratio) (p<0.05). The male worms were approximately 12±0.06 mm long, while female worms were about 20±0.09 mm long. The vulvar morphotypes of the female worms were found to be 17.7% linguiform, 76.6 % knobbed/button (p<0.05), and 5.7 % smooth type, demonstrating common features of H. contortus. The nucleotide sequences of the Internal Transcribed Spacer 1 (ITS-1) of 165 bp or ITS-2 plus of 256 bp were aligned, and it was found that the genotypes of male and female specimens of either sheep or goat origin were identical, with a 100 % match. The present isolates shared >95 % and >94 % homology with published sequences of ITS-1 and ITS-2 plus of H. contortus, respectively, with more nucleotide transitions than transversions in the aligned sequences. The reconstructed phylogram of either ITS-1 or ITS-2 plus revealed two major clades, one for H. contortus and another for other nematodes, with Haemonchus placei showing its proximity with the clade of H. contortus. The study established the role of morphological and molecular features in identifying and differentiating H. contortus parasite at the local level.
Collapse
Affiliation(s)
- B. Das
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Navsari-396 450, Gujarat, India
| | - N. Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Navsari-396 450, Gujarat, India
| | - J. B. Solanki
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Navsari-396 450, Gujarat, India
| | - M. M. Jadav
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Navsari-396 450, Gujarat, India
| | - I. H. Kalyani
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Navsari-396 450, Gujarat, India
| |
Collapse
|
16
|
Sinha A, Li Z, Poole CB, Morgan RD, Ettwiller L, Lima NF, Ferreira MU, Fombad FF, Wanji S, Carlow CKS. Genomes of the human filarial parasites Mansonella perstans and Mansonella ozzardi. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The filarial parasites Mansonella ozzardi and Mansonella perstans, causative agents of mansonellosis, infect hundreds of millions of people worldwide, yet remain among the most understudied of the human filarial pathogens. M. ozzardi is highly prevalent in Latin American countries and Caribbean Islands, while M. perstans is predominantly found in sub-Saharan Africa as well as in a few areas in South America. In addition to the differences in their geographical distribution, the two parasites are transmitted by different insect vectors, as well as exhibit differences in their responses to commonly used anthelminthic drugs. The lack of genome information has hindered investigations into the biology and evolution of Mansonella parasites and understanding the molecular basis of the clinical differences between species. In the current study, high quality genomes of two independent clinical isolates of M. perstans from Cameroon and two M. ozzardi isolates one from Brazil and one from Venezuela are reported. The genomes are approximately 76 Mb in size, encode about 10,000 genes each, and are largely complete based on BUSCO scores of about 90%, similar to other completed filarial genomes. These sequences represent the first genomes from Mansonella parasites and enabled a comparative genomic analysis of the similarities and differences between Mansonella and other filarial parasites. Horizontal DNA transfers (HDT) from mitochondria (nuMTs) as well as transfers from genomes of endosymbiotic Wolbachia bacteria (nuWTs) to the host nuclear genome were identified and analyzed. Sequence comparisons and phylogenetic analysis of known targets of anti-filarial drugs diethylcarbamazine (DEC), ivermectin and mebendazole revealed that all known target genes were present in both species, except for the DEC target encoded by gon-2 gene, which is fragmented in genome assemblies from both M. ozzardi isolates. These new reference genome sequences will provide a valuable resource for further studies on biology, symbiosis, evolution and drug discovery.
Collapse
|
17
|
Yoshida K, Rödelsperger C, Röseler W, Riebesell M, Sun S, Kikuchi T, Sommer RJ. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat Ecol Evol 2023; 7:424-439. [PMID: 36717742 PMCID: PMC9998273 DOI: 10.1038/s41559-022-01980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
18
|
Dube F, Hinas A, Delhomme N, Åbrink M, Svärd S, Tydén E. Transcriptomics of ivermectin response in Caenorhabditis elegans: Integrating abamectin quantitative trait loci and comparison to the Ivermectin-exposed DA1316 strain. PLoS One 2023; 18:e0285262. [PMID: 37141255 PMCID: PMC10159168 DOI: 10.1371/journal.pone.0285262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Parasitic nematodes pose a significant threat to human and animal health, as well as cause economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin (IVM), to control these parasites has led to widespread drug resistance. Identifying genetic markers of resistance in parasitic nematodes can be challenging, but the free-living nematode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed pools of 300 adult N2 worms to IVM (10-7 and 10-8 M) for 4 hours at 20°C, extracted total RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL. Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited an opposite expression in N2 and the DA1316 strain and were deemed potential candidates. Additionally, we compiled a list of potential candidates for further research including T-type calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.
