1
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Costa PC, Salinas B, Wojciechowski A, Wood SK, Runyon S, Clark SD. The Influence of the Estrous Cycle on Neuropeptide S Receptor-Mediated Behaviors. J Pharmacol Exp Ther 2024; 391:460-471. [PMID: 39443144 PMCID: PMC11585311 DOI: 10.1124/jpet.124.002415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The neuropeptide S receptor (NPSR) has been identified as a potential therapeutic target for anxiety and post-traumatic stress disorder. Central administration of neuropeptide S (NPS) in male mice produces anxiolytic-like effects, hyperlocomotion, and memory enhancement. Currently, the literature is limited in the number of studies investigating the effects of NPS in female test subjects despite females facing a higher prevalence of anxiety-related pathology, as well as greater risk for adverse effects while taking psychoactive drugs. Moreover, no previous studies have considered the influence of estrous cycle on the effects of NPS. The present study investigates whether NPS-mediated behavioral phenotypes seen in males translate to females, and whether they are affected by estrous cycle stage. Female C57BL/6NCr mice were intracerebroventricularly cannulated and underwent behavioral paradigms to test locomotion, anxiety, and memory. Estrous cycle stage was determined through examination of vaginal cytology. Our results provide evidence that NPS-mediated behaviors are influenced by the estrous cycle. Administration of NPS decreased anxiety-like behaviors more robustly when the female mice were in high estrogen stages of the estrous cycle. Therefore, the desired anxiolytic-like effects of targeting the NPSR are intact in female mice. However, these effects may to be influenced by the stage of the estrous cycle. The NPSR remains a strong potential drug target for new anxiolytic compounds and based on our initial observations further studies exploring the interaction of estrous cycle and the NPS system are warranted. SIGNIFICANCE STATEMENT: The neuropeptide S (NPS) receptor has been identified as a potential target for treating anxiety, a condition that is most prevalent in females. Therefore, the potential interaction of estrous cycle with the NPS system described in the present study is an important first step in understanding the function of the NPS system in females.
Collapse
Affiliation(s)
- Paula Carvalho Costa
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| | - Brisa Salinas
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| | - Alaina Wojciechowski
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| | - Susan K Wood
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| | - Scott Runyon
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York (P.C.C., B.S., A.W., S.D.C.); Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine (S.K.W.) and Dorn VA Medical Center (S.K.W.), Columbia, South Carolina; and Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, North Carolina (S.R.)
| |
Collapse
|
3
|
Leehr EJ, Brede LS, Böhnlein J, Roesmann K, Gathmann B, Herrmann MJ, Junghöfer M, Schwarzmeier H, Seeger FR, Siminski N, Straube T, Klahn AL, Weber H, Schiele MA, Domschke K, Lueken U, Dannlowski U. Impact of NPSR1 gene variation on the neural correlates of phasic and sustained fear in spider phobia-an imaging genetics and independent replication approach. Soc Cogn Affect Neurosci 2024; 19:nsae054. [PMID: 39167471 PMCID: PMC11412251 DOI: 10.1093/scan/nsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
The functional neuropeptide S receptor 1 (NPSR1) gene A/T variant (rs324981) is associated with fear processing. We investigated the impact of NPSR1 genotype on fear processing and on symptom reduction following treatment in individuals with spider phobia. A replication approach was applied [discovery sample: Münster (MS) nMS = 104; replication sample Würzburg (WZ) nWZ = 81]. Participants were genotyped for NPSR1 rs324981 [T-allele carriers (risk) versus AA homozygotes (no-risk)]. A sustained and phasic fear paradigm was applied during functional magnetic resonance imaging. A one-session virtual reality exposure treatment was conducted. Change of symptom severity from pre to post treatment and within session fear reduction were assessed. T-allele carriers in the discovery sample displayed lower anterior cingulate cortex (ACC) activation compared to AA homozygotes independent of condition. For sustained fear, this effect was replicated within a small cluster and medium effect size. No association with symptom reduction was found. Within-session fear reduction was negatively associated with ACC activation in T-allele carriers in the discovery sample. NPSR1 rs324981 genotype might be associated with fear processing in the ACC in spider phobia. Interpretation as potential risk-increasing function of the NPSR1 rs324981 T-allele via impaired top-down control of limbic structures remains speculative. Potential association with symptom reduction warrants further research.
