1
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
2
|
Yang X, Chang L, Liu Z, Geng X, Wang R, Yin X, Fan W, Zhao BQ. Neddylation in the chronically hypoperfused corpus callosum: MLN4924 reduces blood-brain barrier injury via ERK5/KLF2 signaling. Exp Neurol 2024; 371:114587. [PMID: 37914067 DOI: 10.1016/j.expneurol.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Blood-brain barrier (BBB) breakdown and cerebrovascular dysfunction may contribute to the pathology in white matter lesions and consequent cognitive decline caused by cerebral hypoperfusion. Neddylation is the process of attaching a ubiquitin-like molecule NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) to specific targets. By modifying protein substrates, neddylation plays critical roles in various important biological processes. However, whether neddylation influences the pathogenesis of hypoperfused brain remains unclear. In the present study, cerebral hypoperfusion-induced white matter lesions were produced by bilateral common carotid artery stenosis in mice. The function of the neddylation pathway, BBB integrity, cerebrovascular dysfunction, myelin density in the corpus callosum and cognitive function were determined. We show that NEDD8 conjugation aberrantly amplified in microvascular endothelium in the corpus callosum following cerebral hypoperfusion. MLN4924, a small-molecule inhibitor of NEDD8-activating enzyme currently in clinical trials, preserved BBB integrity, attenuated glial activation and enhanced oligodendrocyte differentiation, and reduced hypoperfusion-induced white matter lesions in the corpus callosum and thus improved cognitive performance via inactivating cullin-RING E3 ligase (CRL). Administration of MLN4924 caused the accumulation of ERK5 and KLF2. The ERK5 inhibitor BIX 02189, down-regulated MLN4924-induced activation of KLF2 and reversed MLN4924-mediated increase in pericyte coverage and junctional proteins. Furthermore, BIX 02189 blocked MLN4924-afforded protection against BBB disruption and white matter lesions in the corpus callosum. Collectively, our results revealed that neddylation impairs vascular function and thus exacerbated the pathology of hypoperfused brain and that inhibition of neddylation with MLN4924 may offer novel therapeutic opportunities for cerebral hypoperfusion-associated cognitive impairment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue Geng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuhui Yin
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Middleton RC, Liao K, Liu W, de Couto G, Garcia N, Antes T, Wang Y, Wu D, Li X, Tourtellotte WG, Marbán E. Newt A1 cell-derived extracellular vesicles promote mammalian nerve growth. Sci Rep 2023; 13:11829. [PMID: 37481602 PMCID: PMC10363125 DOI: 10.1038/s41598-023-38671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Newts have the extraordinary ability to fully regenerate lost or damaged cardiac, neural and retinal tissues, and even amputated limbs. In contrast, mammals lack these broad regenerative capabilities. While the molecular basis of newts' regenerative ability is the subject of active study, the underlying paracrine signaling factors involved remain largely uncharacterized. Extracellular vesicles (EVs) play an important role in cell-to-cell communication via EV cargo-mediated regulation of gene expression patterns within the recipient cells. Here, we report that newt myogenic precursor (A1) cells secrete EVs (A1EVs) that contain messenger RNAs associated with early embryonic development, neuronal differentiation, and cell survival. Exposure of rat primary superior cervical ganglion (SCG) neurons to A1EVs increased neurite outgrowth, facilitated by increases in mitochondrial respiration. Canonical pathway analysis pinpointed activation of NGF/ERK5 signaling in SCG neurons exposed to A1EV, which was validated experimentally. Thus, newt EVs drive neurite growth and complexity in mammalian primary neurons.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Ke Liao
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Geoff de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Nahuel Garcia
- Gecorp, Av Juan Manuel de Rosas 899, San Miguel del Monte, Buenos Aires, Argentina
| | - Travis Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Xinling Li
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Warren G Tourtellotte
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA.
| |
Collapse
|
4
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
5
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Tian F, Cheng Y, Zhou S, Wang Q, Monavarfeshani A, Gao K, Jiang W, Kawaguchi R, Wang Q, Tang M, Donahue R, Meng H, Zhang Y, Jacobi A, Yan W, Yin J, Cai X, Yang Z, Hegarty S, Stanicka J, Dmitriev P, Taub D, Zhu J, Woolf CJ, Sanes JR, Geschwind DH, He Z. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 2022; 110:2607-2624.e8. [PMID: 35767995 PMCID: PMC9391318 DOI: 10.1016/j.neuron.2022.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuyan Cheng
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Songlin Zhou
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Qianbin Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Aboozar Monavarfeshani
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Kun Gao
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Weiqian Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Qing Wang
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Mingjun Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ryan Donahue
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Jiani Yin
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA
| | - Xinyi Cai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shane Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joanna Stanicka
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Phillip Dmitriev
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Taub
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Daniel H Geschwind
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Claes M, Geeraerts E, Plaisance S, Mentens S, Van den Haute C, De Groef L, Arckens L, Moons L. Chronic Chemogenetic Activation of the Superior Colliculus in Glaucomatous Mice: Local and Retrograde Molecular Signature. Cells 2022; 11:1784. [PMID: 35681479 PMCID: PMC9179903 DOI: 10.3390/cells11111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022] Open
Abstract
One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.