Collapse
Affiliation(s)
- Faruk Dube
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Shey RA, Ghogomu SM, Nebangwa DN, Shintouo CM, Yaah NE, Yengo BN, Nkemngo FN, Esoh KK, Tchatchoua NMT, Mbachick TT, Dede AF, Lemoge AA, Ngwese RA, Asa BF, Ayong L, Njemini R, Vanhamme L, Souopgui J. Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1046522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost a decade ago, it was recognized that the global elimination of onchocerciasis by 2030 will not be feasible without, at least, an effective prophylactic and/or therapeutic vaccine to complement chemotherapy and vector control strategies. Recent advances in computational immunology (immunoinformatics) have seen the design of novel multi-epitope onchocerciasis vaccine candidates which are however yet to be evaluated in clinical settings. Still, continued research to increase the pool of vaccine candidates, and therefore the chance of success in a clinical trial remains imperative. Here, we designed a multi-epitope vaccine candidate by assembling peptides from 14 O. volvulus (Ov) proteins using an immunoinformatics approach. An initial 126 Ov proteins, retrieved from the Wormbase database, and at least 90% similar to orthologs in related nematode species of economic importance, were screened for localization, presence of transmembrane domain, and antigenicity using different web servers. From the 14 proteins retained after the screening, 26 MHC-1 and MHC-II (T-cell) epitopes, and linear B-lymphocytes epitopes were predicted and merged using suitable linkers. The Mycobacterium tuberculosis Resuscitation-promoting factor E (RPFE_MYCTU), which is an agonist of TLR4, was then added to the N-terminal of the vaccine candidate as a built-in adjuvant. Immune simulation analyses predicted strong B-cell and IFN-γ based immune responses which are necessary for protection against O. volvulus infection. Protein-protein docking and molecular dynamic simulation predicted stable interactions between the 3D structure of the vaccine candidate and human TLR4. These results show that the designed vaccine candidate has the potential to stimulate both humoral and cellular immune responses and should therefore be subject to further laboratory investigation.
Collapse
|
20
|
da Silva EMG, Rebello KM, Choi YJ, Gregorio V, Paschoal AR, Mitreva M, McKerrow JH, Neves-Ferreira AGDC, Passetti F. Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach. Pathogens 2022; 11:1273. [PMID: 36365024 PMCID: PMC9694666 DOI: 10.3390/pathogens11111273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
RNA sequencing (RNA-Seq) and mass-spectrometry-based proteomics data are often integrated in proteogenomic studies to assist in the prediction of eukaryote genome features, such as genes, splicing, single-nucleotide (SNVs), and single-amino-acid variants (SAAVs). Most genomes of parasite nematodes are draft versions that lack transcript- and protein-level information and whose gene annotations rely only on computational predictions. Angiostrongylus costaricensis is a roundworm species that causes an intestinal inflammatory disease, known as abdominal angiostrongyliasis (AA). Currently, there is no drug available that acts directly on this parasite, mostly due to the sparse understanding of its molecular characteristics. The available genome of A. costaricensis, specific to the Costa Rica strain, is a draft version that is not supported by transcript- or protein-level evidence. This study used RNA-Seq and MS/MS data to perform an in-depth annotation of the A. costaricensis genome. Our prediction improved the reference annotation with (a) novel coding and non-coding genes; (b) pieces of evidence of alternative splicing generating new proteoforms; and (c) a list of SNVs between the Brazilian (Crissiumal) and the Costa Rica strain. To the best of our knowledge, this is the first time that a multi-omics approach has been used to improve the genome annotation of A. costaricensis. We hope this improved genome annotation can assist in the future development of drugs, kits, and vaccines to treat, diagnose, and prevent AA caused by either the Brazil strain (Crissiumal) or the Costa Rica strain.
Collapse
Affiliation(s)
- Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Karina Mastropasqua Rebello
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Integrated Studies in Protozoology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Young-Jun Choi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vitor Gregorio
- Bioinformatics and Pattern Recognition Group (Bioinfo-CP), Department of Computer Science (DACOM), Federal University of Technology-Parana (UTFPR), Cornélio Procópio 86300-000, PR, Brazil
| | - Alexandre Rossi Paschoal
- Bioinformatics and Pattern Recognition Group (Bioinfo-CP), Department of Computer Science (DACOM), Federal University of Technology-Parana (UTFPR), Cornélio Procópio 86300-000, PR, Brazil
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | | | - Fabio Passetti
- Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil
| |
Collapse
|
21
|
Coker SM, Box EK, Stilwell N, Thiele EA, Cotton JA, Haynes E, Yabsley MJ, Cleveland CA. Development and validation of a quantitative PCR for the detection of Guinea worm (Dracunculus medinensis). PLoS Negl Trop Dis 2022; 16:e0010830. [PMID: 36206300 PMCID: PMC9581357 DOI: 10.1371/journal.pntd.0010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/19/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022] Open
Abstract
