1
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
2
|
Zhao X, Lu J, Zhang J, Liu C, Wang H, Wang Y, Du Q. Sleep restriction promotes brain oxidative stress and inflammation, and aggravates cognitive impairment in insulin-resistant mice. Psychoneuroendocrinology 2024; 166:107065. [PMID: 38718616 DOI: 10.1016/j.psyneuen.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024]
Abstract
Sleep deprivation and insulin resistance (IR) are two risk factors for Alzheimer's disease. As the population of people with IR increases and sleep restriction (SR) due to staying up late becomes the "new normal", it is necessary to investigate the effects and molecular pathogenesis of chronic SR on cognitive function in insulin resistance. In this study, 4-week-old mice were fed a high-fat diet (HFD) for 8 weeks to establish IR model, and then the mice were subjected to SR for 21 days, and related indicators were assessed, including cognitive capacity, apoptosis, oxidative stress, glial cell activation, inflammation, blood-brain barrier (BBB) permeability and adiponectin levels, for exploring the potential regulatory mechanisms. Compared with control group, IR mice showed impaired cognitive capacity, meanwhile, SR not only promoted Bax/Bcl2-induced hippocampal neuronal cell apoptosis and Nrf2/HO1- induced oxidative stress, but also increased microglia activation and inflammatory factor levels and BBB permeability, thus aggravating the cognitive impairment in IR mice. Consequently, changing bad living habits and ensuring sufficient sleep are important intervention strategies to moderate the aggravation of IR-induced cognitive impairment.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Ce Liu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou 510515, China; Division of Gastroenterology and Hepatology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China.
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| |
Collapse
|
3
|
Olivera-López C, Jiménez-Genchi A, Ortega-Robles D, Valencia-Flores M, Cansino S, Salvador-Cruz J. Polysomnographic parameters associated with cognitive function in patients with major depression and insomnia. CNS Spectr 2024; 29:197-205. [PMID: 38685584 DOI: 10.1017/s1092852924000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To examine whether objective sleep parameters are associated with cognitive function (CF) in patients with major depressive disorder (MDD) with chronic insomnia (CI) and whether the severity of these disorders is related to CF. METHOD Thirty patients with MDD with CI attending a tertiary care institution underwent two consecutive nights of polysomnographic (PSG) recording and a battery of neuropsychological tests, which included episodic memory, sustained attention, working memory, and executive function. The severity of MDD and CI was assessed by clinical scales. We examined the relationship between PSG parameters and CF, as well as whether the severity of the disorders is related to CF. RESULTS Linear regression analysis revealed that total sleep time (TST) was positively associated with higher learning and recall of episodic memory, as well as better attention. Slow-wave sleep (SWS) showed a positive association with better working memory. Furthermore, wake after sleep onset (WASO) was negatively associated with episodic memory and lower attention. No significant relationships were found between the severity of MDD or CI with CF. CONCLUSION Both sleep duration and depth are positively associated with several aspects of CF in patients with MDD with CI. Conversely, a lack of sleep maintenance is negatively related to CF in these patients. These findings could help identify modifiable therapeutic targets to reduce CF impairment.
Collapse
Affiliation(s)
- Carlos Olivera-López
- Laboratory of Sleep Disorders, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
- Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alejandro Jiménez-Genchi
- Clinical Services Unit, Sleep Clinic, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - David Ortega-Robles
- Clinical Services Unit, Sleep Clinic, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Matilde Valencia-Flores
- Laboratory of Sleep Disorders, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Judith Salvador-Cruz
- Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Smith J, Honig-Frand A, Antila H, Choi A, Kim H, Beier KT, Weber F, Chung S. Regulation of stress-induced sleep fragmentation by preoptic glutamatergic neurons. Curr Biol 2024; 34:12-23.e5. [PMID: 38096820 PMCID: PMC10872481 DOI: 10.1016/j.cub.2023.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Honig-Frand
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Zeghari R, Gindt M, Guivarch J, Auby P, Robert P, Rolling J, Schröder C, Valo P, Askenazy F, Fernandez A. July 14th 2016 Nice Terrorist Attack Court Trial: A Protocol on Sleep Quality and Somatic Symptoms as Markers of Risk for Traumatic Reactivation in Adolescents Exposed to This Attack. Healthcare (Basel) 2023; 11:2953. [PMID: 37998445 PMCID: PMC10671086 DOI: 10.3390/healthcare11222953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The court trial of the 14th of July 2016 terrorist attack in Nice (France) opened in September 2022 and ended in December 2022. Engaging in court proceedings, whether as a victim or a witness, can lead to a significant risk of traumatic reactivation (i.e., the re-emergence of post-traumatic stress symptoms). The present protocol aimed to improve knowledge of the pathophysiology of traumatic reactivation due to the media coverage of the trial by assessing sleep disturbances and somatic symptoms that could reappear if there is a traumatic reactivation. Method and Analysis: This is a monocentric longitudinal study, with recruitment solely planned at the Nice Pediatric Psychotrauma Center (NPPC). We intended to include 100 adolescents aged 12 to 17 years who were directly or indirectly exposed to the attack and included in the "14-7" program). Assessments began one month before the trial, in August 2022, and were scheduled once a month until the end of the trial. A smartwatch recorded sleep activity. Somatic and PTSD symptoms and sleep were assessed through validated questionnaires. The main analyses comprised the variance and regression analyses of predictors of clinical evolution over time. Ethics and Dissemination: The National Ethics Committee "NORD OUEST III" approved the "14-7" program protocol (number 2017-A02212-51). The specific amendment for this research was approved in April 2022 by the same national ethical committee. Inclusions started in August 2022.
Collapse
Affiliation(s)
- Radia Zeghari
- Nice Pediatric Psychotrauma Center (NPPC), Child and Adolescent Psychiatry Department, Hôpitaux Pédiatriques Universitaires Lenval, 06200 Nice, France
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Morgane Gindt
- Nice Pediatric Psychotrauma Center (NPPC), Child and Adolescent Psychiatry Department, Hôpitaux Pédiatriques Universitaires Lenval, 06200 Nice, France
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Jokthan Guivarch
- Department of Child Psychiatry, APHM, 13009 Marseille, France;
- CANOP Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille University, 13005 Marseille, France
- Faculty of Medicine, Aix-Marseille University, 13005 Marseille, France
| | - Philippe Auby
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Philippe Robert
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Julie Rolling
- Regional Center for Psychotraumatism Great East, Strasbourg University Hospital, 67000 Strasbourg, France
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, 67000 Strasbourg, France
- CNRS UPR3212-Research Team “Light, Circadian Rhythms, Sleep Homeostasis and Neuropsychiatry”, Institute of Cellular and Integrative Neurosciences, 67000 Strasbourg, France
- Excellence Centre for Autism and Neurodevelopmental Disorders STRAS&ND, 67091 Strasbourg, France
- Sleep Disorders Centre & International Research Centre for ChronoSomnology (Circsom), University Hospitals Strasbourg, 67091 Strasbourg, France
| | - Carmen Schröder
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, 67000 Strasbourg, France
- CNRS UPR3212-Research Team “Light, Circadian Rhythms, Sleep Homeostasis and Neuropsychiatry”, Institute of Cellular and Integrative Neurosciences, 67000 Strasbourg, France
- Excellence Centre for Autism and Neurodevelopmental Disorders STRAS&ND, 67091 Strasbourg, France
- Sleep Disorders Centre & International Research Centre for ChronoSomnology (Circsom), University Hospitals Strasbourg, 67091 Strasbourg, France
- Expert Centre for High-Functioning Autism, Fondation FondaMental, 67000 Strasbourg, France
| | - Petri Valo
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Florence Askenazy
- Nice Pediatric Psychotrauma Center (NPPC), Child and Adolescent Psychiatry Department, Hôpitaux Pédiatriques Universitaires Lenval, 06200 Nice, France
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| | - Arnaud Fernandez
- Nice Pediatric Psychotrauma Center (NPPC), Child and Adolescent Psychiatry Department, Hôpitaux Pédiatriques Universitaires Lenval, 06200 Nice, France
- CoBTeK (Cognition-Behaviour-Technology) Lab, Université Cote d’Azur, 06000 Nice, France
| |
Collapse
|
6
|
Greco V, Bergamo D, Cuoccio P, Konkoly KR, Muñoz Lombardo K, Lewis PA. Letter to the Editor: a response to the comment from Rhodes. Sleep 2023; 46:zsad148. [PMID: 37260354 DOI: 10.1093/sleep/zsad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Affiliation(s)
- Viviana Greco
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Damiana Bergamo
- Department of Psychology, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Paola Cuoccio
- Department of Psychology, University of Padua, Padova, Italy
| | - Karen R Konkoly
- Department of Psychology, Northwestern University, Chicago, IL, USA
| | - Kike Muñoz Lombardo
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Penelope A Lewis