Collapse
Affiliation(s)
- Marie Claes
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| | | | - Stephanie Mentens
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Chris Van den Haute
- Neurobiology and Gene Therapy Research Group, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
- KU Leuven Viral Vector Core, 3000 Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium;
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; (M.C.); (E.G.); (S.M.)
| |
Collapse
|
8
|
Wang W, Bian J, Sun Y, Li Z. The new fate of internalized membrane receptors: Internalized activation. Pharmacol Ther 2021; 233:108018. [PMID: 34626676 DOI: 10.1016/j.pharmthera.2021.108018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Classically, the fate of internalized membrane receptors includes receptor degradation and receptor recycling. However, recent findings have begun to challenge these views. Much research demonstrated that many internalized membrane receptors can trigger distinct signal activation rather than being desensitized inside the cell. Here, we introduce the concept of "internalized activation" which not only represents a new mode of receptor activation, but also endows the new fate for receptor internalization (from death to life). The new activation mode and fate of membrane receptor are ubiquitous and have unique theoretical significance. We systematically put forward the features, process, and regulation of "internalized activation" and its significance in signal transduction and diseases. "Internalized activation" will provide a completely new understanding for the theory of receptor activation, internalization and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Yang Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
9
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
10
|
Li L, Gruner K, Tourtellotte WG. Retrograde nerve growth factor signaling abnormalities in familial dysautonomia. J Clin Invest 2021; 130:2478-2487. [PMID: 32281946 DOI: 10.1172/jci130401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Familial dysautonomia (FD) is the most prevalent form of hereditary sensory and autonomic neuropathy (HSAN). In FD, a germline mutation in the Elp1 gene leads to Elp1 protein decrease that causes sympathetic neuron death and sympathetic nervous system dysfunction (dysautonomia). Elp1 is best known as a scaffolding protein within the nuclear hetero-hexameric transcriptional Elongator protein complex, but how it functions in sympathetic neuron survival is very poorly understood. Here, we identified a cytoplasmic function for Elp1 in sympathetic neurons that was essential for retrograde nerve growth factor (NGF) signaling and neuron target tissue innervation and survival. Elp1 was found to bind to internalized TrkA receptors in an NGF-dependent manner, where it was essential for maintaining TrkA receptor phosphorylation (activation) by regulating PTPN6 (Shp1) phosphatase activity within the signaling complex. In the absence of Elp1, Shp1 was hyperactivated, leading to premature TrkA receptor dephosphorylation, which resulted in retrograde signaling failure and neuron death. Inhibiting Shp1 phosphatase activity in the absence of Elp1 rescued NGF-dependent retrograde signaling, and in an animal model of FD it rescued abnormal sympathetic target tissue innervation. These results suggest that regulation of retrograde NGF signaling in sympathetic neurons by Elp1 may explain sympathetic neuron loss and physiologic dysautonomia in patients with FD.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology and Laboratory Medicine
| | | | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine.,Department of Neurology.,Department of Neurosurgery, and.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
11
|
Multi-parametric analysis of 57 SYNGAP1 variants reveal impacts on GTPase signaling, localization, and protein stability. Am J Hum Genet 2021; 108:148-162. [PMID: 33308442 DOI: 10.1016/j.ajhg.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3β, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3β, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.
Collapse
|
12
|
Wang Q, Fan H, Li F, Skeeters SS, Krishnamurthy VV, Song Y, Zhang K. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila. eLife 2020; 9:57395. [PMID: 33021199 PMCID: PMC7567606 DOI: 10.7554/elife.57395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics targets damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision. Most cells have a built-in regeneration signaling program that allows them to divide and repair. But, in the cells of the central nervous system, which are called neurons, this program is ineffective. This is why accidents and illnesses affecting the brain and spinal cord can cause permanent damage. Reactivating regeneration in neurons could help them repair, but it is not easy. Certain small molecules can switch repair signaling programs back on. Unfortunately, these molecules diffuse easily through tissues, spreading around the body and making it hard to target individual damaged cells. This both hampers research into neuronal repair and makes treatments directed at healing damage to the nervous system more likely to have side-effects. It is unclear whether reactivating regeneration signaling in individual neurons is possible. One way to address this question is to use optogenetics. This technique uses genetic engineering to fuse proteins that are light-sensitive to proteins responsible for relaying signals in the cell. When specific wavelengths of light hit the light-sensitive proteins, the fused signaling proteins switch on, leading to the activation of any proteins they control, for example, those involved in regeneration. Wang et al. used optogenetic tools to determine if light can help repair neurons in fruit fly larvae. First, a strong laser light was used to damage an individual neuron in a fruit fly larva that had been genetically modified so that blue light would activate the regeneration program in its neurons. Then, Wang et al. illuminated the cell with dim blue light, switching on the regeneration program. Not only did this allow the neuron to repair itself, it also allowed the light to guide its regeneration. By focusing the blue light on the damaged end of the neuron, it was possible to guide the direction of the cell's growth as it regenerated. Regeneration programs in flies and mammals involve similar signaling proteins, but blue light does not penetrate well into mammalian tissues. This means that further research into LEDs that can be implanted may be necessary before neuronal repair experiments can be performed in mammals. In any case, the ability to focus treatment on individual neurons paves the way for future work into the regeneration of the nervous system, and the combination of light and genetics could reveal more about how repair signals work.