Dracunculus medinensis (Guinea worm) is a parasitic nematode that can cause the debilitating disease dracunculiasis (Guinea worm disease) in humans. The global Guinea Worm Eradication Program has led intervention and eradication efforts since the 1980s, and Guinea worm infections in people have decreased >99.99%. With the final goal of eradication drawing nearer, reports of animal infections from some remaining endemic countries pose unique challenges. Currently, confirmation of suspected Guinea worm infection relies on conventional molecular techniques such as polymerase chain reaction (PCR), which is not specific to Guinea worm and, therefore, requires sequencing of the PCR products to confirm the identity of suspect samples, a process that often takes a few weeks. To decrease the time required for species confirmation, we developed a quantitative PCR assay targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. Our assay has a limit of detection of 10 copies per reaction. The mean analytical parameters (± SE) were as follows: efficiency = 93.4 ± 7.7%, y-intercept = 40.93 ± 1.11, slope = -3.4896 ± 0.12, and the R2 = 0.999 ± 0.004. The assay did not amplify other nematodes found in Guinea worm-endemic regions and demonstrated 100% diagnostic sensitivity and specificity. Implementation of this quantitative PCR assay for Guinea worm identification could eliminate the need for DNA sequencing to confirm species. Thus, this approach can be implemented to provide more rapid confirmation of Guinea worm infections, leading to faster execution of Guinea worm interventions while increasing our understanding of infection patterns. Guinea worm (Dracunculus medinensis) is a parasitic nematode that causes debilitating disease in humans. The Guinea Worm Eradication Program would benefit from having a rapid molecular test that can confirm species identification without time-consuming DNA sequencing. We developed a qPCR protocol targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. The assay was validated analytically over 12 experiments using a standard serial dilution as well as diagnostically on DNA samples from non-target host species and other parasites (n = 180) and Guinea worm samples (n = 200) from a diversity of hosts and geographic regions. This assay could reliably detect 10 copies of the target DNA sequence and had a mean efficiency of 93.4% with 100% diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Sarah M. Coker
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Erin K. Box
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Natalie Stilwell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - James A. Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| |
Collapse
|
22
|
Doyle SR. Improving helminth genome resources in the post-genomic era. Trends Parasitol 2022; 38:831-840. [PMID: 35810065 DOI: 10.1016/j.pt.2022.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/02/2023]
Abstract
Rapid advancement in high-throughput sequencing and analytical approaches has seen a steady increase in the generation of genomic resources for helminth parasites. Now, helminth genomes and their annotations are a cornerstone of numerous efforts to compare genetic and transcriptomic variation, from single cells to populations of globally distributed parasites, to genome modifications to understand gene function. Our understanding of helminths is increasingly reliant on these genomic resources, which are primarily static once published and vary widely in quality and completeness between species. This article seeks to highlight the cause and effect of this variation and argues for the continued improvement of these genomic resources - even after their publication - which is necessary to provide a more accurate and complete understanding of the biology of these important pathogens.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
23
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
24
|
McCann K, Grant W, Doyle SR. The genome sequence of the Australian filarial nematode, Cercopithifilaria johnstoni. Wellcome Open Res 2021; 6:259. [PMID: 34796277 PMCID: PMC8564745 DOI: 10.12688/wellcomeopenres.17258.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly and annotation of an individual female
Cercopithifilaria johnstoni, a parasitic filarial nematode that is transmitted by hard ticks (Ixodidae) to infect a broad range of native Australian murid and marsupial hosts. The genome sequence is 76.9 Mbp in length, and although in draft form (N50 = 99 kbp, N50[n] = 232), is largely complete based on universally conserved orthologs (BUSCOs; genome = 94.9%, protein = 96.5%) and relative to other related filarial species. These data represent the first genomic resources for the genus
Cercopithifilaria, a group of parasites with a broad host range, and form the basis for comparative analysis with the human-infective parasite,
Onchocerca volvulus, both of which are responsible for similar eye and skin pathologies in their respective hosts.
Collapse
Affiliation(s)
- Kirsty McCann
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Warwick Grant
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Stephen R Doyle
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
25
|
McCann K, Grant W, Doyle SR. The genome sequence of the Australian filarial nematode, Cercopithifilaria johnstoni. Wellcome Open Res 2021; 6:259. [PMID: 34796277 PMCID: PMC8564745 DOI: 10.12688/wellcomeopenres.17258.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 09/02/2023] Open
Abstract
We present a genome assembly and annotation of an individual female Cercopithifilaria johnstoni, a parasitic filarial nematode that is transmitted by hard ticks (Ixodidae) to infect a broad range of native Australian murid and marsupial hosts. The genome sequence is 76.9 Mbp in length, and although in draft form (N50 = 99 kbp, N50[n] = 232), is largely complete based on universally conserved orthologs (BUSCOs; genome = 94.9%, protein = 96.5%) and relative to other related filarial species. These data represent the first genomic resources for the genus Cercopithifilaria, a group of parasites with a broad host range, and form the basis for comparative analysis with the human-infective parasite, Onchocerca volvulus, both of which are responsible for similar eye and skin pathologies in their respective hosts.
