1
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Nagy DU, Thoma AE, Al-Gharaibeh M, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP, Lekberg Y, Pal RW, Samartza I, Shah MA, Sheng M, Slate M, Stein C, Tsunoda T, Rosche C. Among-population variation in drought responses is consistent across life stages but not between native and non-native ranges. THE NEW PHYTOLOGIST 2024; 243:922-935. [PMID: 38859570 DOI: 10.1111/nph.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.
Collapse
Affiliation(s)
- Dávid U Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Arpad E Thoma
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren J Frazee
- Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, CZ-12801, Czech Republic
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, G1V0A6, Canada
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, 59701, USA
| | - Ioulietta Samartza
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, 57001, Greece
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Claudia Stein
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, 36124, USA
| | - Tomonori Tsunoda
- Bioscience and Biotechnology, Fukui Prefectural University, Fukui, 910-1195, Japan
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
3
|
Barmentlo NWG, Meirmans PG, Stiver WH, Yarkovich JG, McCann BE, Piaggio AJ, Wright D, Smyser TJ, Bosse M. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Mol Ecol 2024; 33:e17383. [PMID: 38747342 DOI: 10.1111/mec.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Collapse
Affiliation(s)
- Niek W G Barmentlo
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Blake E McCann
- Theodore Roosevelt National Park, Medora, North Dakota, USA
| | | | - Dominic Wright
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timothy J Smyser
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Mirte Bosse
- Section Ecology & Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wageningen University & Research - Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
4
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Bai B, Zhang SP, Li YT, Gao P, Yang XQ. Quercetin stimulates an accelerated burst of oviposition-based reproductive strategy in codling moth controlled by juvenile hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169643. [PMID: 38159769 DOI: 10.1016/j.scitotenv.2023.169643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The advantageous characteristics of invasive pests, particularly their ability to reproduce and adapt to the environment, have been observed. However, it remains unclear what specific inherent superiority enables fruit pests to successfully invade and dominate in interactions with other species. In this study, we report that Cydia pomonella (Linnaeus), a notorious invasive pest of pome fruits and walnuts globally, employs unique reproductive strategies in response to quercetin, a plant compound in host fruits. By monitoring adult dynamics and fruit infestation rates, we observed a competitive relationship between C. pomonella and the native species Grapholita molesta (Busck). C. pomonella was able to occupy vacant niches to ensure its population growth. We also found that quercetin had different effects on the reproductive capacity and population growth of C. pomonella and G. molesta. While quercetin stimulated the fecundity and population growth of G. molesta, it inhibited C. pomonella. However, C. pomonella was able to rapidly increase its population after exposure to quercetin by adopting an 'accelerated burst' of oviposition strategy, with each individual making a greater reproductive contribution compared to the control. We further demonstrated that the effect of quercetin on oviposition is regulated by the juvenile hormone (JH) signaling pathway in C. pomonella, allowing it to prioritize survival. The enhanced reproductive fitness of G. molesta in response to quercetin is attributed to the regulation of JH titers and key genes such as Met and Kr-h1, which in turn up-regulate reproduction-related genes Vg and VgR. In contrast, C. pomonella is inhibited. These findings shed light on the mechanisms interspecific competition and help to improve our understanding of the global spread of C. pomonella, which can be attributed to its inherent superiority in terms of reproductive strategy.
Collapse
Affiliation(s)
- Bing Bai
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Shi-Pan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China.
| |
Collapse
|
6
|
Cang FA, Welles SR, Wong J, Ziaee M, Dlugosch KM. Genome size variation and evolution during invasive range expansion in an introduced plant. Evol Appl 2024; 17:e13624. [PMID: 38283607 PMCID: PMC10810172 DOI: 10.1111/eva.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.
Collapse
Affiliation(s)
- F. Alice Cang
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shana R. Welles
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Utah Valley UniversityOremUtahUSA
| | - Jenny Wong
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Maia Ziaee
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Mills CollegeOaklandCaliforniaUSA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
7
|
Irimia RE, Montesinos D, Chaturvedi A, Sanders I, Hierro JL, Sotes G, Cavieres LA, Eren Ö, Lortie CJ, French K, Brennan AC. Trait evolution during a rapid global weed invasion despite little genetic differentiation. Evol Appl 2023; 16:997-1011. [PMID: 37216028 PMCID: PMC10197227 DOI: 10.1111/eva.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Invasive species often possess a great capacity to adapt to novel environments in the form of spatial trait variation, as a result of varying selection regimes, genetic drift, or plasticity. We explored the geographic differentiation in several phenotypic traits related to plant growth, reproduction, and defense in the highly invasive Centaurea solstitialis by measuring neutral genetic differentiation (F ST), and comparing it with phenotypic differentiation (P ST), in a common garden experiment in individuals originating from regions representing the species distribution across five continents. Native plants were more fecund than non-native plants, but the latter displayed considerably larger seed mass. We found indication of divergent selection for these two reproductive traits but little overall genetic differentiation between native and non-native ranges. The native versus invasive P ST-F ST comparisons demonstrated that, in several invasive regions, seed mass had increased proportionally more than the genetic differentiation. Traits displayed different associations with climate variables in different regions. Both capitula numbers and seed mass were associated with winter temperature and precipitation and summer aridity in some regions. Overall, our study suggests that rapid evolution has accompanied invasive success of C. solstitialis and provides new insights into traits and their genetic bases that can contribute to fitness advantages in non-native populations.