Collapse
Affiliation(s)
- Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Huaxun Fan
- Department of Biochemistry, Urbana, United States
| | - Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | | | | | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kai Zhang
- Department of Biochemistry, Urbana, United States.,Neuroscience Program, Urbana, United States.,Center for Biophysics and Quantitative Biology, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
13
|
Abstract
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|
15
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
16
|
Herzog JJ, Xu W, Deshpande M, Rahman R, Suib H, Rodal AA, Rosbash M, Paradis S. TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proc Natl Acad Sci U S A 2020; 117:11760-11769. [PMID: 32393629 PMCID: PMC7260973 DOI: 10.1073/pnas.1917038117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Weijin Xu
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Mugdha Deshpande
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Reazur Rahman
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Hannah Suib
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Michael Rosbash
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| |
Collapse
|
17
|
Salamone P, Fuda G, Casale F, Marrali G, Lunetta C, Caponnetto C, Mazzini L, La Bella V, Mandrioli J, Simone IL, Moglia C, Calvo A, Tarella C, Chio A. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open 2020; 10:e034049. [PMID: 32209625 PMCID: PMC7202695 DOI: 10.1136/bmjopen-2019-034049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurological disorder characterised by a selective degeneration of motor neurons (MNs). Stem cell transplantation is considered as a promising strategy in neurological disorders therapy and the possibility of inducing bone marrow cells (BMCs) to circulate in the peripheral blood is suggested to investigate stem cells migration in degenerated ALS nerve tissues where potentially repair MN damage. Granulocyte-colony stimulating factor (G-CSF) is a growth factor which stimulates haematopoietic progenitor cells, mobilises BMCs into injured brain and it is itself a neurotrophic factor for MN. G-CSF safety in humans has been demonstrated and many observations suggest that it may affect neural cells. Therefore, we decided to use G-CSF to mobilise BMCs into the peripheral circulation in patients with ALS, planning a clinical trial to evaluate the effect of G-CSF administration in ALS patients compared with placebo. METHODS AND ANALYSIS STEMALS-II is a phase II multicentre, randomised double-blind, placebo-controlled, parallel group clinical trial on G-CSF (filgrastim) and mannitol in ALS patients. Specifically, we investigate safety, tolerability and efficacy of four repeated courses of intravenous G-CSF and mannitol administered in 76 ALS patients in comparison with placebo (indistinguishable glucose solution 5%). We determine increase of G-CSF levels in serum and cerebrospinal fluid as CD34+ cells and leucocyte count after treatment; reduction in ALS Functional Rating Scale-Revised Score, forced vital capacity, Scale for Testing Muscle Strength Score and quality of life; the adverse events/reactions during the treatment; changes in neuroinflammation biomarkers before and after treatment. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Azienda Ospedaliera Universitaria 'Città della Salute e della Scienza', Torino, Italy. Results will be presented during scientific symposia or published in scientific journals. TRIAL REGISTRATION NUMBER Eudract 2014-002228-28.
Collapse
Affiliation(s)
- Paolina Salamone
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Fuda
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Federico Casale
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Marrali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Claudia Caponnetto
- Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Mazzini
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Sicilia, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliera Universitaria Modena, St. Agostino-Estense Hospital, Modena, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Puglia, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Corrado Tarella
- Oncohematology Division, IEO European Institute of Oncology, IRCCS, University of Milan, Milano, Lombardia, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| |
Collapse
|
18
|
Cristea S, Coles GL, Hornburg D, Gershkovitz M, Arand J, Cao S, Sen T, Williamson SC, Kim JW, Drainas AP, He A, Cam LL, Byers LA, Snyder MP, Contrepois K, Sage J. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res 2020; 80:1293-1303. [PMID: 31969375 PMCID: PMC7073279 DOI: 10.1158/0008-5472.can-19-1027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Collapse
Affiliation(s)
- Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Daniel Hornburg
- Department of Genetics, Stanford University, Stanford, California
| | - Maya Gershkovitz
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Julia Arand
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Siqi Cao
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Triparna Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart C Williamson
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew He
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, California
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California.
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
19
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
20
|
Hong J, Heo WD. Optogenetic Modulation of TrkB Signaling in the Mouse Brain. J Mol Biol 2020; 432:815-827. [PMID: 31962123 DOI: 10.1016/j.jmb.2020.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Optogenetic activation of receptors has advantages compared with chemical or ligand treatment because of its high spatial and temporal precision. Especially in the brain, the use of a genetically encoded light-tunable receptor is superior to direct infusion or systemic drug treatment. We applied light-activatable TrkB receptors in the mouse brain with reduced basal activity by incorporating Cry2PHR mutant, Opto-cytTrkB(E281A). Upon AAV mediated gene delivery, this form was expressed at sufficient levels in the mouse hippocampus (HPC) and medial entorhinal cortex (MEC) retaining normal canonical signal transduction by the blue light stimulus, even by delivery of noninvasive LED light on the mouse head. Within target cells, where its expression was driven by a cell type-specific promoter, Opto-cytTrkB(E281A)-mediated TrkB signaling could be controlled by adjusting light-stimulating conditions. We further demonstrated that Opto-cytTrkB(E281A) could locally induce TrkB signaling in axon terminals in the MEC-HPC. In summary, Opto-cytTrkB(E281A) will be useful for elucidating time- and region-specific roles of TrkB signaling ranging from cellular function to neural circuit mechanisms.
