1
|
Jiang S, Ge D, Song B, Deng X, Liu Z, He J, Sun J, Zhu Z, Meng Z, Zhu Y. Subanesthetic propofol alleviates chronic stress-induced anxiety by enhancing VTADA neurons' activity. Neuropharmacology 2025; 265:110264. [PMID: 39675464 DOI: 10.1016/j.neuropharm.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Anxiety, a common mental disorder, imposes significant clinical and economic burdens. Previous studies indicate that propofol has anxiolytic effects at anesthetic doses. However, the risks associated with general anesthesia limit its application in anxiety treatment. The feasibility of using subanesthetic doses of propofol to alleviate chronic stress-induced anxiety and the underlying neural mechanisms remain unknown. Here, we found that subanesthetic dose (20 mg/kg and 40 mg/kg) of propofol alleviated anxiety-like behaviors induced by chronic unpredictable mild stress (CUMS) in mice, and the anxiolytic effects were maintained for at least 6 h. In vivo calcium imaging study showed that propofol significantly enhanced Ca2+ signals in ventral tegmental area dopaminergic (VTADA) neurons. Whole-cell patch-clamp recordings confirmed that subanesthetic propofol increased the excitability of VTADA neurons while inhibiting VTA GABAergic (VTAGABA) neurons. Propofol suppressed spontaneous inhibitory postsynaptic currents (sIPSCs) in VTADA neurons, accompanied by a decline in the ability of GABAergic neurons to transmit inhibitory signals. These findings suggests that a subanesthetic dose of propofol enhances the excitability of VTADA neurons through disinhibition, demonstrating its potential for the treatment of CUMS-associated anxiety-like behaviors.
Collapse
Affiliation(s)
- Shaolei Jiang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Dengyun Ge
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Bo Song
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaofei Deng
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhongdong Liu
- Grain College, Henan University of Technology, Zhengzhou, 450001, China
| | - Jian He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan City, 528000, China
| | - Jing Sun
- Department of Anesthesiology, Shenzhen Futian District Maternity & Child Healthcare Hospital, No. 2002 Jintian Road, Futian District, Shenzhen, 518000, China
| | - Zhi Zhu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhiqiang Meng
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Yingjie Zhu
- Shenzhen Key Lab of Drug Addiction, Institute of Brain Cognition and Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Dopaminergic signaling to ventral striatum neurons initiates sniffing behavior. Nat Commun 2025; 16:336. [PMID: 39747223 PMCID: PMC11696867 DOI: 10.1038/s41467-024-55644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum in mice is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 dopamine receptor-expressing neurons are coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
Affiliation(s)
- Natalie L Johnson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Anamaria Cotelo-Larrea
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Umit M Akkaya
- Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Zihao Zhang
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie A Gadziola
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adrienn G Varga
- Department of Neuroscience, Breathing Research and Therapeutics Center, McKnight Brain Institute; University of Florida College of Medicine, Gainesville, FL, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
3
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Yu Z, Fu Q, Qiu T, Yang C, Lu M, Peng Q, Yang J, Hu Z. Role of Rab10 in cocaine-induced behavioral effects is associated with GABAB receptor membrane expression in the nucleus accumbens. Front Pharmacol 2024; 15:1496657. [PMID: 39669198 PMCID: PMC11635607 DOI: 10.3389/fphar.2024.1496657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Aim Previous studies have demonstrated that Ras-related GTP-binding protein Rab10 (Rab10) plays a role in psychostimulant-induced behavioral effects. In this study, we showed that Rab10 in the nucleus accumbens (NAc) of male animals affects the development of cocaine-induced behavioral effects, which are associated with the plasma membrane expression of the GABAB heteroreceptor (GABABR). Methods We performed flow cytometry, immunoendocytosis, pHluorin activity analysis, electrophysiology analysis, and open-field testing to explore the role of Rab10 in modulating the membrane expression and function of GABABR and its regulatory effect on cocaine-induced behavioral effects. Results Transcriptomics analysis showed that Rab10 was elevated following acute cocaine treatment. Membrane levels of Rab10 increased within day 1 of the cocaine treatment, subsequently decreasing at later time points. Rab10 deficiency in NAc regions significantly increased cocaine-inhibited membrane GABABR levels and inhibited cocaine-induced hyperlocomotion and behavioral sensitization. In addition, GAD 67 + -expressing neurons from NAc regions treated with cocaine revealed a significant decrease in Rab10 membrane expression. Furthermore, NAc neuron-specific Rab10 knockout resulted in a significant increase in the cocaine-inhibited membrane expression of GABABR, along with increased miniature inhibitory postsynaptic current (mIPSC) amplitude and attenuation of baclofen-amplified Ca2+ influx. Conclusion These results uncover a new mechanism in which Rab10-GABABR signaling may serve as a potential pathway for regulating cocaine-induced behavioral effects.
