1
|
Morabito A, Zerlau Y, Dhanasobhon D, Berthaux E, Tzilivaki A, Moneron G, Cathala L, Poirazi P, Bacci A, DiGregorio D, Lourenço J, Rebola N. A dendritic substrate for temporal diversity of cortical inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602783. [PMID: 39026855 PMCID: PMC11257522 DOI: 10.1101/2024.07.09.602783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs. We found that somatostatin (SST)-INs exhibit NMDAR-dependent dendritic integration and uniform synapse density along the dendritic tree. In contrast, dendrites of parvalbumin (PV)-INs exhibit passive synaptic integration coupled with proximally enriched synaptic distributions. Theoretical analysis shows that these two dendritic configurations result in different strategies to optimize synaptic efficacy in thin dendritic structures. Yet, the two configurations lead to distinct temporal engagement of each IN during network activity. We confirmed these predictions with in vivo recordings of IN activity in the visual cortex of awake mice, revealing a rapid and linear recruitment of PV-INs as opposed to a long-lasting integrative activation of SST-INs. Our work reveals the existence of distinct dendritic strategies that confer distinct temporal representations for the two major classes of neocortical INs and thus dynamics of inhibition.
Collapse
Affiliation(s)
- Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Yann Zerlau
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - Gael Moneron
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Laurence Cathala
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Alberto Bacci
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - David DiGregorio
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Joana Lourenço
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| |
Collapse
|
2
|
Yang S, Datta D, Krienen FM, Ling E, Woo E, May A, Anderson GM, Galvin VC, Gonzalez-Burgos G, Lewis DA, McCarroll SA, Arnsten AF, Wang M. Kynurenic acid inflammatory signaling expands in primates and impairs prefrontal cortical cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598842. [PMID: 38915595 PMCID: PMC11195225 DOI: 10.1101/2024.06.13.598842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.
Collapse
|
3
|
Marín O. Parvalbumin interneuron deficits in schizophrenia. Eur Neuropsychopharmacol 2024; 82:44-52. [PMID: 38490084 DOI: 10.1016/j.euroneuro.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
4
|
García-Cerro S, Gómez-Garrido A, Garcia G, Crespo-Facorro B, Brites D. Exploratory Analysis of MicroRNA Alterations in a Neurodevelopmental Mouse Model for Autism Spectrum Disorder and Schizophrenia. Int J Mol Sci 2024; 25:2786. [PMID: 38474035 DOI: 10.3390/ijms25052786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11. We focused on a set of miRNAs most frequently altered in ASD (miR-451a and miR-486-3p) and in SCZ (miR-132-3p and miR-137-3p) according to human studies. Additionally, we explored miRNAs whose alterations have been identified in both disorders (miR-21-5p, miR-92a-2-5p, miR-144-3p, and miR-146a-5p). We placed particular emphasis on studying the sexual dimorphism in the dynamics of these miRNAs. Our findings revealed significant alterations in the PFC of this ASD- and SCZ-like mouse model. Specifically, we observed upregulated miR-451a and downregulated miR-137-3p. Furthermore, we identified sexual dimorphism in the expression of miR-132-3p, miR-137-3p, and miR-92a-2-5p. From a translational perspective, our results emphasize the potential involvement of miR-92a-2-5p, miR-132-3p, miR-137-3p, and miR-451a in the pathophysiology of ASD and SCZ and strengthen their potential as biomarkers and therapeutic targets of such disorders.
Collapse
Affiliation(s)
- Susana García-Cerro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Ana Gómez-Garrido
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Benedicto Crespo-Facorro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
- Mental Health Unit, Virgen del Rocio University Hospital, Manuel Siurot AV, 41013 Seville, Spain
- Department of Psychiatry, Faculty of Medicine, University of Seville, Sánchez Pizjuán AV, 41013 Seville, Spain
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Santos-Silva T, dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes FV. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2024; 50:210-223. [PMID: 37584417 PMCID: PMC10754178 DOI: 10.1093/schbul/sbad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
BACKGROUND Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora dos Santos Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cilene Lino de Oliveira
- Department of Physiological Sciences, Center of Biological Sciences, University of Santa Catarina, Florianópolis,Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Zhang XQ, Xu L, Zhu XY, Tang ZH, Dong YB, Yu ZP, Shang Q, Wang ZC, Shen HW. D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia. Nat Commun 2023; 14:8255. [PMID: 38086803 PMCID: PMC10716516 DOI: 10.1038/s41467-023-43930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction. We find that D-serine restores excitation/inhibition balance by reconstituting both synaptic and intrinsic inhibitory control of cingulate pyramidal neurons through facilitating PV excitability and activating small-conductance Ca2+-activated K+ (SK) channels in pyramidal neurons, respectively. Either amplifying inhibitory drive via directly strengthening PV neuron activity or inhibiting pyramidal excitability via activating SK channels is sufficient to improve cognitive function in this model. These findings unveil a dual mechanism for how D-serine improves cognitive function in this model.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Le Xu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Xin-Yi Zhu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zi-Hang Tang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yi-Bei Dong
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qing Shang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang, 315211, China
| | - Zheng-Chun Wang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
7
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Susin E, Destexhe A. A Network Model of the Modulation of γ Oscillations by NMDA Receptors in Cerebral Cortex. eNeuro 2023; 10:ENEURO.0157-23.2023. [PMID: 37940562 PMCID: PMC10668239 DOI: 10.1523/eneuro.0157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023] Open
Abstract
Psychotic drugs such as ketamine induce symptoms close to schizophrenia and stimulate the production of γ oscillations, as also seen in patients, but the underlying mechanisms are still unclear. Here, we have used computational models of cortical networks generating γ oscillations, and have integrated the action of drugs such as ketamine to partially block NMDA receptors (NMDARs). The model can reproduce the paradoxical increase of γ oscillations by NMDA receptor antagonists, assuming that antagonists affect NMDA receptors with higher affinity on inhibitory interneurons. We next used the model to compare the responsiveness of the network to external stimuli, and found that when NMDA channels are blocked, an increase of γ power is observed altogether with an increase of network responsiveness. However, this responsiveness increase applies not only to γ states, but also to asynchronous states with no apparent γ. We conclude that NMDA antagonists induce an increased excitability state, which may or may not produce γ oscillations, but the response to external inputs is exacerbated, which may explain phenomena such as altered perception or hallucinations.