Collapse
Affiliation(s)
- Jongryul Hong
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea; Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
21
|
Ghahari L, Safari M, Rahimi Jaberi K, Jafari B, Safari K, Madadian M. Mesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson's Disease. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677610 PMCID: PMC6984711 DOI: 10.29252/ibj.24.2.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Recent studies have shown that BMSCs have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of G-CSF and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the effects of these two factors on oxidative stress factors in the brain of Parkinson's rat. Methods: Adult male Wistar rats (weighing 200–250 g) were used and randomly divided into five groups of seven each. To create the Parkinson's model, 6-OHDA was injected into the left SNpc. The BMSCs (2 × 106) and G-CSF (75 µg/kg) were used for treatment after creating the PD model. After four weeks, the brains of rats were removed and processed for immunohistochemical studies, such as TH-positive neurons as well as analysis of oxidative stress factors. Results: The results showed that the injected BMSCs could cross the BBB. The injected cells are also able to settle in different areas of the brain. Analyses of the brain oxidative stress factors showed that G-CSF and BMSCs reduced the expression of MDA and induced the activity of SOD, GSH-Px, and FRAP. Conclusion: Co-administration of G-CSF and BMSCs reduced the expression of pro-inflammatory cytokines and induced the activity of antioxidant enzymes; however, neurogenesis increased in the brain.
Collapse
Affiliation(s)
- Laya Ghahari
- Department of Anatomy, AJA University of Medical Sciences, Tehran, Iran
| | - Manouchehr Safari
- Nervous System Stem Cells Research Center, Semnan university of Medical Sciences, Semnan, Iran
| | - Khojaste Rahimi Jaberi
- Nervous System Stem Cells Research Center, Semnan university of Medical Sciences, Semnan, Iran
| | | | - Katayoun Safari
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahmoodreza Madadian
- School of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Liu J, Han X, Zhu G, Liu S, Lu Q, Tang Z. Analysis of potential functional significance of microRNA‑3613‑3p in human umbilical vein endothelial cells affected by heat stress. Mol Med Rep 2019; 20:1846-1856. [PMID: 31257536 PMCID: PMC6625459 DOI: 10.3892/mmr.2019.10376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of microRNA‑3613‑3p (miR‑3613‑3p) was previously reported in endothelial cells (ECs) during heat stress. The aim of the present study was to investigate the precise role of miR‑3613‑3p in heat stress. In the present study, potential gene targets of miR‑3613‑3p in heat‑treated ECs were assessed, and the potential effects of miR‑3613‑3p were determined using Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to identify signaling pathways that may be affected by miR‑3613‑3p in heat‑treated cells. Reverse transcription‑quantitative PCR, western blotting and annexin V‑FITC/propidium iodide staining were performed to detect miRNA expression, protein expression and apoptosis, respectively. Luciferase gene reporter assay was performed to evaluate the association between miR‑3613‑3p and mitogen‑activated protein kinase kinase kinase 2 (MAP3K2). Bioinformatics analysis revealed 865 potential gene targets for miR‑3613‑3p and a series of functions and pathways in heat‑treated ECs. 'Negative regulation of apoptotic process' was identified as a potential function of miR‑3613‑3p. In addition, functional analysis confirmed the downregulated expression levels of miR‑3613‑3p in ECs during heat stress, which was accompanied by an increase in apoptosis; restoration of miR‑3613‑3p expression inhibited apoptosis. MAP3K2 protein was demonstrated to be upregulated in heat‑treated ECs, and overexpression of miR‑3613‑3p reduced MAP3K2 expression levels. Additionally, MAP3K2 was targeted by miR‑3613‑3p. These results indicated that miR‑3613‑3p may have complicated roles in ECs under heat stress. miR‑3613‑3p may serve an important role in the apoptosis of heat‑treated ECs, and this effect may be partly achieved by targeting MAP3K2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
- Department of Emergency, Hefei BOE Hospital Co., Ltd., Anhui, Hefei 230011, P.R. China
| | - Xuan Han
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
24
|
Josephy-Hernandez S, Pirvulescu I, Maira M, Aboulkassim T, Wong TP, McKinney RA, Saragovi HU. Pharmacological interrogation of TrkA-mediated mechanisms in hippocampal-dependent memory consolidation. PLoS One 2019; 14:e0218036. [PMID: 31233568 PMCID: PMC6590805 DOI: 10.1371/journal.pone.0218036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
In the brain, the TrkA receptor for Nerve Growth Factor (NGF) is expressed primarily in the cholinergic system. TrkA/NGF support neuronal health and function, and deficiencies in this axis are associated with progressive cholinergic neuron atrophy and death, and with cognitive deficit in disorders such as Down's syndrome and Alzheimer's disease. These observations led to the hypothesis that TrkA agonists may rescue atrophic cholinergic neurons and benefit cognition. Indeed, a small molecule TrkA partial agonist called D3 normalized TrkA signals and improved memory in cognitive impairment models of ageing and an APP mouse model of Alzheimer's disease. Paradoxically, in young healthy mice chronic delivery of D3 caused impaired memory without impairing learning, a form of anterograde amnesia. Here, we use this as a model to study the mechanisms of impaired memory. In young healthy mice acute or chronic treatment with D3 induces hyperactivation of TrkA-mediated signals in hippocampus, and causes a deficit in hippocampal-dependent memory consolidation proximal to drug exposure, without affecting learning or memory retrieval. The impairment after acute drug exposure is reversible. The impairment after long-term drug exposure is irreversible, likely due to a decrease in hippocampal CA1 neuron basal arborization. These findings support the notion of a homeostatic role for TrkA in memory, and demonstrate the differential outcomes of TrkA (hyper)activation in healthy versus disease states.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Iulia Pirvulescu