Collapse
Affiliation(s)
- Zhuoxuan Yu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Tianyun Qiu
- Department of Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Caidi Yang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mingfen Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhen Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Aguado C, Luján R, Wickman K. Chronic ethanol exposure in mice evokes pre- and postsynaptic deficits in GABAergic transmission in ventral tegmental area GABA neurons. Br J Pharmacol 2024. [PMID: 39358985 DOI: 10.1111/bph.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE GABAergic neurons in mouse ventral tegmental area (VTA) exhibit elevated activity during withdrawal following chronic ethanol exposure. While increased glutamatergic input and decreased GABAA receptor sensitivity have been implicated, the impact of inhibitory signaling in VTA GABA neurons has not been fully addressed. EXPERIMENTAL APPROACH We used electrophysiological and ultrastructural approaches to assess the impact of chronic intermittent ethanol vapour exposure in mice on GABAergic transmission in VTA GABA neurons during withdrawal. We used CRISPR/Cas9 ablation to mimic a somatodendritic adaptation involving the GABAB receptor (GABABR) in ethanol-naïve mice to investigate its impact on anxiety-related behaviour. KEY RESULTS The frequency of spontaneous inhibitory postsynaptic currents was reduced in VTA GABA neurons following chronic ethanol treatment and this was reversed by GABABR inhibition, suggesting chronic ethanol strengthens the GABABR-dependent suppression of GABAergic input to VTA GABA neurons. Similarly, paired-pulse depression of GABAA receptor-dependent responses evoked by optogenetic stimulation of nucleus accumbens inputs from ethanol-treated mice was reversed by GABABR inhibition. Somatodendritic currents evoked in VTA GABA neurons by GABABR activation were reduced following ethanol exposure, attributable to the suppression of GIRK (Kir3) channel activity. Mimicking this adaptation enhanced anxiety-related behaviour in ethanol-naïve mice. CONCLUSIONS AND IMPLICATIONS Chronic ethanol weakens the GABAergic regulation of VTA GABA neurons in mice via pre- and postsynaptic mechanisms, likely contributing to their elevated activity during withdrawal and expression of anxiety-related behaviour. As anxiety can promote relapse during abstinence, interventions targeting VTA GABA neuron excitability could represent new therapeutic strategies for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Eric H Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Carolina Aguado
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
7
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
8
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
9
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Geisler CE, Décarie-Spain L, Loh MK, Trumbauer W, Gaisinsky J, Klug ME, Pelletier C, Davis JF, Schmidt HD, Roitman MF, Kanoski SE, Hayes MR. Amylin Modulates a Ventral Tegmental Area-to-Medial Prefrontal Cortex Circuit to Suppress Food Intake and Impulsive Food-Directed Behavior. Biol Psychiatry 2024; 95:938-950. [PMID: 37517705 DOI: 10.1016/j.biopsych.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND A better understanding of the neural mechanisms regulating impaired satiety to palatable foods is essential to treat hyperphagia linked with obesity. The satiation hormone amylin signals centrally at multiple nuclei including the ventral tegmental area (VTA). VTA-to-medial prefrontal cortex (mPFC) projections encode food reward information to influence behaviors including impulsivity. We hypothesized that modulation of VTA-to-mPFC neurons underlies amylin-mediated decreases in palatable food-motivated behaviors. METHODS We used a variety of pharmacological, behavioral, genetic, and viral approaches (n = 4-16/experiment) to investigate the anatomical and functional circuitry of amylin-controlled VTA-to-mPFC signaling in rats. RESULTS To first establish that VTA amylin receptor (calcitonin receptor) activation can modulate mPFC activity, we showed that intra-VTA amylin decreased food-evoked mPFC cFos. VTA amylin delivery also attenuated food-directed impulsive behavior, implicating VTA amylin signaling as a regulator of mPFC functions. Palatable food activates VTA dopamine and mPFC neurons. Accordingly, dopamine receptor agonism in the mPFC blocked the hypophagic effect of intra-VTA amylin, and VTA amylin injection reduced food-evoked phasic dopamine levels in the mPFC, supporting the idea that VTA calcitonin receptor activation decreases dopamine release in the mPFC. Surprisingly, calcitonin receptor expression was not found on VTA-to-mPFC projecting neurons but was instead found on GABAergic (gamma-aminobutyric acidergic) interneurons in the VTA that provide monosynaptic inputs to this pathway. Blocking intra-VTA GABA signaling, through GABA receptor antagonists and DREADD (designer receptor exclusively activated by designer drugs)-mediated GABAergic neuronal silencing, attenuated intra-VTA amylin-induced hypophagia. CONCLUSIONS These results indicate that VTA amylin signaling stimulates GABA-mediated inhibition of dopaminergic projections to the mPFC to mitigate impulsive consumption of palatable foods.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Maxine K Loh
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Wolf Trumbauer
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jane Gaisinsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly E Klug
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Caitlyn Pelletier
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jon F Davis
- Novo Nordisk Research Center Seattle, Seattle, Washington
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Song N, Liu Z, Gao Y, Lu S, Yang S, Yuan C. NAc-DBS corrects depression-like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA. Mol Psychiatry 2024; 29:1550-1566. [PMID: 38361128 DOI: 10.1038/s41380-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Major depressive disorder (MDD) is characterized by diverse debilitating symptoms that include loss of motivation and anhedonia. If multiple medications, psychotherapy, and electroconvulsive therapy fail in some patients with MDD, their condition is then termed treatment-resistant depression (TRD). MDD can be associated with abnormalities in the reward-system-dopaminergic mesolimbic pathway, in which the nucleus accumbens (NAc) and ventral tegmental area (VTA) play major roles. Deep brain stimulation (DBS) applied to the NAc alleviates the depressive symptoms of MDD. However, the mechanism underlying the effects of this DBS has remained elusive. In this study, using the chronic unpredictable mild stress (CUMS) mouse model, we investigated the behavioral and neurobiological effects of NAc-DBS on the multidimensional depression-like phenotypes induced by CUMS by integrating behavioral, in vivo microdialysis coupled with high-performance liquid chromatography-electrochemical detector (HPLC-ECD), calcium imaging, pharmacological, and genetic manipulation methods in freely moving mice. We found that long-term and repeated, but not single, NAc-DBS induced robust antidepressant responses in CUMS mice. Moreover, even a single trial NAc-DBS led to the elevation of the γ-aminobutyric acid (GABA) neurotransmitter, accompanied by the increase in dopamine (DA) neuron activity in the VTA. Both the inhibition of the GABAA receptor activity and knockdown of the GABAA-α1 gene in VTA-GABA neurons blocked the antidepressant effect of NAc-DBS in CUMS mice. Our results showed that NAc-DBS could disinhibit VTA-DA neurons by regulating the level of GABA and the activity of VTA-GABA in the VTA and could finally correct the depression-like behaviors in the CUMS mouse model.
Collapse
Affiliation(s)
- Nan Song
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Zhenhong Liu
- Institute for Brain Disorders, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shanshan Lu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shenglian Yang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
12
|
Petrella M, Borruto AM, Curti L, Domi A, Domi E, Xu L, Barbier E, Ilari A, Heilig M, Weiss F, Mannaioni G, Masi A, Ciccocioppo R. Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABA B receptor-mediated mechanism. Neuropharmacology 2024; 248:109866. [PMID: 38364970 DOI: 10.1016/j.neuropharm.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.
Collapse
Affiliation(s)
- Michele Petrella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Anna Maria Borruto
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Lorenzo Curti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ana Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Esi Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy; Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Alice Ilari
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Institute for Clinical and Experimental Medicine, Linkoping University, Linkoping, 58183, Sweden
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
13
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Khayat A, Yaka R. Activation of nucleus accumbens projections to the ventral tegmental area alters molecular signaling and neurotransmission in the reward system. Front Mol Neurosci 2024; 17:1271654. [PMID: 38528956 PMCID: PMC10962329 DOI: 10.3389/fnmol.2024.1271654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
The nucleus accumbens (NAc) and the ventral tegmental area (VTA) are integral brain regions involved in reward processing and motivation, including responses to drugs of abuse. Previously, we have demonstrated that activation of NAc-VTA afferents during the acquisition of cocaine conditioned place preference (CPP) reduces the rewarding properties of cocaine and diminished the activity of VTA dopamine neurons. In the current study, we examined the impact of enhancing these inhibitory inputs on molecular changes and neurotransmission associated with cocaine exposure. Our results unveiled significant reductions in extracellular signal-regulated kinase (ERK) levels in the VTA and medial prefrontal cortex (mPFC) of both cocaine-treated groups compared with the saline control group. Furthermore, optic stimulation of NAc-VTA inputs during cocaine exposure decreased the expression of GluA1 subunit of AMPA receptor in the VTA and mPFC. Notably, in the NAc, cocaine exposure paired with optic stimulation increased ERK levels and reduced GluA1 phosphorylation at Ser845 as compared with all other groups. Additionally, both cocaine-treated groups exhibited decreased levels of GluA1 phosphorylation at Ser831 in the NAc compared with the saline control group. Moreover, cocaine exposure led to reduced ERK, GluA1, and GluA1 phosphorylation at Ser845 and Ser831 in the mPFC. Augmentation of GABAergic tone from the NAc during cocaine conditioning mitigated changes in GluA1 phosphorylation at Ser845 in the mPFC but reduced ERK, GluA1, and GluA1 phosphorylation at Ser831 compared with the saline control group. Interestingly, enhancing GABAergic tone during saline conditioning decreased GluA1 phosphorylation at Ser831 compared with the saline control group in the mPFC. Our findings highlight the influence of modulating inhibitory inputs from the NAc to the VTA on molecular signaling and glutamatergic neurotransmission in cocaine-exposed animals. Activation of these inhibitory inputs during cocaine conditioning induced alterations in key signaling molecules and AMPA receptor, providing valuable insights into the neurobiological mechanisms underlying cocaine reward and cocaine use disorder. Further exploration of these pathways may offer potential therapeutic targets for the treatment of substance use disorder.