Collapse
Affiliation(s)
- Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Leonie S Brede
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Kati Roesmann
- Institute for Clinical Psychology, University of Siegen, Siegen 57072, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster 48149, Germany
- Institute for Psychology, Unit for Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück 49076, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster 48149, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster 48149, Germany
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
| | - Fabian R Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
- Department of General Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg 69115, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster 48149, Germany
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 41345, Sweden
| | - Heike Weber
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Ulrike Lueken
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Wurzburg 97080, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
- German Center for Mental Health (DZPG), partner site Berlin-Potsdam
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| |
Collapse
|
4
|
Moraes ACN, Wijaya C, Freire R, Quagliato LA, Nardi AE, Kyriakoulis P. Neurochemical and genetic factors in panic disorder: a systematic review. Transl Psychiatry 2024; 14:294. [PMID: 39025836 PMCID: PMC11258274 DOI: 10.1038/s41398-024-02966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Clarissa Wijaya
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| | - Rafael Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | | | - Peter Kyriakoulis
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Kapellou A, King A, Graham CAM, Pilic L, Mavrommatis Y. Genetics of caffeine and brain-related outcomes - a systematic review of observational studies and randomized trials. Nutr Rev 2023; 81:1571-1598. [PMID: 37029915 DOI: 10.1093/nutrit/nuad029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Although the stimulant and anxiogenic properties of caffeine are widely accepted, research on its specific effects on the brain remains controversial. Growing evidence shows that interindividual differences in caffeine response may be partly due to variations in genes such as CYP1A2 and ADORA2A, which have been used to identify individuals as "fast" or "slow" caffeine metabolizers and as having a "high" or "low" caffeine sensitivity, respectively. OBJECTIVE The objective of this review was to identify, evaluate, and discuss current evidence on the associations between common genetic variants, caffeine consumption, and brain-related outcomes in humans. DATA SOURCES PubMed and Embase databases were searched for relevant reports based on a predetermined search strategy. DATA EXTRACTION Reports of observational and experimental studies on healthy adults who underwent (a) genetic analysis for polymorphisms in genes associated with caffeine metabolism and effects and (b) measurements of brain-related effects such as anxiety, insomnia, and cognitive performance associated with the consumption of caffeine (habitual intake or supplementation) were included. DATA ANALYSIS Of the 22 records included, 15 were randomized controlled trials, 6 were cross-sectional studies, and 1 was a genome-wide association study. The main outcomes identified were cognitive performance (n = 9), anxiety (n = 7), and sleep disturbance/insomnia (n = 6). Polymorphisms in the CYP1A2 gene were associated with cognitive function, while variations in the ADORA2A gene were associated with anxiety and sleep disturbance. CONCLUSION The present review has provided evidence that variability in the CYP1A2 and the ADORA2A genes may modulate the association between caffeine and brain-related outcomes. Future studies are warranted to investigate the specific polymorphisms implicated in each brain outcome, which cognitive functions are particularly related to caffeine (simple vs complex), whether there are gender differences in anxiety effects, and how habitual caffeine intake may influence the acute effects of caffeine. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021257556.
