1
|
Frigon A, Lecomte CG. Stepping up after spinal cord injury: negotiating an obstacle during walking. Neural Regen Res 2025; 20:1919-1929. [PMID: 39254549 PMCID: PMC11691478 DOI: 10.4103/nrr.nrr-d-24-00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles. After spinal cord injury, stepping over an obstacle becomes challenging. Stepping over an obstacle requires sensorimotor transformations in several structures of the brain, including the parietal cortex, premotor cortex, and motor cortex. Sensory information and planning are transformed into motor commands, which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory, coordinate the limbs, and maintain balance. After spinal cord injury, bidirectional communication between the brain and spinal cord is disrupted and animals, including humans, fail to voluntarily modify limb trajectory to step over an obstacle. Therefore, in this review, we discuss the neuromechanical control of stepping over an obstacle, why it fails after spinal cord injury, and how it recovers to a certain extent.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Lo YT, Lam JL, Jiang L, Lam WL, Edgerton VR, Liu CY. Cervical spinal cord stimulation for treatment of upper limb paralysis: a narrative review. J Hand Surg Eur Vol 2025; 50:781-795. [PMID: 39932700 DOI: 10.1177/17531934241307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Recent advances in cervical spinal cord stimulation (SCS) have demonstrated improved efficacy as a therapeutic intervention for restoring hand functions in individuals with spinal cord injuries or stroke. Accumulating evidence consistently shows that cervical SCS yields significant improvements in grip force, proximal arm strength and muscle activation, with both immediate and sustained effects. This review synthesizes the evidence that electrical stimulations modulate the spinal and supraspinal organization of uninjured descending motor tracts, primarily the residual corticospinal tract, reticulospinal tract and propriospinal network of neurons, as well as increasing the sensitivity of spinal interneurons at the stimulated segments to these inputs. Additionally, we examine contemporary strategies aimed at achieving more precise patterned stimulations, including intraspinal microstimulation, ventral cord stimulation and closed-loop neuromodulation, and discuss the potential benefits of incorporating cervical SCS into a multimodal treatment paradigm.Level of evidence: V.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore
- Department of Neurosurgery, Singapore General Hospital, Singapore
| | - Jordan Lw Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Lei Jiang
- Department of Orthopaedic Surgery, Division of Spine Surgery, Singapore General Hospital, Singapore
| | - Wee Leon Lam
- Department of Hand Surgery, Singapore General Hospital, Singapore
| | - Victor R Edgerton
- Rancho Research Institute, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
- Neurorestoration Center, University of Southern California, Los Angeles, California, United States
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
| | - Charles Y Liu
- Scientific Advisory Board, Guttmann Institute, Barcelona, Spain
- Department of Neurosurgery, Ranchos Los Amigos National Rehabilitation Hospital, Downey, California, United States
| |
Collapse
|
3
|
Fatima F, Tharu NS, Castillo C, Ng A, Gerasimenko Y, Ovechkin A. Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury. J Clin Med 2025; 14:3827. [PMID: 40507584 PMCID: PMC12155934 DOI: 10.3390/jcm14113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/23/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating conditions that has profound effects on every physiological system, including respiratory dysfunction, which is listed among the most common causes of mortality and morbidity in this population. Previous research has demonstrated that respiratory training could facilitate respiratory motor- and autonomic activity-based plasticity. However, due to the reduced excitability of spinal networks below the level of injury, the effectiveness of such interventions is often limited to the residual functional capacity preserved after injury. In recent decades, several novel neuromodulatory techniques have been explored to enhance neuronal connectivity and integrate into respiratory rehabilitation strategies. In this review, we examine the mechanisms underlying respiratory deficits following SCI and discuss the neuromodulatory approaches designed to promote neural plasticity for respiratory recovery. Current evidence suggests that integrating multimodal neuromodulation with activity-based respiratory training holds promise; it may significantly enhance respiratory functional recovery and could become a standard component of respiratory rehabilitation protocols in individuals with SCI.
Collapse
Affiliation(s)
- Farwah Fatima
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Niraj Singh Tharu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Camilo Castillo
- Department of Neurological Surgery, Division of Physical Medicine and Rehabilitation, University of Louisville, Louisville, KY 40202, USA
| | - Alex Ng
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Alexander Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Sun X, Li L, Huang L, Li Y, Wang L, Wei Q. Harnessing spinal circuit reorganization for targeted functional recovery after spinal cord injury. Neurobiol Dis 2025; 207:106854. [PMID: 40010611 DOI: 10.1016/j.nbd.2025.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the communication between the brain and spinal cord, resulting in the loss of motor function below the injury site. However, spontaneous structural and functional plasticity occurs in neural circuits after SCI, with unaffected synaptic inputs forming new connections and detour pathways to support recovery. The review discusses various mechanisms of circuit reorganization post-SCI, including supraspinal pathways, spinal interneurons, and spinal central pattern generators. Functional recovery may rely on maintaining a balance between excitatory and inhibitory neural activity, as well as enhancing proprioceptive input, which plays a key role in limb stability. The review emphasizes the importance of endogenous neuronal regeneration, neuromodulation therapies (such as electrical stimulation) and proprioception in SCI treatment. Future research should integrate advanced technologies such as gene targeting, imaging, and single-cell mapping to better understand the mechanisms underpinning SCI recovery, aiming to identify key neuronal subpopulations for targeted reconstruction and enhanced functional recovery. By harnessing spinal circuit reorganization, these efforts hold the potential to pave the way for more precise and effective strategies for functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Sun
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lijuan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Liyi Huang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Yangan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lu Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
5
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Furuta R, Miyake A. Fibroblast growth factor 22. Differentiation 2025; 143:100860. [PMID: 40139106 DOI: 10.1016/j.diff.2025.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Fibroblast growth factor 22 (FGF22) is a member of the FGF7 subfamily that functions as a paracrine factor and was identified in the human placenta in 2001. The FGF22 gene is located on human chromosome 19p13.3, mouse chromosome 10, and zebrafish chromosome 22 and is closely linked to the BSG, HCN2, and POLRMT genes. The gene is composed of three exons, which are common in humans, mice, and zebrafish. However, in humans and mice, FGF22 is produced as two isoforms by alternative splicing, whereas no isoforms have been reported in zebrafish. In humans, FGF22 is expressed in the skin, brain, and ovaries, whereas in mice, it is expressed in the skin, brain, retina, spinal cord, and cochlea. Various abnormalities have been reported in these regions in Fgf22 mutant mice. In zebrafish, fgf22 is expressed in the forebrain, midbrain, and otic vesicles during embryogenesis, and an analysis of knockdown zebrafish models revealed an important role for fgf22 in the process of brain formation. As expected from the results of these functional analyses, FGF22 is also associated with human diseases such as depression, spinal cord injury, hearing loss, and cancer.