Collapse
Affiliation(s)
- Ramona E. Irimia
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Plant Evolutionary Ecology, Institute of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Daniel Montesinos
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversityQueenslandCairnsAustralia
| | - Anurag Chaturvedi
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Environmental Genomics Group, School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Ian Sanders
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPamSanta RosaArgentina
| | - Gastón Sotes
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
| | - Lohengrin A. Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Özkan Eren
- Aydın Adnan Menderes Üniversitesi, Biyoloji Bölümü, Fen‐Edebiyat FakültesiAydınTurkey
| | - Christopher J. Lortie
- Department of BiologyYork UniversityOntarioTorontoCanada
- The National Center for Ecological Analysis and Synthesis (NCEAS), UCSBCaliforniaUSA
| | - Kristine French
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongNew South WalesWollongongAustralia
| | | |
Collapse
|
8
|
Jia T, Qi Y, Zhao H, Xian X, Li J, Huang H, Yu W, Liu WX. Estimation of climate-induced increased risk of Centaurea solstitialis L. invasion in China: An integrated study based on biomod2. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IntroductionInvasive alien plants (IAPs) are major hazards to biodiversity, human health, and the agricultural economy. As one of the most aggressive species of IAPs, the distribution area of Centaurea solstitialis L. has increased exponentially in the past two years since its invasion into Xinjiang, China, in July 2014. Predicting the potential geographic distributions (PGDs) of C. solstitialis in China can provide theoretical support for preventing the continued spread of this weed.MethodsIn this study, based on 5,969 valid occurrence records of C. solstitialis and 33 environmental variables, we constructed an ensemble model to predict suitable habitats for C. solstitialis under climate change scenarios.ResultsOur results showed that the mean true skill statistic (TSS) values, area under the receiver operating characteristic (ROC) curve (AUC), and Cohen’s Kappa (KAPPA) for the ensemble model were 0.954, 0.996, and 0.943, respectively. The ensemble model yielded more precise predictions than those of the single model. Temperature seasonality (Bio4), minimum temperature of the coldest month (Bio6), precipitation of the driest month (Bio14), and human influence index (HII) have significantly disrupted the PGDs of C. solstitialis in China. The total (high) suitability habitat area of C. solstitialis in China was 275.91 × 104 (67.78 × 104) km2, accounting for 71.26 (7.06)% of China. The PGDs of C. solstitialis in China under the current climate were mainly in East China (Shandong, Jiangsu, Shanghai, Zhejiang, and Anhui), Central China (Henan, southwestern Shanxi, southern Shaanxi, southern Gansu, Hubei, Hunan, Jiangxi, Chongqing, and Guizhou), and South China (southern Tibet, eastern Sichuan, Yunnan, Guangxi, Guangdong, Fujian, and Taiwan). Under future climate scenarios, the total suitability habitat area for C. solstitialis will expand, whereas the high suitability habitat area will decrease.DiscussionThe main manifestation is that the shift of southeast China into a moderate suitability habitat, and the total suitability habitats will be extended to northwest China. More focus needs to be placed on preventing further spread of C. solstitialis in northwest China.
Collapse
|
9
|
Barrett CF, Ramachandran D, Chen CH, Corbett CW, Huebner CD, Sinn BT, Yu WB, Suetsugu K. Mitochondrial genome sequencing and analysis of the invasive Microstegium vimineum: a resource for systematics, invasion history, and management. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527995. [PMID: 36798355 PMCID: PMC9934601 DOI: 10.1101/2023.02.10.527995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Premise of the Research Plants remain underrepresented among species with sequenced mitochondrial genomes (mitogenomes), due to the difficulty in assembly with short-read technology. Invasive species lag behind crops and other economically important species in this respect, representing a lack of tools for management and land conservation efforts. Methodology The mitogenome of Microstegium vimineum, one of the most damaging invasive plant species in North America, was sequenced and analyzed using long-read data, providing a resource for biologists and managers. We conducted analyses of genome content, phylogenomic analyses among grasses and relatives based on mitochondrial coding regions, and an analysis of mitochondrial single nucleotide polymorphism in this invasive grass species. Pivotal Results The assembly is 478,010 bp in length and characterized by two large, inverted repeats, and a large, direct repeat. However, the genome could not be circularized, arguing against a "master circle" structure. Long-read assemblies with data subsets revealed several alternative genomic conformations, predominantly associated with large repeats. Plastid-like sequences comprise 2.4% of the genome, with further evidence of Class I and Class II transposable element-like sequences. Phylogenetic analysis placed M. vimineum with other Microstegium species, excluding M. nudum, but with weak support. Analysis of polymorphic sites across 112 accessions of M. vimineum from the native and invasive ranges revealed a complex invasion history. Conclusions We present an in-depth analysis of mitogenome structure, content, phylogenetic relationships, and range-wide genomic variation in M. vimineum's invasive US range. The mitogenome of M. vimineum is typical of other andropogonoid grasses, yet mitochondrial sequence variation across the invasive and native ranges is extensive. Our findings suggest multiple introductions to the US over the last century, with subsequent spread, secondary contact, long-distance dispersal, and possibly post-invasion selection on awn phenotypes. Efforts to produce genomic resources for invasive species, including sequenced mitochondrial genomes, will continue to provide tools for their effective management, and to help predict and prevent future invasions.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Dhanushya Ramachandran