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Zavecz Z, Shah VD, Murillo OG, Vallat R, Mander BA, Winer JR, Jagust WJ, Walker MP. NREM sleep as a novel protective cognitive reserve factor in the face of Alzheimer's disease pathology. BMC Med 2023; 21:156. [PMID: 37138290 PMCID: PMC10155344 DOI: 10.1186/s12916-023-02811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance functions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensation against memory dysfunction otherwise caused by high AD pathology burden, remains unknown. METHODS Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pittsburgh compound B) positron emission tomography (PET) scanning for the quantification of β-amyloid (Aβ) with sleep electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning task. RESULTS We demonstrated that NREM SWA significantly moderates the effect of Aβ status on memory function. Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aβ burden, i.e., those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aβ pathological burden, and thus without the same need for cognitive reserve, did not similarly benefit from the presence of NREM SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aβ status predicting memory function was significant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve factors, such as education and physical activity (p = 0.042). CONCLUSIONS These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve function of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resilience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation of cognitive function in the face of AD pathology, both present moment and longitudinally.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vyoma D Shah
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Olivia G Murillo
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Raphael Vallat
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92617, USA
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew P Walker
- Department of Psychology, Center for Human Sleep Science, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
9
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
10
|
Guttesen AÁV, Gaskell MG, Madden EV, Appleby G, Cross ZR, Cairney SA. Sleep loss disrupts the neural signature of successful learning. Cereb Cortex 2023; 33:1610-1625. [PMID: 35470400 PMCID: PMC9977378 DOI: 10.1093/cercor/bhac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep supports memory consolidation as well as next-day learning. The influential "Active Systems" account of offline consolidation suggests that sleep-associated memory processing paves the way for new learning, but empirical evidence in support of this idea is scarce. Using a within-subjects (n = 30), crossover design, we assessed behavioral and electrophysiological indices of episodic encoding after a night of sleep or total sleep deprivation in healthy adults (aged 18-25 years) and investigated whether behavioral performance was predicted by the overnight consolidation of episodic associations from the previous day. Sleep supported memory consolidation and next-day learning as compared to sleep deprivation. However, the magnitude of this sleep-associated consolidation benefit did not significantly predict the ability to form novel memories after sleep. Interestingly, sleep deprivation prompted a qualitative change in the neural signature of encoding: Whereas 12-20 Hz beta desynchronization-an established marker of successful encoding-was observed after sleep, sleep deprivation disrupted beta desynchrony during successful learning. Taken together, these findings suggest that effective learning depends on sleep but not necessarily on sleep-associated consolidation.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - M Gareth Gaskell
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Emily V Madden
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Gabrielle Appleby
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
11
|
Fehér KD, Omlin X, Tarokh L, Schneider CL, Morishima Y, Züst MA, Wunderlin M, Koenig T, Hertenstein E, Ellenberger B, Ruch S, Schmidig F, Mikutta C, Trinca E, Senn W, Feige B, Klöppel S, Nissen C. Feasibility, efficacy, and functional relevance of automated auditory closed-loop suppression of slow-wave sleep in humans. J Sleep Res 2023:e13846. [PMID: 36806335 DOI: 10.1111/jsr.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Slow-wave sleep (SWS) is a fundamental physiological process, and its modulation is of interest for basic science and clinical applications. However, automatised protocols for the suppression of SWS are lacking. We describe the development of a novel protocol for the automated detection (based on the whole head topography of frontal slow waves) and suppression of SWS (through closed-loop modulated randomised pulsed noise), and assessed the feasibility, efficacy and functional relevance compared to sham stimulation in 15 healthy young adults in a repeated-measure sleep laboratory study. Auditory compared to sham stimulation resulted in a highly significant reduction of SWS by 30% without affecting total sleep time. The reduction of SWS was associated with an increase in lighter non-rapid eye movement sleep and a shift of slow-wave activity towards the end of the night, indicative of a homeostatic response and functional relevance. Still, cumulative slow-wave activity across the night was significantly reduced by 23%. Undisturbed sleep led to an evening to morning reduction of wake electroencephalographic theta activity, thought to reflect synaptic downscaling during SWS, while suppression of SWS inhibited this dissipation. We provide evidence for the feasibility, efficacy, and functional relevance of a novel fully automated protocol for SWS suppression based on auditory closed-loop stimulation. Future work is needed to further test for functional relevance and potential clinical applications.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Ximena Omlin
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Leila Tarokh
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Flavio Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland
| | - Ersilia Trinca
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Walter Senn
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Bernd Feige
- University of Freiburg Medical Center, Freiburg, Germany
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
12
|
Is word learning capacity restored after a daytime nap? Cortex 2023; 159:142-166. [PMID: 36628812 DOI: 10.1016/j.cortex.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
Sleep is thought to be involved in the consolidation of new memories encoded during the day, as proposed by complementary learning systems accounts of memory. Other theories suggest that sleep's role in memory is not restricted to consolidation. The synaptic homeostasis hypothesis proposes that new learning is implemented in the brain through strengthening synaptic connections, a biologically costly process that gradually saturates encoding capacity during wake. During slow-wave sleep, synaptic strength is renormalized, thus restoring memory encoding ability. While the role of sleep in memory consolidation has been extensively documented, few human studies have explored the impact of sleep in restoring encoding ability, and none have looked at learning beyond episodic memory. In this registered report we test the predictions made by the complementary learning systems accounts and the synaptic homeostasis hypothesis regarding adult participants' ability to learn new words, and to integrate these words with existing knowledge. Participants took a polysomnographically-monitored daytime nap or remained awake prior to learning a set of new spoken words. Shortly after learning, and again on the following day, we measured participants' episodic memory for new words. We also assessed the degree to which newly learned words engage in competition with existing words. We predicted that sleep before encoding would result in better episodic memory for the words, and facilitate the overnight integration of new words with existing words. Based on existing literature and theory we further predicted that this restorative function is associated with slow-wave and sleep spindle activity. Our pre-registered analyses did not find a significant benefit of napping prior to encoding on word learning or integration. Exploratory analyses using a more sensitive measure of recall accuracy demonstrated significantly better performance in the nap condition compared to the no-nap condition in the immediate test. At the delayed test there was no longer a significant benefit of the nap. Of note, we found no significant effect of slow-wave activity prior to encoding on episodic memory or integration of newly learned words into the mental lexicon. However, we found that greater levels of Stage 2 sleep spindles were significantly associated with greater improvements in lexical competition from the immediate to the delayed test. Therefore, our results demonstrate some support for theories that implicate sleep spindles in restoring encoding capacity.
Collapse
|
13
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
14
|
Holmqvist K, Örbom SL, Hooge ITC, Niehorster DC, Alexander RG, Andersson R, Benjamins JS, Blignaut P, Brouwer AM, Chuang LL, Dalrymple KA, Drieghe D, Dunn MJ, Ettinger U, Fiedler S, Foulsham T, van der Geest JN, Hansen DW, Hutton SB, Kasneci E, Kingstone A, Knox PC, Kok EM, Lee H, Lee JY, Leppänen JM, Macknik S, Majaranta P, Martinez-Conde S, Nuthmann A, Nyström M, Orquin JL, Otero-Millan J, Park SY, Popelka S, Proudlock F, Renkewitz F, Roorda A, Schulte-Mecklenbeck M, Sharif B, Shic F, Shovman M, Thomas MG, Venrooij W, Zemblys R, Hessels RS. Eye tracking: empirical foundations for a minimal reporting guideline. Behav Res Methods 2023; 55:364-416. [PMID: 35384605 PMCID: PMC9535040 DOI: 10.3758/s13428-021-01762-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/08/2022]
Abstract
In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section "An empirically based minimal reporting guideline").
Collapse
Affiliation(s)
- Kenneth Holmqvist
- Department of Psychology, Nicolaus Copernicus University, Torun, Poland.
- Department of Computer Science and Informatics, University of the Free State, Bloemfontein, South Africa.
- Department of Psychology, Regensburg University, Regensburg, Germany.