Collapse
Affiliation(s)
| | - Rami Yaka
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Cui J, Huang N, Fan G, Pan T, Han K, Jiang C, Liu X, Wang F, Ma L, Le Q. Paternal cocaine-seeking motivation defines offspring's vulnerability to addiction by down-regulating GABAergic GABRG3 in the ventral tegmental area. Transl Psychiatry 2024; 14:107. [PMID: 38388464 PMCID: PMC10884401 DOI: 10.1038/s41398-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.
Collapse
Affiliation(s)
- Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kunxiu Han
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| |
Collapse
|
16
|
Hleihil M, Benke D. Restoring GABA B receptor expression in the ventral tegmental area of methamphetamine addicted mice inhibits locomotor sensitization and drug seeking behavior. Front Mol Neurosci 2024; 17:1347228. [PMID: 38384279 PMCID: PMC10879384 DOI: 10.3389/fnmol.2024.1347228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Repeated exposure to psychostimulants such as methamphetamine (METH) induces neuronal adaptations in the mesocorticolimbic dopamine system, including the ventral tegmental area (VTA). These changes lead to persistently enhanced neuronal activity causing increased dopamine release and addictive phenotypes. A factor contributing to increased dopaminergic activity in this system appears to be reduced GABAB receptor-mediated neuronal inhibition in the VTA. Dephosphorylation of serine 783 (Ser783) of the GABAB2 subunit by protein phosphatase 2A (PP2A) appears to trigger the downregulation GABAB receptors in psychostimulant-addicted rodents. Therefore, preventing the interaction of GABAB receptors with PP2A using an interfering peptide is a promising strategy to restore GABAB receptor-mediated neuronal inhibition. We have previously developed an interfering peptide (PP2A-Pep) that inhibits the GABAB receptors/PP2A interaction and thereby restores receptor expression under pathological conditions. Here, we tested the hypothesis that restoration of GABAB receptor expression in the VTA of METH addicted mice reduce addictive phenotypes. We found that the expression of GABAB receptors was significantly reduced in the VTA and nucleus accumbens but not in the hippocampus and somatosensory cortex of METH-addicted mice. Infusion of PP2A-Pep into the VTA of METH-addicted mice restored GABAB receptor expression in the VTA and inhibited METH-induced locomotor sensitization as assessed in the open field test. Moreover, administration of PP2A-Pep into the VTA also reduced drug seeking behavior in the conditioned place preference test. These observations underscore the importance of VTA GABAB receptors in controlling addictive phenotypes. Furthermore, this study illustrates the value of interfering peptides targeting diseases-related protein-protein interactions as an alternative approach for a potential development of selective therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zürich, Switzerland
| |
Collapse
|
17
|
Khayat A, Yaka R. Activation of RMTg projections to the VTA reverse cocaine-induced molecular adaptation in the reward system. Transl Psychiatry 2024; 14:40. [PMID: 38242878 PMCID: PMC10799078 DOI: 10.1038/s41398-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
The rostromedial tegmental nucleus (RMTg) plays a crucial role in regulating reward-related behavior by exerting inhibitory control over the ventral tegmental area (VTA). This modulation of dopamine neuron activity within the VTA is essential for maintaining homeostasis in the reward system. Recently we have shown that activation of RMTg projections to the VTA during the acquisition of cocaine-conditioned place preference (CPP) reduces the rewarding properties of cocaine and decreases VTA dopamine neuron activity. By inhibiting dopamine neurons in the VTA, we hypothesized that RMTg projections hold the potential to restore reward system homeostasis disrupted by repeated cocaine use, and attenuate molecular adaptations in the reward system, including alterations in signaling pathways. Our study demonstrates that enhancing the GABAergic inputs from the RMTg to the VTA can mitigate cocaine-induced molecular changes in key regions, namely the VTA, nucleus accumbens (NAc), and prefrontal cortex (PFC). Specifically, we found that cocaine-induced alteration in the phosphorylation state of ERK (pERK) and GluA1 on serine 845 (S845) and serine 831 (S831), that play a major role in plasticity by controlling the activity and trafficking of AMPA receptors, were significantly reversed following optic stimulation of RMTg afferents to the VTA. These findings highlight the therapeutic potential of targeting the RMTg-VTA circuitry for mitigating cocaine reward. Ultimately, this research may pave the way for novel therapeutic interventions that restore balance in the reward system and alleviate the detrimental effects of cocaine.
Collapse
Affiliation(s)
- A Khayat
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - R Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
18
|
Cui X, Tong Q, Xu H, Xie C, Xiao L. A putative loop connection between VTA dopamine neurons and nucleus accumbens encodes positive valence to compensate for hunger. Prog Neurobiol 2023; 229:102503. [PMID: 37451329 DOI: 10.1016/j.pneurobio.2023.102503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Dopamine (DA) signal play pivotal roles in regulating motivated behaviors, including feeding behavior, but the role of midbrain DA neurons in modulating food intake and neural circuitry mechanisms remain largely unknown. Here, we found that activating but not inhibiting ventral tegmental area (VTA) DA neurons reduces mouse food intake. Furthermore, DA neurons in ventral VTA, especially neurons projecting to the medial nucleus accumbens (NAc), are activated by refeeding in the 24 h fasted mice. Combing neural circuitry tracing, optogenetic, chemogenetic, and pharmacological manipulations, we established that the VTA→medial NAc→VTA loop circuit is critical for the VTA DA neurons activation-induced food intake reduction. Moreover, activating either VTA DA neurons or dopaminergic axons in medial NAc elevates positive valence, which will compensate for the hungry-induced food intake. Thus, our study identifies a subset of positive valence-encoded VTA DA neurons forming possible loop connections with medial NAc that are anorexigenic.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiuping Tong
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hao Xu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuantong Xie
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Xiao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Nufer TM, Wu BJ, Boyce Z, Steffensen SC, Edwards JG. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacology 2023; 48:1396-1408. [PMID: 36899030 PMCID: PMC10354227 DOI: 10.1038/s41386-023-01554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Collapse
Affiliation(s)
- Teresa M Nufer
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | - Bridget J Wu
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA
| | - Zachary Boyce
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | | | - Jeffrey G Edwards
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA.