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Chih-Hui Chen
- Endemic Species Research Institute, 1 Ming-Sheng East Road, Jiji, Nantou 552, Taiwan
| | - Cameron W. Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Cynthia D. Huebner
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
- USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, West Virginia, USA 26505
- Division of Plant and Soil Sciences, West Virginia University, 204 Evansdale Greenhouse, Morgantown, West Virginia, USA 26506
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, 1 South Grove Street, Westerville, OH USA 43081
- Faculty of Biology, University of Latvia, 1 Jelgavas iela, Riga, Latvia LV-1004
| | - Wen-Bin Yu
- Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden, CAS Mengla, Yunnan 666303, China
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
10
|
Onuki K, Fuke Y. Rediscovery of a native freshwater shrimp, Neocaridina denticulata, and expansion of an invasive species in and around Lake Biwa, Japan: genetic and morphological approach. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Li YP, Feng YL, Li WT, Tomlinson K, Liao ZY, Zheng YL, Zhang JL. Leaf trait association in relation to herbivore defense, drought resistance, and economics in a tropical invasive plant. AMERICAN JOURNAL OF BOTANY 2022; 109:910-921. [PMID: 35471767 DOI: 10.1002/ajb2.1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.
Collapse
Affiliation(s)
- Yang-Ping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wei-Tao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Kyle Tomlinson
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
12
|
The monitoring of diet and habitat preferences indicates competitive effect of exotic Ictalurus nebulosus on native fish under food-limited conditions. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Qi SS, Manoharan B, Dhandapani V, Jegadeesan S, Rutherford S, Wan JSH, Huang P, Dai ZC, Du DL. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022; 150:13-26. [PMID: 35031940 DOI: 10.1007/s10709-021-00147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bharani Manoharan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sridharan Jegadeesan
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Justin S H Wan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ping Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu Province, Suzhou, 215009, People's Republic of China.
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
14
|
Wang R, Zhu QC, Zhang YY, Chen XY. Biodiversity at disequilibrium: updating conservation strategies in cities. Trends Ecol Evol 2022; 37:193-196. [PMID: 35000798 DOI: 10.1016/j.tree.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Greenspaces represent an ark for urban biodiversity, but understanding their carrying capacity to sustain species remains challenging. Old greenspaces that were fragmented from natural habitats are now overcrowded, while revegetated new greenspaces remain vacant. This is because they have different processes leading towards biodiversity equilibrium, and conservation management needs to differentiate between fragmented and revegetated greenspaces.
Collapse
Affiliation(s)
- Rong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai 200231, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qi-Chong Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Yong Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai 200231, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
15
|
Eren Ö, Hierro JL. Trait variation, trade-offs, and attributes may contribute to colonization and range expansion of a globally distributed weed. AMERICAN JOURNAL OF BOTANY 2021; 108:2183-2195. [PMID: 34609739 DOI: 10.1002/ajb2.1755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Trait variation, trade-offs, and attributes can facilitate colonization and range expansion. We explored how those trait features compare between ancestral and nonnative populations of the globally distributed weed Centaurea solstitialis. METHODS We measured traits related to survival, size, reproduction, and dispersal in field sampling following major environmental gradients; that of elevation in Anatolia (ancestral range) and that of precipitation in Argentina (nonnative range). We also estimated abundance. RESULTS We found that overall variation in traits in ancestral populations was similar to that in nonnative populations. Only one trait-seed mass-displayed greater variation in ancestral than nonnative populations; coincidentally, seed mass has been shown to track global range expansion of C. solstitialis. Traits displayed several associations, among which seed mass and number were positively related in both ranges. Many traits varied with elevation in the ancestral range, whereas none varied with precipitation in the nonnative one. Interestingly, most traits varying with elevation within the ancestral range also displayed differences in attributes between ancestral and nonnative ranges. Unexpectedly, ancestral plants were more fecund than nonnative plants, but density was greater in the nonnative than ancestral range, indicating that C. solstitialis survives at larger proportions in the nonnative than ancestral range. CONCLUSIONS Our results suggest that maintaining levels of trait variation in nonnative populations comparable to those in ancestral populations, avoiding trait trade-offs, and developing differences in trait attributes between ranges can play a major role in the success of many weeds in novel environments.