| | - Saga Lee Örbom
- Department of Psychology, Regensburg University, Regensburg, Germany
| | - Ignace T C Hooge
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Diederick C Niehorster
- Lund University Humanities Lab and Department of Psychology, Lund University, Lund, Sweden
| | - Robert G Alexander
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Jeroen S Benjamins
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Social, Health and Organizational Psychology, Utrecht University, Utrecht, The Netherlands
| | - Pieter Blignaut
- Department of Computer Science and Informatics, University of the Free State, Bloemfontein, South Africa
| | | | - Lewis L Chuang
- Department of Ergonomics, Leibniz Institute for Working Environments and Human Factors, Dortmund, Germany
- Institute of Informatics, LMU Munich, Munich, Germany
| | | | - Denis Drieghe
- School of Psychology, University of Southampton, Southampton, UK
| | - Matt J Dunn
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | | - Susann Fiedler
- Vienna University of Economics and Business, Vienna, Austria
| | - Tom Foulsham
- Department of Psychology, University of Essex, Essex, UK
| | | | - Dan Witzner Hansen
- Machine Learning Group, Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark
| | | | - Enkelejda Kasneci
- Human-Computer Interaction, University of Tübingen, Tübingen, Germany
| | | | - Paul C Knox
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ellen M Kok
- Department of Education and Pedagogy, Division Education, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Online Learning and Instruction, Faculty of Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - Helena Lee
- University of Southampton, Southampton, UK
| | - Joy Yeonjoo Lee
- School of Health Professions Education, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jukka M Leppänen
- Department of Psychology and Speed-Language Pathology, University of Turku, Turku, Finland
| | - Stephen Macknik
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Päivi Majaranta
- TAUCHI Research Center, Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Susana Martinez-Conde
- Department of Ophthalmology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Antje Nuthmann
- Institute of Psychology, University of Kiel, Kiel, Germany
| | - Marcus Nyström
- Lund University Humanities Lab, Lund University, Lund, Sweden
| | - Jacob L Orquin
- Department of Management, Aarhus University, Aarhus, Denmark
- Center for Research in Marketing and Consumer Psychology, Reykjavik University, Reykjavik, Iceland
| | - Jorge Otero-Millan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Soon Young Park
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - Stanislav Popelka
- Department of Geoinformatics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Frank Proudlock
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Frank Renkewitz
- Department of Psychology, University of Erfurt, Erfurt, Germany
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | | | - Bonita Sharif
- School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Frederick Shic
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA
- Department of General Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mark Shovman
- Eyeviation Systems, Herzliya, Israel
- Department of Industrial Design, Bezalel Academy of Arts and Design, Jerusalem, Israel
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Ward Venrooij
- Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, The Netherlands
| | | | - Roy S Hessels
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Ngo HVV, Antony JW, Rasch B. Real-time stimulation during sleep: prior findings, novel developments, and future perspectives. J Sleep Res 2022; 31:e13735. [PMID: 36180062 DOI: 10.1111/jsr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Real-time brain stimulation is a powerful technique that continues to gain importance in the field of sleep and cognition. In this special issue, we collected 14 articles about real-time stimulation during sleep, including one review, 12 research articles and one letter covering both human and rodent research from various fields. We hope this special issue sparks greater interest and inspires fellow sleep researchers and clinicians to develop new ideas in the exciting topic of real-time stimulation.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Koo-Poeggel P, Neuwerk S, Petersen E, Grasshoff J, Mölle M, Martinetz T, Marshall L. Closed-loop acoustic stimulation during an afternoon nap to modulate subsequent encoding. J Sleep Res 2022; 31:e13734. [PMID: 36123957 DOI: 10.1111/jsr.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Sleep is able to contribute not only to memory consolidation, but also to post-sleep learning. The notion exists that either synaptic downscaling or another process during sleep increase post-sleep learning capacity. A correlation between augmentation of the sleep slow oscillation and hippocampal activation at encoding support the contribution of sleep to encoding of declarative memories. In the present study, the effect of closed-loop acoustic stimulation during an afternoon nap on post-sleep encoding of two verbal (word pairs, verbal learning and memory test) and non-verbal (figural pairs) tasks and on electroencephalogram during sleep and learning were investigated in young healthy adults (N = 16). Closed-loop acoustic stimulation enhanced slow oscillatory and spindle activity, but did not affect encoding at the group level. Subgroup analyses and comparisons with similar studies lead us to the tentative conclusion that further parameters such as time of day and subjects' cognitive ability influenced responses to closed-loop acoustic stimulation.
Collapse
Affiliation(s)
- Ping Koo-Poeggel
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Soé Neuwerk
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Eike Petersen
- Institute for Electrical and Engineering in Medicine, University of Luebeck, Luebeck, Germany.,DTU Compute, Technical University of Denmark, Denmark
| | - Jan Grasshoff
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Luebeck, Luebeck, Germany
| | - Lisa Marshall
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
17
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Cunningham TJ, Stickgold R, Kensinger EA. Investigating the effects of sleep and sleep loss on the different stages of episodic emotional memory: A narrative review and guide to the future. Front Behav Neurosci 2022; 16:910317. [PMID: 36105652 PMCID: PMC9466000 DOI: 10.3389/fnbeh.2022.910317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
For two decades, sleep has been touted as one of the primary drivers for the encoding, consolidation, retention, and retrieval of episodic emotional memory. Recently, however, sleep's role in emotional memory processing has received renewed scrutiny as meta-analyses and reviews have indicated that sleep may only contribute a small effect that hinges on the content or context of the learning and retrieval episodes. On the one hand, the strong perception of sleep's importance in maintaining memory for emotional events may have been exacerbated by publication bias phenomena, such as the "winner's curse" and "file drawer problem." On the other hand, it is plausible that there are sets of circumstances that lead to consistent and reliable effects of sleep on emotional memory; these circumstances may depend on factors such as the placement and quality of sleep relative to the emotional experience, the content and context of the emotional experience, and the probes and strategies used to assess memory at retrieval. Here, we review the literature on how sleep (and sleep loss) influences each stage of emotional episodic memory. Specifically, we have separated previous work based on the placement of sleep and sleep loss in relation to the different stages of emotional memory processing: (1) prior to encoding, (2) immediately following encoding during early consolidation, (3) during extended consolidation, separated from initial learning, (4) just prior to retrieval, and (5) post-retrieval as memories may be restructured and reconsolidated. The goals of this review are three-fold: (1) examine phases of emotional memory that sleep may influence to a greater or lesser degree, (2) explicitly identify problematic overlaps in traditional sleep-wake study designs that are preventing the ability to better disentangle the potential role of sleep in the different stages of emotional memory processing, and (3) highlight areas for future research by identifying the stages of emotional memory processing in which the effect of sleep and sleep loss remains under-investigated. Here, we begin the task of better understanding the contexts and factors that influence the relationship between sleep and emotional memory processing and aim to be a valuable resource to facilitate hypothesis generation and promote important future research.
Collapse
Affiliation(s)
- Tony J. Cunningham
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Robert Stickgold
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Elizabeth A. Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
19
|
Leong RLF, Lo JC, Chee MWL. Systematic review and meta-analyses on the effects of afternoon napping on cognition. Sleep Med Rev 2022; 65:101666. [PMID: 36041284 DOI: 10.1016/j.smrv.2022.101666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
Naps are increasingly considered a means to boost cognitive performance. We quantified the cognitive effects of napping in 60 samples from 54 studies. 52 samples evaluated memory. We first evaluated effect sizes for all tests together, before separately assessing their effects on memory, vigilance, speed of processing and executive function. We next examined whether nap effects were moderated by study features of age, nap length, nap start time, habituality and prior sleep restriction. Naps showed significant benefits for the total aggregate of cognitive tests (Cohen's d = 0.379, CI95 = 0.296-0.462). Significant domain specific effects were present for declarative (Cohen's d = 0.376, CI95 = 0.269-0.482) and procedural memory (Cohen's d = 0.494, CI95 = 0.301-0.686), vigilance (Cohen's d = 0.610, CI95 = 0.291-0.929) and speed of processing (Cohen's d = 0.211, CI95 = 0.052-0.369). There were no significant moderation effects of any of the study features. Nap effects were of comparable magnitude across subgroups of each of the 5 moderators (Q values = 0.009 to 8.572, p values > 0.116). Afternoon naps have a small to medium benefit over multiple cognitive tests. These effects transcend age, nap duration and tentatively, habituality and prior nocturnal sleep.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - June C Lo
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
21
|
Brodin ATS, Gabulya S, Wellfelt K, Karlsson TE. Five Hours Total Sleep Deprivation Does Not Affect CA1 Dendritic Length or Spine Density. Front Synaptic Neurosci 2022; 14:854160. [PMID: 35359703 PMCID: PMC8964138 DOI: 10.3389/fnsyn.2022.854160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is essential for long term memory function. However, the neuroanatomical consequences of sleep loss are disputed. Sleep deprivation has been reported to cause both decreases and increases of dendritic spine density. Here we use Thy1-GFP expressing transgenic mice to investigate the effects of acute sleep deprivation on the dendritic architecture of hippocampal CA1 pyramidal neurons. We found that 5 h of sleep deprivation had no effect on either dendritic length or dendritic spine density. Our work suggests that no major neuroanatomical changes result from a single episode of sleep deprivation.
Collapse
Affiliation(s)
| | - Sarolta Gabulya
- Institute of Neuroinformatics, University of Zurich and ETH, Zürich, Switzerland
| | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- *Correspondence: Tobias E. Karlsson,
| |
Collapse
|
22
|
Herrmann O, Ficek B, Webster KT, Frangakis C, Spira AP, Tsapkini K. Sleep as a predictor of tDCS and language therapy outcomes. Sleep 2022; 45:zsab275. [PMID: 34875098 PMCID: PMC8919198 DOI: 10.1093/sleep/zsab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
STUDY OBJECTIVES To determine whether sleep at baseline (before therapy) predicted improvements in language following either language therapy alone or coupled with transcranial direct current stimulation (tDCS) in individuals with primary progressive aphasia (PPA). METHODS Twenty-three participants with PPA (mean age 68.13 ± 6.21) received written naming/spelling therapy coupled with either anodal tDCS over the left inferior frontal gyrus (IFG) or sham condition in a crossover, sham-controlled, double-blind design (ClinicalTrials.gov identifier: NCT02606422). The outcome measure was percent of letters spelled correctly for trained and untrained words retrieved in a naming/spelling task. Given its particular importance as a sleep parameter in older adults, we calculated sleep efficiency (total sleep time/time in bed x100) based on subjective responses on the Pittsburgh Sleep Quality Index (PSQI). We grouped individuals based on a median split: high versus low sleep efficiency. RESULTS Participants with high sleep efficiency benefited more from written naming/spelling therapy than participants with low sleep efficiency in learning therapy materials (trained words). There was no effect of sleep efficiency in generalization of therapy materials to untrained words. Among participants with high sleep efficiency, those who received tDCS benefitted more from therapy than those who received sham condition. There was no additional benefit from tDCS in participants with low sleep efficiency. CONCLUSION Sleep efficiency modified the effects of language therapy and tDCS on language in participants with PPA. These results suggest sleep is a determinant of neuromodulation effects.Clinical Trial: tDCS Intervention in Primary Progressive Aphasia https://clinicaltrials.gov/ct2/show/NCT02606422.