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA.
| |
Collapse
|
20
|
DeBaker MC, Mitten EH, Rose TR, Marron Fernandez de Velasco E, Gao R, Lee AM, Wickman K. RGS6 negatively regulates inhibitory G protein signaling in dopamine neurons and positively regulates binge-like alcohol consumption in mice. Br J Pharmacol 2023; 180:2140-2155. [PMID: 36929333 PMCID: PMC10504421 DOI: 10.1111/bph.16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Drugs of abuse, including alcohol, increase dopamine in the mesocorticolimbic system via actions on dopamine neurons in the ventral tegmental area (VTA). Increased dopamine transmission can activate inhibitory G protein signalling pathways in VTA dopamine neurons, including those controlled by GABAB and D2 receptors. Members of the R7 subfamily of regulator of G protein signalling (RGS) proteins can regulate inhibitory G protein signalling, but their influence on VTA dopamine neurons is unclear. Here, we investigated the influence of RGS6, an R7 RGS family memberthat has been implicated in the regulation of alcohol consumption in mice, on inhibitory G protein signalling in VTA dopamine neurons. EXPERIMENTAL APPROACH We used molecular, electrophysiological and genetic approaches to probe the impact of RGS6 on inhibitory G protein signalling in VTA dopamine neurons and on binge-like alcohol consumption in mice. KEY RESULTS RGS6 is expressed in adult mouse VTA dopamine neurons and it modulates inhibitory G protein signalling in a receptor-dependent manner, tempering D2 receptor-induced somatodendritic currents and accelerating deactivation of synaptically evoked GABAB receptor-dependent responses. RGS6-/- mice exhibit diminished binge-like alcohol consumption, a phenotype replicated in female (but not male) mice lacking RGS6 selectively in VTA dopamine neurons. CONCLUSIONS AND IMPLICATIONS RGS6 negatively regulates GABAB - and D2 receptor-dependent inhibitory G protein signalling pathways in mouse VTA dopamine neurons and exerts a sex-dependent positive influence on binge-like alcohol consumption in adult mice. As such, RGS6 may represent a new diagnostic and/or therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Margot C. DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Eric H. Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Timothy R. Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | | | - Runbo Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Anna M. Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
21
|
Enriquez-Traba J, Yarur-Castillo HE, Flores RJ, Weil T, Roy S, Usdin TB, LaGamma CT, Arenivar M, Wang H, Tsai VS, Moritz AE, Sibley DR, Moratalla R, Freyberg ZZ, Tejeda HA. Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546539. [PMID: 37425766 PMCID: PMC10327105 DOI: 10.1101/2023.06.27.546539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.
Collapse
|
22
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
23
|
Lu MF, Fu Q, Qiu TY, Yang JH, Peng QH, Hu ZZ. The CaMKII-dependent phosphorylation of GABA B receptors in the nucleus accumbens was involved in cocaine-induced behavioral sensitization in rats. CNS Neurosci Ther 2023; 29:1345-1356. [PMID: 36756679 PMCID: PMC10068462 DOI: 10.1111/cns.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Previous studies have established that the regulation of prolonged, distal neuronal inhibition by the GABAB heteroreceptor (GABAB R) is determined by its stability, and hence residence time, on the plasma membrane. AIMS Here, we show that GABAB R in the nucleus accumbens (NAc) of rats affects the development of cocaine-induced behavioral sensitization by mediating its perinucleus internalization and membrane expression. MATERIALS & METHODS By immunofluorescent labeling, flow cytometry analysis, Co-immunoprecipitation and open field test, we measured the role of Ca2+ /calmodulin-dependent protein kinase II (CaMKII) to the control of GABAB R membrane anchoring and cocaine induced-behavioral sensitization. RESULTS Repeated cocaine treatment in rats (15 mg/kg) significantly decreases membrane levels of GABAB1 R and GABAB2 R in the NAc after day 3, 5 and 7. The membrane fluorescence and protein levels of GABAB R was also decreased in NAc GAD67 + neurons post cocaine (1 μM) treatment after 5 min. Moreover, the majority of internalized GABAB1 Rs exhibited perinuclear localization, a decrease in GABAB1 R-pHluroin signals was observed in cocaine-treated NAc neurons. By contrast, membrane expression of phosphorylated CaMKII (pCaMKII) post cocaine treatment was significantly increased after day 1, 3, 5 and 7. Baclofen blocked the cocaine induced behavioral sensitization via inhibition of cocaine enhanced-pCaMKII-GABAB1 R interaction. CONCLUSION These findings reveal a new mechanism by which pCaMKII-GABAB R signaling can promote psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Ming F Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Tian Y Qiu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jian H Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing H Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Z Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Ostlund I, Von Gunten M, Smith C, Edwards JG. Chronic Δ9-tetrahydrocannabinol impact on plasticity, and differential activation requirement for CB1-dependent long-term depression in ventral tegmental area GABA neurons in adult versus young mice. Front Neurosci 2023; 16:1067493. [PMID: 36699526 PMCID: PMC9869137 DOI: 10.3389/fnins.2022.1067493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The ventral tegmental area (VTA) mediates incentive salience and reward prediction error through dopamine (DA) neurons that are regulated by local VTA GABA neurons. In young mice, VTA GABA cells exhibit a form of synaptic plasticity known as long-term depression (LTD) that is dependent on cannabinoid 1 (CB1) receptors preceded by metabotropic glutamate receptor 5 (mGluR5) signaling to induce endocannabinoid production. This LTD was eliminated following chronic (7-10 consecutive days) exposure to the marijuana derived cannabinoid Δ9 -tetrahydrocannabinol (THC). We now examine the mechanism behind THC-induced elimination of LTD in adolescents as well as plasticity induction ability in adult versus young male and female mice using whole-cell electrophysiology experiments of VTA GABA cells. Chronic THC injections in adolescents resulted in a loss of CB1 agonist-mediated depression, illustrating chronic THC likely desensitizes or removes synaptic CB1. We noted that seven days withdrawal from chronic THC restored LTD and CB1 agonist-induced depression, suggesting reversibility of THC-induced changes. Adult mice continue to express functional mGluR5 and CB1, but require a doubling of the synaptic stimulation compared to young mice to induce LTD, suggesting a quantitative difference in CB1-dependent plasticity between young and adult mice. One potential rationale for this difference is changes in AMPA and NMDA glutamate receptors. Indeed, AMPA/NMDA ratios were increased in in adults compared to young mice. Lastly, we performed quantitative reverse-transcription PCR and identified that CB1, DAGLα, and GluA1 levels increased following chronic THC exposure. Collectively, our data demonstrate the first age-dependent GABA neuron plasticity in the VTA, which could have implications for decreased THC dependence capacity in adults, as well as the mechanism behind chronic THC-induced synaptic alterations in young mice.