Collapse
Affiliation(s)
- Kirsty McCann
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Warwick Grant
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Australia
| | - Stephen R. Doyle
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
26
|
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecol Evol 2021; 21:208. [PMID: 34809567 PMCID: PMC8609888 DOI: 10.1186/s12862-021-01927-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade β/γ TLR gene (TLR-Cβ/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cβ/γ was lost during the early evolution of these taxa. Moreover, TLR-Cβ/γ duplicated to generate TLR-Cβ and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cβ and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tsai-Ming Lu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
27
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Krücken J, Holden-Dye L, Keiser J, Prichard RK, Townson S, Makepeace BL, Hübner MP, Hahnel SR, Scandale I, Harder A, Kulke D. Development of emodepside as a possible adulticidal treatment for human onchocerciasis-The fruit of a successful industrial-academic collaboration. PLoS Pathog 2021; 17:e1009682. [PMID: 34293063 PMCID: PMC8297762 DOI: 10.1371/journal.ppat.1009682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Current mass drug administration (MDA) programs for the treatment of human river blindness (onchocerciasis) caused by the filarial worm Onchocerca volvulus rely on ivermectin, an anthelmintic originally developed for animal health. These treatments are primarily directed against migrating microfilariae and also suppress fecundity for several months, but fail to eliminate adult O. volvulus. Therefore, elimination programs need time frames of decades, well exceeding the life span of adult worms. The situation is worsened by decreased ivermectin efficacy after long-term therapy. To improve treatment options against onchocerciasis, a drug development candidate should ideally kill or irreversibly sterilize adult worms. Emodepside is a broad-spectrum anthelmintic used for the treatment of parasitic nematodes in cats and dogs (Profender and Procox). Our current knowledge of the pharmacology of emodepside is the result of more than 2 decades of intensive collaborative research between academia and the pharmaceutical industry. Emodepside has a novel mode of action with a broad spectrum of activity, including against extraintestinal nematode stages such as migrating larvae or macrofilariae. Therefore, emodepside is considered to be among the most promising candidates for evaluation as an adulticide treatment against onchocerciasis. Consequently, in 2014, Bayer and the Drugs for Neglected Diseases initiative (DNDi) started a collaboration to develop emodepside for the treatment of patients suffering from the disease. Macrofilaricidal activity has been demonstrated in various models, including Onchocerca ochengi in cattle, the parasite most closely related to O. volvulus. Emodepside has now successfully passed Phase I clinical trials, and a Phase II study is planned. This Bayer–DNDi partnership is an outstanding example of “One World Health,” in which experience gained in veterinary science and drug development is translated to human health and leads to improved tools to combat neglected tropical diseases (NTDs) and shorten development pathways and timelines in an otherwise neglected area. Onchocerca volvulus is the causative agent of human river blindness, and current elimination programs rely on the use of ivermectin to kill microfilariae. Since no adulticidal drug is available and adult worms have a life span of up to 15 years, elimination programs need to be sustained over several decades. Emodepside is an anthelmintic that is licensed as a dewormer for cats and dogs. Due to its ability to eliminate nematodes located in various extraintestinal host tissues, including migrating larvae and adult filarial worms, it is considered to be an excellent candidate for the treatment of onchocerciasis. Intense collaboration between academia and the pharmaceutical industry has led to a deep understanding of the novel mode of action of the drug and of its parasite target spectrum. Phase I clinical trials with emodepside have demonstrated its safety and adulticide activity against the closely related cattle parasite Onchocerca ochengi. Currently, Phase II clinical trials are planned to confirm that emodepside, developed initially to improve animal health, has also the potential to improve human health by tackling a very important neglected tropical disease (NTD).
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada
| | - Simon Townson
- The Griffin Institute, Northwick Park and St. Mark’s Hospital, Harrow, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Steffen R. Hahnel
- Elanco Animal Health, Research & Exploratory Development, Monheim, Germany
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | | | - Daniel Kulke
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rojas A, Maldonado-Junior A, Mora J, Morassutti A, Rodriguez R, Solano-Barquero A, Tijerino A, Vargas M, Graeff-Teixeira C. Abdominal angiostrongyliasis in the Americas: fifty years since the discovery of a new metastrongylid species, Angiostrongylus costaricensis. Parasit Vectors 2021; 14:374. [PMID: 34294132 PMCID: PMC8296644 DOI: 10.1186/s13071-021-04875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Angiostrongylus costaricensis is a zoonotic parasitic nematode described for the first time in 1971 by Pedro Morera and Rodolfo Céspedes in Costa Rica. This parasite causes an infection known as abdominal angiostrongyliasis, affecting mainly school-aged children and young adults. Infection with A. costaricensis has been associated with a myriad of rodent and mollusk species in the Americas and the Caribbean, as its natural hosts and reservoirs. In this commemorative review, we highlight the extensive research collected through a 50-year journey, which includes ecological, pathological, and molecular studies on A. costaricensis and its implicated disease. We also identify major knowledge gaps in its evolutionary history, the ecological role of imported and invasive mollusk species, and immune response. We propose that the advent of -omics analyses will allow us to gather novel information regarding A. costaricensis biology and infection dynamics, as well as to promote the design of much-needed sensitive and specific diagnostic tools.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Arnaldo Maldonado-Junior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alessandra Morassutti
- Instituto de Patologia e Biologia Molecular de Passo Fundo, School of Medicine, IMED Passo Fundo, Rio Grande do Sul, Brazil
| | - Rubens Rodriguez
- Instituto de Patologia e Biologia Molecular de Passo Fundo, School of Medicine, IMED Passo Fundo, Rio Grande do Sul, Brazil
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Anamariela Tijerino
- National Reference Center of Parasitology, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago, Costa Rica
| | - Marianela Vargas
- National Reference Center of Parasitology, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago, Costa Rica
| | - Carlos Graeff-Teixeira
- Nucleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
30
|
Gonzalez de la Rosa PM, Thomson M, Trivedi U, Tracey A, Tandonnet S, Blaxter M. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3-GENES GENOMES GENETICS 2021; 11:6026964. [PMID: 33561231 PMCID: PMC8022731 DOI: 10.1093/g3journal/jkaa020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Eukaryotic chromosomes have phylogenetic persistence. In many taxa, each chromosome has a single functional centromere with essential roles in spindle attachment and segregation. Fusion and fission can generate chromosomes with no or multiple centromeres, leading to genome instability. Groups with holocentric chromosomes (where centromeric function is distributed along each chromosome) might be expected to show karyotypic instability. This is generally not the case, and in Caenorhabditis elegans, it has been proposed that the role of maintenance of a stable karyotype has been transferred to the meiotic pairing centers, which are found at one end of each chromosome. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60-Mb O. tipulae genome is resolved into six chromosomal molecules. We find the evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes, we identify seven ancestral chromosomal elements (Nigon elements) and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex chromosome-associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.