Collapse
Affiliation(s)
- Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Otolaryngology, Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Constantine Frangakis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Lequerica AH, Shoval HA, Yalamanchi K, Lengenfelder J, Marchetta C, Ace J, DeLuca J. Examining the Use of a Rest-Activity Ratio in a Pediatric Rehabilitation Setting. Arch Phys Med Rehabil 2022; 103:1766-1770. [PMID: 35093333 DOI: 10.1016/j.apmr.2021.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To examine the relationship between an estimate of sleep/wake regulation derived from actigraphy would be sensitive to neurocognitive dysfunction associated with acquired brain injury (ABI) in a pediatric rehabilitation sample. DESIGN cross-sectional design SETTING: Inpatient pediatric rehabilitation facility PARTICIPANTS: A sample of 31 males (72.1%) and 12 females (27.9%) admitted to a pediatric rehabilitation hospital wore an actigraph (wrist accelerometer) for one week. Ages ranged from 8 to 17 years (M=13.1, SD=2.7). INTERVENTIONS not applicable MAIN OUTCOME MEASURE(S): Raw actigraphy activity counts in 1-minute epochs were used to derive a rest-activity ratio over each 24-hour period and a 5-day average value was calculated covering Monday through Friday. Brain injury status was derived through medical record review and three groups were formed: traumatic brain injury (n=14), non-traumatic brain injury (n=16), and a non-ABI control group (n=13). Functional status was measured using WeeFIM Cognitive and Motor scores extracted from the medical records. RESULTS Unadjusted models showed a significant main group effect for brain injury status (p=0.012). Compared with controls, the rest-activity ratio was significantly lower in both the traumatic brain injury (p = 0.005), and non-traumatic brain injury (p = 0.023) groups. However, the main group effect was no longer significant in an adjusted model controlling for WeeFIM Cognitive and WeeFIM Motor scores at admission. In the context of the adjusted model, there was a significant relationship between the rest-activity ratio and WeeFIM Cognitive scores at admission. CONCLUSIONS Individuals with lower functional status at admission, especially in the cognitive domain, had lower rest-activity ratios, suggesting poorer sleep/wake regulation. Similar to findings in adults with acquired brain injury, this ratio may have utility in tracking sleep/wake regulation in the pediatric rehabilitation setting. Future studies should investigate sensitivity to change over the course of recovery and responsiveness to clinical interventions to improve sleep.
Collapse
Affiliation(s)
- Anthony H Lequerica
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA.
| | - Hannah Aura Shoval
- Physiatry Section (Medical), Children's Specialized Hospital, Mountainside, NJ, USA
| | - Krishan Yalamanchi
- Inpatient Rehabilitation Unit, Children's Specialized Hospital, New Brunswick, NJ, USA
| | - Jean Lengenfelder
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - Claire Marchetta
- Children's Specialized Hospital Research Center, New Brunswick, NJ, USA
| | - Jessica Ace
- JFK-Johnson Rehabilitation Institute, Edison, NJ, USA
| | - John DeLuca
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers - New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
24
|
Cabrera-Mino C, Roy B, Woo MA, Freeby MJ, Kumar R, Choi SE. Poor Sleep Quality Linked to Decreased Brain Gray Matter Density in Adults with Type 2 Diabetes. SLEEP AND VIGILANCE 2021; 5:289-297. [PMID: 35243203 PMCID: PMC8887871 DOI: 10.1007/s41782-021-00170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Poor sleep is common in adults with Type 2 Diabetes Mellitus (T2DM), which may contribute to brain tissue changes. However, the impact of sleep quality on brain tissue in T2DM individuals is unclear. We aimed to evaluate differential sleep quality with brain changes, and brain tissue integrity in T2DM patients. METHODS Data were collected from 34 patients with T2DM and included sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], and high-resolution T1-weighted brain images using a 3.0-Tesla MRI scanner. Gray matter density (GMD) maps were compared between subjects with good vs poor sleep quality as assessed by PSQI (covariates: age, sex, BMI). RESULTS Of 34 T2DM patients, 17 showed poor sleep quality. Multiple brain sites, including the hippocampus, cerebellum, prefrontal, amygdala, thalamus, hypothalamus, insula, cingulate, and temporal areas, showed reduced gray matter in T2DM patients with poor sleep quality over patients with good sleep quality. Negative associations emerged between PSQI scores and gray matter density in multiple areas. CONCLUSIONS T2DM patients with poor sleep quality show brain tissue changes in sites involved in sleep regulation. Findings indicate that improving sleep may help mitigate brain tissue damage, and thus, improve brain function in T2DM patients.
Collapse
Affiliation(s)
| | - Bhaswati Roy
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Mary A. Woo
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| | - Matthew J. Freeby
- Department of Medicine, Division of Endocrinology, Diabetes, & Metabolism, University of California Los Angeles, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
- David Geffen School of Medicine at UCLA, Brain Research Institute, University of California Los Angeles, Los Angeles, CA
| | - Sarah E. Choi
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
25
|
Dai D, Zheng B, Yu Z, Lin S, Tang Y, Chen M, Ke P, Zheng C, Chen Y, Wu X. Right stellate ganglion block improves learning and memory dysfunction and hippocampal injury in rats with sleep deprivation. BMC Anesthesiol 2021; 21:272. [PMID: 34749669 PMCID: PMC8574040 DOI: 10.1186/s12871-021-01486-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sleep deprivation (SD) often leads to complex detrimental consequences, though the mechanisms underlying these dysfunctional effects remain largely unknown. We investigated whether the right stellate ganglion block in rats can improve the spatial learning and memory dysfunction induced by sleep deprivation by alleviating the damage of hippocampus in rats. Methods Sixty four male Sprague Dawley rats were randomly divided into four groups: Control, SD (sleep deprivation), SGB (stellate ganglion block) and SGB + SD (stellate ganglion block+ sleep deprivation) (n = 16). The SGB and SD + SGB groups were subjected to right stellate ganglion block through posterior approach method once per day. SD and SD + SGB groups were treated with modified multi-platform water environment method for 96 h sleep deprivation in rats and their body weights were analyzed. Histopathological changes of hippocampal neurons in rats and the expression of Caspase-3 in hippocampus of rats was detected by western blotting. ELISA was used to detect the content of IL-6, IL-1 in hippocampus and serum melatonin levels. Results Compared with the group SD, the spatial learning and memory function of the group SD + SGB was improved, the weight loss was alleviated, the pathological damage of the hippocampus was reduced and the expression of IL-6, IL-1β and Caspase-3 in the hippocampus was decreased. The content of rat serum melatonin was also increased. Conclusions The right stellate ganglion block can improve the spatial learning and memory dysfunction of rats with sleep deprivation, and the underlying mechanism may be related to alleviating the apoptosis and inflammation of hippocampus of rats with sleep deprivation. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01486-4.
Collapse
Affiliation(s)
- Dongsheng Dai
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Biqiong Zheng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zenggui Yu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Shizhu Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yijie Tang
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Mengnan Chen
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Peng Ke
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Chengjie Zheng
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yanqing Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
26
|
Seehagen S, Herbert JS, Zmyj N. Prior sleep timing and visual recognition of emotional faces in 6-month-old infants. Infant Behav Dev 2021; 65:101655. [PMID: 34689020 DOI: 10.1016/j.infbeh.2021.101655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Face recognition is an important mnemonic ability for infants when navigating the social world. While age-related changes in face processing abilities are relatively well documented, less is known about short-term intra-individual fluctuations in this ability. Given that sleep deprivation in adults leads to impairments in information processing, we assessed the role of prior sleep on 6-month-old infants' (N = 17) visual recognition of faces showing three emotional expressions (neutral, sad, angry). Visual recognition was inferred by assessing novelty preferences for unfamiliar relative to familiarized faces in a visual recognition memory paradigm. In a within-subject design, infants participated once after they had recently woken up from a nap (nap condition) and once after they had been awake for an extended period of time (awake condition). Infants failed to show visual recognition for the neutral faces in either condition. Infants showed recognition for the sad and angry faces when tested in the awake condition, but not in the nap condition. This suggests that timing of prior sleep shapes how effectively infants process emotionally relevant information in their environment.