Collapse
Affiliation(s)
- Angeliki Kapellou
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Alexandra King
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Catherine A M Graham
- Center for Interdisciplinary Research (CEFIR), Cereneo Foundation, Vitznau, Switzerland
| | - Leta Pilic
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| | - Yiannis Mavrommatis
- Faculty of Sport, Allied Health and Performance Science (SAHPS), St Mary's University, Twickenham, United Kingdom
| |
Collapse
|
6
|
Zuckerman I, Laufer I, Mizrahi D. Attachment style, emotional feedback, and neural processing: investigating the influence of attachment on the P200 and P400 components of event-related potentials. Front Hum Neurosci 2023; 17:1249978. [PMID: 37727864 PMCID: PMC10505959 DOI: 10.3389/fnhum.2023.1249978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Understanding the interplay between attachment style, emotional processing, and neural responses is crucial for comprehending the diverse ways individuals function socially and emotionally. While previous research has contributed to our knowledge of how attachment style influences emotional processing, there is still a gap in the literature when it comes to investigating emotional feedback using event-related potentials (ERPs) within a cognitive framework. This study aims to address this gap by examining the effects of attachment style and feedback valence on ERP components, specifically focusing on the P200 and P400. The findings reveal significant effects of attachment style and feedback valence on both components. In insecure attachment styles, noticeable shifts in relative energy are observed during the transition from negative to positive feedback for both the P200 and P400. Conversely, individuals with secure attachment styles exhibit minimal to moderate variations in relative energy, consistently maintaining a lower P200 energy level. Additionally, both secure and insecure individuals demonstrate heightened intensity in the P400 component in response to positive feedback. These findings underscore the influential role of attachment style in shaping emotional reactivity and regulation, emphasizing the significance of attachment theory in understanding individual differences in social and emotional functioning. This study provides novel insights into the neural mechanisms underlying the influence of attachment style on emotional processing within the context of cognitive task performance. Future research should consider diverse participant samples, employ objective measures of attachment, and utilize longitudinal designs to further explore the neural processes associated with attachment.
Collapse
Affiliation(s)
| | | | - Dor Mizrahi
- Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
| |
Collapse
|
7
|
Meyer K, Hindi Attar C, Fiebig J, Stamm T, Bassett TR, Bauer M, Dannlowski U, Ethofer T, Falkenberg I, Jansen A, Juckel G, Kircher T, Mulert C, Leicht G, Rau A, Rauh J, Ritter D, Ritter P, Trost S, Vogelbacher C, Walter H, Wolter S, Hautzinger M, Bermpohl F. Daring to Feel: Emotion-Focused Psychotherapy Increases Amygdala Activation and Connectivity in Euthymic Bipolar Disorder-A Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:750-759. [PMID: 36898634 DOI: 10.1016/j.bpsc.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND In bipolar disorder (BD), the alternation of extreme mood states indicates deficits in emotion processing, accompanied by aberrant neural function of the emotion network. The present study investigated the effects of an emotion-centered psychotherapeutic intervention on amygdala responsivity and connectivity during emotional face processing in BD. METHODS In a randomized controlled trial within the multicentric BipoLife project, euthymic patients with BD received one of two interventions over 6 months: an unstructured, emotion-focused intervention (FEST), where patients were guided to adequately perceive and label their emotions (n = 28), or a specific, structured, cognitive behavioral intervention (SEKT) (n = 31). Before and after interventions, functional magnetic resonance imaging was conducted while patients completed an emotional face-matching paradigm (final functional magnetic resonance imaging sample of patients completing both measurements: SEKT, n = 17; FEST, n = 17). Healthy control subjects (n = 32) were scanned twice after the same interval without receiving any intervention. Given the focus of FEST on emotion processing, we expected FEST to strengthen amygdala activation and connectivity. RESULTS Clinically, both interventions stabilized patients' euthymic states in terms of affective symptoms. At the neural level, FEST versus SEKT increased amygdala activation and amygdala-insula connectivity at postintervention relative to preintervention time point. In FEST, the increase in amygdala activation was associated with fewer depressive symptoms (r = 0.72) 6 months after intervention. CONCLUSIONS Enhanced activation and functional connectivity of the amygdala after FEST versus SEKT may represent a neural marker of improved emotion processing, supporting the FEST intervention as an effective tool in relapse prevention in patients with BD.