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mario Maira
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | - Tahar Aboulkassim
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - R. Anne McKinney
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - H. Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
26
|
Jones MK, Lu B, Chen DZ, Spivia WR, Mercado AT, Ljubimov AV, Svendsen CN, Van Eyk JE, Wang S. In Vitro and In Vivo Proteomic Comparison of Human Neural Progenitor Cell-Induced Photoreceptor Survival. Proteomics 2019; 19:e1800213. [PMID: 30515959 PMCID: PMC6422354 DOI: 10.1002/pmic.201800213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/01/2018] [Indexed: 12/31/2022]
Abstract
Retinal degenerative diseases lead to blindness with few treatments. Various cell-based therapies are aimed to slow the progression of vision loss by preserving light-sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co-culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co-cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid-derived 2)-like 2 (NRF2) mediated oxidative response signaling as an hNPC-induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Bin Lu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Dawn Z. Chen
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Weston R. Spivia
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
| | - Augustus T. Mercado
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Alexander V. Ljubimov
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Clive N. Svendsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Shaomei Wang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
27
|
Olenick MA, Dominguez R, Holzbaur ELF. Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons. J Cell Biol 2019; 218:220-233. [PMID: 30373907 PMCID: PMC6314548 DOI: 10.1083/jcb.201805016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023] Open
Abstract
Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB-BDNF-signaling endosomes in primary hippocampal neurons. Hook1 comigrates with a subpopulation of Rab5 endosomes positive for TrkB and BDNF, which exhibit processive retrograde motility with faster velocities than the overall Rab5 population. Knockdown of Hook1 significantly reduced the motility of BDNF-signaling endosomes without affecting the motility of other organelles. In microfluidic chambers, Hook1 depletion resulted in a significant decrease in the flux and processivity of BDNF-Qdots along the mid-axon, an effect specific for Hook1 but not Hook3. Hook1 depletion inhibited BDNF trafficking to the soma and blocked downstream BDNF- and TrkB-dependent signaling to the nucleus. Together, these studies support a model in which differential association with cargo-specific effectors efficiently regulates dynein in neurons.
Collapse
Affiliation(s)
- Mara A Olenick
- The Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- The Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- The Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Villarroel-Campos D, Schiavo G, Lazo OM. The many disguises of the signalling endosome. FEBS Lett 2018; 592:3615-3632. [PMID: 30176054 PMCID: PMC6282995 DOI: 10.1002/1873-3468.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target-released neurotrophins bind to their receptors and initiate signalling, towards the cell body, where nuclear and cytosolic responses are integrated. The mechanisms of propagation of neurotrophic signalling have been extensively studied and, eventually, the model of a 'signalling endosome', transporting activated receptors and associated complexes, has emerged. Nevertheless, the exact nature of this organelle remains elusive. In this Review, we examine the evidence for the retrograde transport of neurotrophins and their receptors in endosomes, outline some of their diverse physiological and pathological roles, and discuss the main interactors, morphological features and trafficking destinations of a highly flexible endosomal signalling organelle with multiple molecular signatures.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, UK
| | - Oscar Marcelo Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
30
|
Kashino Y, Obara Y, Okamoto Y, Saneyoshi T, Hayashi Y, Ishii K. ERK5 Phosphorylates K v4.2 and Inhibits Inactivation of the A-Type Current in PC12 Cells. Int J Mol Sci 2018; 19:ijms19072008. [PMID: 29996472 PMCID: PMC6073465 DOI: 10.3390/ijms19072008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) regulates diverse physiological responses such as proliferation, differentiation, and gene expression. Previously, we demonstrated that ERK5 is essential for neurite outgrowth and catecholamine biosynthesis in PC12 cells and sympathetic neurons. However, it remains unclear how ERK5 regulates the activity of ion channels, which are important for membrane excitability. Thus, we examined the effect of ERK5 on the ion channel activity in the PC12 cells that overexpress both ERK5 and the constitutively active MEK5 mutant. The gene and protein expression levels of voltage-dependent Ca2+ and K+ channels were determined by RT-qPCR or Western blotting. The A-type K+ current was recorded using the whole-cell patch clamp method. In these ERK5-activated cells, the gene expression levels of voltage-dependent L- and P/Q-type Ca2+ channels did not alter, but the N-type Ca2+ channel was slightly reduced. In contrast, those of Kv4.2 and Kv4.3, which are components of the A-type current, were significantly enhanced. Unexpectedly, the protein levels of Kv4.2 were not elevated by ERK5 activation, but the phosphorylation levels were increased by ERK5 activation. By electrophysiological analysis, the inactivation time constant of the A-type current was prolonged by ERK5 activation, without changes in the peak current. Taken together, ERK5 inhibits an inactivation of the A-type current by phosphorylation of Kv4.2, which may contribute to the neuronal differentiation process.
