1
|
Guo J, Xu Q, Zhong Y, Su Y. N-acetylcysteine promotes doxycycline resistance in the bacterial pathogen Edwardsiella tarda. Virulence 2024; 15:2399983. [PMID: 39239906 PMCID: PMC11409502 DOI: 10.1080/21505594.2024.2399983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024] Open
Abstract
Bacterial resistance poses a significant threat to both human and animal health. N-acetylcysteine (NAC), which is used as an anti-inflammatory, has been shown to have distinct and contrasting impacts on bacterial resistance. However, the precise mechanism underlying the relationship between NAC and bacterial resistance remains unclear and requires further investigation. In this study, we study the effect of NAC on bacterial resistance and the underlying mechanisms. Specifically, we examine the effects of NAC on Edwardsiella tarda ATCC15947, a pathogen that exhibits resistance to many antibiotics. We find that NAC can promote resistance of E. tarda to many antibiotics, such as doxycycline, resulting in an increase in the bacterial survival rate. Through proteomic analysis, we demonstrate that NAC activates the amino acid metabolism pathway in E. tarda, leading to elevated intracellular glutathione (GSH) levels and reduced reactive oxygen species (ROS). Additionally, NAC reduces antibiotic influx while enhancing efflux, thus maintaining low intracellular antibiotic concentrations. We also propose that NAC promotes protein aggregation, thus contributing to antibiotic resistance. Our study describes the mechanism underlying E. tarda resistance to doxycycline and cautions against the indiscriminate use of metabolite adjuvants.
Collapse
Affiliation(s)
- Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Qingqiang Xu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Huang Y, Li J, Yu Z, Li J, Liang K, Deng Y. Elaborated Bio-Heterojunction With Robust Sterilization Effect for Infected Tissue Regeneration via Activating Competent Cell-Like Antibacterial Tactic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414111. [PMID: 39397342 DOI: 10.1002/adma.202414111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT) has been a powerful strategy to combat bacterial infection. However, the compact cell membranes of pathogenic bacteria, especially drug-resistant bacteria, significantly diminish the efficiency of heat conduction and impede the entrance of reactive oxygen species (ROS) into cells, resulting in unsatisfactory sterilization. Enlightened by the membrane feature of competent bacteria, herein a MXene/CaO2 bio-heterojunction (MC bio-HJ) is elaborated to achieve rapid disinfection and promote infected tissue regeneration through activating competent cell-like antibacterial tactics. The bio-HJ first compels pathogenic bacteria to become a competent cell-like stage through the coordination of Ca2+ and membrane phospholipid, and potentiates the membrane permeability. Assisted by near infrared (NIR) irradiation, the heat and ROS generated from PTT and PDT of bio-HJ easily pass through bacterial membrane and drastically perturb bacterial metabolism, leading to rapid disinfection. More importantly, employing two in vivo infected model of mice, it have corroborated that the MC bio-HJs not only effectively accelerate MRSA-infected cutaneous regeneration, but also considerably boost osseointegration in an infected bone defect after coating on orthopedic implants. As envisaged, this work demonstrates a novel therapeutic tactic with robust antibacterial effect to remedy infected tissue regeneration through activating competent cell-like stage.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Jialun Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Zhaohan Yu
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Kunneng Liang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
3
|
Yildirim O, Barman D, Chung M, Stone S, Geißen R, Boby ML, Sherborne BS, Tan DS. Design and synthesis of a library of C8-substituted sulfamidoadenosines to probe bacterial permeability. Bioorg Med Chem Lett 2024; 110:129844. [PMID: 38851357 PMCID: PMC11361631 DOI: 10.1016/j.bmcl.2024.129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.
Collapse
Affiliation(s)
- Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dipti Barman
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mia Chung
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Samantha Stone
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Raphael Geißen
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Doctoral Program, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Melissa L Boby
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Kumar D, Gayen A, Chandra M. Growth Phase Contribution in Dictating Drug Transport and Subcellular Accumulation inside Escherichia coli. ACS Infect Dis 2024; 10:3233-3244. [PMID: 39178142 DOI: 10.1021/acsinfecdis.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Depending upon nutrient availability, bacteria transit to multiple growth phases. The transition from the active to nongrowing phase results in reduced drug efficacy and, in some cases, even multidrug resistance. However, due to multiple alterations in the cell envelope, probing the drug permeation kinetics during growth phases becomes perplexing, especially across the Gram-negative bacteria's complex dual membrane envelope. To advance the understanding of drug permeation during the life cycle of Gram-negative bacteria, we sought to address two underlying objectives: (a) how changes are occurring inside the bacterial envelope during growth and (b) how the drug permeation and accumulation vary across both the membranes and in subcellular compartments during growth. Both objectives are met with the help of nonlinear optical technique second-harmonic generation spectroscopy (SHG). Specifically, using SHG, we probed the transport kinetics and accumulation of a quaternary ammonium compound (QAC), malachite green, inside Escherichia coli in various growth phases. Further insight about another QAC molecule, propidium iodide, is accomplished using fluorescence microscopy. Results indicate that actively growing cells have faster drug transport and higher cytoplasmic accumulation than slow- or nongrowing cells. In this regard, the rpoS gene plays a crucial role in limiting drug transport across the saturation phase cultures. Moreover, within a particular growth phase, membrane permeability undergoes gradual changes much before the subsequent growth phase commences. These outcomes signify the importance of reporting the growth phase and rate in drug efficacy studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Bakker AT, Kotsogianni I, Avalos M, Punt JM, Liu B, Piermarini D, Gagestein B, Slingerland CJ, Zhang L, Willemse JJ, Ghimire LB, van den Berg RJHBN, Janssen APA, Ottenhoff THM, van Boeckel CAA, van Wezel GP, Ghilarov D, Martin NI, van der Stelt M. Discovery of isoquinoline sulfonamides as allosteric gyrase inhibitors with activity against fluoroquinolone-resistant bacteria. Nat Chem 2024; 16:1462-1472. [PMID: 38898213 PMCID: PMC11374673 DOI: 10.1038/s41557-024-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2024] [Indexed: 06/21/2024]
Abstract
Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mariana Avalos
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jeroen M Punt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bing Liu
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Diana Piermarini
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Joost J Willemse