Collapse
Affiliation(s)
- Isaac Ostlund
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| | | | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Jeffrey G. Edwards
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| |
Collapse
|
25
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Linders LE, Supiot LF, Du W, D’Angelo R, Adan RAH, Riga D, Meye FJ. Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology. Int J Mol Sci 2022; 23:ijms231911612. [PMID: 36232917 PMCID: PMC9570045 DOI: 10.3390/ijms231911612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the last two decades the combination of brain slice patch clamp electrophysiology with optogenetic stimulation has proven to be a powerful approach to analyze the architecture of neural circuits and (experience-dependent) synaptic plasticity in such networks. Using this combination of methods, originally termed channelrhodopsin-assisted circuit mapping (CRACM), a multitude of measures of synaptic functioning can be taken. The current review discusses their rationale, current applications in the field, and their associated caveats. Specifically, the review addresses: (1) How to assess the presence of synaptic connections, both in terms of ionotropic versus metabotropic receptor signaling, and in terms of mono- versus polysynaptic connectivity. (2) How to acquire and interpret measures for synaptic strength and function, like AMPAR/NMDAR, AMPAR rectification, paired-pulse ratio (PPR), coefficient of variance and input-specific quantal sizes. We also address how synaptic modulation by G protein-coupled receptors can be studied with pharmacological approaches and advanced technology. (3) Finally, we elaborate on advances on the use of dual color optogenetics in concurrent investigation of multiple synaptic pathways. Overall, with this review we seek to provide practical insights into the methods used to study neural circuits and synapses, by combining optogenetics and patch-clamp electrophysiology.
Collapse
|
27
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
28
|
Grillo W, Boateng CA, Brady LJ, Gaudier-Diaz MM, Mitchell KA, Ruffin VA, Tejdeda HA, Marshall SA. Reflections of six neuroscientists: The influences of training at minority serving institutions. J Neurosci Res 2022; 100:1529-1537. [PMID: 33527411 PMCID: PMC9942539 DOI: 10.1002/jnr.24796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/28/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Wendy Grillo
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Comfort A. Boateng
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, NC, USA
| | - Lillian J. Brady
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Monica M. Gaudier-Diaz
- Department of Psychology & Neuroscience, University of North Carolina-Chapel Hill, NC, USA
| | - Kerry-Ann Mitchell
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH, USA
| | - Vernon A. Ruffin
- Department of Natural Sciences, Virginia Union University, Richmond, VA, USA
| | - Hugo A. Tejdeda
- Intramural Research Program, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD, USA
| | - S. Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA,Department of Psychology & Neuroscience, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
29
|
Chen Z, Terman DH, Travers SP, Travers JB. Regulation of Rostral Nucleus of the Solitary Tract Responses to Afferent Input by A-type K+ Current. Neuroscience 2022; 495:115-125. [PMID: 35659639 PMCID: PMC9253083 DOI: 10.1016/j.neuroscience.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Responses in the rostral (gustatory) nucleus of the solitary tract (rNST) are modified by synaptic interactions within the nucleus and the constitutive membrane properties of the neurons themselves. The potassium current IA is one potential source of modulation. In the caudal NST, projection neurons with IA show lower fidelity to afferent stimulation compared to cells without. We explored the role of an A-type K+ current (IA) in modulating the response to afferent stimulation and GABA-mediated inhibition in the rNST using whole cell patch clamp recording in transgenic mice that expressed channelrhodopsin (ChR2 H134R) in GABAergic neurons. The presence of IA was determined in current clamp and the response to electrical stimulation of afferent fibers in the solitary tract was assessed before and after treatment with the specific Kv4 channel blocker AmmTX3. Blocking IA significantly increased the response to afferent stimulation by 53%. Using dynamic clamp to create a synthetic IA conductance, we demonstrated a significant 14% decrease in responsiveness to afferent stimulation in cells lacking IA. Because IA reduced excitability and is hyperpolarization-sensitive, we examined whether IA contributed to the inhibition resulting from optogenetic release of GABA. Although blocking IA decreased the percent suppression induced by GABA, this effect was attributable to the increased responsiveness resulting from AmmTX3, not to a change in the absolute magnitude of suppression. We conclude that rNST responses to afferent input are regulated independently by IA and GABA.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, Ohio State University, United States
| | - D H Terman
- Department of Mathematics, Ohio State University, United States
| | - S P Travers
- Division of Biosciences, Ohio State University, United States
| | - J B Travers
- Division of Biosciences, Ohio State University, United States.
| |
Collapse
|
30
|
Abraham AD, Casello SM, Land BB, Chavkin C. Optogenetic stimulation of dynorphinergic neurons within the dorsal raphe activate kappa opioid receptors in the ventral tegmental area and ablation of dorsal raphe prodynorphin or kappa receptors in dopamine neurons blocks stress potentiation of cocaine reward. ADDICTION NEUROSCIENCE 2022; 1. [PMID: 36176476 PMCID: PMC9518814 DOI: 10.1016/j.addicn.2022.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Behavioral stress exposure increases the risk of drug-taking in individuals with substance use disorders by mechanisms involving the dynorphins, which are the endogenous neuropeptides for the kappa opioid receptor (KOR). KOR agonists have been shown to encode dysphoria, aversion, and changes in reward valuation, and kappa opioid antagonists are in clinical development for treating substance use disorders. In this study, we confirmed that KORs were expressed in dopaminergic neurons in the ventral tegmental area (VTA) of male C57BL6/J mice. Genetic ablation of KORs from dopamine neurons blocked the potentiating effects of repeated forced swim stress on cocaine conditioned place preference (CPP). KOR activation inhibited dopamine neuron GCaMP6m calcium activity in VTA during swim stress and caused a rebound enhancement during the period after stress exposure. Transient optogenetic inhibition of VTA dopamine neurons with AAV5-DIO-SwiChR was acutely aversive in a real time place preference assay and blunted cocaine CPP when inhibition was administered concurrently with cocaine conditioning. However, when inhibition preceded cocaine conditioning by 30 min, cocaine CPP was enhanced. Retrograde tracing with CAV2-DIO-ZsGreen identified a population of prodynorphinCre neurons in the dorsal raphe nucleus (DRN) projecting to the VTA. Optogenetic stimulation of dynorphinergic neurons within the DRN by Channelrhodopsin2 activated KOR in VTA and ablation of prodynorphin blocked stress potentiation of cocaine CPP. Together, these studies demonstrate the presence of a dynorphin/KOR midbrain circuit that projects from the DRN to VTA and is involved in altering the dynamic response of dopamine neuron activity to enhance drug reward learning.