Collapse
Affiliation(s)
- Rise Furuta
- Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama 640-8156, Japan
| | - Ayumi Miyake
- Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama 640-8156, Japan.
| |
Collapse
|
7
|
van Helden JFL, Cabral HV, Alexander E, Strutton PH, Martinez-Valdes E, Falla D, Chowdhury JR, Chiou SY. Changes in thoracic erector spinae regional activation during postural adjustments and functional reaching tasks after spinal cord injury. J Neurophysiol 2025; 133:727-741. [PMID: 39828930 DOI: 10.1152/jn.00246.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Many individuals with incomplete spinal cord injury (SCI) exhibit reduced volitional control of trunk muscles, such as impaired voluntary contractions of the erector spinae (ES), due to damage to the neural pathways regulating sensorimotor function. Studies using conventional bipolar electromyography (EMG) showed alterations in the overall, or global, activation of the trunk muscles in people with SCI. However, how activation varied across specific regions within the ES, referred to as regional activation, remains unknown. The aim of the study was to investigate the regional distribution of the ES activity below the level of injury in individuals with incomplete SCI during postural tasks and multidirectional reaching tasks using high-density EMG. Twenty-one individuals with incomplete SCI and age-matched controls were recruited. The EMG amplitude of the thoracic ES and displacement of the arm, trunk, and center of pressure were recorded during the tasks. Activation was more in the lower region of the ES in individuals with SCI than in the controls during the postural tasks. In addition, activation was limited to a small area of the ES during the reaching tasks. The EMG amplitude was greater during reaching forward than returning to the upright posture in the controls; however, this phase-dependent difference in the EMG amplitude was not present in individuals with SCI. Our findings demonstrate changes in regional activation of the thoracic ES during postural and reaching tasks, likely reflecting injury-induced changes in selective neural control to activate residual muscle fibers of the ES for postural control and function after SCI.NEW & NOTEWORTHY We demonstrate that individuals with chronic incomplete spinal cord injury (SCI) recruit lower part of the thoracic erector spinae (ES) for postural control of the trunk. We also show that activation was restricted in a smaller part of the ES, and the discrete control of the ES was lost during functional reaching movements in individuals with SCI. Our study provides evidence of alterations in neural control between vertebral levels in individuals with SCI.
Collapse
Affiliation(s)
- Joeri F L van Helden
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Emma Alexander
- The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Paul H Strutton
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joy Roy Chowdhury
- Midland Centre for Spinal Injuries, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHSFT, United Kingdom
| | - Shin-Yi Chiou
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Lee DH, Cao D, Moon Y, Chen C, Liu NK, Xu XM, Wu W. Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise. Neural Regen Res 2025; 20:836-844. [PMID: 38886956 PMCID: PMC11433897 DOI: 10.4103/nrr.nrr-d-23-01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00028/figure1/v/2024-06-17T092413Z/r/image-tiff Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group (10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
Collapse
Affiliation(s)
- Do-Hun Lee
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dan Cao
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Younghye Moon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Alvarez Ribelles A, Tsoulfas P, Venkatesh I, Blackmore MG. Single-Nuclei Sequencing Reveals a Robust Corticospinal Response to Nearby Axotomy But Overall Insensitivity to Spinal Injury. J Neurosci 2025; 45:e1508242024. [PMID: 39746824 PMCID: PMC11841758 DOI: 10.1523/jneurosci.1508-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia and retinal ganglion cells, extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown. In this study, we used single-nuclei sequencing in adult male and female mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury induced only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Additionally, CST neurons exhibited minimal response to cervical injury but showed a much stronger reaction to intracortical axotomy, with upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neurons to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited detection of distant injuries and the subsequent modest baseline neuronal response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Manojkumar Kumaran
- Council of Scientific and Industrial Research (CSIR)-Center for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Elizabeth Batsel
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Sofia Testor-Cabrera
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | | | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ishwariya Venkatesh
- Council of Scientific and Industrial Research (CSIR)-Center for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
10
|
Ríos C, Salgado-Ceballos H, Grijalva I, Morales-Guadarrama A, Diaz-Ruiz A, Olayo R, Morales-Corona J, Olayo MG, Cruz GJ, Mondragón-Lozano R, Alvarez-Mejia L, Orozco-Barrios C, Sánchez-Torres S, Fabela-Sánchez O, Coyoy-Salgado A, Hernández-Godínez B, Ibáñez-Contreras A, Mendez-Armenta M. Demonstration of therapeutic effect of plasma-synthesized polypyrrole/iodine biopolymer in rhesus monkey with complete spinal cord section. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:21. [PMID: 39961937 PMCID: PMC11832569 DOI: 10.1007/s10856-025-06862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Spinal cord injury (SCI) can cause paralysis, and although multiple therapeutic proposals have been developed in murine models, results have hardly been replicated in humans. As non-human primates (NHP) are more similar to humans than rodents, the current study investigated whether it was possible to reproduce in a NHP, the previously obtained beneficial results by using a plasma-synthesized polypyrrole/iodine (PPy/I) biopolymer, which reduce glial scar formation and inflammatory response and promotes nerve tissue preservation, regenerative processes and functional recovery in rats. In NHPs (Rhesus monkey) with SCI by complete transection (SCT) and with plasma-synthesized PPy/I application (experimental) or without (control), the expression of pro-inflammatory cytokines in blood, preservation of nervous tissue through magnetic resonance imaging and histological and morphometric techniques, regeneration through immunohistochemistry study and functional recovery through clinical examination, were evaluated. Control NHP showed a markedly increased of pro-inflammatory cytokines vs. experimental NHP, which preserved more nerve tissue. At the end of the follow-up, a thinner glial scar in the injured spinal cord was observed in the experimental NHP as well as regenerative nerve processes (NeuN and β-III tubulin expression), while control NHP had a marked glial scar, large cysts and less nerve tissue at the injured zone. Plasma-synthesized PPy/I also reduced the loss of pelvic limb muscle mass and allowed the experimental NHP recovered knee-jerk, withdrawal and plantar reflexes as well as movement in the hind limbs. Since most of the beneficial effects of plasma-synthesized PPy/I previously reported in rats were also observed in the NHP, these preliminary findings make their replication in humans with SCI more likely.
Collapse
Affiliation(s)
- Camilo Ríos
- Research Direction, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, México City, México
| | - Hermelinda Salgado-Ceballos
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México.