Collapse
Affiliation(s)
- Eduarda Susin
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay, France 91400
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay, France 91400
| |
Collapse
|
9
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Herzog LE, Wang L, Yu E, Choi S, Farsi Z, Song BJ, Pan JQ, Sheng M. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry 2023; 13:92. [PMID: 36914641 PMCID: PMC10011509 DOI: 10.1038/s41398-023-02393-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder with a strong genetic basis, whose etiology and pathophysiology remain poorly understood. Exome sequencing studies have uncovered rare, loss-of-function variants that greatly increase risk of schizophrenia [1], including loss-of-function mutations in GRIN2A (aka GluN2A or NR2A, encoding the NMDA receptor subunit 2A) and AKAP11 (A-Kinase Anchoring Protein 11). AKAP11 and GRIN2A mutations are also associated with bipolar disorder [2], and epilepsy and developmental delay/intellectual disability [1, 3, 4], respectively. Accessible in both humans and rodents, electroencephalogram (EEG) recordings offer a window into brain activity and display abnormal features in schizophrenia patients. Does loss of Grin2a or Akap11 in mice also result in EEG abnormalities? We monitored EEG in heterozygous and homozygous knockout Grin2a and Akap11 mutant mice compared with their wild-type littermates, at 3- and 6-months of age, across the sleep/wake cycle and during auditory stimulation protocols. Grin2a and Akap11 mutants exhibited increased resting gamma power, attenuated auditory steady-state responses (ASSR) at gamma frequencies, and reduced responses to unexpected auditory stimuli during mismatch negativity (MMN) tests. Sleep spindle density was reduced in a gene dose-dependent manner in Akap11 mutants, whereas Grin2a mutants showed increased sleep spindle density. The EEG phenotypes of Grin2a and Akap11 mutant mice show a variety of abnormal features that overlap considerably with human schizophrenia patients, reflecting systems-level changes caused by Grin2a and Akap11 deficiency. These neurophysiologic findings further substantiate Grin2a and Akap11 mutants as genetic models of schizophrenia and identify potential biomarkers for stratification of schizophrenia patients.
Collapse
Affiliation(s)
- Linnea E Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lei Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunah Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Anastasiades PG, de Vivo L, Bellesi M, Jones MW. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction. Prog Neurobiol 2022; 218:102338. [PMID: 35963360 PMCID: PMC7616212 DOI: 10.1016/j.pneurobio.2022.102338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.
Collapse
Affiliation(s)
- Paul G Anastasiades
- University of Bristol, Translational Health Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Luisa de Vivo
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Pharmacy, via Gentile III Da Varano, Camerino 62032, Italy
| | - Michele Bellesi
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Bioscience and Veterinary Medicine, via Gentile III Da Varano, Camerino 62032, Italy
| | - Matt W Jones
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
12
|
Mancini V, Rochas V, Seeber M, Grent-'t-Jong T, Rihs TA, Latrèche C, Uhlhaas PJ, Michel CM, Eliez S. Oscillatory Neural Signatures of Visual Perception Across Developmental Stages in Individuals With 22q11.2 Deletion Syndrome. Biol Psychiatry 2022; 92:407-418. [PMID: 35550793 DOI: 10.1016/j.biopsych.2022.02.961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. METHODS We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. RESULTS Deletion carriers had decreased theta-band (4-8 Hz) and gamma-band (58-68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10-25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22-40 Hz). CONCLUSIONS Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
13
|
Luessen DJ, Gallinger IM, Ferranti AS, Foster DJ, Melancon BJ, Lindsley CW, Niswender CM, Conn PJ. mGlu 1-mediated restoration of prefrontal cortex inhibitory signaling reverses social and cognitive deficits in an NMDA hypofunction model in mice. Neuropsychopharmacology 2022; 47:1826-1835. [PMID: 35643819 PMCID: PMC9372079 DOI: 10.1038/s41386-022-01350-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
Extensive evidence supports the hypothesis that deficits in inhibitory GABA transmission in the prefrontal cortex (PFC) may drive pathophysiological changes underlying symptoms of schizophrenia that are not currently treated by available medications, including cognitive and social impairments. Recently, the mGlu1 subtype of metabotropic glutamate (mGlu) receptor has been implicated as a novel target to restore GABAergic transmission in the PFC. A recent study reported that activation of mGlu1 increases inhibitory transmission in the PFC through excitation of somatostatin-expressing GABAergic interneurons, implicating mGlu1 PAMs as a potential treatment strategy for schizophrenia. Here, we leveraged positive allosteric modulators (PAMs) of mGlu1 to examine whether mGlu1 activation might reverse physiological effects and behavioral deficits induced by MK-801, an NMDA receptor antagonist commonly used to model cortical deficits observed in schizophrenia patients. Using ex vivo whole-cell patch-clamp electrophysiology, we found that MK-801 decreased the frequency of spontaneous inhibitory postsynaptic currents onto layer V pyramidal cells of the PFC and this cortical disinhibition was reversed by mGlu1 activation. Furthermore, acute MK-801 treatment selectively induced inhibitory deficits onto layer V pyramidal cells that project to the basolateral amygdala, but not to the nucleus accumbens, and these deficits were restored by selective mGlu1 activation. Importantly, the mGlu1 PAM VU6004909 effectively reversed deficits in sociability and social novelty preference in a three-chamber assay and improved novel objection recognition following MK-801 treatment. Together, these findings provide compelling evidence that mGlu1 PAMs could serve as a novel approach to reduce social and cognitive deficits associated with schizophrenia by enhancing inhibitory transmission in the PFC, thus providing an exciting improvement over current antipsychotic medication.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA.