Collapse
Affiliation(s)
- Özkan Eren
- Biyoloji Bölümü, Fen-Edebiyat Fakültesi, Aydın Adnan Menderes Üniversitesi, Aydın, 09010, Turkey
| | - José L Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Pampa (UNLPam), Mendoza 109, Santa Rosa, La Pampa, 6300, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPam, Uruguay 151, Santa Rosa, La Pampa, 6300, Argentina
| |
Collapse
|
16
|
Eyer PA, Blumenfeld AJ, Johnson LNL, Perdereau E, Shults P, Wang S, Dedeine F, Dupont S, Bagnères AG, Vargo EL. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol Ecol 2021; 30:3948-3964. [PMID: 34142394 DOI: 10.1111/mec.16022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | | | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | | | - Phillip Shults
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | - Shichen Wang
- Texas A&M Agrilife Genomics and Bioinformatics Service, College Station, TX, USA
| | | | - Simon Dupont
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France
| | - Anne-Geneviève Bagnères
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France.,CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Gil-Tapetado D, Castedo-Dorado F, Nieves-Aldrey JL, Lombardero MJ. Gall size of Dryocosmus kuriphilus limits down-regulation by native parasitoids. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02427-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Hodgins KA, Guggisberg A, Nurkowski K, Rieseberg LH. Genetically Based Trait Differentiation but Lack of Trade-offs between Stress Tolerance and Performance in Introduced Canada Thistle. PLANT COMMUNICATIONS 2020; 1:100116. [PMID: 33367269 PMCID: PMC7748015 DOI: 10.1016/j.xplc.2020.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Trade-offs between performance and tolerance of abiotic and biotic stress have been proposed to explain both the success of invasive species and frequently observed size differences between native and introduced populations. Canada thistle seeds collected from across the introduced North American and the native European range were grown in benign and stressful conditions (nutrient stress, shading, simulated herbivory, drought, and mowing), to evaluate whether native and introduced individuals differ in performance or stress tolerance. An additional experiment assessed the strength of maternal effects by comparing plants derived from field-collected seeds with those derived from clones grown in the glasshouse. Introduced populations tended to be larger in size, but no trade-off of stress tolerance with performance was detected; introduced populations had either superior performance or equivalent trait values and survivorship in the treatment common gardens. We also detected evidence of parallel latitudinal clines of some traits in both the native and introduced ranges and associations with climate variables in some treatments, consistent with recent climate adaptation within the introduced range. Our results are consistent with rapid adaptation of introduced populations, but, contrary to predictions, the evolution of invasive traits did not come at the cost of reduced stress tolerance.
Collapse
Affiliation(s)
- Kathryn A. Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Alessia Guggisberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kristin Nurkowski
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Montesinos D, Callaway RM. Soil origin corresponds with variation in growth of an invasive Centaurea, but not of non-invasive congeners. Ecology 2020; 101:e03141. [PMID: 32722846 DOI: 10.1002/ecy.3141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022]
Abstract
Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely related Centaurea species with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasive Centaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non-invasive Centaurea species grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not.
Collapse
Affiliation(s)
- Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, McGregor Road, Smithfield, Queensland, 4878, Australia.,Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000, Portugal
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| |
Collapse
|
20
|
Liu W, Zhang Y, Chen X, Maung-Douglass K, Strong DR, Pennings SC. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. THE NEW PHYTOLOGIST 2020; 226:623-634. [PMID: 31834631 DOI: 10.1111/nph.16371] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven-fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Keith Maung-Douglass
- Coastal Sustainability Studio, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Donald R Strong
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
21
|
Hierro JL, Eren Ö, Montesinos D, Andonian K, Kethsuriani L, Özcan R, Diaconu A, Török K, Cavieres L, French K. Increments in weed seed size track global range expansion and contribute to colonization in a non-native region. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02137-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Łukowski A, Janek W, Baraniak E, Walczak U, Karolewski P. Changing Host Plants Causes Structural Differences in the Parasitoid Complex of the Monophagous Moth Yponomeuta evonymella, but Does Not Improve Survival Rate. INSECTS 2019; 10:insects10070197. [PMID: 31277503 PMCID: PMC6681302 DOI: 10.3390/insects10070197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
Recently in Poland, cases of host expansion have frequently been observed in the typically monophagous bird-cherry ermine moth (Yponomeuta evonymella), which has moved from its native host plant, bird cherry (Prunus padus), to a new, widely distributed plant that is invasive in Europe, black cherry (P. serotina). We attempted to verify the reasons behind this host change in the context of the enemy-free space hypothesis by focusing on parasitoids attacking larval Y. evonymella on one of three host plant variants: The primary host, P. padus; initially P. padus and later P. serotina (P. padus/P. serotina); or the new host, P. serotina. This experiment investigated if changing the host plant could be beneficial to Y. evonymella in terms of escaping from harmful parasitoids and improving survival rate. We identified nine species of parasitoids that attack larval Y. evonymella, and we found that the number of parasitoid species showed a downward trend from the primary host plant to the P. padus/P. serotina combination to the new host plant alone. We observed a significant difference among variants in relation to the percentage of cocoons killed by specific parasitoids, but no effects of non-specific parasitoids or other factors. Total mortality did not significantly differ (ca. 37%) among larval rearing variants. Changing the host plant caused differences in the structure of the parasitoid complex of Y. evonymella but did not improve its survival rate. This study does not indicate that the host expansion of Y. evonymella is associated with the enemy-free space hypothesis; we therefore discuss alternative scenarios that may be more likely.