Collapse
Affiliation(s)
- Kristina Meyer
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Catherine Hindi Attar
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jana Fiebig
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Stamm
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Clinical Psychiatry and Psychotherapy, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Tyler R Bassett
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Thomas Ethofer
- University Clinic for Psychiatry and Psychotherapy, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University Clinic for Radiology Tübingen, Tübingen, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Psychiatry, Justus Liebig University, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rau
- University Clinic for Psychiatry and Psychotherapy, Tübingen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sarah Trost
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany; Department of Geriatric Psychiatry, Universitäre Altersmedizin FELIX PLATTER, Basel, Switzerland
| | - Christoph Vogelbacher
- Translational Clinical Psychology, Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Henrik Walter
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Wolter
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Hautzinger
- Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Shi W, Wu Y, Wu J, Gao Y, Zhao P, Lu X. NPS-Crosslinked Fibrin Gels Load with EMSCs to Repair Peripheral Nerve Injury in Rats. Macromol Biosci 2023; 23:e2200381. [PMID: 36583716 DOI: 10.1002/mabi.202200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Indexed: 12/31/2022]
Abstract
Neural tissue engineering has been introduced as a novel therapeutic strategy for trauma-induced sciatic nerve defects. Here, a neuropeptide S (NPS)-crosslinked fibrin scaffolds (NPS@Fg) loaded with an ectomesenchymal stem cell (EMSC) system to bridge an 8-mm sciatic nerve defect in rats are reported. The Schwann cell-like and neural differentiation of the EMSCs on the engineered fibrin scaffolds are also assessed in vitro. These results show that the NPS@Fg promotes the differentiation of EMSCs into neuronal lineage cells, which may also contribute to the therapeutic outcome of the NPS@Fg+EMSCs strategy. After transplantation NPS@Fg+EMSCs into sciatic nerve defects in rats, nerve recovery is assessed up to 12 weeks postinjury. In vivo experiments show that the combination of NPS crosslinked fibrin scaffolds with EMSCs can significantly accelerate nerve healing and improve morphological repair. In the study, NPS@Fg+EMSCs may represent a new potential strategy for peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Wentao Shi
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China.,Nanjing Gaochun People's Hospital, Nanjing, Jiangsu Province, 210000, P. R. China
| | - Yiqing Wu
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Jiawei Wu
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Yan Gao
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Peng Zhao
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xiaojie Lu
- Brain Institute, School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China.,Wuxi Second People's Hospital, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
9
|
The association between genetic variability in the NPS/NPSR1 system and chronic stress responses: A gene-environment-(quasi-) experiment. Psychoneuroendocrinology 2022; 144:105883. [PMID: 35914393 DOI: 10.1016/j.psyneuen.2022.105883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been implicated in stress regulation and stress-related disorders. The present study aimed at investigating the association between overall genetic variability in the NPS/NPSR1 system and psychological and cortisol stress regulation in everyday life. Our study was conceptualized as a gene-environment-(quasi-) experiment, a design that facilitates the detection of true GxE interactions. As environmental variable, we used the preparation for the first state examination for law students. In the prospective and longitudinal LawSTRESS project, students were examined at six sampling points over a 13-months period. While students who prepared for the exam and experienced long-lasting and significant stress, formed the stress group, law students experiencing usual study-related workload were assigned to the control group. As phenotypes we assessed changes over time in the cortisol awakening response (CAR; n = 176), perceived stress levels (n = 401), and anxiety symptoms (n = 397). The CAR was assessed at each sampling point immediately upon awakening and 30 as well as 45 min later. Perceived stress levels in daily life were measured by repeated ambulatory assessments and anxiety symptoms were repeatedly assessed with the anxiety subscale of the Hospital Anxiety and Depression Scale. With gene-set analyses we examined the joint association of 936 NPS/NPSR1 single nucleotide polymorphisms with the phenotypes to overcome well known limitations of candidate gene studies. As previously reported, we found a blunted CAR during the exam as well as significant increases in perceived stress levels and anxiety symptoms until the exam in the stress group, compared to the control group. The gene-set analysis did not confirm associations between genetic variability in the NPS/NPSR1 system and changes in perceived stress levels and anxiety symptoms. Regarding the CAR, we found a significant GxE interaction for the area under the curve with respect to the ground (p = .050) and a trend towards a significant effect for the area under the curve with respect to the increase (p = .054). When the analysis was restricted to the SG, associations for both CAR parameters were significant (ps < .050). This finding suggests that the association between genetic variability in the NPS/NPSR1 system and the CAR becomes visible under the environmental condition 'chronic stress exposure'. We conclude that the present study complements findings from animal models and that it provides novel evidence for a modulatory influence of the NPS/NPSR1 system on cortisol regulation in humans.