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Leela B Ghimire
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
6
|
Singh D, Kumar D, Gayen A, Chandra M. Role of AcrAB-TolC and Its Components in Influx-Efflux Dynamics of QAC Drugs in Escherichia coli Revealed Using SHG Spectroscopy. J Phys Chem Lett 2024:7832-7839. [PMID: 39052610 DOI: 10.1021/acs.jpclett.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multidrug efflux pumps, especially those belonging to the class of resistance-nodulation-division (RND), are the key contributors to the rapidly growing multidrug resistance in Gram-negative bacteria. Understanding the role of efflux pumps in real-time drug transport dynamics across the complex dual-cell membrane envelope of Gram-negative bacteria is thus crucial for developing efficient antibiotics against them. Here, we employ second harmonic generation-based nonlinear spectroscopy to study the role of the tripartite efflux pump and its individual components. We systematically investigate the effect of periplasmic adaptor protein AcrA, inner membrane transporter protein AcrB, and outer membrane channel TolC on the overall drug transport in live Acr-type Escherichia coli and its mutant strain cells. Our results reveal that when one of its components is missing, the tripartite AcrAB-TolC efflux pump machinery in Escherichia coli can effectively function as a bipartite system, a fact that has never been demonstrated in live Gram-negative bacteria.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
7
|
Fakhoury NE, Mansour S, Abdel-Halim M, Hamed MM, Empting M, Boese A, Loretz B, Lehr CM, Tammam SN. Nanoparticles in liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria in respiratory tract infections. Drug Deliv Transl Res 2024:10.1007/s13346-024-01662-2. [PMID: 39048783 DOI: 10.1007/s13346-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Antibiotic resistance is a cause of serious illness and death, originating often from insufficient permeability into gram-negative bacteria. Nanoparticles (NP) can increase antibiotic delivery in bacterial cells, however, may as well increase internalization in mammalian cells and toxicity. In this work, NP in liposome (NP-Lip) formulations were used to enhance the selectivity of the antibiotics (3C and tobramycin) and quorum sensing inhibitor (HIPS-1635) towards Pseudomonas aeruginosa by fusing with bacterial outer membranes and reducing uptake in mammalian cells due to their larger size. Poly (lactic-co-glycolic) acid NPs were prepared using emulsion solvent evaporation and incorporated in larger liposomes. Cytotoxicity and uptake studies were conducted on two lung cell lines, Calu-3 and H460. NP-Lip showed lower toxicity and uptake in both cell lines. Then formulations were investigated for suitability for oral inhalation. The deposition of NP and NP-Lip in the lungs was assessed by next generation impactor and corresponded to 75% and 45% deposition in the terminal bronchi and the alveoli respectively. Colloidal stability and mucus-interaction studies were conducted. NP-Lip showed higher diffusion through mucus compared to NPs with the use of nanoparticle tracking analyzer. Moreover, the permeation of delivery systems across a liquid-liquid interface epithelial barrier model of Calu-3 cells indicated that NP-Lip could cause less systemic toxicity upon in-vivo like administration by aerosol deposition. Monoculture and Pseudomonas aeruginosa biofilm with Calu-3 cells co-culture experiments were conducted, NP-Lip achieved highest toxicity towards bacterial biofilms and least toxicity % of the Calu-3 cells. Therefore, the NP- liposomal platform offers a promising approach for enhancing antibiotic selectivity and treating pulmonary infections.
Collapse
Affiliation(s)
- Nathalie E Fakhoury
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt.
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, Cairo, Egypt
| |
Collapse
|
8
|
Xu J, Wei Z, Fang W, Wu J, Wang Y, Chen S. KKL-35 inhibits growth of Staphylococcus aureus by systematically changing bacterial phenotypes. Arch Microbiol 2024; 206:350. [PMID: 38995446 DOI: 10.1007/s00203-024-04079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
KKL-35 is a new oxadiazole compound with potent broad-spectrum antibacterial activity against a number of gram-positive and gram-negative bacteria. However, its influences on bacterial growth are unclear. This study is to investigate phenotypic changes of Staphylococcus aureus (SA) caused by KKL-35 and evaluate antibacterial activity of combinations of KKL-35 with 7 class of antibiotics available in medical facilities. KKL-35-treated SA showed significantly lower survival under stresses of NaCl and H2O2 than DMSO (21.03 ± 2.60% vs. 68.21 ± 5.31% for NaCl, 4.91 ± 3.14% vs. 74.78 ± 2.88% for H2O2). UV exposure significantly decreased survival of SA treated with KKL-35 than DMSO-treated ones (23.91 ± 0.71% vs. 55.45 ± 4.70% for 4.2 J/m2, 12.80 ± 1.03% vs. 31.99 ± 5.99% for 7.0 J/m2, 1.52 ± 0.63% vs. 6.49 ± 0.51% for 14.0 J/m2). KKL-35 significantly decreased biofilm formation (0.47 ± 0.12 vs. 1.45 ± 0.21) and bacterial survival in the serum resistance assay (42.27 ± 2.77% vs. 78.31 ± 5.64%) than DMSO. KKL-35 significantly decreased ethidium bromide uptake and efflux, as well as the cell membrane integrity. KKL-35 had low cytotoxicity and low propensity for resistance. KKL-35 inhibited SA growth in concentration-independent and time-dependent manners, and showed additivity when combined with the majority class of available antibiotics. Antibiotic combinations of KKL-35 with ciprofloxacin, rifampicin, or linezolid significantly decreased bacterial loads than the most active antibiotic in the corresponding combination. Thus, KKL-35 inhibits growth of SA by decreasing bacterial environmental adaptations, biofilm formation, membrane uptake and efflux, as well as increasing antibiotic sensitivity. Its potent antibacterial activity, low cytotoxicity, low propensity for resistance, and wide choices in antibiotic combinations make KKL-35 a promising leading compound to design new antibiotics in monotherapies and combination therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Jie Xu
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zilan Wei
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wendong Fang
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahui Wu
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | | | - Shuiping Chen
- Department of Laboratory Medicine, The PLA 307 Clinical College, 5th Clinical Medical College of Anhui Medical University, Beijing, China.
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China.
- Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
9
|
Panjla A, Kaul G, Shukla M, Akhir A, Tripathi S, Arora A, Chopra S, Verma S. Membrane-targeting, ultrashort lipopeptide acts as an antibiotic adjuvant and sensitizes MDR gram-negative pathogens toward narrow-spectrum antibiotics. Biomed Pharmacother 2024; 176:116810. [PMID: 38823276 DOI: 10.1016/j.biopha.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjulika Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India; Mehta Family Center for Engineering in Medicine, Center for Nanoscience Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
10
|
Ferrando N, Pino-Otín MR, Terrado E, Ballestero D, Langa E. Bioactivity of Eugenol: A Potential Antibiotic Adjuvant with Minimal Ecotoxicological Impact. Int J Mol Sci 2024; 25:7069. [PMID: 39000177 PMCID: PMC11241589 DOI: 10.3390/ijms25137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.