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico.
| | - Israel Grijalva
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Roberto Olayo
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Juan Morales-Corona
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - María G Olayo
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Guillermo J Cruz
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Rodrigo Mondragón-Lozano
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, CONAHCyT-Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Omar Fabela-Sánchez
- Department of Chemistry Macromolecules and Nanomaterials, CONAHCyT-Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico
| | - Angélica Coyoy-Salgado
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | | | | | - Marisela Mendez-Armenta
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
11
|
Paracha M, Brezinski AN, Singh R, Sinson E, Satkunendrarajah K. Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury. Cells 2025; 14:288. [PMID: 39996760 PMCID: PMC11854602 DOI: 10.3390/cells14040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Spinal interneurons (SpINs) are pivotal to the function of neural circuits, orchestrating motor, sensory, and autonomic functions in the healthy, intact central nervous system. These interneurons (INs) are heterogeneous, with diverse types contributing to various neural systems, including those that control respiratory function. Research in the last few decades has highlighted the complex involvement of SpINs in modulating motor control. SpINs also partake in motor plasticity by aiding in adapting and rewiring neural circuits in response to injury or disease. This plasticity is crucial in the context of spinal cord injury (SCI), where damage often leads to severe and long-term breathing deficits. Such deficits are a leading cause of morbidity and mortality in individuals with SCI, emphasizing the need for effective interventions. This review will focus on SpIN circuits involved in the modulation of breathing and explore current and emerging approaches that leverage SpINs as therapeutic targets to promote respiratory recovery following SCI.
Collapse
Affiliation(s)
- Maha Paracha
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Allison N. Brezinski
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rhea Singh
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
| | - Elizabeth Sinson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
| | - Kajana Satkunendrarajah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.P.); (A.N.B.); (R.S.); (E.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Mestriner RG, Kalsi-Ryan S, Gholamrezaei G, Balbinot G. Editorial: Rehabilitation to guide functional plasticity and regeneration with novel cellular, pharmacological and neuromodulation therapies. FRONTIERS IN REHABILITATION SCIENCES 2025; 6:1563975. [PMID: 40018653 PMCID: PMC11865205 DOI: 10.3389/fresc.2025.1563975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Régis Gemerasca Mestriner
- Biomedical Gerontology Program of the School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Neurosciences, Motor Behavior and Rehabilitation Research Group (NECORE), PUCRS, Porto Alegre, Brazil
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Geriatric and Gerontology Institute, PUCRS, Porto Alegre, Brazil
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute|Toronto Rehab, University Health Network, Toronto, ON, Canada
| | - Gita Gholamrezaei
- KITE Research Institute|Toronto Rehab, University Health Network, Toronto, ON, Canada
| | - Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Movement Neurorehabilitation and Neurorepair Laboratory, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
13
|
Saijilafu, Ye LC, Li H, Li H, Lin X, Hu K, Huang Z, Chimedtseren C, Fang L, Saijilahu, Xu RJ. A bibliometric analysis of the top 100 most cited articles on corticospinal tract regeneration from 2004 to 2024. Front Neurosci 2025; 18:1509850. [PMID: 39935762 PMCID: PMC11811756 DOI: 10.3389/fnins.2024.1509850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Objective Here, bibliometric and visual analytical techniques were employed to assess the key features of the 100 most cited publications concerning corticospinal tract (CST) regeneration. Methods Research was conducted within the Web of Science Core Collection to pinpoint the 100 most cited publications on CST regeneration. From these, comprehensive data encompassing titles, authorship, key terms, publication venues, release timelines, geographic origins, and institutional affiliations were extracted, followed by an in-depth bibliometric examination. Results The 100 most cited publications were all published between 2004 and 2024. These seminal papers amassed an aggregate of 18,321 citations, with individual citation counts ranging from 83 to 871 and a median of 136 citations per paper. Schwab M. E., stood out as the most prominent contributor, with significant authorship in 9 of the 100 papers. The United States dominated the geographical distribution, accounting for 49 of the articles. With 17 publications, the University of California System led the institutional rankings. A thorough keyword analysis revealed pivotal themes in the field, encompassing the optic nerve, gene expression, CST integrity and regeneration, diffusion tensor imaging, myelin-associated glycoproteins, inhibitors of neurite outgrowth, and methods of electrical and intracortical microstimulation. Conclusion This investigation provides a bibliometric analysis of CST regeneration, underscoring the significant contribution of the United States to this field. Our findings unveiled the dynamics and trends within the field of CST regeneration, providing a scientific foundation for advancing clinical applications. Building on this analysis, the clinical application of CST regeneration should be optimized through interdisciplinary collaboration, enabling the exploration and validation of a variety of therapeutic approaches, including the use of neurotrophic factors, stem cell therapies, biomaterials, and electrical stimulation. Concurrently, additional clinical trials are necessary to test the safety and efficacy of these therapeutic methods and develop assessment tools for monitoring the recovery of patients. Furthermore, rehabilitation strategies should be refined, and professional education and training should be provided to enhance the understanding of CST regeneration treatments among both medical professionals and patients. The implementation of these strategies promises to enhance therapeutic outcomes and the quality of life of patients with spinal cord injury (SCI).
Collapse
Affiliation(s)
- Saijilafu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huanyi Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Haokun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyi Lin
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Kehui Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zekai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | | | - Linjun Fang
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Saijilahu
- Tongliao Centers for Disease Control and Prevention, Tongliao, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
14
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. eLife 2025; 13:RP103504. [PMID: 39868989 PMCID: PMC11771960 DOI: 10.7554/elife.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the 'hemisection' was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional ('intact', left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ('hemisected', right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
15
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 PMCID: PMC11877619 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R. Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J. Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
16
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
17
|
Sheikh IS, Keefe KM, Sterling NA, Junker IP, Li C, Chen J, Xu XM, Kirby LG, Smith GM. Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury. iScience 2024; 27:111371. [PMID: 39654633 PMCID: PMC11626773 DOI: 10.1016/j.isci.2024.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Skilled forelimb patterning is regulated by the corticospinal tract (CST) with support from brainstem regions. When the CST is lesioned, there is a loss of forelimb function; however, if indirect pathways remain intact, rehabilitative training can facilitate recovery. Following spinal cord injury, rehabilitation is thought to enhance the reorganization and plasticity of spared supraspinal-propriospinal circuits, aiding functional recovery. This study focused on the roles of cervical propriospinal interneurons (PNs) and rubrospinal neurons (RNs) in the recovery of reaching and grasping behaviors in rats with bilateral lesions of the CST and dorsal columns at C5. The lesions resulted in a 50% decrease in pellet retrieval, which normalized over four weeks of training. Silencing PNs or RNs after recovery resulted in reduced retrieval success. Notably, silencing both pathways corresponded to greater functional loss, underscoring their parallel contributions to recovery, alongside evidence of CST fiber sprouting in the spinal cord and red nucleus.