Collapse
|
31
|
Qi G, Zhang P, Li T, Li M, Zhang Q, He F, Zhang L, Cai H, Lv X, Qiao H, Chen X, Ming J, Tian B. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun 2022; 13:577. [PMID: 35102141 PMCID: PMC8804001 DOI: 10.1038/s41467-022-28190-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.
Collapse
Affiliation(s)
- Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Qian Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Feng He
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xinyuan Lv
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Xiaoqian Chen
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, P. R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China.
| |
Collapse
|
32
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
33
|
Avegno EM, Gilpin NW. Reciprocal midbrain-extended amygdala circuit activity in preclinical models of alcohol use and misuse. Neuropharmacology 2022; 202:108856. [PMID: 34710467 PMCID: PMC8627447 DOI: 10.1016/j.neuropharm.2021.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Alcohol dependence is characterized by a shift in motivation to consume alcohol from positive reinforcement (i.e., increased likelihood of future alcohol drinking based on its rewarding effects) to negative reinforcement (i.e., increased likelihood of future alcohol drinking based on alcohol-induced reductions in negative affective symptoms, including but not limited to those experienced during alcohol withdrawal). The neural adaptations that occur during this transition are not entirely understood. Mesolimbic reinforcement circuitry (i.e., ventral tegmental area [VTA] neurons) is activated during early stages of alcohol use, and may be involved in the recruitment of brain stress circuitry (i.e., extended amygdala) during the transition to alcohol dependence, after chronic periods of high-dose alcohol exposure. Here, we review the literature regarding the role of canonical brain reinforcement (VTA) and brain stress (extended amygdala) systems, and the connections between them, in acute, sub-chronic, and chronic alcohol response. Particular emphasis is placed on preclinical models of alcohol use.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Corresponding author: Correspondence should be addressed to Elizabeth Avegno, 1901 Perdido St, Room 7205, New Orleans, LA 70112,
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA
| |
Collapse
|
34
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
35
|
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function. Mol Psychiatry 2021; 26:6427-6450. [PMID: 33879865 PMCID: PMC8526653 DOI: 10.1038/s41380-021-01099-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
Collapse
|
36
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
37
|
Valenti O, Zambon A, Boehm S. Orchestration of Dopamine Neuron Population Activity in the Ventral Tegmental Area by Caffeine: Comparison With Amphetamine. Int J Neuropsychopharmacol 2021; 24:832-841. [PMID: 34278424 PMCID: PMC8538898 DOI: 10.1093/ijnp/pyab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Among psychostimulants, the dopamine transporter ligands amphetamine and cocaine display the highest addictive potential; the adenosine receptor antagonist caffeine is most widely consumed but less addictive. Psychostimulant actions of amphetamine were correlated with its ability to orchestrate ventral tegmental dopamine neuron activity with contrasting shifts in firing after single vs repeated administration. Whether caffeine might impinge on dopamine neuron activity has remained elusive. METHODS Population activity of ventral tegmental area dopamine neurons was determined by single-unit extracellular recordings and set in relation to mouse behavior in locomotion and conditioned place preference experiments, respectively. RESULTS A single dose of caffeine reduced population activity as did amphetamine and the selective adenosine A2A antagonist KW-6002, but not the A1 antagonist DPCPX. Repeated administration of KW-6002 or amphetamine led to drug-conditioned place preference and to unaltered or even enhanced population activity. Recurrent injection of caffeine or DPCPX, in contrast, failed to cause conditioned place preference and persistently reduced population activity. Subsequent to repetitive drug administration, re-exposure to amphetamine or KW-6002, but not to caffeine or DPCPX, was able to reduce population activity. CONCLUSIONS Behavioral sensitization to amphetamine is attributed to persistent activation of ventral tegmental area dopamine neurons via the ventral hippocampus. Accordingly, a switch from acute A2A receptor-mediated reduction of dopamine neuron population activity to enduring A1 receptor-mediated suppression is correlated with tolerance rather than sensitization in response to repeated caffeine intake.
Collapse
Affiliation(s)
- Ornella Valenti
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria,Correspondence: Assoc. Prof. Ornella Valenti, Schwarzspanierstrasse 17, 1090 Vienna, Austria ()
| | - Alice Zambon
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
38
|
Weitz M, Khayat A, Yaka R. GABAergic projections to the ventral tegmental area govern cocaine-conditioned reward. Addict Biol 2021; 26:e13026. [PMID: 33638301 DOI: 10.1111/adb.13026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/20/2023]
Abstract
Elevated dopamine (DA) levels in the reward system underlie various drug-related behaviors, including addiction. As a major DA source in the reward system, the ventral tegmental area (VTA) is highly regulated by GABAergic inputs projected from different brain regions. It was previously shown that cocaine exposure reduces GABAA -mediated inhibitory postsynaptic currents (IPSCs) in VTA DA neurons; however, the specific GABAergic input underlying this inhibitory effect remains unknown. Here, using optogenetics, we separately activate and characterize different GABAergic afferents innervating the VTA, focusing on the rostromedial tegmental nucleus (RMTg) and the nucleus accumbens (NAc). GABAA -mediated IPSCs were recorded from VTA DA neurons, and the effect of DA-induced inhibition was measured in an afferent-specific manner. In addition, to examine the effect of enhanced GABAergic tone on the rewarding properties of cocaine, we exogenously activated the different GABAergic inputs during the acquisition phase of cocaine conditioned place preference (CPP). We found that acute cocaine exposure strongly attenuates GABAA -mediated IPSCs in VTA DA neurons from both inhibitory sources. Furthermore, exogenous light activation of both RMTg and NAc afferents in the VTA during the acquisition of cocaine-CPP significantly reduced the rewarding properties of cocaine. This behavioral observation was correlated with the reduction in the neuronal activity of VTA DA neurons as measured by the expression of c-fos. Together, these results emphasize the critical role of these GABAergic inputs to the VTA in modulating and potentially interrupting cocaine reward.