Collapse
Affiliation(s)
| | - Marian Thomson
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Sophie Tandonnet
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
31
|
Massalska D, Bijok J, Kucińska-Chahwan A, Zimowski JG, Ozdarska K, Panek G, Roszkowski T. Triploid pregnancy-Clinical implications. Clin Genet 2021; 100:368-375. [PMID: 34031868 DOI: 10.1111/cge.14003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Triploidy is a life-limiting genetic aberration resulting from an extra haploid set of chromosomes of paternal (diandric triploidy) or maternal origin (digynic triploidy). Triploidy affects around 1%-2% of all conceptions. The majority of cases is miscarried at early developmental stages. In consequence of genomic imprinting, parental origin affects the phenotype of triploid pregnancies as well as the prevalence and spectrum of related maternal complications. Distinctive ultrasound features of both triploid phenotypes as well as characteristic patterns of biochemical markers may be useful in diagnosis. Molecular confirmation of the parental origin allows to predict the risk of complications, such as gestational trophoblastic neoplasia, hyperthyroidism, hypertension, or preeclampsia associated with the paternal origin of triploidy. Diagnosis of partial hydatidiform mole associated with diandric triploidy is challenging especially in the first trimester pregnancy loss due to the limitations of both histopathology and ultrasound. We present important clinical aspects of triploid pregnancies and indicate unresolved issues demanding further studies.
Collapse
Affiliation(s)
- Diana Massalska
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Julia Bijok
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Kucińska-Chahwan
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Katarzyna Ozdarska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Grzegorz Panek
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Roszkowski
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
32
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
33
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
34
|
Rödelsperger C. The community-curated Pristionchus pacificus genome facilitates automated gene annotation improvement in related nematodes. BMC Genomics 2021; 22:216. [PMID: 33765927 PMCID: PMC7992802 DOI: 10.1186/s12864-021-07529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 01/30/2023] Open
Abstract
Background The nematode Pristionchus pacificus is an established model organism for comparative studies with Caenorhabditis elegans. Over the past years, it developed into an independent animal model organism for elucidating the genetic basis of phenotypic plasticity. Community-based curations were employed recently to improve the quality of gene annotations of P. pacificus and to more easily facilitate reverse genetic studies using candidate genes from C. elegans. Results Here, I demonstrate that the reannotation of phylogenomic data from nine related nematode species using the community-curated P. pacificus gene set as homology data substantially improves the quality of gene annotations. Benchmarking of universal single copy orthologs (BUSCO) estimates a median completeness of 84% which corresponds to a 9% increase over previous annotations. Nevertheless, the ability to infer gene models based on homology already drops beyond the genus level reflecting the rapid evolution of nematode lineages. This also indicates that the highly curated C. elegans genome is not optimally suited for annotating non-Caenorhabditis genomes based on homology. Furthermore, comparative genomic analysis of apparently missing BUSCO genes indicates a failure of ortholog detection by the BUSCO pipeline due to the insufficient sample size and phylogenetic breadth of the underlying OrthoDB data set. As a consequence, the quality of multiple divergent nematode genomes might be underestimated. Conclusions This study highlights the need for optimizing gene annotation protocols and it demonstrates the benefit of a high quality genome for phylogenomic data of related species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07529-x.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
35
|
Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021; 137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
36
|
Qing X, Kulkeaw K, Wongkamchai S, Tsui SKW. Mitochondrial Genome of Brugia malayi Microfilariae Isolated From a Clinical Sample. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.637805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis is a neglected parasitic disease that is a leading cause of long-term disability. Information obtained from genome sequencing of filarial worm can help us identify systems in the worm that are likely to be useful for novel drug design. Brugia (B.) malayi is still the only lymphatic-dwelling filarial parasite with a nearly complete, fully annotated, and published genome. However, most previous studies were based on the FR3 strain of B. malayi, which originally was isolated from a human patient, and was adapted to the rodent model, then maintained in laboratories for more than 60 years. It is uncertain whether genetic variation exists, thus, sequencing of clinical isolates of lymphatic dwelling filarial parasites is a high priority. Here, we report for the first time the complete mitochondrial genome of B. malayi microfilariae from clinical isolate. Complete mitochondrial (mt) genome of the microfilariae isolated from a blood sample taken from a Thai subject living in Narathiwat Province, which is an endemic area of brugian filariasis, was assembled with sequencing reads obtained by Illumina sequencing. Gene annotation, phylogenetic analysis and single nucleotide polymorphism (SNP) were deployed. A complete 13,658-bp mt genome of B. malayi microfilaria was obtained, and it shows 68x coverage. Based on gene annotation, the mt genome consists of 12 protein-coding, two rRNA, and 23 tRNA genes. Phylogenetic analysis using all protein sequences of DNA sequences of mt genome or cytochrome c oxidase subunit I (COX1) revealed a close relationship among three lymphatic filariae (i.e., B. timori, zoonotic B. pahangi, and Wuchereria spp.). The SNPs in the COX1 gene can differentiate microfilariae of B. malayi in human from those found in canine. Furthermore, the number, order and transcription, and direction of B. malayi microfilariae mitochondrial genes were the same as those found in the FR3 strain of B. malayi. The comparison on mitochondrial genome of B. malayi could have important implications on the development of a new intervention or vaccine to treat or prevent this disease in endemic areas/regions around the world.