Collapse
Affiliation(s)
- Imran S. Sheikh
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kathleen M. Keefe
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Noelle A. Sterling
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ian P. Junker
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Chen Li
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jie Chen
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lynn G. Kirby
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - George M. Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
18
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612376. [PMID: 39314446 PMCID: PMC11419089 DOI: 10.1101/2024.09.10.612376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the "hemisection" was always applied to the right side. Based on our model, we hypothesized that following hemisection, the contralesional ("intact", left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ("hemisected", right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
19
|
Williams PTJA, Schelbaum E, Ahmanna C, Alexander H, Kanté K, Soares S, Sharif H, Nothias F, Martin JH. Combined biomaterial scaffold and neuromodulation strategy to promote tissue repair and corticospinal connectivity after spinal cord injury in a rodent model. Exp Neurol 2024; 382:114965. [PMID: 39332797 DOI: 10.1016/j.expneurol.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) damages the trauma site, leading to progressive and secondary structural defects rostral and caudal to the injury. Interruption of ascending and descending pathways produce motor, sensory, and autonomic impairments, driving the need for effective therapies. In this study, we address lesion site repair and promoting descending projections using a combined biomaterial-neuromodulation strategy in a rat model of cervical contusion SCI. To promote tissue repair, we used Chitosan fragmented physical hydrogel suspension (Cfphs), a biomaterial formulation optimized to mitigate inflammation and support tissue remodeling. To promote descending projections, we targeted the corticospinal motor system with dual motor cortex-trans-spinal direct current neuromodulation to promote spared corticospinal tract (CST) axon sprouting rostral and caudal to SCI. Cfphs, injected into the lesion site acutely, was followed by 10 days of daily neuromodulation. Analysis was made at the chronic phase, 8-weeks post-SCI. Compared with SCI only, Cfphs alone or in combination with neuromodulation prevented cavity formation, by promoting tissue remodeling at the injury site, abrogated astrogliosis surrounding the newly formed tissue, and enabled limited CST axon growth into the remodeled injury site. Cfphs alone significantly reduced CST axon dieback and was accompanied by preserving more CST axon gray matter projections rostral to SCI. Cfphs + neuromodulation produced sprouting rostral and caudal to injury. Our findings show that our novel biomaterial-neuromodulation combinatorial strategy achieves significant injury site tissue remodeling and promoted CST projections rostral and caudal to SCI.
Collapse
Affiliation(s)
- P T J A Williams
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Eva Schelbaum
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Chaimae Ahmanna
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France; Medjeduse, 57 Rue Richelieu, 75002 Paris, France
| | - Heather Alexander
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Kadia Kanté
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France; Medjeduse, 57 Rue Richelieu, 75002 Paris, France
| | - Sylvia Soares
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France
| | - Hisham Sharif
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA
| | - Fatiha Nothias
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France.
| | - John H Martin
- City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA; Graduate Center of the City University of New York School, New York, USA.
| |
Collapse
|
20
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Arab RA, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:6225-6258. [PMID: 39340178 PMCID: PMC11576264 DOI: 10.1113/jp286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send inputs to spinal circuits to co-ordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb co-ordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, probably affecting functional responses to external perturbations. KEY POINTS: Cutaneous afferent inputs co-ordinate muscle activity in the four limbs during locomotion when the forepaw dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb co-ordination. We investigated cutaneous reflexes from forelimb afferents during quadrupedal locomotion by electrically stimulating the superficial radial nerve bilaterally, before and after staggered lateral thoracic hemisections in cats. We showed a loss/reduction of mid- and long-latency homolateral and diagonal reflex responses in hindlimb muscles early after the first hemisection that partially recovered with left superficial radial nerve stimulation, before being reduced after the second hemisection. Targeting cutaneous reflex pathways from forelimb afferents projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
21
|
Higuchi K, Uyeda A, Quan L, Tanabe S, Kato Y, Kawahara Y, Muramatsu R. Synaptotagmin 4 Supports Spontaneous Axon Sprouting after Spinal Cord Injury. J Neurosci 2024; 44:e1593232024. [PMID: 39266302 PMCID: PMC11502230 DOI: 10.1523/jneurosci.1593-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a Web resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function.
Collapse
Affiliation(s)
- Kyoka Higuchi
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
22
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
23
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
24
|
Thomas SJ, Ghosh B, Wang Z, Yang M, Nong J, Severa J, Wright MC, Zhong Y, Lepore AC. Hepatocyte Growth Factor Delivery to Injured Cervical Spinal Cord Using an Engineered Biomaterial Protects Respiratory Neural Circuitry and Preserves Functional Diaphragm Innervation. J Neurotrauma 2024; 41:2168-2185. [PMID: 39078323 DOI: 10.1089/neu.2024.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
A major portion of spinal cord injury (SCI) cases occur in the cervical region, where essential components of the respiratory neural circuitry are located. Phrenic motor neurons (PhMNs) housed at cervical spinal cord level C3-C5 directly innervate the diaphragm, and SCI-induced damage to these cells severely impairs respiratory function. In this study, we tested a biomaterial-based approach aimed at preserving this critical phrenic motor circuitry after cervical SCI by locally delivering hepatocyte growth factor (HGF). HGF is a potent mitogen that promotes survival, proliferation, migration, repair, and regeneration of a number of different cell and tissue types in response to injury. We developed a hydrogel-based HGF delivery system that can be injected into the intrathecal space for local delivery of high levels of HGF without damaging the spinal cord. Implantation of HGF hydrogel after unilateral C5 contusion-type SCI in rats preserved diaphragm function, as assessed by in vivo recordings of both compound muscle action potentials and inspiratory electromyography amplitudes. HGF hydrogel also preserved PhMN innervation of the diaphragm, as assessed by both retrograde PhMN tracing and detailed neuromuscular junction morphological analysis. Furthermore, HGF hydrogel significantly decreased lesion size and degeneration of cervical motor neuron cell bodies, as well as reduced levels surrounding the injury site of scar-associated chondroitin sulfate proteoglycan molecules that limit axon growth capacity. Our findings demonstrate that local biomaterial-based delivery of HGF hydrogel to injured cervical spinal cord is an effective strategy for preserving respiratory circuitry and diaphragm function.