Collapse
Affiliation(s)
- Moriya Weitz
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine The Hebrew University of Jerusalem Jerusalem Israel
| | - Alaa Khayat
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine The Hebrew University of Jerusalem Jerusalem Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
39
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
40
|
Doyon WM, Ostroumov A, Ontiveros T, Gonzales RA, Dani JA. Ethanol produces multiple electrophysiological effects on ventral tegmental area neurons in freely moving rats. Addict Biol 2021; 26:e12899. [PMID: 32255261 DOI: 10.1111/adb.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Although alcohol (i.e., ethanol) is a major drug of abuse, the acute functional effects of ethanol on the reward circuitry are not well defined in vivo. In freely moving rats, we examined the effect of intravenous ethanol administration on neuronal unit activity in the posterior ventral tegmental area (VTA), a central component of the mesolimbic reward system. VTA units were classified as putative dopamine (DA) neurons, fast-firing GABA neurons, and unidentified neurons based on a combination of electrophysiological properties and DA D2 receptor pharmacological responses. A gradual infusion of ethanol significantly altered the firing rate of DA neurons in a concentration-dependent manner. The majority of DA neurons were stimulated by ethanol and showed enhanced burst firing activity, but a minority was inhibited. Ethanol also increased the proportion of DA neurons that exhibited pacemaker-like firing patterns. In contrast, ethanol mediated a variety of effects in GABA and other unidentified neurons that were distinct from DA neurons, including a nonlinear increase in firing rate, delayed inhibition, and more biphasic activity. These results provide evidence of discrete electrophysiological effects of ethanol on DA neurons compared with other VTA cell types, suggesting a complex role of the VTA in alcohol-induced responses in freely moving animals.
Collapse
Affiliation(s)
- William M. Doyon
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Alexey Ostroumov
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Tiahna Ontiveros
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - Rueben A. Gonzales
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - John A. Dani
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
41
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
42
|
Li Y, Jiang Q, Wang L. Appetite Regulation of TLR4-Induced Inflammatory Signaling. Front Endocrinol (Lausanne) 2021; 12:777997. [PMID: 34899611 PMCID: PMC8664591 DOI: 10.3389/fendo.2021.777997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Appetite is the basis for obtaining food and maintaining normal metabolism. Toll-like receptor 4 (TLR4) is an important receptor expressed in the brain that induces inflammatory signaling after activation. Inflammation is considered to affect the homeostatic and non-homeostatic systems of appetite, which are dominated by hypothalamic and mesolimbic dopamine signaling. Although the pathological features of many types of inflammation are known, their physiological functions in appetite are largely unknown. This review mainly addresses several key issues, including the structures of the homeostatic and non-homeostatic systems. In addition, the mechanism by which TLR4-induced inflammatory signaling contributes to these two systems to regulate appetite is also discussed. This review will provide potential opportunities to develop new therapeutic interventions that control appetite under inflammatory conditions.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| |
Collapse
|
43
|
Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021; 200:173072. [PMID: 33227308 PMCID: PMC7796909 DOI: 10.1016/j.pbb.2020.173072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Opioid abuse and related overdose deaths continue to rise in the United States, contributing to the national opioid crisis in the USA. The neural mechanisms underlying opioid abuse and addiction are still not fully understood. This review discusses recent progress in basic research dissecting receptor mechanisms and circuitries underlying opioid reward and addiction. We first review the canonical GABA-dopamine neuron hypothesis that was upheld for half a century, followed by major findings challenging this hypothesis. We then focus on recent progress in research evaluating the role of the mesolimbic and nigrostriatal dopamine circuitries in opioid reward and relapse. Based on recent findings that activation of dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is equally rewarding and that GABA neurons in the rostromedial tegmental nucleus (RMTg) and the substantia nigra pars reticula (SNr) are rich in mu opioid receptors and directly synapse onto midbrain DA neurons, we proposed that the RTMg→VTA → ventrostriatal and SNr → SNc → dorsostriatal pathways may act as the two major neural substrates underlying opioid reward and abuse. Lastly, we discuss possible integrations of these two pathways during initial opioid use, development of opioid abuse and maintenance of compulsive opioid seeking.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America.
| |
Collapse
|
44
|
Gao M, Der-Ghazarian TS, Li S, Qiu S, Neisewander JL, Wu J. Dual Effect of 5-HT 1B/1D Receptors on Dopamine Neurons in Ventral Tegmental Area: Implication for the Functional Switch After Chronic Cocaine Exposure. Biol Psychiatry 2020; 88:922-934. [PMID: 32172944 DOI: 10.1016/j.biopsych.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Serotonin (5-HT) 1B/1D receptor (5-HT1B/1DR) agonists undergo an abstinence-induced switch in their effects on cocaine-related behaviors, which may involve changes in modulation of dopamine (DA) neurons in the ventral tegmental area (VTA). However, it is unclear how 5-HT1B/1DRs affect VTA DA neuronal function and whether modulation of these neurons mediates the abstinence-induced switch after chronic cocaine exposure. METHODS We examined the ability of 5-HT1B/1DRs to modulate D2 autoreceptors (D2ARs) and synaptic transmission in the VTA by slice recording and single unit recording in vivo in naïve mice and in mice with chronic cocaine treatment. RESULTS We report a bidirectional modulation of VTA DA neuronal firing through the interaction of VTA 5-HT1B/1DRs and D2ARs. In both VTA slices and the VTA of anesthetized mice, the 5-HT1B/1DR agonist CP94253 decreased DA neuronal firing rate and evoked excitatory postsynaptic currents to DA neurons in slice. Paradoxically, CP94253 decreased quinpirole-induced inhibition of DA neurons by reducing D2AR-mediated G protein-gated inwardly rectifying potassium current. This manifested decreased GABAA (gamma-aminobutyric acid A) receptor-mediated evoked inhibitory postsynaptic currents in slice, resulting in disinhibition of DA neurons, in opposition to the 5-HT1B/1DR-induced inhibition. This dual effect was verified in chronic cocaine-treated and mild stress-treated, male mice on days 1 and 20 posttreatment. CONCLUSIONS This study revealed dual effects of CP94253 on VTA DA neurons that are dependent on D2AR sensitivity, with anti-inhibition under normal D2AR sensitivity and inhibition under low D2AR sensitivity. These dual effects may underlie the ability of CP94253 to both enhance and inhibit cocaine-induced behaviors.