Collapse
Affiliation(s)
- Sabine Seehagen
- School of Psychology, University of Waikato, New Zealand; Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Jane S Herbert
- School of Psychology, University of Wollongong, Australia
| | - Norbert Zmyj
- Department of Educational Sciences and Psychology, TU Dortmund University, Germany
| |
Collapse
|
27
|
Urreta Benítez FA, Leon CS, Bonilla M, Flores-Kanter PE, Forcato C. Identification Performance During Quarantine by COVID-19 Pandemic: Influence of Emotional Variables and Sleep Quality. Front Psychol 2021; 12:691583. [PMID: 34721142 PMCID: PMC8554020 DOI: 10.3389/fpsyg.2021.691583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic has caused major disruptions in people's lives around the globe. Sleep habits and emotional balance have been disturbed in a way that could be comparable to the havoc caused by a deep personal crisis or a traumatic experience. This unfortunate situation provides a unique context in which to study the impact of these imbalances on cognitive processes. In particular, the field of eyewitness science could benefit from these conditions, since they are also often present in crime victims, but can only be generated in the laboratory up to a certain ethical and practical limit. For several decades, eyewitness studies have tried to discover what variables affect people's ability to properly recognize faces. However, the disparity of experimental designs and the limitations of laboratory work could be contributing to the lack of consensus around several factors, such as sleep, anxiety, and depression. Therefore, the possibility of observing the influence of these agents in natural contexts could shed light on this discussion. Here, we perform simple and repeated lineups with witnesses of mock-crime, considering the conditions related to the COVID-19 pandemic, which to some extent allow emulating the deterioration in general well-being that often afflicts crime victims. For this, 72 participants completed symptomatology scales, and watched a video portraying a staged violent episode. Subsequently, they gave testimony and participated in two lineups, in which we manipulated the presence/absence of the perpetrator, to recreate critical scenarios for the appearance of false recognitions. We found an increase in recognition errors in those individuals who did not have access to the perpetrator during the Initial lineup. Additionally, the conditions of the pandemic appear to have adversely affected the ability to witness and accurately perform lineups. These results reaffirm the need to move toward the standardization of research practices and methods for assessing testimonial evidence, especially in relation to the results of the lineups. Considering the degree of fallibility of these processes can lead to a reduction of wrongful convictions.
Collapse
Affiliation(s)
- Facundo A. Urreta Benítez
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Innocence Project Argentina, Buenos Aires, Argentina
| | - Candela S. Leon
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Innocence Project Argentina, Buenos Aires, Argentina
| | - Matías Bonilla
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Innocence Project Argentina, Buenos Aires, Argentina
| | - Pablo Ezequiel Flores-Kanter
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| | - Michael Valiadis
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Germany
| |
Collapse
|
29
|
Stiver J, Fusco-Gessick B, Moran E, Crook C, Zimmerman ME. Variable objective sleep quality is related to worse spatial learning and memory in young adults. Sleep Med 2021; 84:114-120. [PMID: 34144450 DOI: 10.1016/j.sleep.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The majority of research on sleep and cognition has focused on mean markers of sleep across multiple nights; however, variable sleep patterns have become increasingly common in the modern era. The purpose of this study was to examine whether objective intraindividual variability in sleep quantity and quality are related to verbal and visuospatial learning and memory functioning in young adults. METHODS A total of 218 young adult college students were recruited from a university in the Eastern United States, among which 187 participants (70.6% female; mean age = 20.5, SD = 1.5) had complete actigraphy and cognitive performance data. Objective intraindividual means and variabilities of sleep quantity (total sleep time) and sleep quality (percent wake after sleep onset) were measured over a 1- to 2-week timeframe using wrist actigraphy. Verbal and visuospatial learning and memory were assessed using the International Shopping List and Groton Maze Learning tests of the Cogstate computerized test battery. RESULTS Greater intraindividual variability in actigraphy-derived sleep quality was associated with poorer visuospatial learning and memory performance after controlling for mean sleep quality and visuomotor attention and processing speed (ps < 0.05). Actigraphic measures of sleep quantity were not related to any learning and memory measures. CONCLUSION In young adults, intraindividual variability in objective sleep quality was significantly related to visuospatial learning and memory, over and above mean sleep quality. Given these associations, future studies should aim to identify modifiable lifestyle and environmental factors contributing to variable sleep quality.
Collapse
Affiliation(s)
- Jordan Stiver
- Department of Psychology, Fordham University, New York, NY, USA.
| | | | - Eileen Moran
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Cara Crook
- Department of Psychology, Fordham University, New York, NY, USA
| | | |
Collapse
|
30
|
Liu C, Lee SH, Hernandez-Cardenache R, Loewenstein D, Kather J, Alperin N. Poor sleep is associated with small hippocampal subfields in cognitively normal elderly individuals. J Sleep Res 2021; 30:e13362. [PMID: 33949039 DOI: 10.1111/jsr.13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
Recent studies demonstrated reduced hippocampal volumes in elderly healthy individuals who are cognitively normal but poor sleepers. The association between sleep quality and the pattern of volume loss across hippocampal subfields (HSs) is not well known. Thus, it is the focus of the present study. Sleep quality was self-assessed using the Pittsburgh Sleep Quality Index (PSQI). The HS volumes were measured using sub-millimetre in-plane resolution T2-weighted magnetic resonance imaging data. A total of 67 cognitively normal elderly individuals aged 60-83 years were classified into 30 normal sleepers with a PSQI <5 and 37 poor sleepers with a PSQI ≥5. The two groups were equivalent in age, gender distribution, ethnicity, education attainment, handedness and cognitive performance. Compared to normal sleepers, poor sleepers exhibited significantly lower normalised volumes in the left cornu ammonis field 1 (CA1), dentate gyrus (DG) and subiculum. In contrast, there were no significant differences in normalised grey and white matter volumes between the two groups. The global PSQI was negatively associated with the normalised volumes of the left CA1, DG and subiculum. Sleep duration was associated with the normalised volumes of the bilateral CA1, DG, left CA2 and subiculum. Verbal memory scores were associated with the left CA1 volume. In conclusion, poor sleep quality, especially insufficient sleep duration, was associated with volume loss in several HSs that are involved in specific learning and memory tasks. As the hippocampus does not regulate sleep, it is more likely that poor sleep leads to small hippocampi. Thus, based on this assumption, improving sleep quality of poor sleeper elderly individuals could benefit hippocampal health.
Collapse
Affiliation(s)
- Che Liu
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Sang H Lee
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rene Hernandez-Cardenache
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Loewenstein
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Josefina Kather
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
31
|
Kurinec CA, Whitney P, Hinson JM, Hansen DA, Van Dongen HPA. Sleep Deprivation Impairs Binding of Information with Its Context. Sleep 2021; 44:6262625. [PMID: 33940625 DOI: 10.1093/sleep/zsab113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/22/2021] [Indexed: 01/18/2023] Open
Abstract
Binding information to its context in long-term memory is critical for many tasks, including memory tasks and decision making. Failure to associate information to its context could be an important aspect of sleep deprivation effects on cognition, but little is known about binding problems from being sleep-deprived at the time of encoding. We studied how sleep deprivation affects binding using a well-established paradigm testing the ability to remember auditorily presented words (items) and their speakers (source context). In a laboratory study, 68 healthy young adults were randomly assigned to total sleep deprivation or a well-rested control condition. Participants completed an affective item and source memory task twice: once after 7h awake during baseline and again 24h later, after nearly 31h awake in the total sleep deprivation condition or 7h awake in the control condition. Participants listened to negative, positive, and neutral words presented by a male or female speaker and were immediately tested for recognition of the words and their respective speakers. Recognition of items declined during sleep deprivation, but even when items were recognized accurately, recognition of their associated sources also declined. Negative items were less bound with their sources than positive or neutral items,but sleep deprivation did not significantly affect this pattern.Our findings indicate that learning while sleep-deprived disrupts the binding of information to its context independent of item valence. Such binding failures may contribute to sleep deprivation effects on tasks requiring the ability to bind new information together in memory.