Collapse
Affiliation(s)
- Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mengxi Yang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jenna Severa
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Du X, Zhang S, Khabbaz A, Cohen KL, Zhang Y, Chakraborty S, Smith GM, Wang H, Yadav AP, Liu N, Deng L. Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF. Cells 2024; 13:1160. [PMID: 38995011 PMCID: PMC11240522 DOI: 10.3390/cells13131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210005, China
| | - Shengqi Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Aytak Khabbaz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kristen Lynn Cohen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samhita Chakraborty
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Amol P. Yadav
- Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Naikui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Lo YL, Hwang R, Teng PPC, Tan YE. Corpus Callosum-Mediated Interhemispheric Interactions in Cervical Spondylotic Myelopathy. J Clin Neurophysiol 2024; 41:473-477. [PMID: 38922289 DOI: 10.1097/wnp.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
PURPOSE The corpus callosum is crucial for interhemispheric interactions in the motor control of limb functions. Human and animal studies suggested spinal cord pathologies may induce cortical reorganization in sensorimotor areas. We investigate participation of the corpus callosum in executions of a simple motor task in patients with cervical spondylotic myelopathy (CSM) using transcranial magnetic stimulation. METHODS Twenty patients with CSM with various MRI grades of severity of cord compression were compared with 19 normal controls. Ipsilateral silent period, contralateral silent period, central motor conduction time, and transcallosal conduction time (TCT) were determined. RESULTS In both upper and lower limbs, TCTs were significantly increased for patients with CSM than normal controls ( p < 0.001 for all), without side-to-side differences. Ipsilateral silent period and contralateral silent period durations were significantly increased bilaterally for upper limbs in comparison to controls ( p < 0.01 for all), without side-to-side differences. There were no significant correlations of TCT with central motor conduction time nor severity of CSM for both upper and lower limbs ( p > 0.05 for all) bilaterally. CONCLUSIONS Previous transcranial magnetic stimulation studies show increased motor cortex excitability in CSM; hence, increased TCTs observed bilaterally may be a compensatory mechanism for effective unidirectional and uniplanar execution of muscle activation in the distal limb muscles. Lack of correlation of TCTs with severity of CSM or central motor conduction time may be in keeping with a preexistent role of the corpus callosum as a predominantly inhibitory pathway for counteracting redundant movements resulting from increased motor cortex excitability occurring after spinal cord lesions.
Collapse
Affiliation(s)
- Yew Long Lo
- National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore; and
- Singapore General Hospital, Singapore, Singapore
| | - Ruby Hwang
- Singapore General Hospital, Singapore, Singapore
| | | | - Yam Eng Tan
- Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
27
|
Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Ribelles AA, Tsoulfas P, Venkatesh I, Blackmore MG. Injury distance limits the transcriptional response to spinal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596075. [PMID: 38854133 PMCID: PMC11160615 DOI: 10.1101/2024.05.27.596075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown. Here we employed single-nuclei sequencing in mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury triggered only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Moreover, CST neurons also responded minimally to cervical injury but much more strongly to intracortical axotomy, including upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neuron to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited sensing of distant injuries and the subsequent modest baseline neuronal response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | - Manojkumar Kumaran
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | - Elizabeth Batsel
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ishwariya Venkatesh
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | | |
Collapse
|
28
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
29
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:1987-2017. [PMID: 38593215 PMCID: PMC11068482 DOI: 10.1113/jp286151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Shen T, Zhang W, Wang X, Ren X. Application of"Spinal cord fusion" in spinal cord injury repair and its neurological mechanism. Heliyon 2024; 10:e29422. [PMID: 38638967 PMCID: PMC11024622 DOI: 10.1016/j.heliyon.2024.e29422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) is a severely disabling and catastrophic condition that poses significant global clinical challenges. The difficulty of SCI repair results from the distinctive pathophysiological mechanisms, which are characterised by limited regenerative capacity and inadequate neuroplasticity of the spinal cord. Additionally, the formation of cystic cavities and astrocytic scars after SCI further obstructs both the ascending and descending neural conduction pathways. Consequently, the urgent challenge in post-SCI recovery lies in repairing the damaged spinal cord to reconstruct a functional and intact neural conduction circuit. In recent years, significant advancements in biological tissue engineering technology and novel therapies have resulted in a transformative shift in the field of SCI repair. Currently, SCI treatment primarily involves drug therapy, stem cell therapy, the use of biological materials, growth factors, and other approaches. This paper comprehensively reviews the progress in SCI research over the years, with a particular focus on the concept of "Spinal Cord Fusion" as a promising technique for SCI reconstruction. By discussing this important research progress and the neurological mechanisms involved, our aim is to help solve the problem of SCI repair as soon as possible and to bring new breakthroughs in the treatment of paraplegia after SCI.
Collapse
Affiliation(s)
- Tingting Shen
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Weihua Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaogang Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| |
Collapse
|
31
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Al Arab R, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590723. [PMID: 38712151 PMCID: PMC11071401 DOI: 10.1101/2024.04.23.590723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb coordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, likely affecting functional responses to external perturbations.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
32
|
Dominguez-Bajo A, Clotman F. Potential Roles of Specific Subclasses of Premotor Interneurons in Spinal Cord Function Recovery after Traumatic Spinal Cord Injury in Adults. Cells 2024; 13:652. [PMID: 38667267 PMCID: PMC11048910 DOI: 10.3390/cells13080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.
Collapse
Affiliation(s)
- Ana Dominguez-Bajo
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| |
Collapse
|
33
|
Hu Y, Sun Y, Yuan H, Liu J, Chen L, Liu D, Xu Y, Zhou X, Ding L, Zhang Z, Xiong L, Xue L, Wang T. Vof16-miR-185-5p-GAP43 network improves the outcomes following spinal cord injury via enhancing self-repair and promoting axonal growth. CNS Neurosci Ther 2024; 30:e14535. [PMID: 38168094 PMCID: PMC11017428 DOI: 10.1111/cns.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu DistrictWest China Airport Hospital of Sichuan UniversityChengduChina
| | - Yi‐Fei Sun
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Hao Yuan
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jia Liu
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Dong‐Hui Liu
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Yang Xu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xin‐Fu Zhou
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Li Ding
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Ze‐Tao Zhang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| |
Collapse
|
34
|
Scheuber MI, Guidolin C, Martins S, Sartori AM, Hofer AS, Schwab ME. Electrical stimulation of the cuneiform nucleus enhances the effects of rehabilitative training on locomotor recovery after incomplete spinal cord injury. Front Neurosci 2024; 18:1352742. [PMID: 38595973 PMCID: PMC11002271 DOI: 10.3389/fnins.2024.1352742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Most human spinal cord injuries are anatomically incomplete, leaving some fibers still connecting the brain with the sublesional spinal cord. Spared descending fibers of the brainstem motor control system can be activated by deep brain stimulation (DBS) of the cuneiform nucleus (CnF), a subnucleus of the mesencephalic locomotor region (MLR). The MLR is an evolutionarily highly conserved structure which initiates and controls locomotion in all vertebrates. Acute electrical stimulation experiments in female adult rats with incomplete spinal cord injury conducted in our lab showed that CnF-DBS was able to re-establish a high degree of locomotion five weeks after injury, even in animals with initially very severe functional deficits and white matter lesions up to 80-95%. Here, we analyzed whether CnF-DBS can be used to support medium-intensity locomotor training and long-term recovery in rats with large but incomplete spinal cord injuries. Rats underwent rehabilitative training sessions three times per week in an enriched environment, either with or without CnF-DBS supported hindlimb stepping. After 4 weeks, animals that trained under CnF-DBS showed a higher level of locomotor performance than rats that trained comparable distances under non-stimulated conditions. The MLR does not project to the spinal cord directly; one of its main output targets is the gigantocellular reticular nucleus in the medulla oblongata. Long-term electrical stimulation of spared reticulospinal fibers after incomplete spinal cord injury via the CnF could enhance reticulospinal anatomical rearrangement and in this way lead to persistent improvement of motor function. By analyzing the spared, BDA-labeled giganto-spinal fibers we found that their gray matter arborization density after discontinuation of CnF-DBS enhanced training was lower in the lumbar L2 and L5 spinal cord in stimulated as compared to unstimulated animals, suggesting improved pruning with stimulation-enhanced training. An on-going clinical study in chronic paraplegic patients investigates the effects of CnF-DBS on locomotor capacity.