| | - Isabel M Gallinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Center for Addiction Research, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Manyukhina VO, Prokofyev AO, Galuta IA, Goiaeva DE, Obukhova TS, Schneiderman JF, Altukhov DI, Stroganova TA, Orekhova EV. Globally elevated excitation-inhibition ratio in children with autism spectrum disorder and below-average intelligence. Mol Autism 2022; 13:20. [PMID: 35550191 PMCID: PMC9102291 DOI: 10.1186/s13229-022-00498-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Altered neuronal excitation–inhibition (E–I) balance is strongly implicated in ASD. However, it is not known whether the direction and degree of changes in the E–I ratio in individuals with ASD correlates with intellectual disability often associated with this developmental disorder. The spectral slope of the aperiodic 1/f activity reflects the E–I balance at the scale of large neuronal populations and may uncover its putative alternations in individuals with ASD with and without intellectual disability. Methods Herein, we used magnetoencephalography (MEG) to test whether the 1/f slope would differentiate ASD children with average and below–average (< 85) IQ. MEG was recorded at rest with eyes open/closed in 49 boys with ASD aged 6–15 years with IQ ranging from 54 to 128, and in 49 age-matched typically developing (TD) boys. The cortical source activity was estimated using the beamformer approach and individual brain models. We then extracted the 1/f slope by fitting a linear function to the log–log-scale power spectra in the high-frequency range. Results The global 1/f slope averaged over all cortical sources demonstrated high rank-order stability between the two conditions. Consistent with previous research, it was steeper in the eyes-closed than in the eyes-open condition and flattened with age. Regardless of condition, children with ASD and below-average IQ had flatter slopes than either TD or ASD children with average or above-average IQ. These group differences could not be explained by differences in signal-to-noise ratio or periodic (alpha and beta) activity. Limitations Further research is needed to find out whether the observed changes in E–I ratios are characteristic of children with below-average IQ of other diagnostic groups. Conclusions The atypically flattened spectral slope of aperiodic activity in children with ASD and below-average IQ suggests a shift of the global E–I balance toward hyper-excitation. The spectral slope can provide an accessible noninvasive biomarker of the E–I ratio for making objective judgments about treatment effectiveness in people with ASD and comorbid intellectual disability. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00498-2.
Collapse
Affiliation(s)
- Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.,Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Ilia A Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Dmitrii I Altukhov
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| |
Collapse
|
15
|
Wei H, Jin X, Su Z. A Circuit Model for Working Memory Based on Hybrid Positive and Negative-Derivative Feedback Mechanism. Brain Sci 2022; 12:547. [PMID: 35624934 PMCID: PMC9139460 DOI: 10.3390/brainsci12050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Working memory (WM) plays an important role in cognitive activity. The WM system is used to temporarily store information in learning and decision-making. WM always functions in many aspects of daily life, such as the short-term memory of words, cell phone verification codes, and cell phone numbers. In young adults, studies have shown that a central memory store is limited to three to five meaningful items. Little is known about how WM functions at the microscopic neural level, but appropriate neural network computational models can help us gain a better understanding of it. In this study, we attempt to design a microscopic neural network model to explain the internal mechanism of WM. The performance of existing positive feedback models depends on the parameters of a synapse. We use a negative-derivative feedback mechanism to counteract the drift in persistent activity, making the hybrid positive and negative-derivative feedback (HPNF) model more robust to common disturbances. To fulfill the mechanism of WM at the neural circuit level, we construct two main neural networks based on the HPNF model: a memory-storage sub-network (the memory-storage sub-network is composed of several sets of neurons, so we call it "SET network", or "SET" for short) with positive feedback and negative-derivative feedback and a storage distribution network (SDN) designed by combining SET for memory item storage and memory updating. The SET network is a neural information self-sustaining mechanism, which is robust to common disturbances; the SDN constructs a storage distribution network at the neural circuit level; the experimental results show that our network can fulfill the storage, association, updating, and forgetting of information at the level of neural circuits, and it can work in different individuals with little change in parameters.
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, China; (X.J.); (Z.S.)
- Shanghai Key Laboratory of Data Science, No. 220 Handan Road, Shanghai 200433, China
| | - Xiao Jin
- Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, China; (X.J.); (Z.S.)
- Shanghai Key Laboratory of Data Science, No. 220 Handan Road, Shanghai 200433, China
| | - Zihao Su
- Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, China; (X.J.); (Z.S.)
- Shanghai Key Laboratory of Data Science, No. 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
16
|
Sala N, Paoli C, Bonifacino T, Mingardi J, Schiavon E, La Via L, Milanese M, Tornese P, Datusalia AK, Rosa J, Facchinetti R, Frumento G, Carini G, Salerno Scarzella F, Scuderi C, Forti L, Barbon A, Bonanno G, Popoli M, Musazzi L. Acute Ketamine Facilitates Fear Memory Extinction in a Rat Model of PTSD Along With Restoring Glutamatergic Alterations and Dendritic Atrophy in the Prefrontal Cortex. Front Pharmacol 2022; 13:759626. [PMID: 35370690 PMCID: PMC8968915 DOI: 10.3389/fphar.2022.759626] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Stress represents a major risk factor for psychiatric disorders, including post-traumatic stress disorder (PTSD). Recently, we dissected the destabilizing effects of acute stress on the excitatory glutamate system in the prefrontal cortex (PFC). Here, we assessed the effects of single subanesthetic administration of ketamine (10 mg/kg) on glutamate transmission and dendritic arborization in the PFC of footshock (FS)-stressed rats, along with changes in depressive, anxious, and fear extinction behaviors. We found that ketamine, while inducing a mild increase of glutamate release in the PFC of naïve rats, blocked the acute stress-induced enhancement of glutamate release when administered 24 or 72 h before or 6 h after FS. Accordingly, the treatment with ketamine 6 h after FS also reduced the stress-dependent increase of spontaneous excitatory postsynaptic current (sEPSC) amplitude in prelimbic (PL)-PFC. At the same time, ketamine injection 6 h after FS was found to rescue apical dendritic retraction of pyramidal neurons induced by acute stress in PL-PFC and facilitated contextual fear extinction. These results show rapid effects of ketamine in animals subjected to acute FS, in line with previous studies suggesting a therapeutic action of the drug in PTSD models. Our data are consistent with a mechanism of ketamine involving re-establishment of synaptic homeostasis, through restoration of glutamate release, and structural remodeling of dendrites.