Collapse
Affiliation(s)
- Natalia Ferrando
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - María Rosa Pino-Otín
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Eva Terrado
- Facultad de Educación, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Diego Ballestero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| | - Elisa Langa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autovía Mudéjar, km. 299, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.)
| |
Collapse
|
11
|
Tandar ST, Aulin LBS, Leemkuil EMJ, Liakopoulos A, van Hasselt JGC. Semi-mechanistic modeling of resistance development to β-lactam and β-lactamase-inhibitor combinations. J Pharmacokinet Pharmacodyn 2024; 51:199-211. [PMID: 38008877 DOI: 10.1007/s10928-023-09895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
The use of β-lactam (BL) and β-lactamase inhibitor (BLI) combinations, such as piperacillin-tazobactam (PIP-TAZ) is an effective strategy to combat infections by extended-spectrum β-lactamase-producing bacteria. However, in Gram-negative bacteria, resistance (both mutational and adaptive) to BL-BLI combination can still develop through multiple mechanisms. These mechanisms may include increased β-lactamase activity, reduced drug influx, and increased drug efflux. Understanding the relative contribution of these mechanisms during resistance development helps identify the most impactful mechanism to target in designing a treatment to counter BL-BLI resistance. This study used semi-mechanistic mathematical modeling in combination with antibiotic sensitivity assays to assess the potential impact of different resistance mechanisms during the development of PIP-TAZ resistance in a Klebsiella pneumoniae isolate expressing CTX-M-15 and SHV-1 β-lactamases. The mathematical models were used to evaluate the potential impact of several cellular changes as a sole mediator of PIP-TAZ resistance. Our semi-mechanistic model identified 2 out of the 13 inspected mechanisms as key resistance mechanisms that may independently support the observed magnitude of PIP-TAZ resistance, namely porin loss and efflux pump up-regulation. Simulation using the resulting models also suggested the possible adjustment of PIP-TAZ dose outside its commonly used 8:1 dosing ratio. The current study demonstrated how theory-based mechanistic models informed by experimental data can be used to support hypothesis generation regarding potential resistance mechanisms, which may guide subsequent experimental studies.
Collapse
Affiliation(s)
- Sebastian T Tandar
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Linda B S Aulin
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department Clinical Pharmacy and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Eva M J Leemkuil
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Apostolos Liakopoulos
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Huang Q, Butaye P, Ng PH, Zhang J, Cai W, St-Hilaire S. Impact of low-dose ozone nanobubble treatments on antimicrobial resistance genes in pond water. Front Microbiol 2024; 15:1393266. [PMID: 38812692 PMCID: PMC11136503 DOI: 10.3389/fmicb.2024.1393266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat as the silent pandemic. Because of the use of antimicrobials in aquaculture systems, fish farms may be potential reservoirs for the dissemination of antimicrobial resistance genes (ARGs). Treatments with disinfectants have been promoted to reduce the use of antibiotics; however, the effect of these types of treatments on AMR or ARGs is not well known. This study aimed to evaluate the effects of low dose ozone treatments (0.15 mg/L) on ARG dynamics in pond water using metagenomic shotgun sequencing analysis. The results suggested that ozone disinfection can increase the relative abundance of acquired ARGs and intrinsic efflux mediated ARGs found in the resistance nodulation cell division (RND) family. Notably, a co-occurrence of efflux and non-efflux ARGs within the same bacterial genera was also observed, with most of these genera dominating the bacterial population following ozone treatments. These findings suggest that ozone treatments may selectively favor the survival of bacterial genera harboring efflux ARGs, which may also have non-efflux ARGs. This study underscores the importance of considering the potential impacts of disinfection practices on AMR gene dissemination particularly in aquaculture settings where disinfectants are frequently used at low levels. Future endeavors should prioritize the evaluation of these strategies, as they may be associated with an increased risk of AMR in aquatic environments.
Collapse
Affiliation(s)
- Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Butaye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Ma X, Kaw HY, Yu J, Yang Q, Zhu L, Wang W. The intracellular concentrations of fluoroquinolones determined the antibiotic resistance response of Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134057. [PMID: 38508108 DOI: 10.1016/j.jhazmat.2024.134057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The extensive consumption of antibiotics has been reported to significantly promote the generation of antibiotic resistance (ABR), however, a quantitative causal relationship between antibiotic exposure and ABR response is absent. This study aimed to pinpoint the accurate regulatory concentration of fluoroquinolones (FQs) and to understand the biochemical mechanism of the mutual action between FQ exposure and FQ resistance response. Highly sensitive analytical methods were developed by using UPLC-MS/MS to determine the total residual, extracellular residual, total intracellular, intracellular residual and intracellular degraded concentration of three representative FQs, including ciprofloxacin (CIP), ofloxacin (OFL) and norfloxacin (NOR), with detection limits in the range of 0.002-0.057 μg/L, and recoveries in the range of 80-93%. The MICs of Escherichia coli (E. coli) were 7.0-31.4-fold of the respective MIC0 after 40-day FQ exposure, and significant negative associations were discovered between the intracellular (residual, degraded or the sum) FQ concentrations and FQ resistance. Transcriptional expression and whole-genome sequencing results indicated that reduced membrane permeability and enhanced multi-drug efflux pumps contributed to the decreasing intracellular concentration. These results unveiled the pivotal role of intracellular concentration in triggering FQ resistance, providing important information to understand the dose-response relationship between FQ exposure and FQ resistance response, and ascertain the target dose metric of FQs for eliminating FQ resistance crisis.
Collapse
Affiliation(s)
- Xuejing Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jing Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Qi Yang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
14
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
15
|
Hogan AM, Motnenko A, Rahman ASMZ, Cardona ST. Cell envelope structural and functional contributions to antibiotic resistance in Burkholderia cenocepacia. J Bacteriol 2024; 206:e0044123. [PMID: 38501654 PMCID: PMC11025338 DOI: 10.1128/jb.00441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
Collapse
Affiliation(s)
- Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Manrique PD, Leus IV, López CA, Mehla J, Malloci G, Gervasoni S, Vargiu AV, Kinthada RK, Herndon L, Hengartner NW, Walker JK, Rybenkov VV, Ruggerone P, Zgurskaya HI, Gnanakaran S. Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors. Commun Chem 2024; 7:84. [PMID: 38609430 PMCID: PMC11015012 DOI: 10.1038/s42004-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.
Collapse
Affiliation(s)
- Pedro D Manrique
- Physics Department, George Washington University, Washington, 20052, DC, USA.
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - César A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Rama K Kinthada
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Liam Herndon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
17
|
Ganjo AR, Balaky STJ, Mawlood AH, Smail SB, Shabila NP. Characterization of genes related to the efflux pump and porin in multidrug-resistant Escherichia coli strains isolated from patients with COVID-19 after secondary infection. BMC Microbiol 2024; 24:122. [PMID: 38600509 PMCID: PMC11005145 DOI: 10.1186/s12866-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.