Collapse
Affiliation(s)
- Myriam I. Scheuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Carolina Guidolin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Suzi Martins
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Andrea M. Sartori
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Anna-Sophie Hofer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Jensen VN, Huffman EE, Jalufka FL, Pritchard AL, Baumgartner S, Walling I, C. Gibbs H, McCreedy DA, Alilain WJ, Crone SA. V2a neurons restore diaphragm function in mice following spinal cord injury. Proc Natl Acad Sci U S A 2024; 121:e2313594121. [PMID: 38442182 PMCID: PMC10945804 DOI: 10.1073/pnas.2313594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.
Collapse
Affiliation(s)
- Victoria N. Jensen
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH45219
| | - Emily E. Huffman
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY40536
| | - Frank L. Jalufka
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Anna L. Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Sarah Baumgartner
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Ian Walling
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH45219
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH45267
| | - Holly C. Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Microscopy and Imaging Center, Texas A&M University, College Station, TX77843
| | - Dylan A. McCreedy
- Department of Biology, Texas A&M University, College Station, TX77843
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX77843
| | - Warren J. Alilain
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY40536
| | - Steven A. Crone
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH45267
| |
Collapse
|
36
|
Brown BL, Anil N, States G, Whittemore SR, Magnuson DSK. Long ascending propriospinal neurons are heterogenous and subject to spinal cord injury induced anatomic plasticity. Exp Neurol 2024; 373:114631. [PMID: 38070723 PMCID: PMC10922963 DOI: 10.1016/j.expneurol.2023.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Long ascending propriospinal neurons (LAPNs) are a subset of spinal interneurons that provide direct connectivity between distant spinal segments. Here, we focus specifically on an anatomically defined population of "inter-enlargement" LAPNs with cell bodies at L2/3 and terminals at C5/6. Previous studies showed that silencing LAPNs in awake and freely moving animals disrupted interlimb coordination of the hindlimbs, forelimbs, and heterolateral limb pairs. Surprisingly, despite a proportion of LAPNs being anatomically intact post- spinal cord injury (SCI), silencing them improved locomotor function but only influenced coordination of the hindlimb pair. Given the functional significance of LAPNs pre- and post-SCI, we characterized their anatomy and SCI-induced anatomical plasticity. This detailed anatomical characterization revealed three morphologically distinct subsets of LAPNs that differ in soma size, neurite complexity and/or neurite orientation. Following a mild thoracic contusive SCI there was a marked shift in neurite orientation in two of the LAPN subsets to a more dorsoventral orientation, and collateral densities decreased in the cervical enlargement but increased just caudal to the injury epicenter. These post-SCI anatomical changes potentially reflect maladaptive plasticity and an effort to establish new functional inputs from sensory afferents that sprout post-SCI to achieve circuitry homeostasis.
Collapse
Affiliation(s)
- Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States; Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Neha Anil
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States; Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Gregory States
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States; Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States; Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States; Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - David S K Magnuson
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States; Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States; Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
37
|
Calderone A, Cardile D, De Luca R, Quartarone A, Corallo F, Calabrò RS. Brain Plasticity in Patients with Spinal Cord Injuries: A Systematic Review. Int J Mol Sci 2024; 25:2224. [PMID: 38396902 PMCID: PMC10888628 DOI: 10.3390/ijms25042224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A spinal cord injury (SCI) causes changes in brain structure and brain function due to the direct effects of nerve damage, secondary mechanisms, and long-term effects of the injury, such as paralysis and neuropathic pain (NP). Recovery takes place over weeks to months, which is a time frame well beyond the duration of spinal shock and is the phase in which the spinal cord remains unstimulated below the level of injury and is associated with adaptations occurring throughout the nervous system, often referred to as neuronal plasticity. Such changes occur at different anatomical sites and also at different physiological and molecular biological levels. This review aims to investigate brain plasticity in patients with SCIs and its influence on the rehabilitation process. Studies were identified from an online search of the PubMed, Web of Science, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF under (n) 9QP45. We found that neuroplasticity can affect the sensory-motor network, and different protocols or rehabilitation interventions can activate this process in different ways. Exercise rehabilitation training in humans with SCIs can elicit white matter plasticity in the form of increased myelin water content. This review has demonstrated that SCI patients may experience plastic changes either spontaneously or as a result of specific neurorehabilitation training, which may lead to positive outcomes in functional recovery. Clinical and experimental evidence convincingly displays that plasticity occurs in the adult CNS through a variety of events following traumatic or non-traumatic SCI. Furthermore, efficacy-based, pharmacological, and genetic approaches, alone or in combination, are increasingly effective in promoting plasticity.
Collapse
Affiliation(s)
- Andrea Calderone
- Graduate School of Health Psychology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
38
|
Fisher KM, Garner JP, Darian-Smith C. Chronic Adaptations in the Dorsal Horn Following a Cervical Spinal Cord Injury in Primates. J Neurosci 2024; 44:e0877232023. [PMID: 38233220 PMCID: PMC10860610 DOI: 10.1523/jneurosci.0877-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal cord injury (SCI) is devastating, with limited treatment options and variable outcomes. Most in vivo SCI research has focused on the acute and early post-injury periods, and the promotion of axonal growth, so little is understood about the clinically stable chronic state, axonal growth over time, and what plasticity endures. Here, we followed animals into the chronic phase following SCI, to address this gap. Male macaques received targeted deafferentation, affecting three digits of one hand, and were divided into short (4-6 months) or long-term (11-12 months) groups, based on post-injury survival times. Monkeys were assessed behaviorally, where possible, and all exhibited an initial post-injury deficit in manual dexterity, with gradual functional recovery over 2 months. We previously reported extensive sprouting of somatosensory corticospinal (S1 CST) fibers in the dorsal horn in the first five post-injury months. Here, we show that by 1 year, the S1 CST sprouting is pruned, with the terminal territory resembling control animals. This was reflected in the number of putatively "functional" synapses observed, which increased over the first 4-5 months, and then returned to baseline by 1 year. Microglia density also increased in the affected dorsal horn at 4-6 months and then decreased, but did not return to baseline by 1 year, suggesting refinement continues beyond this time. Overall, there is a long period of reorganization and consolidation of adaptive circuitry in the dorsal horn, extending well beyond the initial behavioral recovery. This provides a potential window to target therapeutic opportunities during the chronic phase.