Collapse
Affiliation(s)
- Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Caterina Paoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuele Schiavon
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Ashok K Datusalia
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, India
| | - Jessica Rosa
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.,Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Lia Forti
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Abstract
OBJECTIVE Cognitive impairments in schizophrenia are associated with lower gamma oscillation power in the prefrontal cortex (PFC). Gamma power depends in part on excitatory drive to fast-spiking parvalbumin interneurons (PVIs). Excitatory drive to cortical neurons varies in strength, which could affect how these neurons regulate network oscillations. The authors investigated whether variability in excitatory synaptic strength across PVIs could contribute to lower prefrontal gamma power in schizophrenia. METHODS In postmortem PFC from 20 matched pairs of comparison and schizophrenia subjects, levels of vesicular glutamate transporter 1 (VGlut1) and postsynaptic density 95 (PSD95) proteins were quantified to assess variability in excitatory synaptic strength across PVIs. A computational model network was then used to simulate how variability in excitatory synaptic strength across fast-spiking (a defining feature of PVIs) interneurons (FSIs) regulates gamma power. RESULTS The variability of VGlut1 and PSD95 levels at excitatory inputs across PVIs was larger in schizophrenia relative to comparison subjects. This alteration was not influenced by schizophrenia-associated comorbid factors, was not present in monkeys chronically exposed to antipsychotic medications, and was not present in calretinin interneurons. In the model network, variability in excitatory synaptic strength across FSIs regulated gamma power by affecting network synchrony. Finally, greater synaptic variability interacted synergistically with other synaptic alterations in schizophrenia (i.e., fewer excitatory inputs to FSIs and lower inhibitory strength from FSIs) to robustly reduce gamma power. CONCLUSIONS The study findings suggest that greater variability in excitatory synaptic strength across PVIs, in combination with other modest synaptic alterations in these neurons, can markedly lower PFC gamma power in schizophrenia.
Collapse
Affiliation(s)
- Daniel W Chung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| | - Matthew A Geramita
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh
| |
Collapse
|
18
|
Mancini V, Rochas V, Seeber M, Roehri N, Rihs TA, Ferat V, Schneider M, Uhlhaas PJ, Eliez S, Michel CM. Aberrant Developmental Patterns of Gamma-Band Response and Long-Range Communication Disruption in Youths With 22q11.2 Deletion Syndrome. Am J Psychiatry 2022; 179:204-215. [PMID: 35236117 DOI: 10.1176/appi.ajp.2021.21020190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain oscillations play a pivotal role in synchronizing responses of local and global ensembles of neurons. Patients with schizophrenia exhibit impairments in oscillatory response, which are thought to stem from abnormal maturation during critical developmental stages. Studying individuals at genetic risk for psychosis, such as 22q11.2 deletion carriers, from childhood to adulthood may provide insights into developmental abnormalities. METHODS The authors acquired 106 consecutive T1-weighted MR images and 40-Hz auditory steady-state responses (ASSRs) with high-density (256 channel) EEG in a group of 58 22q11.2 deletion carriers and 48 healthy control subjects. ASSRs were analyzed with 1) time-frequency analysis using Morlet wavelet decomposition, 2) intertrial phase coherence (ITPC), and 3) theta-gamma phase-amplitude coupling estimated in the source space between brain regions activated by the ASSRs. Additionally, volumetric analyses were performed with FreeSurfer. Subanalyses were conducted in deletion carriers who endorsed psychotic symptoms and in subgroups with different age bins. RESULTS Deletion carriers had decreased theta and late-latency 40-Hz ASSRs and phase synchronization compared with control subjects. Deletion carriers with psychotic symptoms displayed a further reduction of gamma-band response, decreased ITPC, and decreased top-down modulation of gamma-band response in the auditory cortex. Reduced gamma-band response was correlated with the atrophy of auditory cortex in individuals with psychotic symptoms. In addition, a linear increase of theta and gamma power from childhood to adulthood was found in control subjects but not in deletion carriers. CONCLUSIONS The results suggest that while all deletion carriers exhibit decreased gamma-band response, more severe local and long-range communication abnormalities are associated with the emergence of psychotic symptoms and gray matter loss. Additionally, the lack of age-related changes in deletion carriers indexes a potential developmental impairment in circuits underlying the maturation of neural oscillations during adolescence. The progressive disruption of gamma-band response in 22q11.2 deletion syndrome supports a developmental perspective toward understanding and treating psychotic disorders.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Vincent Rochas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Martin Seeber
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Nicolas Roehri
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Tonia A Rihs
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Victor Ferat
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Peter J Uhlhaas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Christoph M Michel
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| |
Collapse
|
19
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Cao AS, Van Hooser SD. Paired Feed-Forward Excitation With Delayed Inhibition Allows High Frequency Computations Across Brain Regions. Front Neural Circuits 2022; 15:803065. [PMID: 35210993 PMCID: PMC8862685 DOI: 10.3389/fncir.2021.803065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The transmission of high frequency temporal information across brain regions is critical to perception, but the mechanisms underlying such transmission remain unclear. Long-range projection patterns across brain areas are often comprised of paired feed-forward excitation followed closely by delayed inhibition, including the thalamic triad synapse, thalamic projections to cortex, and projections within the hippocampus. Previous studies have shown that these joint projections produce a shortened period of depolarization, sharpening the timing window over which the postsynaptic neuron can fire. Here we show that these projections can facilitate the transmission of high frequency computations even at frequencies that are highly filtered by neuronal membranes. This temporal facilitation occurred over a range of synaptic parameter values, including variations in synaptic strength, synaptic time constants, short-term synaptic depression, and the delay between excitation and inhibition. Further, these projections can coordinate computations across multiple network levels, even amid ongoing local activity. We suggest that paired feed-forward excitation and inhibition provide a hybrid signal-carrying both a value and a clock-like trigger-to allow circuits to be responsive to input whenever it arrives.
