1
|
Domingues AV, Carvalho TTA, Martins GJ, Correia R, Coimbra B, Bastos-Gonçalves R, Wezik M, Gaspar R, Pinto L, Sousa N, Costa RM, Soares-Cunha C, Rodrigues AJ. Dynamic representation of appetitive and aversive stimuli in nucleus accumbens shell D1- and D2-medium spiny neurons. Nat Commun 2025; 16:59. [PMID: 39746997 PMCID: PMC11696804 DOI: 10.1038/s41467-024-55269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues. Notably, D1- and D2-MSNs were similarly co-recruited during appetitive and aversive conditioning, supporting a concurrent role in associative learning. Conversely, when contingencies changed, there was an asymmetric response in the NAc, with more pronounced changes in the activity of D2-MSNs. Optogenetic manipulation of D2-MSNs provided causal evidence of the necessity of this population in the extinction of aversive associations. Our results reveal how NAc shell neurons encode valence, Pavlovian associations and their extinction, and unveil mechanisms underlying motivated behaviors.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tawan T A Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela J Martins
- Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Raquel Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marcelina Wezik
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Gaspar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA
- Allen Institute, Seattle, WA, USA
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Wang R, Zhu L, Fan Y, Du H, Han W, Guan F, Zhu Y, Ni T, Chen T. Dopamine D3 receptor mediates natural and methamphetamine rewards via regulating the expression of miR-29c in the nucleus accumbens of mice. Neuropharmacology 2025; 262:110200. [PMID: 39490406 DOI: 10.1016/j.neuropharm.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The dopamine D3 receptor (D3R), principally confined to the nucleus accumbens (NAc), is involved in regulating natural and drug rewards; however, the molecular mechanisms underlying the associated process remain unclear. Earlier research has reported the concurrent influence of D3R and miR-29c expressed in the NAc on methamphetamine (METH)-induced reward behaviors and microglial activation, hinting at regulatory roles in reward processing. Herein, we performed viral manipulation-mediating D3R/miR-29c overexpression and inhibition in the whole NAc in male D3R knockout and wild-type mice to investigate this potential relationship. Behavioral responses to the rewarding stimuli were assessed using sucrose preference score, METH-induced locomotor sensitization, and METH-induced conditioned place preference tests. Overall, we observed a notable decrease in the behavioral response to sucrose and METH in D3R-deficient mice, accompanied by the downregulation of miR-29c expression in the NAc. Diminished responses to those rewarding stimuli in D3R-deficient mice primarily stemmed from the reduction of GSK3β activity and subsequent down-regulation of miR-29c in the NAc. Microglial activation in the NAc mediates the effect of D3R-miR-29c deficiency on the reward effects of sucrose and METH. Pharmacological suppression of microglial activity rescued the reduced response in mice lacking D3R-miR-29c in the NAc. Overall, this study revealed the mechanism by which D3R regulates both natural and drug rewards via miR-29c in the murine NAc, highlighting the role of the NAc D3R-miR-29c pathway as a critical regulator of rewards, and providing new insights into the role of NAc D3R-miR-29c in encoding rewarding experiences.
Collapse
Affiliation(s)
- Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yunting Fan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huiqing Du
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Fanglin Guan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China
| | - Tong Ni
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
3
|
Fan S, Qi Y, Zhang F, Shi Y, Ma K, Pan Q, Jiang A, He L, Zhang J, Ma T, Zhou L. Dissecting the neuronal mechanisms of pinoresinol against methamphetamine addiction based on network and experimental pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156322. [PMID: 39700637 DOI: 10.1016/j.phymed.2024.156322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Addiction is a chronic brain disease in which the underlying neuronal mechanism is characterized by drug-seeking and use. Flos Daturae (FD) and its components are used to treat addiction. However, the effective ingredients of FD that are linked to the neuronal mechanisms of seeking behavior remain unclear. OBJECTIVE We aimed to explore the effect and mechanism of the monomer ingredients of FD on methamphetamine (METH) addiction. METHODS The main chemical constituents and potential targets of FD were screened using LC-MS/MS and bioinformatics method. Molecular docking was used to screen the component of FD associated with the neuronal subtype mechanism. The effectiveness of the targets in related pathways was verified by behavioral experiment, immunofluorescence and Western blot. Electrophysiology was used to identify the functions of the ingredients of FD in D1-tdTomato and D2-eGFP transgenic mice. RESULTS There were 125 targets of 25 active components in FD, which included dopamine 1 receptor (D1R)/dopamine 2 receptor (D2R)/cAMP signaling pathway. Furthermore, we identified that pinoresinol (PINL) is a major component of FD targeting this signaling pathway. Moreover, PINL attenuated METH-induced seeking behavior and decreased expression of c-Fos in striatal D1R neurons, but not D2R neurons. Accordingly, PINL functionally reduced the over-excitation of D1R, but not D2R neurons. Finally, we clarified that D1R/PKA pathway is a critical factor mediating the effects of PINL on METH-induced seeking behavior. CONCLUSION We revealed that PINL specifically targeted D1R/PKA signaling in D1R neurons and decreased METH-induced seeking behavior, providing a new strategy to treat addictive diseases.
Collapse
Affiliation(s)
- Shuyuan Fan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yize Qi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Fukang Zhang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yatong Shi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Kunfang Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qihang Pan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ai Jiang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Luanyue He
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Junlong Zhang
- Department of Anesthesiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222023, PR China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, PR China.
| | - Li Zhou
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, PR China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Asp AJ, Boschen SL, Chang SY, Kim J, Silvernail JL, Lujan JL. An ultra low frequency spike timing dependent plasticity based approach for reducing alcohol drinking. Sci Rep 2024; 14:30907. [PMID: 39730615 DOI: 10.1038/s41598-024-81390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S. alone. The effects of alcohol consumption are expected to increase significantly during the COVID-19 pandemic, with alcohol sales increasing by approximately 54%, potentially exacerbating health concerns and risk-taking behaviors. Unfortunately, existing pharmacological and behavioral therapies for AUD are associated with poor success rates, with approximately 40% of individuals relapsing within three years of treatment.Pre-clinical studies have shown that chronic alcohol consumption leads to significant changes in synaptic function within the dorsal medial striatum (DMS), one of the brain regions associated with AUD and responsible for mediating goal-directed behavior. Specifically, chronic alcohol consumption has been associated with hyperactivity of dopamine receptor 1 (D1) medium spiny neurons (MSN) and hypoactivity of dopamine receptor 2 (D1) MSNs within the DMS. Optogenetic, chemogenetic, and transgenic approaches have demonstrated that reducing the D1/D2 MSN signaling imbalance decreases alcohol self-administration in rodent models of AUD.Here, we present an electrical stimulation approach that uses ultra-low (≤ 1 Hz) frequency (ULF) spike-timing-dependent plasticity (STDP) in mouse models of AUD to reduce DMS D1/D2 MSN signaling imbalances by stimulating D1-MSN afferents into the GPi and ACC glutamatergic projections to the DMS in a time-locked stimulation sequence. Our data suggest that GPi/ACC ULF-STDP selectively decreases DMS D1-MSN hyperactivity leading to reduced alcohol consumption without evoking undesired affective behaviors using electrical stimulation rather than approaches requiring genetic modification. This work represents a step towards fulfilling the unmet need for a reliable method of treating severe AUD through cell-type-specific control with clinically available neuromodulation tools.