Collapse
Affiliation(s)
- Courtney A Kurinec
- Department of Psychology, Washington State University, Pullman, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Paul Whitney
- Department of Psychology, Washington State University, Pullman, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - John M Hinson
- Department of Psychology, Washington State University, Pullman, WA, United States.,Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Devon A Hansen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
32
|
Tortella GR, Seabra AB, Padrão J, Díaz-San Juan R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sci 2021; 11:552. [PMID: 33925627 PMCID: PMC8145019 DOI: 10.3390/brainsci11050552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a negative impact on education. The restrictions imposed have undoubtedly led to impairment of the psychological well-being of both teachers and students, and of the way they experience interpersonal relationships. As reported previously in the literature, adverse effects such as loneliness, anxiety, and stress have resulted in a decrease in the cognitive performance of school and higher education students. Therefore, the objective of this work is to present a general overview of the reported adverse effects of the COVID-19 pandemic which may potentially influence the learning performance of students. Some neuroscientific findings related to memory and cognition, such as neuroplasticity and long-term potentiation, are also shown. We also discuss the positive effects of the practice of mindfulness, as well as other simple recommendations based on neuroscientific findings such as restful sleep, physical activity, and nutrition, which can act on memory and cognition. Finally, we propose some practical recommendations on how to achieve more effective student learning in the context of the pandemic. The aim of this review is to provide some assistance in this changing and uncertain situation in which we all find ourselves, and we hope that some of the information could serve as a starting point for hypotheses to be tested in educational research and their association with neuroscience.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Center of Excellence (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- PhD Program in Natural Resource Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001-Bangú, Santo André 09210-580, SP, Brazil;
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Rodrigo Díaz-San Juan
- Educational Neurosciences and Psychology Department, Centenario School, Temuco 4810936, Chile;
| |
Collapse
|
33
|
Convergent and divergent functional connectivityalterations of hippocampal subregions between short-term and chronic insomnia disorder. Brain Imaging Behav 2021; 15:986-995. [PMID: 32720181 DOI: 10.1007/s11682-020-00306-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Insomnia disorder (ID) is reclassified into short-term and chronic subtypes based on recent etiological advances, however, neural mechanisms underlying the subtypes are rarely examined. In this study, we investigated gray matter volume and resting-state functional connectivity (RSFC) alterations of hippocampal subregions in short-term and chronic ID using multimodal MRI. We found convergent and divergent alterations between both ID groups in specific hippocampal subregions [right cornu ammonis 1 (CA1), subicular complex (Subc), and caudal hippocampus, (cHipp)] with prefrontal cortex [bilateral medial prefrontal cortex (MPFC), and right middle frontal gyrus] and limbic/paralimbic regions (bilateral middle cingulate cortex and left parahippocampal gyrus). Intriguingly, the RSFC of the right CA1/cHipp, particularly the intersection between these two subregions, with bilateral MPFC exhibited gradual increases from healthy controls to short-term ID and from short-term ID to chronic ID. Moreover, a negative correlation between the right CA1-left parahippocampal gyrus RSFC and Epworth Sleepiness Scale scores, and a positive correlation between the right CA1-bilateral MPFC RSFC and Insomnia Severity Index scores were found in the chronic ID group (P < 0.05). Our findings suggest convergent and divergent RSFC alterations of specific hippocampal subregions with the prefrontal cortex and limbic/paralimbic regions between short-term and chronic ID. These findings suggest that the hippocampus is a key node in establishing diagnostic and categorical biomarkers in ID and developing more effective treatment strategies.
Collapse
|
34
|
Ong JL, Lau TY, Lee XK, van Rijn E, Chee MWL. A daytime nap restores hippocampal function and improves declarative learning. Sleep 2021; 43:5813764. [PMID: 32227222 PMCID: PMC7487866 DOI: 10.1093/sleep/zsaa058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Daytime naps can confer benefits on subsequent declarative learning, but the physiological correlates of this improvement are less well studied. We examined learning following a daytime nap compared with an equivalent waking period using fMRI and polysomnography. METHODS Forty healthy young adults who slept normally the previous night encoded word pair lists in an MRI scanner at 13:00 and 16:30. Between sessions, participants either stayed awake and watched a documentary (Wake Group; N = 20) or had a 90-minute nap opportunity (Nap Group; N = 20) monitored by polysomnography. Approximately 40 minutes after completing each encoding session, memory for learned words was assessed using cued-recall. RESULTS A significant Session × Group interaction effect (p < 0.001) was observed in which memory was significantly improved in the Nap but not in the Wake group (p < 0.001). There was also a Session × Run × Group interaction effect in the left hippocampus (p = 0.001), whereby activation during word pair encoding increased only following the nap. Both performance improvement (rs = 0.46, p = 0.04) and nap-related increase in hippocampal activation (rs = 0.46, p = 0.04) were correlated with nap spindle count (12-15 Hz) but not with slow oscillation power (p's ≥ 0.18). CONCLUSIONS After a habitual nocturnal sleep, participants who had a 90-minute afternoon nap encoded word pairs better than a comparable group who stayed awake. Increases in hippocampal activation following the nap suggest restored hippocampal function. Naptime spindles may contribute to improved memory.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Te Yang Lau
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Xuan Kai Lee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Elaine van Rijn
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
35
|
Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep 2021; 43:5850478. [PMID: 32562487 PMCID: PMC7734479 DOI: 10.1093/sleep/zsaa111] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Study Objectives Cortical slow oscillations (SOs) and thalamocortical sleep spindles hallmark slow wave sleep and facilitate memory consolidation, both of which are reduced with age. Experiments utilizing auditory closed-loop stimulation to enhance these oscillations showed great potential in young and older subjects. However, the magnitude of responses has yet to be compared between these age groups. We examined the possibility of enhancing SOs and performance on different memory tasks in a healthy middle-aged population using this stimulation and contrast effects to younger adults. Methods In a within-subject design, 17 subjects (55.7 ± 1.0 years) received auditory stimulation in synchrony with SO up-states, which was compared to a no-stimulation sham condition. Overnight memory consolidation was assessed for declarative word-pairs and procedural finger-tapping skill. Post-sleep encoding capabilities were tested with a picture recognition task. Electrophysiological effects of stimulation were compared to a previous younger cohort (n = 11, 24.2 ± 0.9 years). Results Overnight retention and post-sleep encoding performance of the older cohort revealed no beneficial effect of stimulation, which contrasts with the enhancing effect the same stimulation protocol had in our younger cohort. Auditory stimulation prolonged endogenous SO trains and induced sleep spindles phase-locked to SO up-states in the older population. However, responses were markedly reduced compared to younger subjects. Additionally, the temporal dynamics of stimulation effects on SOs and spindles differed between age groups. Conclusions Our findings suggest that the susceptibility to auditory stimulation during sleep drastically changes with age and reveal the difficulties of translating a functional protocol from younger to older populations.
Collapse
Affiliation(s)
- Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penelope A Lewis
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| | - Dominik Koester
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
36
|
El-Khatib H, Sanchez E, Arbour C, Van Der Maren S, Duclos C, Blais H, Carrier J, Simonelli G, Hendryckx C, Paquet J, Gosselin N. Slow wave activity moderates the association between new learning and traumatic brain injury severity. Sleep 2021; 44:zsaa242. [PMID: 33211874 PMCID: PMC8033458 DOI: 10.1093/sleep/zsaa242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/16/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Sleep-wake complaints and difficulties in making new learning are among the most persistent and challenging long-term sequelea following moderate to severe traumatic brain injury (TBI). Yet, it is unclear whether, and to what extent, sleep characteristics during the chronic stage of TBI contribute to sleep-wake and cognitive complaints. We aimed to characterize sleep architecture in chronic moderate to severe TBI adults and assess whether non-rapid eye movement slow wave activity (SWA) is associated to next day performance in episodic memory tasks according to TBI severity. METHODS Forty-two moderate to severe TBI participants, 12-47 months post-injury, and 38 healthy controls were tested with one night of in-laboratory polysomnography, followed the next morning by questionnaires (sleep quality, fatigue, and sleepiness) and neuropsychological assessment. We used multiple regression analyses to assess the moderator effect of SWA power on TBI severity and next-day memory performance. RESULTS We found that TBI participants reported worse sleep quality and fatigue, and had worse cognitive performance than controls. No between group differences were found on macro- and micro-architecture of sleep. However, SWA significantly interacted with TBI severity to explain next-day memory performance: higher SWA was more strongly associated to better memory performance in more severe TBI compared to milder TBI. CONCLUSIONS This study provides evidence that the injured brain is able to produce macro- and micro-architecture of sleep comparable to what is seen in healthy controls. However, with increasing TBI severity, lower non-rapid eye movement SWA power is associated with reduced ability to learn and memorise new information the following day.
Collapse
Affiliation(s)
- Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Guido Simonelli
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Hendryckx
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Paquet
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Benkirane O, Neu D, Schmitz R, Dehon H, Mairesse O, Peigneux P. Reversible Verbal Memory Integration Deficits in Obstructive Sleep Apnoea. Psychol Belg 2021; 61:131-144. [PMID: 33815813 PMCID: PMC7996436 DOI: 10.5334/pb.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
When presented with novel but semantically related elements after learning verbal material, healthy participants tend to endorse these items as previously learned. This reflects the normal integration and association of novel verbal information into long-term memory. How obstructive sleep apnoea (OSA) negatively impacts verbal memory performance, and whether deficits are reversible following positive airway pressure (PAP) treatment, remain elusive. We investigated immediate and delayed OSA- and PAP treatment-related effects on verbal memory integration, using a false memory paradigm. Twenty-three patients with OSA learned lists of words semantically related to target non-presented words (1) at baseline after a polysomnography diagnosis night, (2) after a consecutive polysomnography night under PAP titration, and (3) after three months of compliant PAP treatment. At each session, participants learned 10 different lists of words, each list comprising 15 semantically related items. They had then to recognize 15 minutes later (after an intermediate vigilance task) previously learned words within a list including studied words (learned), unstudied but semantically related items (lures), and non-related unstudied items (controls). Sleep quality and fatigue questionnaires, and psychomotor vigilance tests (PVT) were administered at each session. PAP treatment led to OSA remission and improvement in objective and subjective sleep quality. Crucially, recognition of learned and lure words increased after the first night under treatment and remained stable three months later, suggesting successful memory integration and restoration of semantic processes. No treatment-related outcome was found on PVT performance. OSA exerts a detrimental but PAP-reversible effect on verbal learning and semantic memory integration mechanisms underlying the acquisition of novel memory representations.