Collapse
Affiliation(s)
- Aryan R Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Salah Tofik Jalal Balaky
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Ahang Hasan Mawlood
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Technique, College of Medical Technology, AL-Kitab University, Kirkuk, Iraq
| | | | - Nazar P Shabila
- College of Health Sciences, Catholic University in Erbil, Erbil, Kurdistan Region, Iraq
- Department of Community Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
18
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Zhan X, Wang R, Zhang M, Li Y, Sun T, Chen J, Li J, Liu T. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. PEST MANAGEMENT SCIENCE 2024; 80:1039-1052. [PMID: 37831609 DOI: 10.1002/ps.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhan
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Rui Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Manman Zhang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Tao Sun
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tong Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
20
|
Liu Y, Van Horn AM, Pham MTN, Dinh BNN, Chen R, Raphael SDR, Paulino A, Thaker K, Somadder A, Frost DJ, Menke CC, Slimak ZC, Slonczewski JL. Fitness trade-offs of multidrug efflux pumps in Escherichia coli K-12 in acid or base, and with aromatic phytochemicals. Appl Environ Microbiol 2024; 90:e0209623. [PMID: 38289137 PMCID: PMC10880634 DOI: 10.1128/aem.02096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Rachel Chen
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Kavya Thaker
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
21
|
Dzuvor CKO, Shen HH, Haritos VS, He L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS NANO 2024; 18:4478-4494. [PMID: 38266175 DOI: 10.1021/acsnano.3c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Telhig S, Pham NP, Ben Said L, Rebuffat S, Ouellette M, Zirah S, Fliss I. Exploring the genetic basis of natural resistance to microcins. Microb Genom 2024; 10:001156. [PMID: 38407259 PMCID: PMC10926693 DOI: 10.1099/mgen.0.001156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/28/2023] [Indexed: 02/27/2024] Open
Abstract
Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.
Collapse
Affiliation(s)
- Soufiane Telhig
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Laila Ben Said
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Ismaïl Fliss
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
| |
Collapse
|
24
|
Bhunia S, Das A, Jana SK, Mandal S, Samanta S. Photoswitchable Antibiotic Hybrids: Spacer Length-Dependent Photochemical Control of Antibacterial Activity. Bioconjug Chem 2024; 35:92-98. [PMID: 38111208 DOI: 10.1021/acs.bioconjchem.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photopharmacology holds huge potential for the permanent (long-term) eradication of antibiotic resistance by the application of photoswitchable antibiotics. To construct such antibiotics, various methods have been employed to modify known antibiotics with photoswitches, such that the irradiated state shows activity comparable to or higher than that of the parent antibiotic and that a large activity difference between irradiated and nonirradiated states is achieved. However, most of those methods are ineffective when dealing with more than one drug with dissimilar structures. Here, we have demonstrated a new approach, in which two pharmacophores, one being a photoswitch, are covalently linked via a spacer of variable lengths, leading to a set of azopyrazole-norfloxacin antibiotic hybrids. All compounds showed a high degree of bidirectional photoisomerization, long thermal cis half-lives, and excellent photoresistance. Notably, the hybrid with an optimal four-carbon spacer length enabled the irradiated state to become 12-fold more potent than its nonirradiated state without losing much antimicrobial activity of norfloxacin. Only Gram-positive bacteria were found to be sensitive to this hybrid, and the full antibacterial potency of its irradiated state was found to be retained for nearly 24 h.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
25
|
Stoorza AM, Duerfeldt AS. Guiding the Way: Traditional Medicinal Chemistry Inspiration for Rational Gram-Negative Drug Design. J Med Chem 2024; 67:65-80. [PMID: 38134355 PMCID: PMC11342810 DOI: 10.1021/acs.jmedchem.3c01831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The discovery and development of small-molecule therapeutics effective against Gram-negative pathogens are highly challenging tasks. Most compounds that are active in biochemical settings fail to exhibit whole-cell activity. The major reason for this lack of activity is the effectiveness of bacterial cell envelopes as permeability barriers. These barriers originate from the nutrient-selective outer membranes, which act synergistically with polyspecific efflux pumps. Guiding principles to enable rational optimization of small molecules for efficient penetration and intracellular accumulation in Gram-negative bacteria would have a transformative impact on the discovery and design of chemical probes and therapeutics. In this Perspective, we draw on inspiration from traditional medicinal chemistry approaches for eukaryotic drug design to present a broader call for action in developing comparable approaches for Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexis M Stoorza
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
26
|
Yang R, Zhang H, Sun K, Yuan C, Tao K. Nano-Emulsified Perfluorooctyl Bromide Can Infiltrate Gram-Negative Bacteria and Sensitize Them to Ultrasound. NANO LETTERS 2024; 24:501-510. [PMID: 38147357 DOI: 10.1021/acs.nanolett.3c04545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Gram-negative (G-) bacterial infections remain one of the most urgent global health threats, because the distinctive envelope structure hinders the penetration of therapeutics. Here, we showed that a perfluorooctyl bromide nanoemulsion (PFOB NE) uniquely interacts with G- bacteria. After cell envelope attachment, the PFOB can infiltrate the cell and was diffused throughout. In this process, it impaired the membranes by disintegrating phospholipid molecules, enhancing the consequent ultrasonic cavitation to break the envelope. We identified through ultrasound that the NE had remarkable bactericidal effects against various antibiotic-resistant pathogens. Using in situ sterilization, this approach accelerated the recovery of bacteria-infected murine skin wounds. Thus, combining PFOB and ultrasound might be an alternative tool for conquering the growing threat of G- pathogens.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
27
|
Ferrando N, Pino-Otín MR, Ballestero D, Lorca G, Terrado EM, Langa E. Enhancing Commercial Antibiotics with Trans-Cinnamaldehyde in Gram-Positive and Gram-Negative Bacteria: An In Vitro Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:192. [PMID: 38256746 PMCID: PMC10820649 DOI: 10.3390/plants13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94-98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason.
Collapse
Affiliation(s)
- Natalia Ferrando
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - María Rosa Pino-Otín
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Diego Ballestero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Guillermo Lorca
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Eva María Terrado
- Departamento de Didácticas Específicas, Facultad de Educación, Universisad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Elisa Langa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| |
Collapse
|
28
|
Fihn CA, Lembke HK, Gaulin J, Bouchard P, Villarreal AR, Penningroth MR, Crone KK, Vogt GA, Gilbertsen AJ, Ayotte Y, de Oliveira LC, Serrano-Wu MH, Drouin N, Hung DT, Hunter RC, Carlson EE. Evaluation of Expanded 2-Aminobenzothiazole Library for Inhibition of Pseudomonas aeruginosa Virulence Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539119. [PMID: 37205454 PMCID: PMC10187220 DOI: 10.1101/2023.05.02.539119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.