Collapse
Affiliation(s)
- Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ.
| | | | - Shuangtao Li
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ; Shantou University Medical College, Guangdong, Shantou, China
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | | | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ; Shantou University Medical College, Guangdong, Shantou, China.
| |
Collapse
|
45
|
Rogers A, Beier KT. Can transsynaptic viral strategies be used to reveal functional aspects of neural circuitry? J Neurosci Methods 2020; 348:109005. [PMID: 33227339 DOI: 10.1016/j.jneumeth.2020.109005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
Viruses have proved instrumental to elucidating neuronal connectivity relationships in a variety of organisms. Recent advances in genetic technologies have facilitated analysis of neurons directly connected to a defined starter population. These advances have also made viral transneuronal mapping available to the broader neuroscience community, where one-step rabies virus mapping has become routine. This method is commonly used to identify inputs onto defined cell populations, to demonstrate the quantitative proportion of inputs coming from specific brain regions, or to compare input patterns between two or more cell populations. Furthermore, the number of inputs labeled is often assumed to reflect the number of synaptic connections, and these viruses are commonly believed to label strong synapses more efficiently than weak synapses. While these maps are often interpreted to provide a quantitative estimate of the synaptic landscape onto starter cell populations, in fact very little is known about how transneuronal transmission takes place. We do not know how these viruses transmit between neurons, if they display biases in the cell types labeled, or even if transmission is synapse-specific. In this review, we discuss the experimental evidence against or in support of key concepts in viral tracing, focusing mostly on the use of one-step rabies input mapping and related methods. Does spread of these viruses occur specifically through synaptic connections, preferentially through synapses, or non-specifically? How efficient is viral transneuronal transmission, and is this efficiency equal in all cell types? And lastly, to what extent does viral labeling reflect functional connectivity?
Collapse
Affiliation(s)
- Alexandra Rogers
- Department of Pharmaceutical Sciences, Irvine, Irvine, CA, 92617, United States
| | - Kevin T Beier
- Department of Physiology and Biophysics, Irvine, Irvine, CA, 92617, United States; Department of Pharmaceutical Sciences, Irvine, Irvine, CA, 92617, United States; Department of Biomedical Engineering, Irvine, Irvine, CA, 92617, United States; Department of Neurobiology and Behavior, Irvine, Irvine CA, 92617, United States; Center for the Neurobiology of Learning and Memory, Irvine, Irvine, CA, 92617, United States; UCI Mind, University of California, Irvine, Irvine, CA, 92617, United States.
| |
Collapse
|
46
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
47
|
Evans RC, Twedell EL, Zhu M, Ascencio J, Zhang R, Khaliq ZM. Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons. Cell Rep 2020; 32:108156. [PMID: 32937133 PMCID: PMC9887718 DOI: 10.1016/j.celrep.2020.108156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Substantia nigra (SNc) dopaminergic neurons respond to aversive stimuli with inhibitory pauses in firing followed by transient rebound activation. We tested integration of inhibitory synaptic inputs onto SNc neurons from genetically defined populations in dorsal striatum (striosome and matrix) and external globus pallidus (GPe; parvalbumin- and Lhx6-positive), and examined their contribution to pause-rebound firing. Activation of striosome projections, which target "dendron bouquets" in the pars reticulata (SNr), consistently quiets firing and relief from striosome inhibition triggers rebound activity. Striosomal inhibitory postsynaptic currents (IPSCs) display a prominent GABA-B receptor-mediated component that strengthens the impact of SNr dendrite synapses on somatic excitability and enables rebounding. By contrast, GPe projections activate GABA-A receptors on the soma and proximal dendrites but do not result in rebounding. Lastly, optical mapping shows that dorsal striatum selectively inhibits the ventral population of SNc neurons, which are intrinsically capable of rebounding. Therefore, we define a distinct striatonigral circuit for generating dopamine rebound.
Collapse
Affiliation(s)
- Rebekah C. Evans
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily L. Twedell
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manhua Zhu
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jefferson Ascencio
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Lead Contact,Correspondence:
| |
Collapse
|
48
|
Dopaminergic Signaling in the Nucleus Accumbens Modulates Stress-Coping Strategies during Inescapable Stress. J Neurosci 2020; 40:7241-7254. [PMID: 32847967 DOI: 10.1523/jneurosci.0444-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 01/11/2023] Open
Abstract
Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder (PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evading aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuronal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc, a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the modulation of stress-coping behaviors in animals under tail suspension stress.SIGNIFICANCE STATEMENT The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopaminergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST.
Collapse
|
49
|
Soden ME, Chung AS, Cuevas B, Resnick JM, Awatramani R, Zweifel LS. Anatomic resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs. Nat Neurosci 2020; 23:968-980. [PMID: 32541962 PMCID: PMC7927312 DOI: 10.1038/s41593-020-0657-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
The ventral tegmental area (VTA) is important for reward processing and motivation. The anatomic organization of neurotransmitter-specific inputs to the VTA remains poorly resolved. In the present study, we mapped the major neurotransmitter projections to the VTA through cell-type-specific retrograde and anterograde tracing. We found that glutamatergic inputs arose from a variety of sources and displayed some connectivity biases toward specific VTA cell types. The sources of GABAergic projections were more widespread, displayed a high degree of differential innervation of subregions in the VTA and were largely biased toward synaptic contact with local GABA neurons. Inactivation of GABA release from the two major sources, locally derived versus distally derived, revealed distinct roles for these projections in behavioral regulation. Optogenetic manipulation of individual distal GABAergic inputs also revealed differential behavioral effects. These results demonstrate that GABAergic projections to the VTA are a major contributor to the regulation and diversification of the structure.
Collapse
Affiliation(s)
- Marta E. Soden
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| | - Amanda S. Chung
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| | - Beatriz Cuevas
- Department of Pharmacology, University of Washington, Seattle, 98195
| | - Jesse M. Resnick
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195
| | | | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| |
Collapse
|
50
|
Richter A, Reinhard F, Kraemer B, Gruber O. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing. Eur Neuropsychopharmacol 2020; 36:137-150. [PMID: 32546416 DOI: 10.1016/j.euroneuro.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 01/12/2023]
Abstract
Processing of reward and salience without reward association are known to critically rely on the dopamine system. A growing body of evidence from animal studies suggests that both functions may be subserved by distinct subregions in midbrain and ventral striatum, specifically nucleus accumbens (NAcc). Yet in vivo investigation of these brain structures in humans has been rare. Here we examined blood oxygen level dependent signals in response to frequently presented rewarding events and infrequently presented neutral events in 20 healthy subjects using high-resolution functional magnetic resonance imaging (fMRI) for imaging the human midbrain and NAcc. The present findings revealed distinct activation patterns in brain regions of interest, namely increased activation in substantia nigra pars compacta (SNc) and dorsolateral NAcc in response to neutral events, while the VTA and both the ventromedial and dorsolateral NAcc were significantly activated due to rewarding events. Moreover, psychophysiological interaction analyses demonstrated regionally specialized processing pathways, such as a dorsolateral pathway when processing salience per se, i.e. increased functional interactions between SNc, dorsolateral NAcc and dorsolateral and medial prefrontal cortex (PFC); and a ventromedial pathway during reward processing, i.e. increased functional coupling between VTA and ventromedial NAcc. Thus, these findings may not only accelerate the integration of animal models of brain function with human neuroscience but may also improve diagnosis and treatment in patients with neuropsychiatric disorders such as schizophrenia and depression in which dopaminergic dysfunction and aberrant attribution of salience have been implicated.
Collapse
Affiliation(s)
- Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Fabian Reinhard
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|