Collapse
Affiliation(s)
- Oumaïma Benkirane
- UR2NF – Neuropsychology and Functional Neuroimaging Research Group at CRCN – Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB) and UNI – ULB Neurosciences Institute, Brussels, Belgium
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Daniel Neu
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), Brussels, Belgium
- UNI, ULB Neurosciences Institute, Research unit ULB312 (Faculty of Medicine) and ULB388 (Faculty of Motor Sciences), Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
- Center for the Study of Sleep Disorders, DELTA Hospital, Neuroscience Pole, CHIREC, Brussels, Belgium
| | - Rémy Schmitz
- UR2NF – Neuropsychology and Functional Neuroimaging Research Group at CRCN – Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB) and UNI – ULB Neurosciences Institute, Brussels, Belgium
| | - Hedwige Dehon
- PsyNCog – Psychology & Neuroscience of Cognition, Université de Liège, BE
| | - Olivier Mairesse
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Royal Military Academy (R.M.A.), Department LIFE (Physiology and Performance), Brussels, Belgium
- Department EXTO, Vrije Universiteit Brussel (V.U.B.), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Group at CRCN – Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB) and UNI – ULB Neurosciences Institute, Brussels, Belgium
| |
Collapse
|
38
|
Splitting sleep between the night and a daytime nap reduces homeostatic sleep pressure and enhances long-term memory. Sci Rep 2021; 11:5275. [PMID: 33674679 PMCID: PMC7935993 DOI: 10.1038/s41598-021-84625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
Daytime naps have been linked with enhanced memory encoding and consolidation. It remains unclear how a daily napping schedule impacts learning throughout the day, and whether these effects are the same for well-rested and sleep restricted individuals. We compared memory in 112 adolescents who underwent two simulated school weeks containing 8 or 6.5 h sleep opportunities each day. Sleep episodes were nocturnal or split between nocturnal sleep and a 90-min afternoon nap, creating four experimental groups: 8 h-continuous, 8 h-split, 6.5 h-continuous and 6.5 h-split. Declarative memory was assessed with picture encoding and an educationally realistic factual knowledge task. Splitting sleep significantly enhanced afternoon picture encoding and factual knowledge under both 6.5 h and 8 h durations. Splitting sleep also significantly reduced slow-wave energy during nocturnal sleep, suggesting lower homeostatic sleep pressure during the day. There was no negative impact of the split sleep schedule on morning performance, despite a reduction in nocturnal sleep. These findings suggest that naps could be incorporated into a daily sleep schedule that provides sufficient sleep and benefits learning.
Collapse
|
39
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
40
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
41
|
Werchan DM, Kim JS, Gómez RL. A daytime nap combined with nighttime sleep promotes learning in toddlers. J Exp Child Psychol 2020; 202:105006. [PMID: 33096367 DOI: 10.1016/j.jecp.2020.105006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
Abstract
Napping after learning promotes consolidation of new information during infancy. Yet, whether naps play a similar role during toddlerhood, a stage when many children are beginning to transition away from napping, is less clear. In Experiment 1, we examined whether napping after learning promotes generalization of novel category exemplars 24 h later. Young children (N = 54, age range = 29-36 months) viewed three category exemplars in different contexts from each of three categories and remained awake (No-Nap condition) or napped (Nap condition) after encoding and were then tested 24 h later. Children who napped after learning showed superior generalization 24 h later relative to children who did not nap. In a Nap-Control condition tested 4 h after awakening from a nap, children performed at the same low level as in the No-Nap condition, indicating that generalization stemmed from an additional period of nighttime sleep and not simply from a nap or increased time. In Experiment 2, we examined whether nighttime sleep is sufficient for generalization if it occurs soon after learning. An additional group of children (N = 18) learned before bedtime and were tested 4 h after waking up the next day. Children did not generalize as well as those who had a nap combined with subsequent nighttime sleep. These findings suggest that naps, when combined with a period of nighttime sleep, might help toddlers to retain newly learned information and lead to delayed benefits in generalization.
Collapse
Affiliation(s)
- Denise M Werchan
- Department of Population Health, NYU School of Medicine, New York, NY 10016, USA
| | - Ji-Soo Kim
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L Gómez
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
42
|
Selective suppression of rapid eye movement sleep increases next-day negative affect and amygdala responses to social exclusion. Sci Rep 2020; 10:17325. [PMID: 33057210 PMCID: PMC7557922 DOI: 10.1038/s41598-020-74169-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
Healthy sleep, positive general affect, and the ability to regulate emotional experiences are fundamental for well-being. In contrast, various mental disorders are associated with altered rapid eye movement (REM) sleep, negative affect, and diminished emotion regulation abilities. However, the neural processes mediating the relationship between these different phenomena are still not fully understood. In the present study of 42 healthy volunteers, we investigated the effects of selective REM sleep suppression (REMS) on general affect, as well as on feelings of social exclusion, cognitive reappraisal (CRA) of emotions, and their neural underpinnings. Using functional magnetic resonance imaging we show that, on the morning following sleep suppression, REMS increases general negative affect, enhances amygdala responses and alters its functional connectivity with anterior cingulate cortex during passively experienced experimental social exclusion. However, we did not find effects of REMS on subjective emotional ratings in response to social exclusion, their regulation using CRA, nor on functional amygdala connectivity while participants employed CRA. Our study supports the notion that REM sleep is important for affective processes, but emphasizes the need for future research to systematically investigate how REMS impacts different domains of affective experience and their neural correlates, in both healthy and (sub-)clinical populations.
Collapse
|
43
|
Davidson P, Jönsson P, Johansson M. A daytime nap does not increase mnemonic discrimination ability. J Sleep Res 2020; 30:e13128. [PMID: 32557911 DOI: 10.1111/jsr.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022]
Abstract
It has been proposed that sleep readies the brain for novel learning, and previous work has shown that sleep loss impairs the ability to encode new memories. In the present study, we examined if a daytime nap would increase mnemonic discrimination (MD) performance. MD is the ability to differentiate between memories that are similar but not identical. Participants performed the Mnemonic Similarity Task (MST) twice, once in the morning and once in the afternoon. The goal of this task is to distinguish stimuli that have been seen before from novel stimuli that are similar but not identical. After the morning MST, participants were randomly allocated into either a sleep or a wake group. The sleep group had a 2-hr nap opportunity, whereas the wake group spent a similar amount of time passively resting. All participants then performed a second MST in the afternoon with a novel set of images. Results did not show any support for increased MD ability after a nap. There was, however, a correlation showing that an increase in sleepiness between sessions predicted a decrease in MD performance. Future work must systematically examine how strong sleep manipulations that are needed for sleep to have an effect on encoding ability, as well as which kind of memory tasks that are sensitive to sleep manipulations. More knowledge about the relationship between sleep and the ability to differentiate similar memories from each other is important because impaired MD ability has previously been reported in various groups in which sleep disturbances are also common.
Collapse
Affiliation(s)
- Per Davidson
- Department of Psychology, Lund University, Lund, Sweden.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Peter Jönsson
- School of Education of Environment, Centre for Psychology, Kristianstad University, Kristianstad, Sweden
| | | |
Collapse
|
44
|
Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation. Sci Rep 2020; 10:8774. [PMID: 32472075 PMCID: PMC7260173 DOI: 10.1038/s41598-020-65086-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2020] [Indexed: 01/05/2023] Open
Abstract
Sleep deprivation significantly impairs a range of cognitive and brain function, particularly episodic memory and the underlying hippocampal function. However, it remains controversial whether one or two nights of recovery sleep following sleep deprivation fully restores brain and cognitive function. In this study, we used functional magnetic resonance imaging (fMRI) and examined the effects of two consecutive nights (20-hour time-in-bed) of recovery sleep on resting-state hippocampal connectivity and episodic memory deficits following one night of total sleep deprivation (TSD) in 39 healthy adults in a controlled in-laboratory protocol. TSD significantly reduced memory performance in a scene recognition task, impaired hippocampal connectivity to multiple prefrontal and default mode network regions, and disrupted the relationships between memory performance and hippocampal connectivity. Following TSD, two nights of recovery sleep restored hippocampal connectivity to baseline levels, but did not fully restore memory performance nor its associations with hippocampal connectivity. These findings suggest that more than two nights of recovery sleep are needed to fully restore memory function and hippocampal-memory associations after one night of total sleep loss.