Collapse
Affiliation(s)
- Yurina Kashino
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Yutaro Obara
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Yosuke Okamoto
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| |
Collapse
|
31
|
Zamani A, Xiao J, Turnley AM, Murray SS. Tropomyosin-Related Kinase B (TrkB) Regulates Neurite Outgrowth via a Novel Interaction with Suppressor of Cytokine Signalling 2 (SOCS2). Mol Neurobiol 2018; 56:1262-1275. [PMID: 29881947 DOI: 10.1007/s12035-018-1168-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed in the hippocampus, where it can initiate signalling pathways leading to neurite outgrowth, neuron survival, spine maturation and increased synapse strength. Although suppressor of cytokine signalling 2 (SOCS2) is primarily known to negatively regulate cytokine signalling, it is also highly expressed in the hippocampus and exerts neuron-specific functions in the brain, effecting the length and architecture of neurons. However, little is known about the role of SOCS2 in the hippocampus. In this study, we hypothesised that SOCS2 may have a regulatory role in BDNF-dependent neurite growth and hippocampal neuronal function. Here our data demonstrate that SOCS2 interacts with the kinase domain of the BDNF receptor TrkB. Germline overexpression of SOCS2 results in a BDNF-dependent increase in hippocampal neurite outgrowth, whereas deletion of SOCS2 results in shorter neurite outgrowth. Expression of SOCS2 also results in increased ubiquitination of the juxtamembrane region of TrkB, and alters the trafficking of TrkB into recycling endosomes. Collectively, our data suggest a novel role for SOCS2 in interacting with and regulating the trafficking of TrkB, leading to increased neurite outgrowth in hippocampus neurons.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ann M Turnley
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
32
|
Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, Huang L, Solaroglu I, Zhang JH. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018; 307:82-89. [PMID: 29883578 DOI: 10.1016/j.expneurol.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. METHODS SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. RESULTS Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. CONCLUSIONS Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5.
Collapse
Affiliation(s)
- Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gokce Yilmaz
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Wingi Man Ho
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, CA 92354, USA
| | - Ihsan Solaroglu
- Koç University, School of Medicine, Department of Neurosurgery, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, CA 92354, USA; Department of Anesthesiology, Loma Linda University, CA 92354, USA.
| |
Collapse
|
33
|
Islam MA, Sooro MA, Zhang P. Autophagic Regulation of p62 is Critical for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19051405. [PMID: 29738493 PMCID: PMC5983640 DOI: 10.3390/ijms19051405] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Sequestosome1 (p62/SQSTM 1) is a multidomain protein that interacts with the autophagy machinery as a key adaptor of target cargo. It interacts with phagophores through the LC3-interacting (LIR) domain and with the ubiquitinated protein aggregates through the ubiquitin-associated domain (UBA) domain. It sequesters the target cargo into inclusion bodies by its PB1 domain. This protein is further the central hub that interacts with several key signaling proteins. Emerging evidence implicates p62 in the induction of multiple cellular oncogenic transformations. Indeed, p62 upregulation and/or reduced degradation have been implicated in tumor formation, cancer promotion as well as in resistance to therapy. It has been established that the process of autophagy regulates the levels of p62. Autophagy-dependent apoptotic activity of p62 is recently being reported. It is evident that p62 plays a critical role in both autophagy and apoptosis. Therefore in this review we discuss the role of p62 in autophagy, apoptosis and cancer through its different domains and outline the importance of modulating cellular levels of p62 in cancer therapeutics.
Collapse
Affiliation(s)
- Md Ariful Islam
- Jiangsu Key Laboratory of New Drug Screening & Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Mopa Alina Sooro
- Jiangsu Key Laboratory of New Drug Screening & Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Pinghu Zhang
- Institute of Translational Medicine & Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
34
|
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91:25-33. [PMID: 29596897 DOI: 10.1016/j.mcn.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
35
|
Ye M, Lehigh KM, Ginty DD. Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling. eLife 2018; 7:33012. [PMID: 29381137 PMCID: PMC5811214 DOI: 10.7554/elife.33012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the majority of retrograde TrkA signaling endosomes in mouse sympathetic neurons are ultrastructurally and molecularly defined multivesicular bodies (MVBs). In contrast to MVBs that carry non-TrkA cargoes from distal axons to cell bodies, retrogradely transported TrkA+ MVBs that arrive in cell bodies evade lysosomal fusion and instead evolve into TrkA+ single-membrane vesicles that are signaling competent. Moreover, TrkA kinase activity associated with retrogradely transported TrkA+ MVBs determines TrkA+ endosome evolution and fate. Thus, MVBs deliver long-range retrograde NGF signals and serve as signaling and sorting platforms in the cell soma, and MVB cargoes dictate their vesicular fate.