Collapse
Affiliation(s)
- Anders J Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiwon Kim
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jodi L Silvernail
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Cui L, Tang S, Pan J, Deng L, Zhang Z, Zhao K, Si B, Xu NL. Causal contributions of cell-type-specific circuits in the posterior dorsal striatum to auditory decision-making. Cell Rep 2024; 44:115084. [PMID: 39709603 DOI: 10.1016/j.celrep.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
In the dorsal striatum (DS), the direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) play crucial opposing roles in controlling actions. However, it remains unclear whether and how dSPNs and iSPNs provide distinct and specific contributions to decision-making, a process transforming sensory inputs to actions. Here, we perform causal interrogations on the roles of dSPNs and iSPNs in the posterior DS (pDS) in auditory-guided decision-making. Unilateral activation of dSPNs or iSPNs produces strong opposite drives to choice behaviors regardless of task difficulty. However, inactivation of dSPNs or iSPNs leads to pronounced choice bias preferentially in difficult trials, suggesting decision-specific contributions. Indeed, temporally specific iSPN activation within, but not outside, the decision period significantly biased choices. Finally, concurrent disinhibition of both pathways via inactivating parvalbumin (PV)-positive interneurons leads to contralateral bias primarily in difficult trials. These results reveal specific contributions by coordinated dSPN and iSPN activity to decision-making processes.
Collapse
Affiliation(s)
- Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Deng
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoran Zhang
- School of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kai Zhao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Bailu Si
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
6
|
Berezovskaia A, Thomsen M, Fink-Jensen A, Wörtwein G. A sex-specific effect of M 4 muscarinic cholinergic autoreceptor deletion on locomotor stimulation by cocaine and scopolamine. Front Mol Neurosci 2024; 17:1451010. [PMID: 39737113 PMCID: PMC11683150 DOI: 10.3389/fnmol.2024.1451010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M4 and M1 receptors. M4 receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M4 receptors on cholinergic neurons has been less explored. This study aims to fill this gap by addressing the role of M4 receptors on cholinergic neurons in these behaviors. Methods To investigate the significance of M4-dependent inhibitory signaling in cholinergic neurons we created mutant mice that lack M4 receptors on cholinergic neurons. Cholinergic neuron-specific depletion was confirmed using in situ hybridization. We aimed to untangle the possible contribution of M4 autoreceptors to the effects of the global M4 knockout by examining aspects of basal locomotion and dose-dependent reactivity to the psychostimulant and rewarding properties of cocaine, haloperidol-induced catalepsy, and examined both the anti-cataleptic and locomotion-inducing effects of the non-selective anticholinergic drug scopolamine. Results Basal phenotype assessment revealed no developmental deficits in knockout mice. Cocaine stimulated locomotion in both genotypes, with no differences observed at lower doses. However, at the highest cocaine dose tested, male knockout mice displayed significantly less activity compared to wild type littermates (p = 0.0084). Behavioral sensitization to cocaine was similar between knockout and wild type mice. Conditioned place preference tests indicated no differences in the rewarding effects of cocaine between genotypes. In food-reinforced operant tasks knockout and wild type mice successfully acquired the tasks with comparable performance results. M4 receptor depletion did not affect haloperidol-induced catalepsy and scopolamine reversal of catalepsy but attenuated scopolamine-induced locomotion in females (p = 0.04). Our results show that M4 receptor depletion attenuated the locomotor response to high doses of cocaine in males and scopolamine in females, suggesting sex-specific regulation of cholinergic activity. Conclusion Depletion of M4 receptors on cholinergic neurons does not significantly impact basal behavior or cocaine-induced hyperactivity but may modulate the response to high doses of cocaine in male mice and the response to scopolamine in female mice. Overall, our findings suggest that M4-dependent autoregulation plays a minor but delicate role in modulating specific behavioral responses to pharmacological challenges, possibly in a sex-dependent manner.
Collapse
Affiliation(s)
- Anna Berezovskaia
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Niitani K, Nishida R, Futami Y, Nishitani N, Deyama S, Kaneda K. Activation of ventral pallidum-projecting neurons in the nucleus accumbens via 5-HT 2C receptor stimulation regulates motivation for wheel running in male mice. Neuropharmacology 2024; 261:110181. [PMID: 39393590 DOI: 10.1016/j.neuropharm.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Rodents have a strong motivation for wheel running; however, the neural mechanisms that regulate their motivation remain unknown. We investigated the possible involvement of serotonin (5-HT) systems in regulating motivation for wheel running in male mice. Systemic administration of a 5-HT1A receptor antagonist (WAY100635) increased the number of wheel rotations, whereas administration of a 5-HT2A or 5-HT2C receptor antagonist (volinanserin or SB242084, respectively) decreased it. In the open field test, neither WAY100635 nor volinanserin affected locomotor activity, whereas SB242084 increased locomotor activity. To identify the brain regions on which these antagonists act, we locally injected these into the motivational circuitry, including the nucleus accumbens (NAc), dorsomedial striatum (DM-Str), and medial prefrontal cortex (mPFC). Injection of SB242084 into the NAc, but not the DM-Str or mPFC, reduced the number of wheel rotations without altering locomotor activity. The local administration of WAY100635 or volinanserin to these brain regions did not affect the number of wheel rotations. Immunohistochemical analyses revealed that wheel running increased the number of c-Fos-positive cells in the NAc medial shell (NAc-MS), which was reduced by systemic SB242084 administration. In vitro slice whole-cell recordings showed that bath application of the 5-HT2C receptor agonist lorcaserin increased the frequency of spontaneous excitatory and inhibitory postsynaptic currents in the ventral tegmental area (VTA)-projecting neurons, whereas it only increased the frequency of spontaneous excitatory postsynaptic currents in ventral pallidum (VP)-projecting neurons in the NAc-MS. These findings suggest that the activation of VP-projecting NAc-MS neurons via 5-HT2C receptor stimulation regulates motivation for wheel running.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ryoma Nishida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusaku Futami
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
8
|
Varin C, de Kerchove d'Exaerde A. Neuronal encoding of behaviors and instrumental learning in the dorsal striatum. Trends Neurosci 2024:S0166-2236(24)00225-X. [PMID: 39632222 DOI: 10.1016/j.tins.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The dorsal striatum is instrumental in regulating motor control and goal-directed behaviors. The classical description of the two output pathways of the dorsal striatum highlights their antagonistic control over actions. However, recent experimental evidence implicates both pathways and their coordinated activities during actions. In this review, we examine the different models proposed for striatal encoding of actions during self-paced behaviors and how they can account for evidence harvested during goal-directed behaviors. We also discuss how the activation of striatal ensembles can be reshaped and reorganized to support the formation of instrumental learning and behavioral flexibility. Future work integrating these considerations may resolve controversies regarding the control of actions by striatal networks.