Collapse
Affiliation(s)
- Karen M Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| |
Collapse
|
39
|
Zhao S, Tang C, Weinberger J, Gao D, Hou S. Sprouting of afferent and efferent inputs to pelvic organs after spinal cord injury. J Neuropathol Exp Neurol 2023; 83:20-29. [PMID: 38102789 PMCID: PMC10746698 DOI: 10.1093/jnen/nlad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Neural plasticity occurs within the central and peripheral nervous systems after spinal cord injury (SCI). Although central alterations have extensively been studied, it is largely unknown whether afferent and efferent fibers in pelvic viscera undergo similar morphological changes. Using a rat spinal cord transection model, we conducted immunohistochemistry to investigate afferent and efferent innervations to the kidney, colon, and bladder. Approximately 3-4 weeks after injury, immunostaining demonstrated that tyrosine hydroxylase (TH)-labeled postganglionic sympathetic fibers and calcitonin gene-related peptide (CGRP)-immunoreactive sensory terminals sprout in the renal pelvis and colon. Morphologically, sprouted afferent or efferent projections showed a disorganized structure. In the bladder, however, denser CGRP-positive primary sensory fibers emerged in rats with SCI, whereas TH-positive sympathetic efferent fibers did not change. Numerous CGRP-positive afferents were observed in the muscle layer and the lamina propria of the bladder following SCI. TH-positive efferent inputs displayed hypertrophy with large diameters, but their innervation patterns were sustained. Collectively, afferent or efferent inputs sprout widely in the pelvic organs after SCI, which may be one of the morphological bases underlying functional adaptation or maladaptation.
Collapse
Affiliation(s)
- Shunyi Zhao
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Chuanxi Tang
- Department of Neurobiology and Cell Biology, Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jeremy Weinberger
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
| | - Dianshuai Gao
- Department of Neurobiology and Cell Biology, Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shaoping Hou
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
| |
Collapse
|
40
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571869. [PMID: 38168183 PMCID: PMC10760189 DOI: 10.1101/2023.12.15.571869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9-13 weeks interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
41
|
Shepard CT, Brown BL, Van Rijswijck MA, Zalla RM, Burke DA, Morehouse JR, Riegler AS, Whittemore SR, Magnuson DSK. Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries. eLife 2023; 12:e82944. [PMID: 38099572 PMCID: PMC10776087 DOI: 10.7554/elife.82944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Spinal locomotor circuitry is comprised of rhythm generating centers, one for each limb, that are interconnected by local and long-distance propriospinal neurons thought to carry temporal information necessary for interlimb coordination and gait control. We showed previously that conditional silencing of the long ascending propriospinal neurons (LAPNs) that project from the lumbar to the cervical rhythmogenic centers (L1/L2 to C6), disrupts right-left alternation of both the forelimbs and hindlimbs without significantly disrupting other fundamental aspects of interlimb and speed-dependent coordination (Pocratsky et al., 2020). Subsequently, we showed that silencing the LAPNs after a moderate thoracic contusive spinal cord injury (SCI) resulted in better recovered locomotor function (Shepard et al., 2021). In this research advance, we focus on the descending equivalent to the LAPNs, the long descending propriospinal neurons (LDPNs) that have cell bodies at C6 and terminals at L2. We found that conditional silencing of the LDPNs in the intact adult rat resulted in a disrupted alternation of each limb pair (forelimbs and hindlimbs) and after a thoracic contusion SCI significantly improved locomotor function. These observations lead us to speculate that the LAPNs and LDPNs have similar roles in the exchange of temporal information between the cervical and lumbar rhythm generating centers, but that the partial disruption of the pathway after SCI limits the independent function of the lumbar circuitry. Silencing the LAPNs or LDPNs effectively permits or frees-up the lumbar circuitry to function independently.
Collapse
Affiliation(s)
- Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Morgan A Van Rijswijck
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
42
|
Milton AJ, Kwok JC, McClellan J, Randall SG, Lathia JD, Warren PM, Silver DJ, Silver J. Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ. J Neurotrauma 2023; 40:2500-2521. [PMID: 37606910 PMCID: PMC10698859 DOI: 10.1089/neu.2023.0117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Collapse
Affiliation(s)
- Adrianna J. Milton
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica C.F. Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jacob McClellan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabre G. Randall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Philippa M. Warren
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Štepánková K, Chudíčková M, Šimková Z, Martinez-Varea N, Kubinová Š, Urdzíková LM, Jendelová P, Kwok JCF. Low oral dose of 4-methylumbelliferone reduces glial scar but is insufficient to induce functional recovery after spinal cord injury. Sci Rep 2023; 13:19183. [PMID: 37932336 PMCID: PMC10628150 DOI: 10.1038/s41598-023-46539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.
Collapse
Affiliation(s)
- Kateřina Štepánková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Milada Chudíčková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Zuzana Šimková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Noelia Martinez-Varea
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 182 21, Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Jessica C F Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
44
|
Fan J, Li X, Wang P, Yang F, Zhao B, Yang J, Zhao Z, Li X. A Hyperflexible Electrode Array for Long-Term Recording and Decoding of Intraspinal Neuronal Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303377. [PMID: 37870208 PMCID: PMC10667843 DOI: 10.1002/advs.202303377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Neural interfaces for stable access to the spinal cord (SC) electrical activity can benefit patients with motor dysfunctions. Invasive high-density electrodes can directly extract signals from SC neuronal populations that can be used for the facilitation, adjustment, and reconstruction of motor actions. However, developing neural interfaces that can achieve high channel counts and long-term intraspinal recording remains technically challenging. Here, a biocompatible SC hyperflexible electrode array (SHEA) with an ultrathin structure that minimizes mechanical mismatch between the interface and SC tissue and enables stable single-unit recording for more than 2 months in mice is demonstrated. These results show that SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC. Gait analysis and histology show that SHEA implantation induces negligible behavioral effects and Inflammation. Additionally, multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, it is found that the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns. Thus, SHEA can offer an efficient and reliable SC neural interface for monitoring and potentially modulating SC neuronal activity associated with motor dysfunctions.
Collapse
Affiliation(s)
- Jie Fan
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xiaocheng Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Peiyu Wang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Fan Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Bingzhen Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Jianing Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Zhengtuo Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xue Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| |
Collapse
|
45
|
Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal 2023; 21:290. [PMID: 37845690 PMCID: PMC10577959 DOI: 10.1186/s12964-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
The fibroblast growth factor (FGF) family regulates various and important aspects of nervous system development, ranging from the well-established roles in neuronal patterning to more recent and exciting functions in axonal growth and synaptogenesis. In addition, FGFs play a critical role in axonal regeneration, particularly after spinal cord injury, confirming their versatile nature in the nervous system. Due to their widespread involvement in neural development, the FGF system also underlies several human neurological disorders. While particular attention has been given to FGFs in a whole-cell context, their effects at the axonal level are in most cases undervalued. Here we discuss the endeavor of the FGF system in axons, we delve into this neuronal subcompartment to provide an original view of this multipurpose family of growth factors in nervous system (dys)function. Video Abstract.