Collapse
Affiliation(s)
- Alexandra S. Cao
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Stephen D. Van Hooser
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
21
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
22
|
Pathway-specific contribution of parvalbumin interneuron NMDARs to synaptic currents and thalamocortical feedforward inhibition. Mol Psychiatry 2022; 27:5124-5134. [PMID: 36075962 PMCID: PMC9763122 DOI: 10.1038/s41380-022-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC, which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+ interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
Collapse
|
23
|
Tzilivaki A, Kastellakis G, Schmitz D, Poirazi P. GABAergic Interneurons with Nonlinear Dendrites: From Neuronal Computations to Memory Engrams. Neuroscience 2021; 489:34-43. [PMID: 34843894 DOI: 10.1016/j.neuroscience.2021.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
GABAergic interneurons (INs) are a highly diverse class of neurons in the mammalian brain with a critical role in orchestrating multiple cognitive functions and maintaining the balance of excitation/inhibition across neuronal circuitries. In this perspective, we discuss recent findings regarding the ability of some IN subtypes to integrate incoming inputs in nonlinear ways within their dendritic branches. These recently discovered features may endow the specific INs with advanced computing capabilities, whose breadth and functional contributions remain an open question. Along these lines, we discuss theoretical and experimental evidence regarding the potential role of nonlinear IN dendrites in advancing single neuron computations and contributing to memory formation.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany; Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece
| | - George Kastellakis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany; Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece.
| |
Collapse
|
24
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
25
|
Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, Niswender CM, Lindsley CW, Joffe ME, Conn PJ. mGlu 1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep 2021; 37:109950. [PMID: 34731619 PMCID: PMC8628371 DOI: 10.1016/j.celrep.2021.109950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nellie E Byun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Brianna Li
- Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L Barry
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
27
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
28
|
La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e3. [PMID: 39296317 PMCID: PMC11406392 DOI: 10.1017/gmb.2021.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 09/21/2024]
Abstract
Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Nitta A, Izuo N, Hamatani K, Inagaki R, Kusui Y, Fu K, Asano T, Torii Y, Habuchi C, Sekiguchi H, Iritani S, Muramatsu SI, Ozaki N, Miyamoto Y. Schizophrenia-Like Behavioral Impairments in Mice with Suppressed Expression of Piccolo in the Medial Prefrontal Cortex. J Pers Med 2021; 11:jpm11070607. [PMID: 34206873 PMCID: PMC8304324 DOI: 10.3390/jpm11070607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
Piccolo, a presynaptic cytomatrix protein, plays a role in synaptic vesicle trafficking in the presynaptic active zone. Certain single-nucleotide polymorphisms of the Piccolo-encoding gene PCLO are reported to be associated with mental disorders. However, a few studies have evaluated the relationship between Piccolo dysfunction and psychotic symptoms. Therefore, we investigated the neurophysiological and behavioral phenotypes in mice with Piccolo suppression in the medial prefrontal cortex (mPFC). Downregulation of Piccolo in the mPFC reduced regional synaptic proteins, accompanied with electrophysiological impairments. The Piccolo-suppressed mice showed an enhanced locomotor activity, impaired auditory prepulse inhibition, and cognitive dysfunction. These abnormal behaviors were partially ameliorated by the antipsychotic drug risperidone. Piccolo-suppressed mice received mild social defeat stress showed additional behavioral despair. Furthermore, the responses of these mice to extracellular glutamate and dopamine levels induced by the optical activation of mPFC projection in the dorsal striatum (dSTR) were inhibited. Similarly, the Piccolo-suppressed mice showed decreased depolarization-evoked glutamate and -aminobutyric acid elevations and increased depolarization-evoked dopamine elevation in the dSTR. These suggest that Piccolo regulates neurotransmission at the synaptic terminal of the projection site. Reduced neuronal connectivity in the mPFC-dSTR pathway via suppression of Piccolo in the mPFC may induce behavioral impairments observed in schizophrenia.
Collapse
Affiliation(s)
- Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
- Correspondence: ; Tel.: +81-76-415-8822 (ext. 8823); Fax: +81-76-415-8826
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Kohei Hamatani
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Ryo Inagaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Youta Torii
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Chikako Habuchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Shuji Iritani
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Shin-ichi Muramatsu
- Open Innovation Center, Division of Neurological Gene Therapy, Jichi Medical University, Shimotsuke 329-0498, Japan;
- Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| |
Collapse
|
30
|
Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol Psychiatry 2021; 26:1945-1966. [PMID: 32161363 PMCID: PMC7483244 DOI: 10.1038/s41380-020-0708-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/11/2023]
Abstract
The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.
Collapse
|
31
|
Wang X, Hu Y, Liu W, Ma Y, Chen X, Xue T, Cui D. Molecular Basis of GABA Hypofunction in Adolescent Schizophrenia-Like Animals. Neural Plast 2021; 2021:9983438. [PMID: 33936193 PMCID: PMC8062182 DOI: 10.1155/2021/9983438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder that NMDA receptor (NMDAR) hypofunction appears centrally involved. Schizophrenia typically emerges in adolescence or early adulthood. Electrophysiological and several neurochemical changes have linked the GABA deficits to abnormal behaviors induced by NMDAR hypofunction. However, few studies have systematically investigated the molecular basis of GABA deficits, especially during adolescence. To address this issue, we transiently administrated MK-801 to mice on PND 10, which exhibited schizophrenia-relevant deficits in adolescence. Slice recording showed reduced GABA transmission and PVI+ hypofunction, indicating GABAergic hypofunction. Cortical proteomic evaluation combined with analysis of single cell data from the Allen Brain showed that various metabolic processes were enriched in top ranks and differentially altered in excitatory neurons, GABAergic interneurons, and glial cells. Notably, the GABA-related amino acid metabolic process was disturbed in both astrocytes and interneurons, in which we found a downregulated set of GABA-related proteins (GAD65, SYNPR, DBI, GAT3, SN1, and CPT1A). They synergistically regulate GABA synthesis, release, reuptake, and replenishment. Their downregulation indicates impaired GABA cycle and homeostasis regulated by interneuron-astrocyte communication in adolescence. Our findings on molecular basis of GABA deficits could provide potential drug targets of GABAergic rescue for early prevention and intervention.