Collapse
Affiliation(s)
- Christophe Varin
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| | - Alban de Kerchove d'Exaerde
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| |
Collapse
|
9
|
Tian Z, Song J, Zhao X, Zhou Y, Chen X, Le Q, Wang F, Ma L, Liu X. The interhemispheric amygdala-accumbens circuit encodes negative valence in mice. Science 2024; 386:eadp7520. [PMID: 39509508 DOI: 10.1126/science.adp7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024]
Abstract
The structurally symmetric mammalian brain hemispheres are interconnected by commissural axons across the midline. However, the functions of interhemispheric connectivity remain largely unknown. We found that in mice, transection of the anterior commissure (AC), which connects the rostroventral forebrain, impaired avoidant behaviors. The basolateral amygdala (BLA) in the mouse projects to the contralateral nucleus accumbens (NAc) through the AC, independent of its ipsilateral projections. Aversive stimuli activated contralateral BLA-NAc projections. Positive stimuli, however, activated ipsilateral projections. Selective activation of contralateral BLA-NAc projections activated D2-positive medium spiny neurons (D2-MSNs), reduced NAc dopamine levels, and caused aversion, whereas selective activation of ipsilateral BLA-NAc projections activated D1-MSNs, increased NAc dopamine levels, and induced reward. The contralateral BLA-AC-NAc pathway is crucial for encoding negative valence, demonstrating distinct functions of intra- and interhemispheric circuits in brain physiology.
Collapse
Affiliation(s)
- Zhen Tian
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Jiachen Song
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xuying Zhao
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yiming Zhou
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xi Chen
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| |
Collapse
|
10
|
Xi ZX, Bocarsly ME, Galaj E, Hempel B, Teresi C, Shaw M, Bi GH, Jordan C, Linz E, Alton H, Tanda G, Freyberg Z, Alvarez VA, Newman AH. Presynaptic and Postsynaptic Mesolimbic Dopamine D 3 Receptors Play Distinct Roles in Cocaine Versus Opioid Reward in Mice. Biol Psychiatry 2024; 96:752-765. [PMID: 38838841 PMCID: PMC11446657 DOI: 10.1016/j.biopsych.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Past research has illuminated pivotal roles of dopamine D3 receptors (D3R) in the rewarding effects of cocaine and opioids. However, the cellular and neural circuit mechanisms that underlie these actions remain unclear. METHODS We employed Cre-LoxP techniques to selectively delete D3R from presynaptic dopamine neurons or postsynaptic dopamine D1 receptor (D1R)-expressing neurons in male and female mice. We utilized RNAscope in situ hybridization, immunohistochemistry, real-time polymerase chain reaction, voltammetry, optogenetics, microdialysis, and behavioral assays (n ≥ 8 animals per group) to functionally characterize the roles of presynaptic versus postsynaptic D3R in cocaine and opioid actions. RESULTS Our results revealed D3R expression in ∼25% of midbrain dopamine neurons and ∼70% of D1R-expressing neurons in the nucleus accumbens. While dopamine D2 receptors (D2R) were expressed in ∼80% dopamine neurons, we found no D2R and D3R colocalization among these cells. Selective deletion of D3R from dopamine neurons increased exploratory behavior in novel environments and enhanced pulse-evoked nucleus accumbens dopamine release. Conversely, deletion of D3R from D1R-expressing neurons attenuated locomotor responses to D1-like and D2-like agonists. Strikingly, deletion of D3R from either cell type reduced oxycodone self-administration and oxycodone-enhanced brain-stimulation reward. In contrast, neither of these D3R deletions impacted cocaine self-administration, cocaine-enhanced brain-stimulation reward, or cocaine-induced hyperlocomotion. Furthermore, D3R knockout in dopamine neurons reduced oxycodone-induced hyperactivity and analgesia, while deletion from D1R-expressing neurons potentiated opioid-induced hyperactivity without affecting analgesia. CONCLUSIONS We dissected presynaptic versus postsynaptic D3R function in the mesolimbic dopamine system. D2R and D3R are expressed in different populations of midbrain dopamine neurons, regulating dopamine release. Mesolimbic D3R are critically involved in the actions of opioids but not cocaine.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland.
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, Bethesda, Maryland
| | - Ewa Galaj
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Briana Hempel
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Catherine Teresi
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, Bethesda, Maryland
| | - Marlisa Shaw
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, Bethesda, Maryland
| | - Guo-Hua Bi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland; Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Chloe Jordan
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Emily Linz
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland; Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Hannah Alton
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland; Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, Bethesda, Maryland; National Institute of Mental Health, Center on Compulsive Behaviors, Intramural Research Program, Bethesda, Maryland
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland.
| |
Collapse
|
11
|
Moraga-Amaro R, Vazquez-Matias DA, Nazario LR, Dierckx RAJO, Stehberg J, Doorduin J, de Vries EFJ. Increased dopamine D 2/D 3 receptor and serotonin transporter availability in male rats after spontaneous remission from repeated social defeat-induced depression; a PET study in rats. Neurobiol Dis 2024; 202:106727. [PMID: 39515530 DOI: 10.1016/j.nbd.2024.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Most pharmacological treatments for depression target monoamine transporters and about 50 % of treated patients attain symptomatic remission. Once remission is attained, it is hard to distinguish the changes on brain monoaminergic transmission induced by the antidepressants, from those associated to remission per se. In this study, we aimed at studying the brain of spontaneously remitted rats from repeated social defeat (RSD)-induced depression in terms of dopamine D2/D3 receptor and serotonin transporter (SERT) availability, showing absence of depressive symptoms 2 weeks after RSD. We combined behavioral tests and positron emission tomography (PET) with [11C]raclopride and [11C]DASB to explore the changes in dopamine D2/D3 receptor and serotonin transporter (SERT) availability, respectively. Male rats submitted to RSD showed increased peripheral corticosterone levels, decreased body weight and anhedonia, as measured with the sucrose preference test, 1 day after RSD, confirming depressive-like symptoms. These depressive-like symptoms were no longer present 2 weeks after RSD. Rats that recovered from depressive-like symptoms showed decreased D2/D3 receptor binding in the caudate putamen and increased SERT availability in the brainstem, insular cortex, midbrain and thalamus, compared to control non-stressed animals. Our study shows that remission of depressive-like symptoms does not just "normalize" monoaminergic transmission, as changes in dopaminergic and serotonergic neurotransmission linger in several brain regions even after depressive-like symptoms have already resolved. These results provide new insights into the brain changes associated to remission in the RSD-induced depression model in rats.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
12
|
Mews P, Van der Zee Y, Gurung A, Estill M, Futamura R, Kronman H, Ramakrishnan A, Ryan M, Reyes AA, Garcia BA, Browne CJ, Sidoli S, Shen L, Nestler EJ. Cell type-specific epigenetic priming of gene expression in nucleus accumbens by cocaine. SCIENCE ADVANCES 2024; 10:eado3514. [PMID: 39365860 PMCID: PMC11451531 DOI: 10.1126/sciadv.ado3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
A hallmark of addiction is the ability of drugs of abuse to trigger relapse after periods of prolonged abstinence. Here, we describe an epigenetic mechanism whereby chronic cocaine exposure causes lasting chromatin and downstream transcriptional modifications in the nucleus accumbens (NAc), a critical brain region controlling motivation. We link prolonged withdrawal from cocaine to the depletion of the histone variant H2A.Z, coupled with increased genome accessibility and latent priming of gene transcription, in D1 dopamine receptor-expressing medium spiny neurons (D1 MSNs) that relate to aberrant gene expression upon drug relapse. The histone chaperone ANP32E removes H2A.Z from chromatin, and we demonstrate that D1 MSN-selective Anp32e knockdown prevents cocaine-induced H2A.Z depletion and blocks cocaine's rewarding actions. By contrast, very different effects of cocaine exposure, withdrawal, and relapse were found for D2 MSNs. These findings establish histone variant exchange as an important mechanism and clinical target engaged by drugs of abuse to corrupt brain function and behavior.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan Ryan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abner A. Reyes
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medticine, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Dong YG, Gan Y, Fu Y, Shi H, Dai S, Yu R, Li X, Zhang K, Wang F, Yuan TF, Dong Y. Treadmill exercise training inhibits morphine CPP by reversing morphine effects on GABA neurotransmission in D2-MSNs of the accumbens-pallidal pathway in male mice. Neuropsychopharmacology 2024; 49:1700-1710. [PMID: 38714787 PMCID: PMC11399312 DOI: 10.1038/s41386-024-01869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/10/2024]
Abstract
Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.