Collapse
Affiliation(s)
- Adrian Łukowski
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland.
- Laboratory of Ecology, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Wanda Janek
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
| | - Edward Baraniak
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Urszula Walczak
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Piotr Karolewski
- Laboratory of Ecology, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
23
|
Bodden V, Puschendorf R. Morphological divergence and reduced ectoparasite prevalence in an introduced population of a Caribbean anole. J Zool (1987) 2019. [DOI: 10.1111/jzo.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- V. Bodden
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | - R. Puschendorf
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| |
Collapse
|
24
|
van Boheemen LA, Bou‐Assi S, Uesugi A, Hodgins KA. Rapid growth and defence evolution following multiple introductions. Ecol Evol 2019; 9:7942-7956. [PMID: 31380062 PMCID: PMC6662289 DOI: 10.1002/ece3.5275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 01/02/2023] Open
Abstract
Rapid adaptation can aid invasive populations in their competitive success. Resource allocation trade-off hypotheses predict higher resource availability or the lack of natural enemies in introduced ranges allow for increased growth and reproduction, thus contributing to invasive success. Evidence for such hypotheses is however equivocal and tests among multiple ranges over productivity gradients are required to provide a better understanding of the general applicability of these theories.Using common gardens, we investigated the adaptive divergence of various constitutive and inducible defence-related traits between the native North American and introduced European and Australian ranges, while controlling for divergence due to latitudinal trait clines, individual resource budgets, and population differentiation, using >11,000 SNPs.Rapid, repeated clinal adaptation in defence-related traits was apparent despite distinct demographic histories. We also identified divergence among ranges in some defence-related traits, although differences in energy budgets among ranges may explain some, but not all, defence-related trait divergence. We do not identify a general reduction in defence in concert with an increase in growth among the multiple introduced ranges as predicted trade-off hypotheses. Synthesis: The rapid spread of invasive species is affected by a multitude of factors, likely including adaptation to climate and escape from natural enemies. Unravelling the mechanisms underlying invasives' success enhances understanding of eco-evolutionary theory and is essential to inform management strategies in the face of ongoing climate change. OPEN RESEARCH BADGES This article has been awarded Open Materials, Open Data, Preregistered Research Designs Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.6084/m9.figshare.8028875.v1, https://github.com/lotteanna/defence_adaptation,https://doi.org/10.1101/435271.
Collapse
Affiliation(s)
| | - Sarah Bou‐Assi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Akane Uesugi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | |
Collapse
|
25
|
Phenological and reproductive traits and their response to environmental variation differ among native and invasive grasses in a Neotropical savanna. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02013-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Braasch J, Barker BS, Dlugosch KM. Expansion history and environmental suitability shape effective population size in a plant invasion. Mol Ecol 2019; 28:2546-2558. [PMID: 30993767 DOI: 10.1111/mec.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne ) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome-wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona.,Integrated Plant Protection Center and Department of Horticulture, Oregon State University, Corvallis, Oregon
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
27
|
van Boheemen LA, Atwater DZ, Hodgins KA. Rapid and repeated local adaptation to climate in an invasive plant. THE NEW PHYTOLOGIST 2019; 222:614-627. [PMID: 30367474 DOI: 10.1111/nph.15564] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Biological invasions provide opportunities to study evolutionary processes occurring over contemporary timescales. To explore the speed and repeatability of adaptation, we examined the divergence of life-history traits to climate, using latitude as a proxy, in the native North American and introduced European and Australian ranges of the annual plant Ambrosia artemisiifolia. We explored niche changes following introductions using climate niche dynamic models. In a common garden, we examined trait divergence by growing seeds collected across three ranges with highly distinct demographic histories. Heterozygosity-fitness associations were used to explore the effect of invasion history on potential success. We accounted for nonadaptive population differentiation using 11 598 single nucleotide polymorphisms. We revealed a centroid shift to warmer, wetter climates in the introduced ranges. We identified repeated latitudinal divergence in life-history traits, with European and Australian populations positioned at either end of the native clines. Our data indicate rapid and repeated adaptation to local climates despite the recent introductions and a bottleneck limiting genetic variation in Australia. Centroid shifts in the introduced ranges suggest adaptation to more productive environments, potentially contributing to trait divergence between the ranges.