Collapse
Affiliation(s)
- Conrad A. Fihn
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Jeffrey Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Patricia Bouchard
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Alex R. Villarreal
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Mitchell R. Penningroth
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Kathryn K. Crone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Adam J. Gilbertsen
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Yann Ayotte
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | | | | | - Nathalie Drouin
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Deborah T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
30
|
Chen Y, Gu J, Ashworth G, Wang Z, Zhang Z, Dong C. Crystal structure of the lipopolysaccharide outer core galactosyltransferase WaaB involved in pathogenic bacterial invasion of host cells. Front Microbiol 2023; 14:1239537. [PMID: 37808302 PMCID: PMC10556518 DOI: 10.3389/fmicb.2023.1239537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Lipopolysaccharide (LPS) is essential for most gram-negative bacteria and plays an important role in serum resistance, pathogenesis, drug resistance, and protection from harsh environments. The outer core oligosaccharide of LPS is involved in bacterial recognition and invasion of host cells. The D-galactosyltransferase WaaB is responsible for the addition of D-galactose to the outer core oligosaccharide of LPS, which is essential for Salmonella typhimurium invasion. Here we report the first crystal structures of WaaB and WaaB in complex with UDP to resolutions of 1.8 and 1.9 Å, respectively. Mutagenesis and enzyme activity assays confirmed that residues V186, K195, I216, W243, E276, and E269 of WaaB are essential for the binding and hydrolysis of UDP-galactose. The elucidation of the catalytic mechanism of WaaB is of great importance and could potentially be used for the design of novel therapeutic reagents.
Collapse
Affiliation(s)
- Yatian Chen
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiayue Gu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Gareth Ashworth
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Zhongshan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhengyu Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Cardiliya AP, Chandrasekar MJN, Nanjan MJ. Incidence of biofilms among the multidrug resistant E. coli, isolated from urinary tract infections in the Nilgiris district, South India. Braz J Microbiol 2023; 54:1809-1818. [PMID: 37347344 PMCID: PMC10485203 DOI: 10.1007/s42770-023-01028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Multidrug resistant uropathogenic Escherichia coli (MDRUPEC) significantly correlates with recurrent, complicated, and persistent urinary tract infection (UTI). The leading cause of multidrug resistance is the ability of E. coli to form biofilms. The physiological heterogeneity, genetic incontinency, and putative events in gene expression of biofilms render them resistant to antimicrobials and the host immune system. Understanding the determinants of antimicrobial resistance and its correlation with biofilm formations will, therefore, help the development of a better strategy for treating biofilm-associated UTIs. The present study reports on the in vitro detection of biofilm formation among multidrug resistant E. coli strains isolated from urine, the major cause of communal, nosocomial, and food-borne uropathogenic UTI. This is a cross-sectional study conducted in and around Ooty, Nilgiris, India. From the 869 urine samples analyzed for UTI, 29.34% were found to be caused by E. coli. Among this about 23.92% were found to be multidrug resistant. Among the multidrug resistant E. coli isolates, 36.06% of them were potent biofilm producers. E. coli biofilms (n = 22) were resistant to the antibiotics used to treat UTI, namely, amikacin, amoxicillin, ampicillin, cefepime, cefoperazone, cefotaxime, ceftriaxone, cefuroxime, cephalotin, ciprofloxacin, co-trimoxazole, gentamicin, levofloxacin, and nalidixic acid, but sensitive to imipenem and meropenem. All the biofilm producers exhibited motility and hemaggultination but none were positive for hemolysin production. The isolated E. coli biofilms were confirmed by VITEK R2 Compact (bioMerieux, France) and 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- A P Cardiliya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty Nilgiris, Tamil Nadu, 643001, India
| | - M J N Chandrasekar
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Road, Ooty 643001, The Nilgiris, Mysuru, Tamil Nadu, India.
| | - M J Nanjan
- Masi Consultants, 128, Vijayanagar Palace road, Ooty, Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
32
|
Baranova AA, Tyurin AP, Korshun VA, Alferova VA. Sensing of Antibiotic-Bacteria Interactions. Antibiotics (Basel) 2023; 12:1340. [PMID: 37627760 PMCID: PMC10451291 DOI: 10.3390/antibiotics12081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sensing of antibiotic-bacteria interactions is an important area of research that has gained significant attention in recent years. Antibiotic resistance is a major public health concern, and it is essential to develop new strategies for detecting and monitoring bacterial responses to antibiotics in order to maintain effective antibiotic development and antibacterial treatment. This review summarizes recent advances in sensing strategies for antibiotic-bacteria interactions, which are divided into two main parts: studies on the mechanism of action for sensitive bacteria and interrogation of the defense mechanisms for resistant ones. In conclusion, this review provides an overview of the present research landscape concerning antibiotic-bacteria interactions, emphasizing the potential for method adaptation and the integration of machine learning techniques in data analysis, which could potentially lead to a transformative impact on mechanistic studies within the field.
Collapse
Affiliation(s)
| | | | | | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (A.P.T.); (V.A.K.)
| |
Collapse
|
33
|
Hogan AM, Rahman ASMZ, Motnenko A, Natarajan A, Maydaniuk DT, León B, Batun Z, Palacios A, Bosch A, Cardona ST. Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium. Nat Commun 2023; 14:4815. [PMID: 37558695 PMCID: PMC10412643 DOI: 10.1038/s41467-023-40494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The cell envelope of Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals. Here, we present the results of a genome-wide screen for cell envelope-associated resistance and susceptibility determinants in a Burkholderia cenocepacia clinical isolate. For this purpose, we construct a high-density, randomly-barcoded transposon mutant library and expose it to 19 cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profile over a hundred functional associations and identify mediators of antibiotic susceptibility in the Bcc cell envelope. We reveal connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism. The synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. In comparison with ceftazidime, avibactam more strongly potentiates the activity of aztreonam and meropenem in a panel of Bcc clinical isolates. Finally, we characterize in Bcc the iron and receptor-dependent activity of the siderophore-cephalosporin antibiotic, cefiderocol. Our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of current antibacterial therapies.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aakash Natarajan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin T Maydaniuk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beltina León
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Zayra Batun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Armando Palacios
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
34
|
Nieto-Saucedo JR, López-Jacome LE, Franco-Cendejas R, Colín-Castro CA, Hernández-Duran M, Rivera-Garay LR, Zamarripa-Martinez KS, Mosqueda-Gómez JL. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics (Basel) 2023; 12:1295. [PMID: 37627715 PMCID: PMC10451683 DOI: 10.3390/antibiotics12081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacilli (CR-GNB) are a major public health concern. We aimed to evaluate the prevalence of CR-GNB and the frequency of carbapenemase-encoding genes in a tertiary referral center from El Bajio, Mexico. A cross-sectional study was conducted between January and October 2022; Gram-negative bacilli (GNB) were screened for in vitro resistance to at least one carbapenem. CR-GNB were further analyzed for carbapenemase-production through phenotypical methods and by real-time PCR for the following genes: blaKPC, blaGES, blaNDM, blaVIM, blaIMP, and blaOXA-48. In total, 37 out of 508 GNB were carbapenem-resistant (7.3%, 95% CI 5.2-9.9). Non-fermenters had higher rates of carbapenem resistance than Enterobacterales (32.5% vs. 2.6%; OR 18.3, 95% CI 8.5-39, p < 0.0001), and Enterobacter cloacae showed higher carbapenem resistance than other Enterobacterales (27% vs. 1.4%; OR 25.9, 95% CI 6.9-95, p < 0.0001). Only 15 (40.5%) CR-GNB had a carbapenemase-encoding gene; Enterobacterales were more likely to have a carbapenemase-encoding gene than non-fermenters (63.6% vs. 30.8%, p = 0.08); blaNDM-1 and blaNDM-5 were the main genes found in Enterobacterales; and blaIMP-75 was the most common for Pseudomonas aeruginosa. The mcr-2 gene was harbored in one polymyxin-resistant E. cloacae. In our setting, NDM was the most common carbapenemase; however, less than half of the CR-GNB showed a carbapenemase-encoding gene.