Collapse
Affiliation(s)
- Yi-Gang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haifeng Shi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shanghua Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ruibo Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ke Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fanglin Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China.
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Hunker AC, Wirthlin ME, Gill G, Johansen NJ, Hooper M, Omstead V, Taskin N, Weed N, Vargas S, Bendrick JL, Gore B, Ben-Simon Y, Bishaw Y, Opitz-Araya X, Martinez RA, Way S, Thyagarajan B, Lerma MN, Laird W, Sven O, Sanchez REA, Alexander JR, Amaya A, Amster A, Ayala A, Baker PM, Barcelli T, Barta S, Bertagnolli D, Bielstein C, Bishwakarma P, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Clark M, Colbert K, Daniel S, Dawe T, Departee M, DiValentin P, Donadio NP, Dotson NI, Dwivedi D, Egdorf T, Fliss T, Gary A, Goldy J, Grasso C, Groce EL, Gudsnuk K, Han W, Haradon Z, Hastings S, Helback O, Ho WV, Huang C, Johnson T, Jones DL, Juneau Z, Kenney J, Leibly M, Li S, Liang E, Loeffler H, Lusk NA, Madigan Z, Malloy J, Malone J, McCue R, Melchor J, Mich JK, Moosman S, Morin E, Naidoo R, Newman D, Ngo K, Nguyen K, Oster AL, Ouellette B, Oyama AA, Pena N, Pham T, Phillips E, Pom C, Potekhina L, Ransford S, Reding M, Rette DF, Reynoldson C, Rimorin C, Rios Sigler A, Rocha DB, Ronellenfitch K, Ruiz A, Sawyer L, Sevigny J, Shapovalova NV, Shepard N, Shulga L, Soliman S, Staats B, Taormina MJ, Tieu M, Wang Y, Wilkes J, Wood T, Zhou T, Williford A, Dee N, Mollenkopf T, Ng L, Esposito L, Kalmbach B, Yao S, Ariza J, Mufti S, Smith K, Waters J, Ersing I, Patrick M, Zeng H, Lein ES, Kojima Y, Horwitz G, Owen SF, Levi BP, Daigle TL, Tasic B, Bakken TE, Ting JT. Enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615553. [PMID: 39386678 PMCID: PMC11463465 DOI: 10.1101/2024.09.27.615553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos. Importantly, we provide detailed information necessary to achieve reliable cell type specific labeling under different experimental contexts. We demonstrate direct pathway circuit-selective optogenetic perturbation of behavior and multiplex labeling of striatal interneuron types for targeted analysis of cellular features. Lastly, we show conserved in vivo activity for exemplary MSN enhancers in rat and macaque. This collection of striatal enhancer AAVs offers greater versatility compared to available transgenic lines and can readily be applied for cell type and circuit studies in diverse mammalian species beyond the mouse model.
Collapse
Affiliation(s)
| | | | - Gursajan Gill
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | | | | | | | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA
| | | | - Sara Vargas
- Allen Institute for Brain Science, Seattle, WA
| | | | - Bryan Gore
- Allen Institute for Brain Science, Seattle, WA
| | | | - Yeme Bishaw
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Sharon Way
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Will Laird
- Allen Institute for Brain Science, Seattle, WA
| | - Otto Sven
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Avalon Amaya
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Adam Amster
- Allen Institute for Brain Science, Seattle, WA
| | | | - Pam M Baker
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tim Dawe
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA
| | - Tim Fliss
- Allen Institute for Brain Science, Seattle, WA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA
| | - Conor Grasso
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | | | - Warren Han
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Windy V Ho
- Allen Institute for Brain Science, Seattle, WA
| | - Cindy Huang
- Allen Institute for Brain Science, Seattle, WA
| | - Tye Johnson
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | - Zoe Juneau
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Su Li
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | - John K Mich
- Allen Institute for Brain Science, Seattle, WA
| | | | - Elyse Morin
- Allen Institute for Brain Science, Seattle, WA
| | - Robyn Naidoo
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | - Nick Pena
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | - Yimin Wang
- Allen Institute for Brain Science, Seattle, WA
| | - Josh Wilkes
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Toren Wood
- Allen Institute for Brain Science, Seattle, WA
| | - Thomas Zhou
- Allen Institute for Brain Science, Seattle, WA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA
| | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA
| | | | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurological Surgery, University of Washington, Seattle, WA
| | - Yoshiko Kojima
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Greg Horwitz
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Scott F Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
| | | | | | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| |
Collapse
|
16
|
Geramita MA, Ahmari SE, Yttri EA. Striatal indirect pathway mediates hesitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613332. [PMID: 39345379 PMCID: PMC11429858 DOI: 10.1101/2024.09.16.613332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Determining the best possible action in an uncertain situation is often challenging, and organisms frequently need extra time to deliberate. This pause in behavior in response to uncertainty - also known as hesitation - commonly occurs in many aspects of daily life, yet its neural circuits are poorly understood. Here we present the first experimental paradigm that reliably evokes hesitation in mice. Using cell-type specific electrophysiology and optogenetics, we show that indirect, but not direct, pathway spiny projection neurons specifically in the dorsomedial striatum mediate hesitation. These data indicate that the basal ganglia circuits controlling the pausing involved in cognitive processes like hesitation are distinct from those that control other types of behavioral inhibition, such as cue-induced stopping.