Collapse
Affiliation(s)
- Diogo Tomé
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S Dias
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Joana Correia
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal.
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Xie Y, Zhang L, Guo S, Peng R, Gong H, Yang M. Changes in respiratory structure and function after traumatic cervical spinal cord injury: observations from spinal cord and brain. Front Neurol 2023; 14:1251833. [PMID: 37869136 PMCID: PMC10587692 DOI: 10.3389/fneur.2023.1251833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Respiratory difficulties and mortality following severe cervical spinal cord injury (CSCI) result primarily from malfunctions of respiratory pathways and the paralyzed diaphragm. Nonetheless, individuals with CSCI can experience partial recovery of respiratory function through respiratory neuroplasticity. For decades, researchers have revealed the potential mechanism of respiratory nerve plasticity after CSCI, and have made progress in tissue healing and functional recovery. While most existing studies on respiratory plasticity after spinal cord injuries have focused on the cervical spinal cord, there is a paucity of research on respiratory-related brain structures following such injuries. Given the interconnectedness of the spinal cord and the brain, traumatic changes to the former can also impact the latter. Consequently, are there other potential therapeutic targets to consider? This review introduces the anatomy and physiology of typical respiratory centers, explores alterations in respiratory function following spinal cord injuries, and delves into the structural foundations of modified respiratory function in patients with CSCI. Additionally, we propose that magnetic resonance neuroimaging holds promise in the study of respiratory function post-CSCI. By studying respiratory plasticity in the brain and spinal cord after CSCI, we hope to guide future clinical work.
Collapse
Affiliation(s)
- Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
47
|
Leszczyńska K, Huber J. Comparing Parameters of Motor Potentials Recordings Evoked Transcranially with Neuroimaging Results in Patients with Incomplete Spinal Cord Injury: Assessment and Diagnostic Capabilities. Biomedicines 2023; 11:2602. [PMID: 37892975 PMCID: PMC10604826 DOI: 10.3390/biomedicines11102602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the relationships between the different levels and degrees of incomplete spinal cord injury (iSCI) evaluated with magnetic resonance imaging (MRI) and the results of non-invasive electromyography (mcsEMG), motor-evoked potentials (MEP), and electroneurography (ENG). With a focus on patients with injuries at four different levels, C3-C5, C6-Th1, Th3-Th6, and Th7-L1, this research delved into the intricate interplay of spinal circuits and functional recovery. The study uses MEP, EMG, and ENG assessments to unveil the correlations between the MEP amplitudes and the MRI injury scores. We analysed data from 85 iSCI patients (American Spinal Injury Association-ASIA scale; ASIA C = 24, and D = 61). We compared the MRI and diagnostic neurophysiological test results performed within 1-2 months after the injury. A control group of 80 healthy volunteers was examined to establish reference values for the clinical and neurophysiological recordings. To assess the structural integrity of spinal white and grey matter on the transverse plane reconstructed from the sagittal readings, a scoring system ranging from 0 to 4 was established. The spinal cord was divided into two halves (left and right) according to the midline, and each half was further divided into two quadrants. Each quadrant was assessed separately. MEP and EMG were used to assess conduction in the corticospinal tract and the contraction properties of motor units in key muscles: abductor pollicis brevis (APB), rectus abdominis (RA), rectus femoris (RF), and extensor digitorum brevis muscles (EXT). We also used electroneurography (ENG) to assess peripheral nerve conduction and to find out whether the changes in this system significantly affect patients' scores and their neurophysiological status. The study revealed consistent positive correlations in iSCI patients between the bilateral decrease of the spinal half injury MRI scores and a decrease of the transcranially-evoked MEP amplitudes, highlighting the complex relationship between neural pathways and functional outcomes. Positive correlations are notably pronounced in the C3-C5, C6-Th1, and Th3-Th6 subgroups (mostly rs 0.5 and above with p < 0.05), while Th7-L1 presents distinct patterns (rs less than 0.5 and p being statistically insignificant) potentially influenced by unique structural compensation mechanisms. We also revealed statistically significant relationships between the decrease of the cumulative mcsEMG and MEP amplitudes and the cumulative ENG scores. These insights shed light on the multifaceted interactions between spinal cord injury levels, structural damage, neurophysiological measures, and motor function outcomes. Further research is warranted to unravel the intricate mechanisms driving these correlations and their implications for enhancing functional recovery and the rehabilitation algorithms in patients with iSCI.
Collapse
Affiliation(s)
- Katarzyna Leszczyńska
- Department of Pathophysiology of Locomotor Organs, Poznan University of Medical Sciences, 28 Czerwca 1956 No 135/147, 60-545 Poznań, Poland;
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Juliusz Huber
- Department of Pathophysiology of Locomotor Organs, Poznan University of Medical Sciences, 28 Czerwca 1956 No 135/147, 60-545 Poznań, Poland;
| |
Collapse
|
48
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
49
|
Duguay M, Bonizzato M, Delivet-Mongrain H, Fortier-Lebel N, Martinez M. Uncovering and leveraging the return of voluntary motor programs after paralysis using a bi-cortical neuroprosthesis. Prog Neurobiol 2023; 228:102492. [PMID: 37414352 DOI: 10.1016/j.pneurobio.2023.102492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Rehabilitative and neuroprosthetic approaches after spinal cord injury (SCI) aim to reestablish voluntary control of movement. Promoting recovery requires a mechanistic understanding of the return of volition over action, but the relationship between re-emerging cortical commands and the return of locomotion is not well established. We introduced a neuroprosthesis delivering targeted bi-cortical stimulation in a clinically relevant contusive SCI model. In healthy and SCI cats, we controlled hindlimb locomotor output by tuning stimulation timing, duration, amplitude, and site. In intact cats, we unveiled a large repertoire of motor programs. After SCI, the evoked hindlimb lifts were highly stereotyped, yet effective in modulating gait and alleviating bilateral foot drag. Results suggest that the neural substrate underpinning motor recovery had traded-off selectivity for efficacy. Longitudinal tests revealed that the return of locomotion after SCI was correlated with recovery of the descending drive, which advocates for rehabilitation interventions directed at the cortical target.
Collapse
Affiliation(s)
- Maude Duguay
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marco Bonizzato
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada; Department of Electrical Engineering, Polytechnique Montréal, Québec, Canada
| | - Hugo Delivet-Mongrain
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada
| | - Nicolas Fortier-Lebel
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
50
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|