Collapse
Affiliation(s)
- Mengchen Ye
- Human Genetics Training Program, The Johns Hopkins University, School of Medicine, Baltimore, United States.,Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Kathryn M Lehigh
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, United States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
36
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
37
|
Sun T, Li Y, Li T, Ma H, Guo Y, Jiang X, Hou M, Huang S, Chen Z. JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport by activating kinesin-1. Cell Mol Life Sci 2017; 74:4027-4044. [PMID: 28638935 PMCID: PMC11107601 DOI: 10.1007/s00018-017-2568-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
Abstract
Long-range anterograde axonal transport of TrkB is important for neurons to exert appropriate BDNF responses. TrkB anterograde axonal delivery is mediated by kinesin-1, which associates with TrkB via the adaptor protein JIP3 or the Slp1/Rab27B/CRMP-2 protein complex. However, little is known about the activation mechanisms of TrkB-loaded kinesin-1. Here, we show that JIP1 mediates TrkB anterograde axonal transport using JIP1 knockout mice, sciatic nerve ligation analysis and live imaging. Next, we proved that JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport. Finally, microtubule-binding and microfluidic chamber assays revealed that JIP1 and JIP3 cooperate to relieve kinesin-1 autoinhibition, which depends on the binding of JIP1 to kinesin-1 heavy chain (KHC) and light chain (KLC) and the binding of JIP3 to KLC and is essential for TrkB anterograde axonal transport and BDNF-induced TrkB retrograde signal. These findings could deepen our understanding of the regulation mechanism underlying TrkB anterograde axonal transport and provide a novel kinesin-1 autoinhibition-relieving model.
Collapse
Affiliation(s)
- Tao Sun
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yuan Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Huixian Ma
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yunyun Guo
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xingyu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ming Hou
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shuhong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Zheyu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
38
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
39
|
Protective effects of the resveratrol analog piceid in dopaminergic SH-SY5Y cells. Arch Toxicol 2017; 92:669-677. [PMID: 28980048 DOI: 10.1007/s00204-017-2073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Age-related motor deficits, such as loss of balance and coordination, are caused, in part, by loss of dopaminergic neurons. Oxidative stress is known to play a role in this neuronal loss. Resveratrol, a natural antioxidant with anticancer and anti-inflammatory potential, has been shown to protect dopaminergic-like cells (SH-SY5Y) against oxidative stress. However, the low bioavailability of resveratrol makes it worthwhile to explore newer compounds with similar properties. Piceid (RV8), an analog of resveratrol, has greater bioavailability than resveratrol, and our studies found that piceid (10, 20, 30 µM) protects SH-SY5Y cells against oxidative stress. Our investigations also found that the neuroprotection afforded by piceid was decreased when the MAP kinases, ERK1/2 and ERK5, were independently inhibited. Since oxidative stress is considered a master operator of apoptosis, our study also scrutinized dopamine-induced apoptosis and whether caspase-3/7 and Bcl-2 are involved, following piceid pretreatment followed by dopamine exposure. Our findings suggested that piceid pretreatment inhibited the dopamine-induced increase in caspase-3/7 activity and dopamine-induced loss of Bcl-2 expression. Overall, these findings suggest that the neuroprotective effects of piceid are mediated via the activation of ERK1/2, ERK5, and inhibition of apoptosis caused by oxidative stress.
Collapse
|
40
|
Pre-synaptic TrkB in basolateral amygdala neurons mediates BDNF signaling transmission in memory extinction. Cell Death Dis 2017; 8:e2959. [PMID: 28749471 PMCID: PMC5550851 DOI: 10.1038/cddis.2017.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its high affinity receptor, TrkB, play an essential role in memory extinction. Our previous work has shown that JIP3 (JNK interacted protein 3) mediates anterograde axonal transport of TrkB through the direct binding of its coiled-coil domain 1 (CC1) with TrkB. Here, we constructed a fluorescent CC1 and enhanced green fluorescent protein (EGFP) fused protein, CC1-EGFP, and found that CC1-EGFP could specifically interrupt TrkB anterograde axonal transport and its localization at the pre-synaptic site. Consistent with this, TrkB-mediated pre-synaptic vesicle release and retrograde axonal signaling transmission were disrupted by CC1-EGFP. Neuronal expression of CC1-EGFP in the basolateral amygdala (BLA) impaired fear memory extinction. And, it blocked BDNF in the BLA-induced enhancement of TrkB phosphorylation in the infralimbic prefrontal cortex (IL). Together, this study not only suggests that pre-synaptic TrkB in BLA neurons is necessary for memory extinction and contributes to the BDNF signaling transduction from the BLA to IL, but also provides CC1-EGFP as a novel tool to specifically regulate pre-synaptic TrkB expression in vitro and in vivo.
Collapse
|
41
|
Yu LN, Sun LH, Wang M, Yan M. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain. J Zhejiang Univ Sci B 2017; 17:733-741. [PMID: 27704743 DOI: 10.1631/jzus.b1600188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophosphate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyl-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li-Hong Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
42
|
Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol Cell Neurosci 2017; 82:66-75. [PMID: 28461220 DOI: 10.1016/j.mcn.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a-/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior.