Collapse
Affiliation(s)
- Lotte A van Boheemen
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - Daniel Z Atwater
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| |
Collapse
|
28
|
Lu-Irving P, Harenčár JG, Sounart H, Welles SR, Swope SM, Baltrus DA, Dlugosch KM. Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. mSphere 2019; 4:e00088-19. [PMID: 30842267 PMCID: PMC6403453 DOI: 10.1128/msphere.00088-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Evolutionary Ecology, Royal Botanic Gardens Sydney, Sydney, New South Wales, Australia
| | - Julia G Harenčár
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Hailey Sounart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Biology, Mills College, Oakland, California, USA
| | - Shana R Welles
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Sarah M Swope
- Department of Biology, Mills College, Oakland, California, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Hock M, Hofmann RW, Müller C, Erfmeier A. Exotic plant species are locally adapted but not to high ultraviolet-B radiation: a reciprocal multispecies experiment. Ecology 2019; 100:e02665. [PMID: 30770567 DOI: 10.1002/ecy.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Ultraviolet (UV) radiation intensities differ among global regions, with significantly higher levels in the southern hemisphere. UV-B may act as an environmental filter during plant invasions, which might particularly apply to plant species from Europe introduced to New Zealand. Just like for any other abiotic or biotic filter, successful invaders can cope with novel environmental conditions via plastic responses and/or through rapid adaptation by natural selection in the exotic range. We conducted a multispecies experiment with herbaceous plants in two common gardens located in the species' native and exotic ranges, in Germany and New Zealand, respectively. We used plants of German and New Zealand origin of eight species to test for adaptation to higher UV-B radiation in their new range. In each common garden, all plants were exposed to three radiation treatments: (1) ambient sunlight, (2) exclusion of UV-B while transmitting ambient UV-A, and (3) combined exclusion of UV-B and UV-A. Linear mixed-effect models revealed significant effects of UV-B on growth and leaf traits and an indication for UV-B-induced biomass reduction in both common gardens pointing to an impact of natural, ambient UV radiation intensities experienced by plants in the northern and in the southern hemisphere. In both common gardens, the respective local plants (i.e., German origins in Germany, New Zealand origins in New Zealand) displayed enhanced productivity and aboveground biomass allocation, thus providing evidence for recent evolutionary processes in the exotic range. Genetic differentiation between different origins in consequence of divergent local selection pressures was found for specific leaf area. This differentiation particularly hints at different selective forces in both ranges while only little evidence was found for an immediate selective effect of high UV-B intensities in the exotic range. However, reaction norm slopes across ranges revealed higher plasticity of exotic individuals in functional leaf traits that might allow for a more sensitive regulation of photoprotection measures in response to UV-B. During the colonization, New Zealand populations might have been selected for the observed higher phenotypic plasticity and a consequently increased ability to successfully spread in the exotic range.
Collapse
Affiliation(s)
- Maria Hock
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Ellesmere Junction Road/Springs Road, Lincoln, 7647, New Zealand
| | - Caroline Müller
- Faculty of Biology/Chemical Ecology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Alexandra Erfmeier
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, Leipzig, 04103, Germany
| |
Collapse
|
30
|
Barker BS, Cocio JE, Anderson SR, Braasch JE, Cang FA, Gillette HD, Dlugosch KM. Potential limits to the benefits of admixture during biological invasion. Mol Ecol 2018; 28:100-113. [PMID: 30485593 DOI: 10.1111/mec.14958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.
Collapse
Affiliation(s)
- Brittany S Barker
- University of Arizona, Tucson, Arizona.,United States Geological Survey, Boise, Idaho
| | | | | | | | | | - Heather D Gillette
- University of Arizona, Tucson, Arizona.,Northern Arizona University, Flagstaff, Arizona
| | | |
Collapse
|
31
|
Montesinos D, Graebner RC, Callaway RM. Evidence for evolution of increased competitive ability for invasive Centaurea solstitialis, but not for naturalized C. calcitrapa. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Montesinos D, Callaway RM. Traits correlate with invasive success more than plasticity: A comparison of three Centaurea congeners. Ecol Evol 2018; 8:7378-7385. [PMID: 30151157 PMCID: PMC6106188 DOI: 10.1002/ece3.4080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/05/2018] [Accepted: 03/24/2018] [Indexed: 12/02/2022] Open
Abstract
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co-occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non-native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.
Collapse
Affiliation(s)
- Daniel Montesinos
- Division of Biological Sciences and the Institute on EcosystemsThe University of MontanaMissoulaMontana
- Centro de Investigaciones sobre Desertificación – CIDE (CSIC, UV, GV)Carretera Moncada‐NáqueraMoncadaSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCalçada Martim de FreitasCoimbraPortugal
| | - Ragan M. Callaway
- Division of Biological Sciences and the Institute on EcosystemsThe University of MontanaMissoulaMontana
| |
Collapse
|
33
|
Sotka EE, Baumgardner AW, Bippus PM, Destombe C, Duermit EA, Endo H, Flanagan BA, Kamiya M, Lees LE, Murren CJ, Nakaoka M, Shainker SJ, Strand AE, Terada R, Valero M, Weinberger F, Krueger‐Hadfield SA. Combining niche shift and population genetic analyses predicts rapid phenotypic evolution during invasion. Evol Appl 2018; 11:781-793. [PMID: 29875819 PMCID: PMC5978718 DOI: 10.1111/eva.12592] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction, and magnitude of phenotypic evolution during invasion have been underestimated. We explored the utility of niche shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe, and northwestern Africa within the last 100 years. A genetically informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations, and as predicted, non-native populations had greater tolerance for ecologically relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: Populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.