Collapse
Affiliation(s)
- Jose Raul Nieto-Saucedo
- Fellow of the General Directorate of Quality and Education in Health, Ministry of Health, Mexico City 06696, Mexico
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
| | - Luis Esaú López-Jacome
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Biology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Claudia Adriana Colín-Castro
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Melissa Hernández-Duran
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | | | - Juan Luis Mosqueda-Gómez
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
- Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico
| |
Collapse
|
35
|
Zhang B, Lang Y, Guo B, Cao Z, Cheng J, Cai D, Shentu X, Yu X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods 2023; 12:2530. [PMID: 37444268 DOI: 10.3390/foods12132530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Fluoroquinolone (FQ) is a type of widely used antibiotic in agriculture and aquaculture, and exposure to low doses of FQs may result in the transfer of resistance between animal and human pathogens. Based on the optimization of the operating parameters, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) standard curve was constructed for the simultaneous detection of 13 FQs, including enrofloxacin (ENR), ciprofloxacin (CIP), sarafloxacin (SAR), ofloxacin (OFL), norfloxacin (NOR), pefloxacin mesylate (PM), pefloxacin (PEF), enoxacin (ENX), marbofloxacin (MAR), fleroxacin (FLE), lomefloxacin (LOM), danofloxacin (DAN), and difloxacin (DIF). The limit of detection (LOD, computed as IC10) and sensitivity (IC50) of the ic-ELISA for ENR were 0.59 μg/L and 19.23 μg/L, respectively. The precision and dependability of the detection results of this ic-ELISA were properly verified by HPLC in Rana catesbeianus samples. This indicated that the established ic-ELISA approach could be utilized to determine the FQs in Rana catesbeianus. In addition, this ic-ELISA, based on a broad-spectrum antibody, provides a technical reference and potential strategy for an immunoassay of hazard factors with similar structure.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Bowen Guo
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Zhengyang Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Jin Cheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| |
Collapse
|
36
|
Algavi YM, Borenstein E. A data-driven approach for predicting the impact of drugs on the human microbiome. Nat Commun 2023; 14:3614. [PMID: 37330560 PMCID: PMC10276880 DOI: 10.1038/s41467-023-39264-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Many medications can negatively impact the bacteria residing in our gut, depleting beneficial species, and causing adverse effects. To guide personalized pharmaceutical treatment, a comprehensive understanding of the impact of various drugs on the gut microbiome is needed, yet, to date, experimentally challenging to obtain. Towards this end, we develop a data-driven approach, integrating information about the chemical properties of each drug and the genomic content of each microbe, to systematically predict drug-microbiome interactions. We show that this framework successfully predicts outcomes of in-vitro pairwise drug-microbe experiments, as well as drug-induced microbiome dysbiosis in both animal models and clinical trials. Applying this methodology, we systematically map a large array of interactions between pharmaceuticals and human gut bacteria and demonstrate that medications' anti-microbial properties are tightly linked to their adverse effects. This computational framework has the potential to unlock the development of personalized medicine and microbiome-based therapeutic approaches, improving outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
37
|
Niu Y, Chen Z, Jiang Z, Yang Y, Liu G, Cheng X, Jiang Z, Zhang G, Tong L, Tang B. Detection of Cysteine Sulfenic Acid on E. coli Proteins with a Biotin-Benzoboroxole Probe. ACS Chem Biol 2023; 18:1351-1359. [PMID: 37260364 DOI: 10.1021/acschembio.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
S-sulfenylation of cysteine residues on proteins can effectively change protein structures and accordingly regulate their functions in vivo. Investigation of S-sulfenylation in different biological environments is thus vital for a systematic understanding of cellular redox regulation. In this work, a functional probe, biotin-benzoboroxole (Bio-ben), was designed for the detection of cysteine sulfenic acid (Cys-SOH). The performance of Bio-ben was characterized by small-molecule sulfenic acid, protein models, and proteome tests via mass spectra and western blotting. The results showed that Bio-ben was validated for cysteine sulfenic acid on proteins with good capture efficiency even at low concentrations. Compared with commonly used probes such as dimedone, the current probe has significantly shortened labeling time and exhibited comparable sensitivity. The proposed method provides a new approach for exploring S-sulfenylation in the oxidative modification of proteins and is helpful for related biological and clinical applications.
Collapse
Affiliation(s)
- Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guangzhao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenhao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
38
|
Ferrand A, Vergalli J, Bosi C, Pantel A, Pagès JM, Davin-Regli A. Contribution of efflux and mutations in fluoroquinolone susceptibility in MDR enterobacterial isolates: a quantitative and molecular study. J Antimicrob Chemother 2023; 78:1532-1542. [PMID: 37104818 DOI: 10.1093/jac/dkad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES The emergence of MDR strains is a public health problem in the management of associated infections. Several resistance mechanisms are present, and antibiotic efflux is often found at the same time as enzyme resistance and/or target mutations. However, in the laboratory routinely, only the latter two are identified and the prevalence of antibiotic expulsion is underestimated, causing a misinterpretation of the bacterial resistance phenotype. The development of a diagnostic system to quantify the efflux routinely would thus improve the management of patients. METHODS A quantitative technique based on detection of clinically used fluoroquinolones was investigated in Enterobacteriaceae clinical strains with a high or basal efflux activity. The detail of efflux involvement was studied from MIC determination and antibiotic accumulation inside bacteria. WGS was carried out on selected strains to determine the genetic background associated with efflux expression. RESULTS Only 1 Klebsiella pneumoniae isolate exhibited a lack of efflux whereas 13 isolates had a basal efflux and 8 presented efflux pump overexpression. The antibiotic accumulation evidenced the efficacy of the efflux mechanism in strains, and the contribution of dynamic expulsion versus target mutations in fluoroquinolone susceptibility. CONCLUSIONS We confirmed that phenylalanine arginine β-naphthylamide is not a reliable marker of efflux due to the affinity of the AcrB efflux pump for different substrates. We have developed an accumulation test that can be used efficiently on clinical isolates collected by the biological laboratory. The experimental conditions and protocols ensure a robust assay that with improvements in practice, expertise and equipment could be transferred to the hospital laboratory to diagnose the contribution of efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Aurélie Ferrand
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Julia Vergalli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Claude Bosi
- Laboratoire de Biologie Polyvalente, Centre Hospitalier d'Aubagne, Aubagne, France
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| |
Collapse
|
39
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
40
|
Dofini Magnini R, Pedinielli F, Vergalli J, Ouedraogo N, Remy S, Hilou A, Brunel JM, Pagès JM, Davin-Regli A. Acacia senegal Budmunchiamines as a Potential Adjuvant for Rejuvenating Phenicol Activities towards Escherichia coli-Resistant Strains. Int J Mol Sci 2023; 24:ijms24108790. [PMID: 37240134 DOI: 10.3390/ijms24108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The continuous emergence of bacterial resistance alters the activities of different antibiotic families and requires appropriate strategies to solve therapeutic impasses. Medicinal plants are an attractive source for researching alternative and original therapeutic molecules. In this study, the fractionation of natural extracts from A. senegal and the determination of antibacterial activities are associated with molecular networking and tandem mass spectrometry (MS/MS) data used to characterize active molecule(s). The activities of the combinations, which included various fractions plus an antibiotic, were investigated using the "chessboard" test. Bio-guided fractionation allowed the authors to obtain individually active or synergistic fractions with chloramphenicol activity. An LC-MS/MS analysis of the fraction of interest and molecular array reorganization showed that most identified compounds are Budmunchiamines (macrocyclic alkaloids). This study describes an interesting source of bioactive secondary metabolites structurally related to Budmunchiamines that are able to rejuvenate a significant chloramphenicol activity in strains that produce an AcrB efflux pump. They will pave the way for researching new active molecules for restoring the activity of antibiotics that are substrates of efflux pumps in enterobacterial-resistant strains.