Collapse
|
17
|
Bonnavion P, Varin C, Fakhfouri G, Martinez Olondo P, De Groote A, Cornil A, Lorenzo Lopez R, Pozuelo Fernandez E, Isingrini E, Rainer Q, Xu K, Tzavara E, Vigneault E, Dumas S, de Kerchove d'Exaerde A, Giros B. Striatal projection neurons coexpressing dopamine D1 and D2 receptors modulate the motor function of D1- and D2-SPNs. Nat Neurosci 2024; 27:1783-1793. [PMID: 38965445 DOI: 10.1038/s41593-024-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
The role of the striatum in motor control is commonly assumed to be mediated by the two striatal efferent pathways characterized by striatal projection neurons (SPNs) expressing dopamine (DA) D1 receptors or D2 receptors (D1-SPNs and D2-SPNs, respectively), without regard to SPNs coexpressing both receptors (D1/D2-SPNs). Here we developed an approach to target these hybrid SPNs in mice and demonstrate that, although these SPNs are less abundant, they have a major role in guiding the motor function of the other two populations. D1/D2-SPNs project exclusively to the external globus pallidus and have specific electrophysiological features with distinctive integration of DA signals. Gain- and loss-of-function experiments indicate that D1/D2-SPNs potentiate the prokinetic and antikinetic functions of D1-SPNs and D2-SPNs, respectively, and restrain the integrated motor response to psychostimulants. Overall, our findings demonstrate the essential role of this population of D1/D2-coexpressing neurons in orchestrating the fine-tuning of DA regulation in thalamo-cortico-striatal loops.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Christophe Varin
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ghazal Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Pilar Martinez Olondo
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Aurélie De Groote
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Amandine Cornil
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ramiro Lorenzo Lopez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elisa Pozuelo Fernandez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
| | - Quentin Rainer
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Kathleen Xu
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Eleni Tzavara
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- AP-HM, Hôpital Sainte Marguerite, Pôle Psychiatrie Universitaire Solaris, Marseille, France
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Alban de Kerchove d'Exaerde
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium.
- WELBIO, WEL Research Institute, Wavre, Belgium.
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada.
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
| |
Collapse
|
18
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
19
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. Sci Rep 2024; 14:18258. [PMID: 39107568 PMCID: PMC11303397 DOI: 10.1038/s41598-024-69255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Room 2207, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556301. [PMID: 37732280 PMCID: PMC10508778 DOI: 10.1101/2023.09.05.556301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that it produces. We show that CBGTPy is extensible enough to apply to a range of experimental protocols and to allow for the implementation of model extensions with minimal developmental effort.
Collapse
Affiliation(s)
- Matthew Clapp
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
21
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
22
|
Wood DJ, Huebschman JL, Martinez D, Tsvetkov E, Snyder K, Tjhia R, Kumar J, Hughes BW, Taniguchi M, Smith LN, Cowan CW, Penrod RD. The activity-regulated cytoskeleton-associated protein (Arc) functions in a cell type- and sex-specific manner in the adult nucleus accumbens to regulate non-contingent cocaine behaviors. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12910. [PMID: 39164860 PMCID: PMC11335578 DOI: 10.1111/gbb.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.
Collapse
Affiliation(s)
- Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dalia Martinez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kirsten Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Tjhia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura N Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
23
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
24
|
Eckenwiler EA, Ingebretson AE, Stolley JJ, Fusaro MA, Romportl AM, Ross JM, Petersen CL, Kale EM, Clark MS, Schattauer SS, Zweifel LS, Lemos JC. CRF release from a unique subpopulation of accumbal neurons constrains action-outcome acquisition in reward learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567495. [PMID: 39005420 PMCID: PMC11244858 DOI: 10.1101/2023.11.16.567495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin releasing factor (CRF) has been previously documented. Here we provide a comprehensive analysis of their identity and functional role in shaping reward learning. Methods To do this, we took a multidisciplinary approach that included florescent in situ hybridization (N mice ≥ 3), tract tracing (N mice = 5), ex vivo electrophysiology (N cells ≥ 30), in vivo calcium imaging with fiber photometry (N mice ≥ 4) and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (N mice ≥ 4). Behaviors used were instrumental learning, sucrose preference and spontaneous exploration in an open field. Results Here we show that the vast majority of NAc CRF-containing (NAc CRF ) neurons are spiny projection neurons (SPNs) comprised of dopamine D1-, D2- or D1/D2-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrate that NAc CRF neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning, and at the same time facilitates flexibility in the face of changing contingencies. Conclusion We conclude that CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.
Collapse
|
25
|
van Velthoven CTJ, Gao Y, Kunst M, Lee C, McMillen D, Chakka AB, Casper T, Clark M, Chakrabarty R, Daniel S, Dolbeare T, Ferrer R, Gloe J, Goldy J, Guzman J, Halterman C, Ho W, Huang M, James K, Nguy B, Pham T, Ronellenfitch K, Thomas ED, Torkelson A, Pagan CM, Kruse L, Dee N, Ng L, Waters J, Smith KA, Tasic B, Yao Z, Zeng H. The transcriptomic and spatial organization of telencephalic GABAergic neuronal types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599583. [PMID: 38948843 PMCID: PMC11212977 DOI: 10.1101/2024.06.18.599583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.
Collapse
Affiliation(s)
| | - Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
26
|
Teague CD, Markovic T, Zhou X, Martinez-Rivera FJ, Minier-Toribio A, Zinsmaier A, Pulido NV, Schmidt KH, Lucerne KE, Godino A, van der Zee YY, Ramakrishnan A, Futamura R, Browne CJ, Holt LM, Yim YY, Azizian CH, Walker DM, Shen L, Dong Y, Zhang B, Nestler EJ. Circuit-Wide Gene Network Analysis Reveals Sex-Specific Roles for Phosphodiesterase 1b in Cocaine Addiction. J Neurosci 2024; 44:e1327232024. [PMID: 38637154 PMCID: PMC11154853 DOI: 10.1523/jneurosci.1327-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.
Collapse
Affiliation(s)
- Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Freddyson J Martinez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Alexander Zinsmaier
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Nathalia V Pulido
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kyra H Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kelsey E Lucerne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Corrine H Azizian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
27
|
Escobedo A, Holloway SA, Votoupal M, Cone AL, Skelton H, Legaria AA, Ndiokho I, Floyd T, Kravitz AV, Bruchas MR, Norris AJ. Glutamatergic supramammillary nucleus neurons respond to threatening stressors and promote active coping. eLife 2024; 12:RP90972. [PMID: 38829200 PMCID: PMC11147510 DOI: 10.7554/elife.90972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Threat-response neural circuits are conserved across species and play roles in normal behavior and psychiatric diseases. Maladaptive changes in these neural circuits contribute to stress, mood, and anxiety disorders. Active coping in response to stressors is a psychosocial factor associated with resilience against stress-induced mood and anxiety disorders. The neural circuitry underlying active coping is poorly understood, but the functioning of these circuits could be key for overcoming anxiety and related disorders. The supramammillary nucleus (SuM) has been suggested to be engaged by threat. SuM has many projections and a poorly understood diversity of neural populations. In studies using mice, we identified a unique population of glutamatergic SuM neurons (SuMVGLUT2+::POA) based on projection to the preoptic area of the hypothalamus (POA) and found SuMVGLUT2+::POA neurons have extensive arborizations. SuMVGLUT2+::POA neurons project to brain areas that mediate features of the stress and threat responses including the paraventricular nucleus thalamus (PVT), periaqueductal gray (PAG), and habenula (Hb). Thus, SuMVGLUT2+::POA neurons are positioned as a hub, connecting to areas implicated in regulating stress responses. Here we report SuMVGLUT2+::POA neurons are recruited by diverse threatening stressors, and recruitment correlated with active coping behaviors. We found that selective photoactivation of the SuMVGLUT2+::POA population drove aversion but not anxiety like behaviors. Activation of SuMVGLUT2+::POA neurons in the absence of acute stressors evoked active coping like behaviors and drove instrumental behavior. Also, activation of SuMVGLUT2+::POA neurons was sufficient to convert passive coping strategies to active behaviors during acute stress. In contrast, we found activation of GABAergic (VGAT+) SuM neurons (SuMVGAT+) neurons did not alter drive aversion or active coping, but termination of photostimulation was followed by increased mobility in the forced swim test. These findings establish a new node in stress response circuitry that has projections to many brain areas and evokes flexible active coping behaviors.