Collapse
|
37
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
38
|
Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM, Junker K, Vallarino-Lhermitte N, Makepeace BL, Darby AC, Foster JM, Martin C, Slatko BE. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genom 2020; 6:mgen000487. [PMID: 33295865 PMCID: PMC8116671 DOI: 10.1099/mgen.0.000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/14/2020] [Indexed: 01/13/2023] Open
Abstract
Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single Wolbachia-filarial nematode pattern of co-evolution or symbiotic relationship.
Collapse
Affiliation(s)
- Emilie Lefoulon
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
- Present address: School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Travis Clark
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Ricardo Guerrero
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Israel Cañizales
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
- Ediciones La Fauna KPT SL, Madrid, Spain
| | - Jorge Manuel Cardenas-Callirgos
- Neotropical Parasitology Research Network - NEOPARNET, Asociación Peruana de Helmintología e Invertebrados Afines – APHIA, Peru
| | - Kerstin Junker
- Epidemiology, Parasites and Vectors, ARC-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jeremy M. Foster
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Barton E. Slatko
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| |
Collapse
|
39
|
Durrant C, Thiele EA, Holroyd N, Doyle SR, Sallé G, Tracey A, Sankaranarayanan G, Lotkowska ME, Bennett HM, Huckvale T, Abdellah Z, Tchindebet O, Wossen M, Logora MSY, Coulibaly CO, Weiss A, Schulte-Hostedde AI, Foster JM, Cleveland CA, Yabsley MJ, Ruiz-Tiben E, Berriman M, Eberhard ML, Cotton JA. Population genomic evidence that human and animal infections in Africa come from the same populations of Dracunculus medinensis. PLoS Negl Trop Dis 2020; 14:e0008623. [PMID: 33253172 PMCID: PMC7728184 DOI: 10.1371/journal.pntd.0008623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Guinea worm-Dracunculus medinensis-was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country. PRINCIPAL FINDINGS In an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases. CONCLUSIONS This work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.
Collapse
Affiliation(s)
- Caroline Durrant
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Guillaume Sallé
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- INRA—U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Nouzilly, France
| | - Alan Tracey
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Geetha Sankaranarayanan
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Magda E. Lotkowska
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Hayley M. Bennett
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Present Address: Berkeley Lights Inc., Emeryville, California, United States of America
| | - Thomas Huckvale
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Zahra Abdellah
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ouakou Tchindebet
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Mesfin Wossen
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Cheick Oumar Coulibaly
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Ernesto Ruiz-Tiben
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| | - Mark L. Eberhard
- Retired, Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| |
Collapse
|
40
|
Xu L, Yang J, Xu M, Shan D, Wu Z, Yuan D. Speciation and adaptive evolution reshape antioxidant enzymatic system diversity across the phylum Nematoda. BMC Biol 2020; 18:181. [PMID: 33243226 PMCID: PMC7694339 DOI: 10.1186/s12915-020-00896-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nematodes have evolved to survive in diverse ecological niches and can be a serious burden on agricultural economy, veterinary medicine, and public health. Antioxidant enzymes in parasitic nematodes play a critical role in defending against host oxidative stress. However, the features of the evolution of antioxidant enzymes in the phylum Nematoda remain elusive. Results Here, we systematically investigated the evolution and gene expression of antioxidant enzymes in the genomes of 59 nematodes and transcriptomes of 20 nematodes. Catalase has been independently lost in several orders, suggesting that it is unnecessary for some nematodes. Unlike in mammals, phospholipid hydroperoxide glutathione peroxidase is widely distributed in nematodes, among which it has evolved independently. We found that superoxide dismutase (SOD) has been present throughout nematode evolutionary process, and the extracellular isoform (SOD3) is diverged from the corresponding enzyme in mammals and has undergone duplication and differentiation in several nematodes. Moreover, the evolution of intracellular and extracellular SOD isoforms in filaria strongly indicates that extracellular SOD3 originated from intracellular SOD1 and underwent rapid evolution to form the diversity of extracellular SOD3. We identify a novel putative metal-independent extracellular SOD presenting independently in Steinernema and Strongyloididae lineage that featured a high expression level in Strongyloides larvae. Sequence divergence of SOD3 between parasitic nematodes and their closest free-living nematode, the specifically high expression in the parasitic female stage, and presence in excretory-secretory proteome of Strongyloides suggest that SOD3 may be related with parasitism. Conclusions This study advances our understanding of the complex evolution of antioxidant enzymes across Nematoda and provides targets for controlling parasitic nematode diseases.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Xu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Dongjuan Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
42
|