Collapse
Affiliation(s)
- Erik E. Sotka
- Department of BiologyCollege of CharlestonCharlestonSCUSA
| | | | | | - Christophe Destombe
- UMI EBEA 3614, CNRSSorbonne UniversitésUPMC, UCCh, UACHStation Biologique de RoscoffRoscoffFrance
| | | | - Hikaru Endo
- United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | | | - Mits Kamiya
- Faculty of Marine BioscienceFukui Prefectural UniversityObamaFukuiJapan
| | - Lauren E. Lees
- Department of BiologyCollege of CharlestonCharlestonSCUSA
| | | | - Masahiro Nakaoka
- Akkeshi Marine StationField Science Center for Northern BiosphereHokkaido UniversityHokkaidoJapan
| | | | | | - Ryuta Terada
- United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Myriam Valero
- UMI EBEA 3614, CNRSSorbonne UniversitésUPMC, UCCh, UACHStation Biologique de RoscoffRoscoffFrance
| | | | | |
Collapse
|
34
|
Evolution of invasiveness by genetic accommodation. Nat Ecol Evol 2018; 2:991-999. [DOI: 10.1038/s41559-018-0553-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022]
|
35
|
Lu-Irving P, Marx HE, Dlugosch KM. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:95-102. [PMID: 29754025 DOI: 10.1016/j.pbi.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA.
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| |
Collapse
|
36
|
Stutz S, Mráz P, Hinz HL, Müller-Schärer H, Schaffner U. Biological invasion of oxeye daisy (Leucanthemum vulgare) in North America: Pre-adaptation, post-introduction evolution, or both? PLoS One 2018; 13:e0190705. [PMID: 29300760 PMCID: PMC5754128 DOI: 10.1371/journal.pone.0190705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Species may become invasive after introduction to a new range because phenotypic traits pre-adapt them to spread and become dominant. In addition, adaptation to novel selection pressures in the introduced range may further increase their potential to become invasive. The diploid Leucanthemum vulgare and the tetraploid L. ircutianum are native to Eurasia and have been introduced to North America, but only L. vulgare has become invasive. To investigate whether phenotypic differences between the two species in Eurasia could explain the higher abundance of L. vulgare in North America and whether rapid evolution in the introduced range may have contributed to its invasion success, we grew 20 L. vulgare and 21 L. ircutianum populations from Eurasia and 21 L. vulgare populations from North America under standardized conditions and recorded performance and functional traits. In addition, we recorded morphological traits to investigate whether the two closely related species can be clearly distinguished by morphological means and to what extent morphological traits have changed in L. vulgare post-introduction. We found pronounced phenotypic differences between L. vulgare and L. ircutianum from the native range as well as between L. vulgare from the native and introduced ranges. The two species differed significantly in morphology but only moderately in functional or performance traits that could have explained the higher invasion success of L. vulgare in North America. In contrast, leaf morphology was similar between L. vulgare from the native and introduced range, but plants from North America flowered later, were larger and had more and larger flower heads than those from Eurasia. In summary, we found litte evidence that specific traits of L. vulgare may have pre-adapted this species to become more invasive than L. ircutianum, but our results indicate that rapid evolution in the introduced range likely contributed to the invasion success of L. vulgare.
Collapse
Affiliation(s)
- Sonja Stutz
- CABI, Delémont, Switzerland
- Department of Biology/Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | - Patrik Mráz
- Herbarium and Department of Botany, Charles University in Prague, Prague, Czech Republic
| | | | - Heinz Müller-Schärer
- Department of Biology/Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
37
|
de Villalobos AE, Schwerdt L. Feral horses and alien plants: effects on the structure and function of the Pampean Mountain grasslands (Argentina). ECOSCIENCE 2018. [DOI: 10.1080/11956860.2017.1409476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ana E. de Villalobos
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Comisión de Investigaciones Científicas y Técnicas, CERZOS – CONICET, Bahía Blanca, Argentina
- Dep. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Leonela Schwerdt
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Comisión de Investigaciones Científicas y Técnicas, CERZOS – CONICET, Bahía Blanca, Argentina
| |
Collapse
|
38
|
|
39
|
Tabassum S, Leishman MR. Have your cake and eat it too: greater dispersal ability and faster germination towards range edges of an invasive plant species in eastern Australia. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1620-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Driscoll DA, Strong C. Covariation of soil nutrients drives occurrence of exotic and native plant species. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Don A. Driscoll
- School of Life and Environmental Sciences; Centre for Integrative Ecology; Deakin University Geelong; Melbourne Vic. Australia
| | - Craig Strong
- The Fenner School of Environment & Society; The Australian National University; Canberra ACT Australia
| |
Collapse
|
41
|
Irimia RE, Montesinos D, Eren Ö, Lortie CJ, French K, Cavieres LA, Sotes GJ, Hierro JL, Jorge A, Loureiro J. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization. PeerJ 2017; 5:e3531. [PMID: 28828232 PMCID: PMC5560225 DOI: 10.7717/peerj.3531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.