Collapse
Affiliation(s)
- Abraham Escobedo
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Salli-Ann Holloway
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Megan Votoupal
- Department of Medicine, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Aaron L Cone
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Hannah Skelton
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Alex A Legaria
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Imeh Ndiokho
- Medical College of WisconsinMilwaukeeUnited States
| | - Tasheia Floyd
- Department of Obstetrics and Gynecology, Washington University in St. LouisSt. LouisUnited States
| | - Alexxai V Kravitz
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine University of WashingtonSeattleUnited States
- Department of Pharmacology University of WashingtonSeattleUnited States
- Department of Bioengineering University of WashingtonSeattleUnited States
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
28
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595949. [PMID: 38826289 PMCID: PMC11142250 DOI: 10.1101/2024.05.26.595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
|
29
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie JP, Girault JA. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D 2 Neurons and Reveals a Modulatory Role of Ncdn. Biol Psychiatry 2024; 95:926-937. [PMID: 37579933 PMCID: PMC11059129 DOI: 10.1016/j.biopsych.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
Affiliation(s)
- Enrica Montalban
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Albert Giralt
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Lieng Taing
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Assunta Pelosi
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Mallory Brown
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Benoit de Pins
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Miquel Martin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain; Instituto de investigaciones médicas Hospital del Mar, Barcelona, Spain
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
30
|
Schultz W. A dopamine mechanism for reward maximization. Proc Natl Acad Sci U S A 2024; 121:e2316658121. [PMID: 38717856 PMCID: PMC11098095 DOI: 10.1073/pnas.2316658121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| |
Collapse
|
31
|
Chapp AD, Nwakama CA, Jagtap PP, Phan CMH, Thomas MJ, Mermelstein PG. Fundamental Sex Differences in Cocaine-Induced Plasticity of Dopamine D1 Receptor- and D2 Receptor-Expressing Medium Spiny Neurons in the Mouse Nucleus Accumbens Shell. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100295. [PMID: 38533248 PMCID: PMC10963205 DOI: 10.1016/j.bpsgos.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D2 receptor-expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for. Methods We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs). Results In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle-dependent plasticity from intrinsic excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus. In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies. Conclusions Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males, whereas it is due to heightened D2R-MSN excitability in females.
Collapse
Affiliation(s)
- Andrew D. Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Chinonso A. Nwakama
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pramit P. Jagtap
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Chau-Mi H. Phan
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mark J. Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Katebi SN, Torkaman-Boutorabi A, Riahi E, Haghparast A. N-acetylcysteine attenuates accumbal core neuronal activity in response to morphine in the reinstatement of morphine CPP in morphine extinguished rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110942. [PMID: 38215930 DOI: 10.1016/j.pnpbp.2024.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have suggested that N-acetylcysteine (NAC), has the potential to suppress drug craving in people with substance use disorder and reduce drug-seeking behaviors in animals. The nucleus accumbens (NAc) plays a crucial role in the brain's reward system, with the nucleus accumbens core (NAcore) specifically implicated in compulsive drug seeking and relapse. In this study, we aimed to explore the impact of subchronic NAC administration during the extinction period and acute NAC administration on the electrical activity of NAcore neurons in response to a priming dose of morphine in rats subjected to extinction from morphine-induced place preference (CPP).We conducted single-unit recordings in anesthetized rats on the reinstatement day, following the establishment of morphine-induced conditioned place preference (7 mg/kg, s.c., 3 days), and subsequent drug-free extinction. In the subchronically NAC-treated groups, rats received daily injections of either NAC (50 mg/kg; i.p.) or saline during the extinction period. On the reinstatement day, we recorded the spontaneous activity of NAcore neurons for 15 min, administered a priming dose of morphine, and continued recording for an additional 45 min. While morphine excited most recorded neurons in saline-treated rats, it failed to alter firing rates in NAC-treated rats that had received NAC during the extinction period. For acutely NAC-treated animals, we recorded the baseline activity of NAcore neurons for 10 min before administering a single injection of either NAC (50 mg/kg; i.p.) or saline in rats with no treatment during the extinction. Following 30 min of recording and a priming dose of morphine (1 mg/kg, s.c.), the recording continued for an additional 30 min. The firing activity of NAcore neurons did not show significant changes after morphine or NAC injection. In conclusion, our findings emphasize that daily NAC administration during the extinction period significantly attenuates the morphine-induced increase in firing rates of NAcore neurons during the reinstatement of morphine CPP. However, acute NAC injection does not produce the same effect. These results suggest that modulating glutamate transmission through daily NAC during extinction may effectively inhibit the morphine place preference following the excitatory effects of morphine on NAcore neurons.
Collapse
Affiliation(s)
- Seyedeh-Najmeh Katebi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science 2024; 384:eadk6742. [PMID: 38669575 PMCID: PMC11077477 DOI: 10.1126/science.adk6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Toronto, ON, M5T 1R8, Canada
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University; New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
34
|
Song R, Soler-Cedeño O, Xi ZX. Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents. Int J Mol Sci 2024; 25:3455. [PMID: 38542425 PMCID: PMC10970671 DOI: 10.3390/ijms25063455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.