Long-read RNA sequencing of human and animal filarial parasites improves gene models and discovers operons. PLoS Negl Trop Dis 2020; 14:e0008869. [PMID: 33196647 PMCID: PMC7704054 DOI: 10.1371/journal.pntd.0008869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/30/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Filarial parasitic nematodes (Filarioidea) cause substantial disease burden to humans and animals around the world. Recently there has been a coordinated global effort to generate, annotate, and curate genomic data from nematode species of medical and veterinary importance. This has resulted in two chromosome-level assemblies (Brugia malayi and Onchocerca volvulus) and 11 additional draft genomes from Filarioidea. These reference assemblies facilitate comparative genomics to explore basic helminth biology and prioritize new drug and vaccine targets. While the continual improvement of genome contiguity and completeness advances these goals, experimental functional annotation of genes is often hindered by poor gene models. Short-read RNA sequencing data and expressed sequence tags, in cooperation with ab initio prediction algorithms, are employed for gene prediction, but these can result in missing clade-specific genes, fragmented models, imperfect mapping of gene ends, and lack of isoform resolution. Long-read RNA sequencing can overcome these drawbacks and greatly improve gene model quality. Here, we present Iso-Seq data for B. malayi and Dirofilaria immitis, etiological agents of lymphatic filariasis and canine heartworm disease, respectively. These data cover approximately half of the known coding genomes and substantially improve gene models by extending untranslated regions, cataloging novel splice junctions from novel isoforms, and correcting mispredicted junctions. Furthermore, we validated computationally predicted operons, manually curated new operons, and merged fragmented gene models. We carried out analyses of poly(A) tails in both species, leading to the identification of non-canonical poly(A) signals. Finally, we prioritized and assessed known and putative anthelmintic targets, correcting or validating gene models for molecular cloning and target-based anthelmintic screening efforts. Overall, these data significantly improve the catalog of gene models for two important parasites, and they demonstrate how long-read RNA sequencing should be prioritized for ongoing improvement of parasitic nematode genome assemblies. Filarial parasitic nematodes are vector-borne parasites that infect humans and animals. Brugia malayi and Dirofilaria immitis are transmitted by mosquitoes and cause human lymphatic filariasis and canine heartworm disease, respectively. Recent years have seen a dramatic increase in genomic and transcriptomic data sets and the concomitant increase in innovative strategies for drug target identification, validation, and screening. However, while the completeness of genome assemblies of filarial parasitic nematodes has seen steady improvements, the reliability of gene models has not kept pace, hindering cloning efforts. Long-read RNA sequencing technologies are uniquely able to improve gene models, but have not been widely used for the causative agents of neglected tropical diseases. Here, we report the improvement of gene models in both B. malayi and D. immitis by long-read RNA sequencing. We identified novel operons, deprecated false positive operons, identified dozens of novel genes, and described the parameters of polyadenylation. We also focused on putative anthelmintic targets, identifying novel isoforms and correcting gene models. These data substantially increase the trustworthiness of gene models in these two species and demonstrate how long-read sequencing approaches should be prioritized in the continued improvement of genome assemblies and their gene annotations.
Collapse
|
43
|
Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, Beasley H, Beech R, Britton C, Brooks K, Chaudhry U, Maitland K, Martinelli A, Noonan JD, Paulini M, Quail MA, Redman E, Rodgers FH, Sallé G, Shabbir MZ, Sankaranarayanan G, Wit J, Howe KL, Sargison N, Devaney E, Berriman M, Gilleard JS, Cotton JA. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Commun Biol 2020; 3:656. [PMID: 33168940 PMCID: PMC7652881 DOI: 10.1038/s42003-020-01377-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - David Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Wojtek Bazant
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Beasley
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Karen Brooks
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jennifer D Noonan
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Michael A Quail
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Faye H Rodgers
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Guillaume Sallé
- INRAE - U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Centre de recherche Val de Loire, Nouzilly, France
| | | | | | - Janneke Wit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
44
|
Easton A, Gao S, Lawton SP, Bennuru S, Khan A, Dahlstrom E, Oliveira RG, Kepha S, Porcella SF, Webster J, Anderson R, Grigg ME, Davis RE, Wang J, Nutman TB. Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. eLife 2020; 9:e61562. [PMID: 33155980 PMCID: PMC7647404 DOI: 10.7554/elife.61562] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human ascariasis is a major neglected tropical disease caused by the nematode Ascaris lumbricoides. We report a 296 megabase (Mb) reference-quality genome comprised of 17,902 protein-coding genes derived from a single, representative Ascaris worm. An additional 68 worms were collected from 60 human hosts in Kenyan villages where pig husbandry is rare. Notably, the majority of these worms (63/68) possessed mitochondrial genomes that clustered closer to the pig parasite Ascaris suum than to A. lumbricoides. Comparative phylogenomic analyses identified over 11 million nuclear-encoded SNPs but just two distinct genetic types that had recombined across the genomes analyzed. The nuclear genomes had extensive heterozygosity, and all samples existed as genetic mosaics with either A. suum-like or A. lumbricoides-like inheritance patterns supporting a highly interbred Ascaris species genetic complex. As no barriers appear to exist for anthroponotic transmission of these 'hybrid' worms, a one-health approach to control the spread of human ascariasis will be necessary.
Collapse
Affiliation(s)
- Alice Easton
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Scott P Lawton
- Epidemiology Research Unit (ERU) Department of Veterinary and Animal Sciences, Northern Faculty, Scotland’s Rural College (SRUC)InvernessUnited Kingdom
| | - Sasisekhar Bennuru
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Asis Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Rita G Oliveira
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Stella Kepha
- London School of Tropical Medicine and HygieneLondonUnited Kingdom
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Joanne Webster
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
- Royal Veterinary College, University of London, Department of Pathobiology and Population SciencesHertfordshireUnited Kingdom
| | - Roy Anderson
- Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
45
|
Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. eLife 2020; 9:e51850. [PMID: 32779567 PMCID: PMC7419141 DOI: 10.7554/elife.51850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.