Collapse
|
45
|
Cousins JN, Van Rijn E, Ong JL, Chee MWL. A split sleep schedule rescues short-term topographical memory after multiple nights of sleep restriction. Sleep 2020; 42:5306230. [PMID: 30715485 PMCID: PMC6448285 DOI: 10.1093/sleep/zsz018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Indexed: 11/21/2022] Open
Abstract
Study Objectives Chronic sleep restriction in adolescents is widespread, yet we know little about how to apportion the limited amount of sleep obtained to minimize cognitive impairment: should sleep occur only nocturnally, or be split across separate nocturnal and daytime nap periods? This is particularly relevant to hippocampal-dependent cognitive functions that underpin several aspects of learning. Method We assessed hippocampal function in four groups by evaluating short-term topographical memory with the Four Mountains Test (4MT). All participants began with 9 hours nocturnal time-in-bed (TIB) for 2 days before following different sleep schedules over the next 3 days. Each day, one group had 5 hours nocturnal TIB (5.0h; n = 30), another, 6.5 hours nocturnal TIB (6.5h; n = 29), and a third had 6.5 hours split into 5 hours nocturnal TIB and a 1.5 hour TIB daytime nap (5.0 + 1.5h; n = 29). A control group maintained 9 hours nocturnal TIB (9.0h; n = 30). The 4MT was administered mid-afternoon (1.5 hours after awakening for those who napped). Results Performance of the 5.0h and 6.5h nocturnal TIB groups was significantly impaired relative to the 9.0h control group. Performance of participants on the split- sleep schedule (5.0 + 1.5h) did not significantly differ from controls. Conclusions These findings suggest that hippocampal function is sensitive to moderate multi-night sleep restriction, but deficits can be ameliorated by splitting sleep, at least for a period after waking from a daytime nap. While this split sleep schedule should not be considered a replacement for adequate nocturnal sleep, it appears to benefit the cognitive and neurophysiological functions that underpin learning in those who are chronically sleep deprived.
Collapse
Affiliation(s)
- James N Cousins
- Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore 169857
| | - Elaine Van Rijn
- Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore 169857
| | - Ju Lynn Ong
- Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore 169857
| | - Michael W L Chee
- Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
46
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Lee Shing Y, Werkle-Bergner M. Memory quality modulates the effect of aging on memory consolidation during sleep: Reduced maintenance but intact gain. Neuroimage 2020; 209:116490. [PMID: 31883456 PMCID: PMC7068706 DOI: 10.1016/j.neuroimage.2019.116490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Successful consolidation of associative memories relies on the coordinated interplay of slow oscillations and sleep spindles during non-rapid eye movement (NREM) sleep. This enables the transfer of labile information from the hippocampus to permanent memory stores in the neocortex. During senescence, the decline of the structural and functional integrity of the hippocampus and neocortical regions is paralleled by changes of the physiological events that stabilize and enhance associative memories during NREM sleep. However, the currently available evidence is inconclusive as to whether and under which circumstances memory consolidation is impacted during aging. To approach this question, 30 younger adults (19-28 years) and 36 older adults (63-74 years) completed a memory task based on scene-word associations. By tracing the encoding quality of participants' individual memory associations, we demonstrate that previous learning determines the extent of age-related impairments in memory consolidation. Specifically, the detrimental effects of aging on memory maintenance were greatest for mnemonic contents of intermediate encoding quality, whereas memory gain of poorly encoded memories did not differ by age. Ambulatory polysomnography (PSG) and structural magnetic resonance imaging (MRI) data were acquired to extract potential predictors of memory consolidation from each participant's NREM sleep physiology and brain structure. Partial Least Squares Correlation was used to identify profiles of interdependent alterations in sleep physiology and brain structure that are characteristic for increasing age. Across age groups, both the 'aged' sleep profile, defined by decreased slow-wave activity (0.5-4.5 Hz), and a reduced presence of slow oscillations (0.5-1 Hz), slow, and fast spindles (9-12.5 Hz; 12.5-16 Hz), as well as the 'aged' brain structure profile, characterized by gray matter reductions in the medial prefrontal cortex, thalamus, entorhinal cortex, and hippocampus, were associated with reduced memory maintenance. However, inter-individual differences in neither sleep nor structural brain integrity alone qualified as the driving force behind age differences in sleep-dependent consolidation in the present study. Our results underscore the need for novel and age-fair analytic tools to provide a mechanistic understanding of age differences in memory consolidation.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-de-Faucigny 2, 1701, Fribourg, Switzerland
| | - Yee Lee Shing
- Department of Developmental Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt Am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
47
|
Saletin JM, Jackvony S, Rodriguez KA, Dickstein DP. A coordinate-based meta-analysis comparing brain activation between attention deficit hyperactivity disorder and total sleep deprivation. Sleep 2020; 42:5239589. [PMID: 30541103 DOI: 10.1093/sleep/zsy251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022] Open
Abstract
STUDY OBJECTIVES Sleep disruption is common in attention deficit hyperactivity disorder (ADHD). Likewise, deficits in attention are a hallmark of sleep deprivation in healthy individuals. Whether ADHD and sleep deprivation modulate common, or disparate, neural systems is unknown. No study has yet utilized functional magnetic resonance imaging (fMRI) to investigate sleep loss in ADHD. We address this gap by performing a novel meta-analysis to compare patterns of fMRI activation during sleep deprivation and ADHD. METHODS We performed a coordinate-based activation likelihood estimate (ALE) meta-analysis using the GingerALE software. A systematic review of task-based fMRI studies of sleep deprivation vs. rested and also ADHD vs. healthy controls (HC) yielded 134 articles. fMRI coordinates were extracted for each contrast (i.e. "ADHD vs. HC," "TSD vs. Rested") and normalized to the Talairach-atlas. Separate ALE analyses were performed for ADHD and sleep deprivation. We directly compared these initial estimates to determine shared vs. distinct areas of fMRI neural activation in ADHD and sleep deprivation. RESULTS Conjunction analyses revealed overlapping hypoactivations between ADHD and sleep loss in executive function regions, notably the dorsal anterior cingulate cortex. Sleep deprivation, however, was associated with significantly exaggerated hyperactivation in the thalamus. CONCLUSIONS Our study indicates that ADHD and sleep deprivation share a common neural signature: hypoactivation of executive function neuroanatomy. In contrast, sleep loss, but not ADHD, was associated with thalamic hyperactivations, intimating a potential compensatory response in sleep loss not present in ADHD. By elucidating shared and distinct patterns of functional neuroanatomy, these data provide novel targets for future experimental investigations of sleep loss in ADHD.
Collapse
Affiliation(s)
- Jared M Saletin
- E.P. Bradley Hospital Sleep Research Laboratory, Providence, RI.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
| | | | | | - Daniel P Dickstein
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI.,E.P. Bradley Hospital PediMIND Program, East Providence, RI
| |
Collapse
|
48
|
Kavanagh VAJ, Hourihan KL. Pre-experimental sleep effects on directed forgetting. Conscious Cogn 2020; 79:102898. [PMID: 32058921 DOI: 10.1016/j.concog.2020.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/27/2022]
Abstract
A directed forgetting (DF) paradigm was used to compare the remembering and forgetting of participants with good sleep quality to those with poor sleep quality and the presence of insomnia symptoms. This study implemented a point system in place of remember and forget instructions in a DF task with the goal of computing DF costs and benefits. Relations among memory, sleep, and working memory capacity (WMC) were also examined. DF benefits were observed in both groups, with negative costs found for participants without the presence of insomnia symptoms. WMC was found to be related to memory for positive point items only, and did not differ based on sleep quality. These results suggest that the presence of self-reported insomnia symptoms does not affect performance on a DF task.
Collapse
Affiliation(s)
- Victoria A J Kavanagh
- Psychology Department, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL A1B 3X9, Canada.
| | - Kathleen L Hourihan
- Psychology Department, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
49
|
Baena D, Cantero JL, Fuentemilla L, Atienza M. Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep. Sci Rep 2020; 10:1449. [PMID: 31996775 PMCID: PMC6989495 DOI: 10.1038/s41598-020-58496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Sleep is thought to play a complementary role in human memory processing: sleep loss impairs the formation of new memories during the following awake period and, conversely, normal sleep promotes the strengthening of the already encoded memories. However, whether sleep can strengthen deteriorated memories caused by insufficient sleep remains unknown. Here, we showed that sleep restriction in a group of participants caused a reduction in the stability of EEG activity patterns across multiple encoding of the same event during awake, compared with a group of participants that got a full night's sleep. The decrease of neural stability patterns in the sleep-restricted group was associated with higher slow oscillation-spindle coupling during a subsequent night of normal sleep duration, thereby suggesting the instantiation of restorative neural mechanisms adaptively supporting cognition and memory. Importantly, upon awaking, the two groups of participants showed equivalent retrieval accuracy supported by subtle differences in the reinstatement of encoding-related activity: it was longer lasting in sleep-restricted individuals than in controls. In addition, sustained reinstatement over time was associated with increased coupling between spindles and slow oscillations. Taken together, these results suggest that the strength of prior encoding might be an important moderator of memory consolidation during sleep. Supporting this view, spindles nesting in the slow oscillation increased the probability of correct recognition only for weakly encoded memories. Current results demonstrate the benefit that a full night's sleep can induce to impaired memory traces caused by an inadequate amount of sleep.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, 41013, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, 41013, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08907, Spain.,Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, 08035, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, 41013, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
50
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|