Collapse
Affiliation(s)
- Xiaodan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Hu
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenxin Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanyuan Ma
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
33
|
Mallien AS, Pfeiffer N, Vogt MA, Chourbaji S, Sprengel R, Gass P, Inta D. Cre-Activation in ErbB4-Positive Neurons of Floxed Grin1/NMDA Receptor Mice Is Not Associated With Major Behavioral Impairment. Front Psychiatry 2021; 12:750106. [PMID: 34899420 PMCID: PMC8660629 DOI: 10.3389/fpsyt.2021.750106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Extensive evidence suggests a dysfunction of the glutamate NMDA receptor (NMDAR) in schizophrenia, a severe psychiatric disorder with putative early neurodevelopmental origins, but clinical onset mainly during late adolescence. On the other hand, pharmacological models using NMDAR antagonists and the clinical manifestation of anti-NMDAR encephalitis indicate that NMDAR blockade/hypofunction can trigger psychosis also at adult stages, without any early developmental dysfunction. Previous genetic models of NMDAR hypofunction restricted to parvalbumin-positive interneurons indicate the necessity of an early postnatal impairment to trigger schizophrenia-like abnormalities, whereas the cellular substrates of NMDAR-mediated psychosis at adolescent/adult stages are unknown. Neuregulin 1 (NRG1) and its receptor ErbB4 represent schizophrenia-associated susceptibility factors that closely interact with NMDAR. To determine the neuronal populations implicated in "late" NMDAR-driven psychosis, we analyzed the effect of the inducible ablation of NMDARs in ErbB4-expressing cells in mice during late adolescence using a pharmacogenetic approach. Interestingly, the tamoxifen-inducible NMDAR deletion during this late developmental stage did not induce behavioral alterations resembling depression, schizophrenia or anxiety. Our data indicate that post-adolescent NMDAR deletion, even in a wider cell population than parvalbumin-positive interneurons, is also not sufficient to generate behavioral abnormalities resembling psychiatric disorders. Other neuronal substrates that have to be revealed by future studies, may underlie post-adolescent NMDAR-driven psychosis.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, RG Animal Models in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, RG Animal Models in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Miriam A Vogt
- Interfaculty Biomedical Research Facility (IBF), Heidelberg University, Heidelberg, Germany
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility (IBF), Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, RG Animal Models in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, RG Animal Models in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Does Approach-Avoidance Behavior in Response to Ambiguous Cues Reflect Depressive Interpretation Bias? Related but Distinct. COGNITIVE THERAPY AND RESEARCH 2020. [DOI: 10.1007/s10608-020-10133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, Dalton CF, Del-Ben CM, Louzada-Junior P, Reynolds GP. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020; 12:1983-1997. [PMID: 33242253 DOI: 10.2217/epi-2020-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated: Grin1, Grin2a, Grin2b DNA methylation; NR1 and NR2 mRNA/protein in the prefrontal cortex (PFC); and hippocampus of male Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept isolated or grouped (n = 10/group) from weaning for 10 weeks. Tissues were dissected for RNA/DNA extraction and N-methyl-D-aspartate receptor subunits were analyzed using quantitative reverse transcription (RT)-PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased mRNA in PFC for all markers, increased NR1 protein in hippocampus and hypermethylation of Grin1 in PFC and Grin2b in hippocampus, compared with grouped rats. Associations between mRNA/protein and DNA methylation were found for both brain areas. Conclusion: This study indicates that epigenetic DNA methylation may underlie N-methyl-D-aspartate receptor mRNA/protein expression alterations caused by isolation rearing.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene Aparecida Fachim
- Department of Endocrinology & Metabolism, Salford Royal Foundation Trust, Salford, UK.,Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
36
|
Gonda S, Giesen J, Sieberath A, West F, Buchholz R, Klatt O, Ziebarth T, Räk A, Kleinhubbert S, Riedel C, Hollmann M, Hamad MIK, Reiner A, Wahle P. GluN2B but Not GluN2A for Basal Dendritic Growth of Cortical Pyramidal Neurons. Front Neuroanat 2020; 14:571351. [PMID: 33281565 PMCID: PMC7691608 DOI: 10.3389/fnana.2020.571351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
NMDA receptors are important players for neuronal differentiation. We previously reported that antagonizing NMDA receptors with APV blocked the growth-promoting effects evoked by the overexpression of specific calcium-permeable or flip-spliced AMPA receptor subunits and of type I transmembrane AMPA receptor regulatory proteins which both exclusively modify apical dendritic length and branching of cortical pyramidal neurons. These findings led us to characterize the role of GluN2B and GluN2A for dendritogenesis using organotypic cultures of rat visual cortex. Antagonizing GluN2B with ifenprodil and Ro25-6981 strongly impaired basal dendritic growth of supra- and infragranular pyramidal cells at DIV 5–10, but no longer at DIV 15–20. Growth recovered after washout, and protein blots revealed an increase of synaptic GluN2B-containing receptors as indicated by a enhanced phosphorylation of the tyrosine 1472 residue. Antagonizing GluN2A with TCN201 and NVP-AAM077 was ineffective at both ages. Dendrite growth of non-pyramidal interneurons was not altered. We attempted to overexpress GluN2A and GluN2B. However, although the constructs delivered currents in HEK cells, there were neither effects on dendrite morphology nor an enhanced sensitivity to NMDA. Further, co-expressing GluN1-1a and GluN2B did not alter dendritic growth. Visualization of overexpressed, tagged GluN2 proteins was successful after immunofluorescence for the tag which delivered rather weak staining in HEK cells as well as in neurons. This suggested that the level of overexpression is too weak to modify dendrite growth. In summary, endogenous GluN2B, but not GluN2A is important for pyramidal cell basal dendritic growth during an early postnatal time window.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Giesen
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Sieberath
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Fabian West
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raoul Buchholz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Oliver Klatt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabine Kleinhubbert
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Wang YJ, Liu MG, Wang JH, Cao W, Wu C, Wang ZY, Liu L, Yang F, Feng ZH, Sun L, Zhang F, Shen Y, Zhou YD, Zhuo M, Luo JH, Xu TL, Li XY. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep 2020; 33:108369. [PMID: 33176141 DOI: 10.1016/j.celrep.2020.108369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022] Open
Abstract
Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming-Gang Liu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Hua Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Wei Cao
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Cheng Wu
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Zi-Yue Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Sun
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Fuxing Zhang
- Department of Anatomy and K. K. Leung Brain Research Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science, Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Tian-Le Xu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
38
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Kourosh-Arami M, Hajizadeh S. Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons. Physiol Int 2020; 107:18-29. [PMID: 32598333 DOI: 10.1556/2060.2020.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Abstract
Introduction During mammalian brain development, neural activity leads to maturation of glutamatergic innervations to locus coeruleus. In this study, fast excitatory postsynaptic currents mediated by N-methyl-d-aspartate (NMDA) receptors were evaluated to investigate the maturation of excitatory postsynaptic currents in locus coeruleus (LC) neurons. Methods NMDA receptor-mediated synaptic currents in LC neurons were evaluated using whole-cell voltage-clamp recording during the primary postnatal weeks. This technique was used to calculate the optimum holding potential for NMDA receptor-mediated currents and the best frequency for detecting spontaneous excitatory postsynaptic currents (sEPSC). Results The optimum holding potential for detecting NMDA receptor-mediated currents was + 40 to + 50 mV in LC neurons. The frequency, amplitude, rise time, and decay time constant of synaptic responses depended on the age of the animal and increased during postnatal maturation. Conclusion These findings suggest that most nascent glutamatergic synapses express functional NMDA receptors in the postnatal coerulear neurons, and that the activities of the neurons in this region demonstrate an age-dependent variation.