Collapse
Affiliation(s)
- René Dofini Magnini
- UMR_MD1, U-1261, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, Université Aix-Marseille, 13385 Marseille, France
- Laboratoire de Recherche-Développement de Phytomédicaments et Médicaments (LR-D/PM), IRSS, CNRST, Département MEPHATRA-PH, Ouagadougou 03 BP 7047, Burkina Faso
- Laboratoire de Biochimie et de Chimie Appliquée (LABIOCA), Université Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso
| | - François Pedinielli
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université Reims-Champagne-Ardenne, UFR Sciences, BP 1039, CEDEX 2, 51687 Reims, France
| | - Julia Vergalli
- UMR_MD1, U-1261, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, Université Aix-Marseille, 13385 Marseille, France
| | - Noufou Ouedraogo
- Laboratoire de Recherche-Développement de Phytomédicaments et Médicaments (LR-D/PM), IRSS, CNRST, Département MEPHATRA-PH, Ouagadougou 03 BP 7047, Burkina Faso
| | - Simon Remy
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université Reims-Champagne-Ardenne, UFR Sciences, BP 1039, CEDEX 2, 51687 Reims, France
| | - Adama Hilou
- Laboratoire de Biochimie et de Chimie Appliquée (LABIOCA), Université Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso
| | - Jean-Michel Brunel
- UMR_MD1, U-1261, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, Université Aix-Marseille, 13385 Marseille, France
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, Université Aix-Marseille, 13385 Marseille, France
| | - Anne Davin-Regli
- UMR_MD1, U-1261, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, Université Aix-Marseille, 13385 Marseille, France
| |
Collapse
|
41
|
Zhang Q, Song B, Xu Y, Yang Y, Ji J, Cao W, Lu J, Ding J, Cao H, Chu B, Hong J, Wang H, He Y. In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter. Nat Commun 2023; 14:2331. [PMID: 37087540 PMCID: PMC10122673 DOI: 10.1038/s41467-023-37827-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/03/2023] [Indexed: 04/24/2023] Open
Abstract
Most existing bioluminescence imaging methods can only visualize the location of engineered bacteria in vivo, generally precluding the imaging of natural bacteria. Herein, we leverage bacteria-specific ATP-binding cassette sugar transporters to internalize luciferase and luciferin by hitchhiking them on the unique carbon source of bacteria. Typically, the synthesized bioluminescent probes are made of glucose polymer (GP), luciferase, Cy5 and ICG-modified silicon nanoparticles and their substrates are made of GP and D-luciferin-modified silicon nanoparticles. Compared with bacteria with mutations in transporters, which hardly internalize the probes in vitro (i.e., ~2% of uptake rate), various bacteria could robustly engulf the probes with a high uptake rate of around 50%. Notably, the developed strategy enables ex vivo bioluminescence imaging of human vitreous containing ten species of pathogens collected from patients with bacterial endophthalmitis. By using this platform, we further differentiate bacterial and non-bacterial nephritis and colitis in mice, while their chemiluminescent counterparts are unable to distinguish them.
Collapse
Affiliation(s)
- Qian Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yunmin Yang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Jian Ji
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jianping Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China.
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Lee YJ, Jung HR, Yoon S, Lim SK, Lee YJ. Situational analysis on fluoroquinolones use and characterization of high-level ciprofloxacin-resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front Vet Sci 2023; 10:1158721. [PMID: 37077954 PMCID: PMC10109442 DOI: 10.3389/fvets.2023.1158721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Fluoroquinolones are classified as "critically important antimicrobials for human medicine"; however, their extensive use in livestock poses a significant health risk to humans as it leads to the rapid spread of antimicrobial resistance. This study confirmed that 40.0%-71.4% of the farms in three of the five integrated broiler operations were administered ciprofloxacin (CIP). Moreover, preventive purposes (60.9%), veterinarian prescriptions (82.6%), drinking water route (100%), and 1 to 3 days (82.6%) of age were significantly highest (P < 0.05). 194 high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis (E. faecalis) were found in 65 of 74 farms, and of which, the prevalence of qnrA (63.9%), tetM (60.3%), ermB (64.9%), blaz (38.7%), and catA (34.0%) was significantly highest (P < 0.05). 154 (79.4%) isolates showed MDR, and the distribution of MDR was significantly differences among the operations (P < 0.05). All HLCR E. faecalis possessed double mutations in gyrA and parC, and S83I/S80I (90.7%) mutations were most commonly identified. Interestingly, the distribution of isolates with MICs ≥ 512 for both CIP and moxifloxacin was significantly higher in CIP-administered farms (56.5%) than in non-CIP-administered farms (41.4%) (P < 0.05). Also, the prevalence of strong or moderate biofilm formers in HLCR E. faecalis was significantly higher than that of weak and no biofilm formers (P < 0.05). HLCR E. faecalis were heavily distributed in the broiler farms in Korea; therefore, it is necessary to minimize the prevalence of resistant bacteria via structural management regulations such as cleaning and disinfection of farm environments.