Collapse
|
43
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
44
|
Carlos AJ, Tong L, Prieto GA, Cotman CW. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking. J Neuroinflammation 2017; 14:29. [PMID: 28153028 PMCID: PMC5290618 DOI: 10.1186/s12974-017-0803-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 01/25/2023] Open
Abstract
Background Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer’s disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. Methods This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. Results We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. Conclusions We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA. .,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
45
|
Janssens J, Lu D, Ni B, Chadwick W, Siddiqui S, Azmi A, Etienne H, Jushaj A, van Gastel J, Martin B, Maudsley S. Development of Precision Small-Molecule Proneurotrophic Therapies for Neurodegenerative Diseases. VITAMINS AND HORMONES 2016; 104:263-311. [PMID: 28215298 DOI: 10.1016/bs.vh.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related neurodegenerative diseases, such as Alzheimer's disease, will represent one of the largest future burdens on worldwide healthcare systems due to the increasing proportion of elderly in our society. As deficiencies in neurotrophins are implicated in the pathogenesis of many age-related neurodegenerative disorders, it is reasonable to consider that global neurotrophin resistance may also become a major healthcare threat. Central nervous system networks are effectively maintained through aging by neuroprotective and neuroplasticity signaling mechanisms which are predominantly controlled by neurotrophin receptor signaling. Neurotrophin receptors are single pass receptor tyrosine kinases that form dimeric structures upon ligand binding to initiate cellular signaling events that control many protective and plasticity-related pathways. Declining functionality of the neurotrophin ligand-receptor system is considered one of the hallmarks of neuropathological aging. Therefore, it is imperative to develop effective therapeutic strategies to contend with this significant issue. While the therapeutic applications of cognate ligands for neurotrophin receptors are limited, the development of nonpeptidergic, small-molecule ligands can overcome these limitations, and productively regulate this important receptor system with beneficial effects. Using our advanced knowledge of the high-dimensionality complexity of receptor systems, the future generation of precision medicines targeting these systems will be an attainable goal.
Collapse
Affiliation(s)
- J Janssens
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - D Lu
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - B Ni
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - W Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - A Azmi
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - H Etienne
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - A Jushaj
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - J van Gastel
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - B Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Maudsley
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium; Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States.
| |
Collapse
|
46
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
47
|
Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH. Trophic factors for Parkinson's disease: To live or let die. Mov Disord 2016; 30:1715-24. [PMID: 26769457 DOI: 10.1002/mds.26426] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Trophic factors show great promise in laboratory studies as potential therapies for PD. However, multiple double-blind, clinical trials have failed to show benefits in comparison to a placebo control. This article will review the scientific rationale for testing trophic factors in PD, the results of the different clinical trials that have been performed to date, and the possible explanations for these failed outcomes. We will also consider future directions and the likelihood that trophic factors will become a viable therapy for patients with PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
48
|
Zheng M, Duan J, He Z, Wang Z, Mu S, Zeng Z, Qu J, Zhang J, Wang D. Overexpression of tropomyosin receptor kinase A improves the survival and Schwann-like cell differentiation of bone marrow stromal cells in nerve grafts for bridging rat sciatic nerve defects. Cytotherapy 2016; 18:1256-69. [PMID: 27497699 DOI: 10.1016/j.jcyt.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND AIMS Bone marrow stromal cells (BMSCs) can differentiate into Schwann-like cells in vivo and effectively promote nerve regeneration and functional recovery as the seed cells for peripheral nerve repair. However, the survival rate and neural differentiation rate of the transplanted BMSCs are very low, which would limit their efficacy. METHODS In this work, rat BMSCs were infected by recombinant lentiviruses to construct tropomyosin receptor kinase A (TrkA)-overexpressing BMSCs and TrkA-shRNA-expressing BMSCs, which were then used in transplantation for rat sciatic nerve defects. RESULTS We showed that lentivirus-mediated overexpression of TrkA in BMSCs can promote cell survival and protect against serum-starve-induced apoptosis in vitro. At 8 weeks after transplantation, the Schwann-like differentiated ratio of the existing implanted cells had reached 74.8 ± 1.6% in TrkA-overexpressing BMSCs-laden nerve grafts, while 40.7 ± 2.3% and 42.3 ± 1.5% in vector and control BMSCs-laden nerve grafts, but only 8.2 ± 1.8% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. The cell apoptosis ratio of the existing implanted cells in TrkA-overexpressing BMSCs-laden nerve grafts was 16.5 ± 1.2%, while 33.9 ± 1.9% and 42.6 ± 2.9% in vector and control BMSCs-laden nerve grafts, but 87.2 ± 2.5% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. CONCLUSIONS These results demonstrate that TrkA overexpression can improve the survival and Schwann-like cell differentiation of BMSCs and prevent cell death in nerve grafts, which may have potential implication in advancing cell transplantation for peripheral nerve repair.
Collapse
Affiliation(s)
- Meige Zheng
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junxiu Duan
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhiwei Wang
- Department of Neurology, Shenzhen Shekou People's Hospital, Shenzhen, China
| | - Shuhua Mu
- Psychology & Social College, Shenzhen University, Shenzhen, China
| | - Zhiwen Zeng
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- School of Medicine, Shenzhen University, Shenzhen, China.
| | - Dong Wang
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China.
| |
Collapse
|
49
|
Yamashita N, Kuruvilla R. Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 2016; 39:139-45. [PMID: 27327126 DOI: 10.1016/j.conb.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/05/2016] [Indexed: 11/29/2022]
Abstract
In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
50
|
Ito K, Enomoto H. Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 2016; 160:77-85. [DOI: 10.1093/jb/mvw037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022] Open
|