Collapse
Affiliation(s)
- M Kourosh-Arami
- 1Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,2Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Hajizadeh
- 1Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
Widman AJ, McMahon LL. Effects of ketamine and other rapidly acting antidepressants on hippocampal excitatory and inhibitory transmission. ADVANCES IN PHARMACOLOGY 2020; 89:3-41. [PMID: 32616211 DOI: 10.1016/bs.apha.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single sub-anesthetic intravascular dose of the use-dependent NMDAR antagonist, ketamine, improves mood in patients with treatment resistant depression within hours that can last for days, creating an entirely new treatment strategy for the most seriously ill patients. However, the psychomimetic effects and abuse potential of ketamine require that new therapies be developed that maintain the rapid antidepressant effects of ketamine without the unwanted side effects. This necessitates a detailed understanding of what cellular and synaptic mechanisms are immediately activated once ketamine reaches the brain that triggers the needed changes to elicit the improved behavior. Intense research has centered on the effects of ketamine, and the other rapidly acting antidepressants, on excitatory and inhibitory circuits in hippocampus and medial prefrontal cortex to determine common mechanisms, including key modifications in synaptic transmission and the precise location of the NMDARs that mediate the rapid and sustained antidepressant response. We review data comparing the effects of ketamine with other NMDAR receptor modulators and the muscarinic M1 acetylcholine receptor antagonist, scopolamine, together with evidence supporting the disinhibition hypothesis and the direct inhibition hypothesis of ketamine's mechanism of action on synaptic circuits using preclinical models.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
42
|
Paterson C, Cumming B, Law AJ. Temporal Dynamics of the Neuregulin-ErbB Network in the Murine Prefrontal Cortex across the Lifespan. Cereb Cortex 2020; 30:3325-3339. [PMID: 31897479 DOI: 10.1093/cercor/bhz312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-ErbB signaling is essential for numerous functions in the developing, adult, and aging brain, particularly in the prefrontal cortex (PFC). Mouse models with disrupted Nrg and/or ErbB genes are relevant to psychiatric, developmental, and age-related disorders, displaying a range of abnormalities stemming from cortical circuitry impairment. Many of these models display nonoverlapping phenotypes dependent upon the gene target and timing of perturbation, suggesting that cortical expression of the Nrg-ErbB network undergoes temporal regulation across the lifespan. Here, we report a comprehensive temporal expression mapping study of the Nrg-ErbB signaling network in the mouse PFC across postnatal development through aging. We find that Nrg and ErbB genes display distinct expression profiles; moreover, splice isoforms of these genes are differentially expressed across the murine lifespan. We additionally find a developmental switch in ErbB4 splice isoform expression potentially mediated through coregulation of the lncRNA Miat expression. Our results are the first to comprehensively and quantitatively map the expression patterns of the Nrg-ErbB network in the mouse PFC across the postnatal lifespan and may help disentangle the pathway's involvement in normal cortical sequences of events across the lifespan, as well as shedding light on the pathophysiological mechanisms of abnormal Nrg-ErbB signaling in neurological disease.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Cumming
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Law
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Cell and Developmental Biology, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Wang Z, Dai W, McLaughlin DW. Ring models of binocular rivalry and fusion. J Comput Neurosci 2020; 48:193-211. [PMID: 32363561 DOI: 10.1007/s10827-020-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/27/2022]
Abstract
When similar visual stimuli are presented binocularly to both eyes, one perceives a fused single image. However, when the two stimuli are distinct, one does not perceive a single image; instead, one perceives binocular rivalry. That is, one perceives one of the stimulated patterns for a few seconds, then the other for few seconds, and so on - with random transitions between the two percepts. Most theoretical studies focus on rivalry, with few considering the coexistence of fusion and rivalry. Here we develop three distinct computational neuronal network models which capture binocular rivalry with realistic stochastic properties, fusion, and the hysteretic transition between. Each is a conductance-based point neuron model, which is multi-layer with two ocular dominance columns (L & R) and with an idealized "ring" architecture where the orientation preference of each neuron labels its location on a ring. In each model, the primary mechanism initiating binocular rivalry is cross-column inhibition, with firing rate adaptation governing the temporal properties of the transitions between percepts. Under stimulation by similar visual patterns, each of three models uses its own mechanism to overcome cross-column inhibition, and thus to prevent rivalry and allow the fusion of similar images: The first model uses cross-column feedforward inhibition from the opposite eye to "shut off" the cross-column feedback inhibition; the second model "turns on" a second layer of monocular neurons as a parallel pathway to the binocular neurons, rivaling out of phase with the first layer, and together these two pathways represent fusion; and the third model uses cross-column excitation to overcome the cross-column inhibition and enable fusion. Thus, each of the idealized ring models depends upon a different mechanism for fusion that might emerge as an underlying mechanism present in real visual cortex.