Collapse
|
10
|
Sindermann L, Leehr EJ, Redlich R, Meinert S, Böhnlein J, Grotegerd D, Pollack D, Reepen M, Thiel K, Winter A, Waltemate L, Lemke H, Enneking V, Borgers T, Opel N, Repple J, Goltermann J, Brosch K, Meller T, Pfarr JK, Ringwald KG, Schmitt S, Stein F, Jansen A, Krug A, Nenadić I, Kircher T, Dannlowski U. Emotion processing in depression with and without comorbid anxiety disorder. J Affect Disord 2022; 314:133-142. [PMID: 35803393 DOI: 10.1016/j.jad.2022.06.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Among mental disorders, major depressive disorder (MDD) is highly prevalent and associated with emotional dysfunctions linked to activity alterations in the brain, mainly in prefrontal regions, the insula, the anterior cingulate cortex and the amygdala. However, this evidence is heterogeneous, perhaps because magnetic resonance imaging (MRI) studies on MDD tend to neglect comorbid anxiety (COM-A). METHODS To address this, here a sample of age- and sex-matched patients, nMDD = 90 and nCOM-A = 85, underwent functional MRI to assess neurofunctional group differences during a negative emotional face-matching task using a hypothesis-driven region of interest approach (dorsolateral prefrontal cortex, insula, anterior cingulate cortex, amygdala) and an explorative whole-brain approach. We also assessed these relationships with state-trait anxiety measures, a state depression measure, general functioning and medication load. RESULTS During face processing, COM-A (compared to MDD) had significantly increased bilateral insula activity. No activity differences were found in the anterior cingulate cortex or the amygdala. Whole-brain analyses revealed increased inferior temporal activation and frontal activation (comprising the inferior and middle frontal gyrus) in COM-A that was positively linked to state anxiety as well as general functioning across groups. LIMITATIONS Still, the lack of a healthy control and small effects mean this study should be replicated to further interpret the results. CONCLUSIONS The findings highlight a discriminative activation pattern between MDD and COM-A regarding emotion processing and may present a correlate of potentially anxiety-related psychopathology. In future, further investigations in potential discriminative activity patterns could help to elucidate the origin, development and treatment of depression.
Collapse
Affiliation(s)
- Lisa Sindermann
- Institute of Human Genetics, University of Bonn, Germany; Institute for Translational Psychiatry, University of Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Germany; Institute of Psychology, Martin-Luther University of Halle, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Germany; Institute for Translational Neuroscience, University of Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Daniel Pollack
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Marieke Reepen
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | | | | | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany.
| |
Collapse
|
11
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
12
|
Bülbül M, Sinen O. The influence of early-life and adulthood stressors on brain neuropeptide-S system. Neuropeptides 2022; 92:102223. [PMID: 34982971 DOI: 10.1016/j.npep.2021.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Central administered neuropeptide-S (NPS) was shown to reduce stress response in rodents. This study aimed to investigate the alterations in NPS system upon chronic exposure to early-life and adulthood stressors. Newborn pups underwent maternal separation (MS) from postnatal day 1 to 14 comprised of daily 3-h separations. In the adulthood, 90-min of restraint stress was loaded to males as an acute stress (AS) model. For chronic homotypic stress (CHS), same stressor was applied for 5 consecutive days. The changes in the expression and the release of NPS were monitored by immunohistochemistry and microdialysis, respectively. Throughout the CHS, heart rate variability (HRV) was analyzed on a daily basis. The immunoreactivity for NPS receptor (NPSR) was detected in basolateral amygdala (BLA) and hypothalamic paraventricular nucleus (PVN) by immunofluorescence staining. The NPS expression in the brainstem was increased upon AS which was more prominent following CHS, whereas these responses were found to be blunted in MS counterparts. Similar to histological data, the stress-induced release of NPS in BLA was attenuated in MS rats. CHS-induced elevations in sympatho-vagal balance were alleviated in control rats; which was not observed in MS rats. The expression of NPSR in BLA and PVN was down-regulated in MS rats. The brain NPS/NPSR system appears to be susceptible to the early-life stressors and the subsequent chronic stress exposure in adulthood which results in altered autonomic outflow.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
14
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
15
|