Collapse
Affiliation(s)
- Rui Song
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology (BIPT), 27th Taiping Road, Beijing 100850, China
| | - Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| |
Collapse
|
35
|
Khayat A, Yaka R. Activation of nucleus accumbens projections to the ventral tegmental area alters molecular signaling and neurotransmission in the reward system. Front Mol Neurosci 2024; 17:1271654. [PMID: 38528956 PMCID: PMC10962329 DOI: 10.3389/fnmol.2024.1271654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
The nucleus accumbens (NAc) and the ventral tegmental area (VTA) are integral brain regions involved in reward processing and motivation, including responses to drugs of abuse. Previously, we have demonstrated that activation of NAc-VTA afferents during the acquisition of cocaine conditioned place preference (CPP) reduces the rewarding properties of cocaine and diminished the activity of VTA dopamine neurons. In the current study, we examined the impact of enhancing these inhibitory inputs on molecular changes and neurotransmission associated with cocaine exposure. Our results unveiled significant reductions in extracellular signal-regulated kinase (ERK) levels in the VTA and medial prefrontal cortex (mPFC) of both cocaine-treated groups compared with the saline control group. Furthermore, optic stimulation of NAc-VTA inputs during cocaine exposure decreased the expression of GluA1 subunit of AMPA receptor in the VTA and mPFC. Notably, in the NAc, cocaine exposure paired with optic stimulation increased ERK levels and reduced GluA1 phosphorylation at Ser845 as compared with all other groups. Additionally, both cocaine-treated groups exhibited decreased levels of GluA1 phosphorylation at Ser831 in the NAc compared with the saline control group. Moreover, cocaine exposure led to reduced ERK, GluA1, and GluA1 phosphorylation at Ser845 and Ser831 in the mPFC. Augmentation of GABAergic tone from the NAc during cocaine conditioning mitigated changes in GluA1 phosphorylation at Ser845 in the mPFC but reduced ERK, GluA1, and GluA1 phosphorylation at Ser831 compared with the saline control group. Interestingly, enhancing GABAergic tone during saline conditioning decreased GluA1 phosphorylation at Ser831 compared with the saline control group in the mPFC. Our findings highlight the influence of modulating inhibitory inputs from the NAc to the VTA on molecular signaling and glutamatergic neurotransmission in cocaine-exposed animals. Activation of these inhibitory inputs during cocaine conditioning induced alterations in key signaling molecules and AMPA receptor, providing valuable insights into the neurobiological mechanisms underlying cocaine reward and cocaine use disorder. Further exploration of these pathways may offer potential therapeutic targets for the treatment of substance use disorder.
Collapse
Affiliation(s)
| | - Rami Yaka
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Zachry JE, Kutlu MG, Yoon HJ, Leonard MZ, Chevée M, Patel DD, Gaidici A, Kondev V, Thibeault KC, Bethi R, Tat J, Melugin PR, Isiktas AU, Joffe ME, Cai DJ, Conn PJ, Grueter BA, Calipari ES. D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron 2024; 112:835-849.e7. [PMID: 38134921 PMCID: PMC10939818 DOI: 10.1016/j.neuron.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
At the core of value-based learning is the nucleus accumbens (NAc). D1- and D2-receptor-containing medium spiny neurons (MSNs) in the NAc core are hypothesized to have opposing valence-based roles in behavior. Using optical imaging and manipulation approaches in mice, we show that neither D1 nor D2 MSNs signal valence. D1 MSN responses were evoked by stimuli regardless of valence or contingency. D2 MSNs were evoked by both cues and outcomes, were dynamically changed with learning, and tracked valence-free prediction error at the population and individual neuron level. Finally, D2 MSN responses to cues were necessary for associative learning. Thus, D1 and D2 MSNs work in tandem, rather than in opposition, by signaling specific properties of stimuli to control learning.
Collapse
Affiliation(s)
- Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Munir Gunes Kutlu
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael Z Leonard
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Maxime Chevée
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Dev D Patel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Gaidici
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Veronika Kondev
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer Tat
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Atagun U Isiktas
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
38
|
Deseyve C, Domingues AV, Carvalho TTA, Armada G, Correia R, Vieitas-Gaspar N, Wezik M, Pinto L, Sousa N, Coimbra B, Rodrigues AJ, Soares-Cunha C. Nucleus accumbens neurons dynamically respond to appetitive and aversive associative learning. J Neurochem 2024; 168:312-327. [PMID: 38317429 DOI: 10.1111/jnc.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined. Here, we investigated the relevance of D1- and D2-neurons in associative learning, by measuring calcium transients with fiber photometry during appetitive and aversive Pavlovian tasks in mice. Sucrose was used as a positive valence unconditioned stimulus (US) and foot shock was used as a negative valence US. We show that during appetitive Pavlovian conditioning, D1- and D2-neurons exhibit a general increase in activity in response to the conditioned stimuli (CS). Interestingly, D1- and D2-neurons present distinct changes in activity after sucrose consumption that dynamically evolve throughout learning. During the aversive Pavlovian conditioning, D1- and D2-neurons present an increase in the activity in response to the CS and to the US (shock). Our data support a model in which D1- and D2-neurons are concurrently activated during appetitive and aversive conditioning.
Collapse
Affiliation(s)
- Catarina Deseyve
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tawan T A Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natacha Vieitas-Gaspar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marcelina Wezik
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
39
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
40
|
Derman RC, Bryda EC, Ferrario CR. Role of nucleus accumbens D1-type medium spiny neurons in the expression and extinction of sign-tracking. Behav Brain Res 2024; 459:114768. [PMID: 37984521 PMCID: PMC10842774 DOI: 10.1016/j.bbr.2023.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
While sign-tracking, also known as autoshaping, has been studied for many decades, only recently has the tendency to show sign-tracking behavior been linked to the development and persistence of addiction. Sign-tracking is dependent upon dopamine activity in the nucleus accumbens (NAc). The NAc is comprised predominantly of medium spiny projection neurons (MSN) that can be differentiated by their D1-like or D2-like dopamine receptor expression. Here we determined how reducing activity of D1-type MSNs in the NAc affects the expression and extinction of sign-tracking. To address this, we transfected the NAc of transgenic male and female rats that selectively express Cre recombinase in D1-type MSNs with a DIO viral vector expressing hM4Di. Cre- rats were given the same viral infusion but did not express the hM4Di receptor and therefore served as controls. Rats were then conditioned to associate lever presentations with pellet delivery. After sign-tracking was established, all rats were administered clozapine-n-oxide (CNO) prior to three additional conditioning sessions to assess the effects of NAc D1-MSNs inhibition on sign-tracking in the presence of reward. CNO treatment did not alter the expression of sign-tracking in Cre+ or Cre- rats. Next rats underwent extinction training where lever presentations occurred without pellet delivery and all rats received a CNO injection prior to each extinction session. In these extinction conditions, Cre+ rats exhibited robust extinction of sign-tracking across sessions, whereas Cre- rats did not. To determine if D1-MSN inhibition merely produced a temporary cessation of sign-tracking or instead had facilitated a persistent loss of sign-tracking, we evaluated the reemergence of sign-tracking in a test for reconditioning. During testing, reintroduction of the CS-US pairing did not promote the reemergence of sign-tracking in Cre+ rats, but restored sign-tracking in Cre- rats. Thus, chemogenetic inhibition of NAc D1-MSNs promoted extinction of sign-tracking. Collectively, these data suggest that D1-MSNs play an important role in resistance to extinction that typifies sign-tracking behavior.