Collapse
Affiliation(s)
- Ziqi Wang
- Integrated Program in Neuroscience, McGill University, 3801 Rue Université, Montréal, QC, H3A 2B4, Canada
| | - Wei Dai
- New York University - Courant Institute of Mathematical Science, 251 Mercer Street, New York, NY, 10012, USA
| | - David W McLaughlin
- New York University - Courant Institute of Mathematical Science, 251 Mercer Street, New York, NY, 10012, USA. .,New York University - Tandon School of Engineering, 6 Metro Tech Center, Brooklyn, NY, 11201, USA. .,New York University Shanghai, 1555 Century Ave, Pudong, Shanghai, 200122, China. .,Neuroscience Institute at NYU Langone Medical Center, Science Building, 435 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
44
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
45
|
Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun 2020; 11:72. [PMID: 31911591 PMCID: PMC6946708 DOI: 10.1038/s41467-019-13809-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
A subanesthetic dose of ketamine causes acute psychotomimetic symptoms and sustained antidepressant effects. In prefrontal cortex, the prevailing disinhibition hypothesis posits that N-methyl-d-aspartate receptor (NMDAR) antagonists such as ketamine act preferentially on GABAergic neurons. However, cortical interneurons are heterogeneous. In particular, somatostatin-expressing (SST) interneurons selectively inhibit dendrites and regulate synaptic inputs, yet their response to systemic NMDAR antagonism is unknown. Here, we report that ketamine acutely suppresses the activity of SST interneurons in the medial prefrontal cortex of the awake mouse. The deficient dendritic inhibition leads to greater synaptically evoked calcium transients in the apical dendritic spines of pyramidal neurons. By manipulating NMDAR signaling via GluN2B knockdown, we show that ketamine’s actions on the dendritic inhibitory mechanism has ramifications for frontal cortex-dependent behaviors and cortico-cortical connectivity. Collectively, these results demonstrate dendritic disinhibition and elevated calcium levels in dendritic spines as important local-circuit alterations driven by the administration of subanesthetic ketamine. The authors show that a subanesthetic dose of ketamine markedly elevate calcium signals in apical dendritic spines in the mouse prefrontal cortex. This effect is driven by a local-circuit mechanism that involves the suppression of somatostatin interneurons leading to dendritic disinhibition.
Collapse
|
46
|
Tzilivaki A, Kastellakis G, Poirazi P. Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators. Nat Commun 2019; 10:3664. [PMID: 31413258 PMCID: PMC6694133 DOI: 10.1038/s41467-019-11537-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Interneurons are critical for the proper functioning of neural circuits. While often morphologically complex, their dendrites have been ignored for decades, treating them as linear point neurons. Exciting new findings reveal complex, non-linear dendritic computations that call for a new theory of interneuron arithmetic. Using detailed biophysical models, we predict that dendrites of FS basket cells in both hippocampus and prefrontal cortex come in two flavors: supralinear, supporting local sodium spikes within large-volume branches and sublinear, in small-volume branches. Synaptic activation of varying sets of these dendrites leads to somatic firing variability that cannot be fully explained by the point neuron reduction. Instead, a 2-stage artificial neural network (ANN), with sub- and supralinear hidden nodes, captures most of the variance. Reduced neuronal circuit modeling suggest that this bi-modal, 2-stage integration in FS basket cells confers substantial resource savings in memory encoding as well as the linking of memories across time.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117, Berlin, Germany
| | - George Kastellakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
47
|
Zou Y, Zhang H, Chen X, Ji W, Mao L, Lei H. Age-dependent effects of (+)-MK801 treatment on glutamate release and metabolism in the rat medial prefrontal cortex. Neurochem Int 2019; 129:104503. [PMID: 31299416 DOI: 10.1016/j.neuint.2019.104503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
NMDAR antagonist treatments in adolescent/young adult rodents are associated with augmented glutamate (Glu) release and perturbed Glu/glutamine (Gln) metabolism in the medial prefrontal cortex (mPFC) resembling those found in first-episode schizophrenia. Few studies, however, investigated NMDAR antagonist-induced changes in the adult mPFC and whether there is an age-dependence to this end. In this study, the effects of acute/repeated (+)-MK801 treatment on Glu release/metabolism were measured in the mPFC of male adolescent (postnatal day 30) and adult (14 weeks) rats. Acute (+)-MK801 treatment at 0.5 mg/kg body weight induced an approximately 4-fold increase of extracellular Glu concentration in the adolescent rats, and repeated treatment for 6 consecutive days significantly increased the levels of Glu + Gln (Glx) and glial metabolites 7 days after the last dose. Histologically (+)-MK801 treatments induced reactive astrocytosis and elevated oxidative stress in the mPFC of adolescent rats, without causing evident neuronal degeneration in the region. All (+)-MK801-induced changes observed in the mPFC of adolescent rats were not present or evident in the adult rats, suggesting that the treatments might have caused less disinhibition in the adult mPFC than in the adolescent mPFC. In conclusion, the effects of (+)-MK801 treatments on the Glu release/metabolism in the mPFC were found to be age-dependent; and the adult mPFC is likely equipped with more robust neurobiological mechanisms to preserve excitatory-inhibitory balance in response to NMDAR hypofunction.
Collapse
Affiliation(s)
- Yijuan Zou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xi Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
48
|
Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 2019; 9:9486. [PMID: 31263190 PMCID: PMC6602948 DOI: 10.1038/s41598-019-45971-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a major regulator in the maturation of excitatory synapses by interacting and trafficking N-methyl-D-aspartic acid receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPAR) to the postsynaptic membrane. PSD-95 disruption has recently been associated with neuropsychiatric disorders such as schizophrenia and autism. However, the effects of PSD-95 deficiency on the prefrontal cortex (PFC)-associated functions, including cognition, working memory, and sociability, has yet to be investigated. Using a PSD-95 knockout mouse model (PSD-95-/-), we examined how PSD-95 deficiency affects NMDAR and AMPAR expression and function in the medial prefrontal cortex (mPFC) during juvenile and adolescent periods of development. We found significant increases in total protein levels of NMDAR subunits GluN1, and GluN2B, accompanied by decreases in AMPAR subunit GluA1 during adolescence. Correspondingly, there is a significant increase in NMDAR/AMPAR-mediated current amplitude ratio that progresses from juvenile-to-adolescence. Behaviorally, PSD-95-/- mice exhibit a lack of sociability, as well as learning and working memory deficits. Together, our data indicate that PSD-95 deficiency disrupts mPFC synaptic function and related behavior at a critical age of development. This study highlights the importance of PSD-95 during neurodevelopment in the mPFC and its potential link in the pathogenesis associated with schizophrenia and/or autism.
Collapse
Affiliation(s)
- Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
49
|
Picard N, Takesian AE, Fagiolini M, Hensch TK. NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity. Mol Psychiatry 2019; 24:828-838. [PMID: 30696941 PMCID: PMC6756203 DOI: 10.1038/s41380-018-0341-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.
Collapse
Affiliation(s)
- Nathalie Picard
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Anne E Takesian
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Michela Fagiolini
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Takao K Hensch
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
50
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|