Collapse
Affiliation(s)
- Yu Jin Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
43
|
Liu M, Chu B, Sun R, Ding J, Ye H, Yang Y, Wu Y, Shi H, Song B, He Y, Wang H, Hong J. Antisense Oligonucleotides Selectively Enter Human-Derived Antibiotic-Resistant Bacteria through Bacterial-Specific ATP-Binding Cassette Sugar Transporter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300477. [PMID: 37002615 DOI: 10.1002/adma.202300477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Current vehicles used to deliver antisense oligonucleotides (ASOs) cannot distinguish between bacterial and mammalian cells, greatly hindering the preclinical or clinical treatment of bacterial infections, especially those caused by antibiotic-resistant bacteria. Herein, bacteria-specific ATP-binding cassette (ABC) sugar transporters are leveraged to selectively internalize ASOs by hitchhiking them on α (1-4)-glucosidically linked glucose polymers. Compared with their cell-penetrating peptide counterparts, which are non-specifically engulfed by mammalian and bacterial cells, the presented therapeutics consisting of glucose polymer and antisense peptide nucleic-acid-modified nanoparticles are selectively internalized into the human-derived multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, and they display a much higher uptake rate (i.e., 51.6%). The developed strategy allows specific and efficient killing of nearly 100% of the antibiotic-resistant bacteria. Its significant curative efficacy against bacterial keratitis and endophthalmitis is also shown. This strategy will expand the focus of antisense technology to include bacterial cells other than mammalian cells.
Collapse
Affiliation(s)
- Mingzhu Liu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Binbin Chu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Rong Sun
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiali Ding
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| | - Yunmin Yang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yuqi Wu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Haoliang Shi
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yao He
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Houyu Wang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| |
Collapse
|
44
|
Di Lorenzo F, Nicolardi S, Marchetti R, Vanacore A, Gallucci N, Duda K, Nieto Fabregat F, Nguyen HNA, Gully D, Saenz J, Giraud E, Paduano L, Molinaro A, D’Errico G, Silipo A. Expanding Knowledge of Methylotrophic Capacity: Structure and Properties of the Rough-Type Lipopolysaccharide from Methylobacterium extorquens and Its Role on Membrane Resistance to Methanol. JACS AU 2023; 3:929-942. [PMID: 37006758 PMCID: PMC10052234 DOI: 10.1021/jacsau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
The ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the M. extorquens outer membrane, the lipopolysaccharide (LPS), is still undefined. Here, we show that M. extorquens produces a rough-type LPS with an uncommon, non-phosphorylated, and extensively O-methylated core oligosaccharide, densely substituted with negatively charged residues in the inner region, including novel monosaccharide derivatives such as O-methylated Kdo/Ko units. Lipid A is composed of a non-phosphorylated trisaccharide backbone with a distinctive, low acylation pattern; indeed, the sugar skeleton was decorated with three acyl moieties and a secondary very long chain fatty acid, in turn substituted by a 3-O-acetyl-butyrate residue. Spectroscopic, conformational, and biophysical analyses on M. extorquens LPS highlighted how structural and tridimensional features impact the molecular organization of the outer membrane. Furthermore, these chemical features also impacted and improved membrane resistance in the presence of methanol, thus regulating membrane ordering and dynamics.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Roberta Marchetti
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Adele Vanacore
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Noemi Gallucci
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Katarzyna Duda
- Research
Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Ferran Nieto Fabregat
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Ha Ngoc Anh Nguyen
- B-CUBE
Center for Molecular Bioengineering, Technische
Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Djamel Gully
- IRD,
Laboratoire des Symbioses Tropicales et Méditerranéennes
(LSTM) UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - James Saenz
- B-CUBE
Center for Molecular Bioengineering, Technische
Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Eric Giraud
- IRD,
Laboratoire des Symbioses Tropicales et Méditerranéennes
(LSTM) UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J, Campus de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Antonio Molinaro
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Gerardino D’Errico
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Consorzio
Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Alba Silipo
- Department
of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
45
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
46
|
Si Z, Pethe K, Chan-Park MB. Chemical Basis of Combination Therapy to Combat Antibiotic Resistance. JACS AU 2023; 3:276-292. [PMID: 36873689 PMCID: PMC9975838 DOI: 10.1021/jacsau.2c00532] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/10/2023]
Abstract
The antimicrobial resistance crisis is a global health issue requiring discovery and development of novel therapeutics. However, conventional screening of natural products or synthetic chemical libraries is uncertain. Combination therapy using approved antibiotics with inhibitors targeting innate resistance mechanisms provides an alternative strategy to develop potent therapeutics. This review discusses the chemical structures of effective β-lactamase inhibitors, outer membrane permeabilizers, and efflux pump inhibitors that act as adjuvant molecules of classical antibiotics. Rational design of the chemical structures of adjuvants will provide methods to impart or restore efficacy to classical antibiotics for inherently antibiotic-resistant bacteria. As many bacteria have multiple resistance pathways, adjuvant molecules simultaneously targeting multiple pathways are promising approaches to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhangyong Si
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
| | - Kevin Pethe
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Mary B. Chan-Park
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
| |
Collapse
|
47
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
48
|
-Aryl-2(trifluoromethyl)benzo[][1,8]naphthyridin-4(1)-one as Convenient Platform to Design High Photostable and Long-Lived Dyad Fluorophore with Potential Application in Live-Cell Imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
49
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
50
|
Ongwae GM, Lepori I, Chordia MD, Dalesandro BE, Apostolos AJ, Siegrist MS, Pires MM. Measurement of Small Molecule Accumulation into Diderm Bacteria. ACS Infect Dis 2023; 9:97-110. [PMID: 36530146 DOI: 10.1021/acsinfecdis.2c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some of the most dangerous bacterial pathogens (Gram-negative and mycobacterial) deploy a formidable secondary membrane barrier to reduce the influx of exogenous molecules. For Gram-negative bacteria, this second exterior membrane is known as the outer membrane (OM), while for the Gram-indeterminate Mycobacteria, it is known as the "myco" membrane. Although different in composition, both the OM and mycomembrane are key structures that restrict the passive permeation of small molecules into bacterial cells. Although it is well-appreciated that such structures are principal determinants of small molecule permeation, it has proven to be challenging to assess this feature in a robust and quantitative way or in complex, infection-relevant settings. Herein, we describe the development of the bacterial chloro-alkane penetration assay (BaCAPA), which employs the use of a genetically encoded protein called HaloTag, to measure the uptake and accumulation of molecules into model Gram-negative and mycobacterial species, Escherichia coli and Mycobacterium smegmatis, respectively, and into the human pathogen Mycobacterium tuberculosis. The HaloTag protein can be directed to either the cytoplasm or the periplasm of bacteria. This offers the possibility of compartmental analysis of permeation across individual cell membranes. Significantly, we also showed that BaCAPA can be used to analyze the permeation of molecules into host cell-internalized E. coli and M. tuberculosis, a critical capability for analyzing intracellular pathogens. Together, our results show that BaCAPA affords facile measurement of permeability across four barriers: the host plasma and phagosomal membranes and the diderm bacterial cell envelope.
Collapse
Affiliation(s)
- George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|