Collapse
Affiliation(s)
- Rifka C Derman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Elizabeth C Bryda
- Rat Resource and Research Center, Animal Modeling Core, Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
41
|
Alsina-Llanes M, Olazábal DE. NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naïve Female and Male Mice. Neuroscience 2024; 539:35-50. [PMID: 38176609 DOI: 10.1016/j.neuroscience.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
42
|
Cavallo A, Neumann WJ. Dopaminergic reinforcement in the motor system: Implications for Parkinson's disease and deep brain stimulation. Eur J Neurosci 2024; 59:457-472. [PMID: 38178558 DOI: 10.1111/ejn.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Millions of people suffer from dopamine-related disorders spanning disturbances in movement, cognition and emotion. These changes are often attributed to changes in striatal dopamine function. Thus, understanding how dopamine signalling in the striatum and basal ganglia shapes human behaviour is fundamental to advancing the treatment of affected patients. Dopaminergic neurons innervate large-scale brain networks, and accordingly, many different roles for dopamine signals have been proposed, such as invigoration of movement and tracking of reward contingencies. The canonical circuit architecture of cortico-striatal loops sparks the question, of whether dopamine signals in the basal ganglia serve an overarching computational principle. Such a holistic understanding of dopamine functioning could provide new insights into symptom generation in psychiatry to neurology. Here, we review the perspective that dopamine could bidirectionally control neural population dynamics, increasing or decreasing their strength and likelihood to reoccur in the future, a process previously termed neural reinforcement. We outline how the basal ganglia pathways could drive strengthening and weakening of circuit dynamics and discuss the implication of this hypothesis on the understanding of motor signs of Parkinson's disease (PD), the most frequent dopaminergic disorder. We propose that loss of dopamine in PD may lead to a pathological brain state where repetition of neural activity leads to weakening and instability, possibly explanatory for the fact that movement in PD deteriorates with repetition. Finally, we speculate on how therapeutic interventions such as deep brain stimulation may be able to reinstate reinforcement signals and thereby improve treatment strategies for PD in the future.
Collapse
Affiliation(s)
- Alessia Cavallo
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
43
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573966. [PMID: 38260354 PMCID: PMC10802299 DOI: 10.1101/2024.01.02.573966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S. Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
46
|
Belilos A, Gray C, Sanders C, Black D, Mays E, Richie C, Sengupta A, Hake H, Francis TC. Nucleus accumbens local circuit for cue-dependent aversive learning. Cell Rep 2023; 42:113488. [PMID: 37995189 PMCID: PMC10795009 DOI: 10.1016/j.celrep.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient, which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We describe a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor-expressing projection neurons are required for cue-dependent fear learning. Additionally, we find that fear learning and recall is dependent on distinct projection neuron subtypes. Our work demonstrates a critical role for nucleus accumbens substance P in cue-dependent aversive learning.
Collapse
Affiliation(s)
- Andrew Belilos
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cortez Gray
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christie Sanders
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Destiny Black
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Mays
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ayesha Sengupta
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Holly Hake
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - T Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
47
|
Zhang Y, Ben Nathan J, Moreno A, Merkel R, Kahng MW, Hayes MR, Reiner BC, Crist RC, Schmidt HD. Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats. Neuropsychopharmacology 2023; 48:1878-1888. [PMID: 37355732 PMCID: PMC10584857 DOI: 10.1038/s41386-023-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ben Nathan
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda Moreno
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle W Kahng
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Pinto SR, Uchida N. Tonic dopamine and biases in value learning linked through a biologically inspired reinforcement learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566580. [PMID: 38014087 PMCID: PMC10680794 DOI: 10.1101/2023.11.10.566580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A hallmark of various psychiatric disorders is biased future predictions. Here we examined the mechanisms for biased value learning using reinforcement learning models incorporating recent findings on synaptic plasticity and opponent circuit mechanisms in the basal ganglia. We show that variations in tonic dopamine can alter the balance between learning from positive and negative reward prediction errors, leading to biased value predictions. This bias arises from the sigmoidal shapes of the dose-occupancy curves and distinct affinities of D1- and D2-type dopamine receptors: changes in tonic dopamine differentially alters the slope of the dose-occupancy curves of these receptors, thus sensitivities, at baseline dopamine concentrations. We show that this mechanism can explain biased value learning in both mice and humans and may also contribute to symptoms observed in psychiatric disorders. Our model provides a foundation for understanding the basal ganglia circuit and underscores the significance of tonic dopamine in modulating learning processes.
Collapse
Affiliation(s)
- Sandra Romero Pinto
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
49
|
Bai X, Zhang K, Ou C, Mu Y, Chi D, Zhang J, Huang J, Li X, Zhang Y, Huang W, Ouyang H. AKAP150 from nucleus accumbens dopamine D1 and D2 receptor-expressing medium spiny neurons regulates morphine withdrawal. iScience 2023; 26:108227. [PMID: 37953959 PMCID: PMC10637943 DOI: 10.1016/j.isci.2023.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs) and dopamine D2 receptor-expressing MSNs (D2R-MSNs) in nucleus accumbens (NAc) have been demonstrated to show different effects on reward and memory of abstinence. A-kinase anchoring protein 150 (AKAP150) expression in NAc is significantly upregulated and contributes to the morphine withdrawal behavior. However, the underlying mechanism of AKAP150 under opioid withdrawal remains unclear. In this study, AKAP150 expression in NAc is upregulated in naloxone-precipitated morphine withdrawal model, and knockdown of AKAP150 alleviates morphine withdrawal somatic signs and improves the performance of conditioned place aversion (CPA) test. AKAP150 in NAc D1R-MSNs is related to modulation of the performance of morphine withdrawal CPA test, while AKAP150 in NAc D2R-MSNs is relevant to the severity of somatic responses. Our results suggest that AKAP150 from D1R-MSNs or D2R-MSNs in NAc contributes to the developmental process of morphine withdrawal but plays different roles in aspects of behavior or psychology.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yanyu Mu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Dongmei Chi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xile Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
50
|
Ohno-Shosaku T, Yoneda M, Maejima T, Wang M, Kikuchi Y, Onodera K, Kanazawa Y, Takayama C, Mieda M. Action Sequence Learning Is Impaired in Genetically Modified Mice with the Suppressed GABAergic Transmission from the Thalamic Reticular Nucleus to the Thalamus. Neuroscience 2023; 532:87-102. [PMID: 37778689 DOI: 10.1016/j.neuroscience.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The thalamic reticular nucleus (TRN) is a thin sheet of GABAergic neurons surrounding the thalamus, and it regulates the activity of thalamic relay neurons. The TRN has been reported to be involved in sensory gating, attentional regulation, and some other functions. However, little is known about the contribution of the TRN to sequence learning. In the present study, we examined whether the TRN is involved in reward-based learning of action sequence with no eliciting stimuli (operant conditioning), by analyzing the performance of male and female Avp-Vgat-/- mice (Vgatflox/flox mice crossed to an Avp-Cre driver line) on tasks conducted in an operant box having three levers. Our histological and electrophysiological data demonstrated that in adult Avp-Vgat-/- mice, vesicular GABA transporter (VGAT) was absent in most TRN neurons and the GABAergic transmission from the TRN to the thalamus was largely suppressed. The performance on a task in which mice needed to press an active lever for food reward showed that simple operant learning of lever pressing and learning of win-stay and lose-shift strategies are not affected in Avp-Vgat-/- mice. In contrast, the performance on a task in which mice needed to press three levers in a correct order for food reward showed that learning of the order of lever pressing (action sequence learning) was impaired in Avp-Vgat-/- mice. These results suggest that the TRN plays an important role in action sequence learning.
Collapse
Affiliation(s)
- Takako Ohno-Shosaku
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan; Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan; Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa 920-1180, Japan.
| | - Mitsugu Yoneda
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mohan Wang
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yui Kikuchi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Kaito Onodera
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa 920-1180, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| |
Collapse
|