Collapse
Affiliation(s)
- David M Curran
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nirvana Nursimulu
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | | | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Epidemiology, School of Global Public Health, New York UniversityNew YorkUnited States
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
46
|
Grote A, Li Y, Liu C, Voronin D, Geber A, Lustigman S, Unnasch TR, Welch L, Ghedin E. Prediction pipeline for discovery of regulatory motifs associated with Brugia malayi molting. PLoS Negl Trop Dis 2020; 14:e0008275. [PMID: 32574217 PMCID: PMC7337397 DOI: 10.1371/journal.pntd.0008275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/06/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Filarial nematodes can cause debilitating diseases in humans. They have complicated life cycles involving an insect vector and mammalian hosts, and they go through a number of developmental molts. While whole genome sequences of parasitic worms are now available, very little is known about transcription factor (TF) binding sites and their cognate transcription factors that play a role in regulating development. To address this gap, we developed a novel motif prediction pipeline, Emotif Alpha, that integrates ten different motif discovery algorithms, multiple statistical tests, and a comparative analysis of conserved elements between the filarial worms Brugia malayi and Onchocerca volvulus, and the free-living nematode Caenorhabditis elegans. We identified stage-specific TF binding motifs in B. malayi, with a particular focus on those potentially involved in the L3-L4 molt, a stage important for the establishment of infection in the mammalian host. Using an in vitro molting system, we tested and validated three of these motifs demonstrating the accuracy of the motif prediction pipeline. Diseases caused by parasitic worms such as the filariae are among the leading causes of morbidity in the developing world. Very little is known about how development is regulated in these vector-transmitted parasites. We have developed a computational method to identify motifs that correspond to transcription factor binding sites in the genome of the parasitic worm, Brugia malayi, one of the causative agents of lymphatic filariasis. Using this approach, we were able to predict stage-specific transcription factor binding sites involved in a stage of the molting process important for the establishment of the infection. We validated the role of these motifs using an in vitro molting system.
Collapse
Affiliation(s)
- Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Yichao Li
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
| | - Canhui Liu
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Lonnie Welch
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
- * E-mail: (LW); (EG)
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York, United States of America
- * E-mail: (LW); (EG)
| |
Collapse
|
47
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
48
|
Foster JM, Grote A, Mattick J, Tracey A, Tsai YC, Chung M, Cotton JA, Clark TA, Geber A, Holroyd N, Korlach J, Li Y, Libro S, Lustigman S, Michalski ML, Paulini M, Rogers MB, Teigen L, Twaddle A, Welch L, Berriman M, Dunning Hotopp JC, Ghedin E. Sex chromosome evolution in parasitic nematodes of humans. Nat Commun 2020; 11:1964. [PMID: 32327641 PMCID: PMC7181701 DOI: 10.1038/s41467-020-15654-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.
Collapse
Affiliation(s)
- Jeremy M Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - John Mattick
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Matthew Chung
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Matthew B Rogers
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Laura Teigen
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Alan Twaddle
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Julie C Dunning Hotopp
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA.
| |
Collapse
|
49
|
The insufficiency of circulating miRNA and DNA as diagnostic tools or as biomarkers of treatment efficacy for Onchocerca volvulus. Sci Rep 2020; 10:6672. [PMID: 32317658 PMCID: PMC7174290 DOI: 10.1038/s41598-020-63249-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
Skin snip evaluation for onchocerciasis has insufficient sensitivity when skin microfilarial (mf) densities are low, such as following ivermectin treatment. Mf density is suitable for assessing microfilaricidal efficacy but only serves as an indirect indicator of macrofilaricidal activity. We assessed circulating nucleic acids from Onchocerca volvulus as an alternative to skin snips. We screened a plasma sample set of infected individuals followed up at four, 12 and 21 months after microfilaricidal (ivermectin, n = four), macrofilaricidal (doxycycline, n = nine), or combination treatment (n = five). Two parasite-derived miRNAs, cel-miR-71-5p and bma-lin-4, and O-150 repeat DNA were assessed. Highly abundant DNA repeat families identified in the O. volvulus genome were also evaluated. miRNAs were detected in two of 72 plasma samples (2.8%) and two of 47 samples (4.3%) with microfilaridermia using RT-qPCR. O-150 DNA was detected in eight (44.4%) baseline samples by qPCR and the number of positives declined post-treatment. One doxycycline-treated individual remained O-150 positive. However, only 11 (23.4%) samples with microfilaridermia were qPCR-positive. Analysis by qPCR showed novel DNA repeat families were comparatively less abundant than the O-150 repeat. Circulating parasite-derived nucleic acids are therefore insufficient as diagnostic tools or as biomarkers of treatment efficacy for O. volvulus.
Collapse
|
50
|
Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN. Genomic Epidemiology in Filarial Nematodes: Transforming the Basis for Elimination Program Decisions. Front Genet 2020; 10:1282. [PMID: 31998356 PMCID: PMC6964045 DOI: 10.3389/fgene.2019.01282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Annette C. Kuesel
- Unicef/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Katie E. Crawford
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Patricia M. Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Michel Boussinesq
- Unité Mixte Internationale 233 "TransVIHMI", Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France
| | - Colleen L. Lau
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Daniel A. Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Warwick N. Grant
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|