Collapse
Affiliation(s)
- Ramona-Elena Irimia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,National Institute of Research and Development for Biological Sciences, Stejarul Research Centre for Biological Sciences, Piatra Neamt, Romania
| | - Daniel Montesinos
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Özkan Eren
- Adnan Menderes Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Aydın, Turkey
| | | | - Kristine French
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Lohengrin A Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Gastón J Sotes
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - José L Hierro
- Instituto de Ciencias de La Tierra y Ambientales de la Pampa, Consejo Nacional de Investigaciones Científicas y Técnicas (INCITAP-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, Argentina
| | - Andreia Jorge
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
42
|
Yang M, He Z, Huang Y, Lu L, Yan Y, Hong L, Shen H, Liu Y, Guo Q, Jiang L, Zhang Y, Greenberg AJ, Zhou R, Ge X, Wu CI, Shi S. The emergence of the hyperinvasive vine, Mikania micrantha (Asteraceae), via admixture and founder events inferred from population transcriptomics. Mol Ecol 2017; 26:3405-3423. [PMID: 28370790 DOI: 10.1111/mec.14124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023]
Abstract
Biological invasions that involve well-documented rapid adaptations to new environments provide unequalled opportunities for testing evolutionary hypotheses. Mikania micrantha Kunth (Asteraceae), a perennial herbaceous vine native to tropical Central and South America, successfully invaded tropical Asia in the early 20th century. It is regarded as one of the most aggressive weeds in the world. To elucidate the molecular and evolutionary processes underlying this invasion, we extensively sampled this weed throughout its invaded range in South-East and South Asia and surveyed its genetic structure using variants detected from population transcriptomics. Clustering results suggest that more than one source population contributed to this invasion. Computer simulations using genomewide genetic variation support a scenario of admixture and founder events during invasion. The genes differentially expressed between native and invasive populations were found to be involved in oxidative and high light intensity stress responses, pointing to a possible ecological mechanism of adaptation. Our results provide a foundation for further detailed mechanistic and population studies of this ecologically and economically important invasion. This line of research promises to provide new mitigation strategies for invasive species as well as insights into mechanisms of adaptation.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Yubin Yan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Lan Hong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hao Shen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Qiang Guo
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | - Lu Jiang
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | - Yanwu Zhang
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | | | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Xuejun Ge
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis). Mol Ecol 2017; 26:1131-1147. [PMID: 28029713 DOI: 10.1111/mec.13998] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Identifying sources of genetic variation and reconstructing invasion routes for non-native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome-wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic 'bridgehead' for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of the California interior. These results reveal a long history of colonization, admixture and trait evolution in C. solstitialis, and suggest routes for improving evidence-based management decisions for one of the most ecologically and economically damaging invasive species in the western United States.
Collapse
Affiliation(s)
- Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarah M Swope
- Department of Biology, Mills College, Oakland, CA, 94613, USA
| | - Douglas G Luster
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, 21702, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
44
|
Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE. Invasions and extinctions through the looking glass of evolutionary ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160031. [PMID: 27920376 PMCID: PMC5182427 DOI: 10.1098/rstb.2016.0031] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/12/2022] Open
Abstract
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, which (i) maintains ecologically relevant genetic variation, (ii) reduces mutation load, and (iii) increases the efficiency of natural selection relative to genetic drift. Endangered species are less likely to benefit from admixture, which offsets mutation load but also reduces fitness when populations are locally adapted. Invading species generally experience more benign environments with fewer natural enemies, which increases fitness directly and also indirectly by masking inbreeding depression. Adaptive phenotypic plasticity can maintain fitness in novel environments but is more likely to evolve in invasive species encountering variable habitats and to be compromised by demographic factors in endangered species. Placed in an eco-evolutionary context, these differences affect the breadth of the ecological niche, which arises as an emergent property of antagonistic selection and genetic constraints. Comparative studies of invasions and extinctions that apply an eco-evolutionary perspective could provide new insights into the environmental and genetic basis of ecological success in novel environments and improve efforts to preserve global biodiversity.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Robert I Colautti
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Jake M Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, Burlington, VT 05405, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, 237 Church Street, Middletown, CT 06459, USA
| |
Collapse
|
45
|
Barker MS, Li Z, Kidder TI, Reardon CR, Lai Z, Oliveira LO, Scascitelli M, Rieseberg LH. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. AMERICAN JOURNAL OF BOTANY 2016; 103:1203-11. [PMID: 27313199 DOI: 10.3732/ajb.1600113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. METHODS We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. KEY RESULTS We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. CONCLUSIONS Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Thomas I Kidder
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Chris R Reardon
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zhao Lai
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA
| | - Luiz O Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa 36570-900, Viçosa, Brazil
| | - Moira Scascitelli
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Loren H Rieseberg
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
46
|
|