Böhnlein J, Leehr EJ, Roesmann K, Sappelt T, Platte O, Grotegerd D, Sindermann L, Repple J, Opel N, Meinert S, Lemke H, Borgers T, Dohm K, Enneking V, Goltermann J, Waltemate L, Hülsmann C, Thiel K, Winter N, Bauer J, Lueken U, Straube T, Junghöfer M, Dannlowski U. Neural processing of emotional facial stimuli in specific phobia: An fMRI study. Depress Anxiety 2021; 38:846-859. [PMID: 34224655 DOI: 10.1002/da.23191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with specific phobia (SP) show altered brain activation when confronted with phobia-specific stimuli. It is unclear whether this pathogenic activation pattern generalizes to other emotional stimuli. This study addresses this question by employing a well-powered sample while implementing an established paradigm using nonspecific aversive facial stimuli. METHODS N = 111 patients with SP, spider subtype, and N = 111 healthy controls (HCs) performed a supraliminal emotional face-matching paradigm contrasting aversive faces versus shapes in a 3-T magnetic resonance imaging scanner. We performed region of interest (ROI) analyses for the amygdala, the insula, and the anterior cingulate cortex using univariate as well as machine-learning-based multivariate statistics based on this data. Additionally, we investigated functional connectivity by means of psychophysiological interaction (PPI). RESULTS Although the presentation of emotional faces showed significant activation in all three ROIs across both groups, no group differences emerged in all ROIs. Across both groups and in the HC > SP contrast, PPI analyses showed significant task-related connectivity of brain areas typically linked to higher-order emotion processing with the amygdala. The machine learning approach based on whole-brain activity patterns could significantly differentiate the groups with 73% balanced accuracy. CONCLUSIONS Patients suffering from SP are characterized by differences in the connectivity of the amygdala and areas typically linked to emotional processing in response to aversive facial stimuli (inferior parietal cortex, fusiform gyrus, middle cingulate, postcentral cortex, and insula). This might implicate a subtle difference in the processing of nonspecific emotional stimuli and warrants more research furthering our understanding of neurofunctional alteration in patients with SP.
Collapse
Affiliation(s)
- Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kati Roesmann
- Institute for Clinical Psychology, University of Siegen, Siegen, Germany.,Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Teresa Sappelt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ole Platte
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lisa Sindermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, School of Medicine, University of Münster, Münster, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Bengoetxea X, Goedecke L, Remmes J, Blaesse P, Grosch T, Lesting J, Pape HC, Jüngling K. Human-Specific Neuropeptide S Receptor Variants Regulate Fear Extinction in the Basal Amygdala of Male and Female Mice Depending on Threat Salience. Biol Psychiatry 2021; 90:145-155. [PMID: 33902914 DOI: 10.1016/j.biopsych.2021.02.967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND A nonsynonymous single nucleotide polymorphism in the neuropeptide S receptor 1 (NPSR1) gene (rs324981) results in isoleucine-to-asparagine substitution at amino acid 107. In humans, the ancestral variant (NPSR1 I107) is associated with increased anxiety sensitivity and risk of panic disorder, while the human-specific variant (NPSR1 N107) is considered protective against excessive anxiety. In rodents, neurobiological constituents of the NPS system have been analyzed in detail and their anxiolytic-like effects have been endorsed. However, their implication for anxiety and related disorders in humans remains unclear, as rodents carry only the ancestral NPSR1 I107 variant. METHODS We hypothesized that phenotypic correlates of NPSR1 variants manifest in fear-related circuits in the amygdala. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9)-mediated gene editing to generate a "humanized" mouse strain, in which individuals express either NPSR1 I107 or NPSR1 N107. RESULTS Stimulation of NPSR1 evoked excitatory responses in principal neurons of the anterior basal amygdala with significant differences in magnitude between genotypes, resulting in synaptic disinhibition of putative extinction neurons in the posterior basal amygdala in mice expressing the human-specific hypofunctional N107 but not the ancestral I107 variant. N107 mice displayed improved extinction of conditioned fear, which was phenocopied after pharmacological antagonism of NPSR1 in the anterior basal amygdala of I107 mice. Differences in fear extinction between male and female mice were related to an interaction of Npsr1 genotype and salience of fear training. CONCLUSIONS The NPS system regulates extinction circuits in the amygdala depending on the Npsr1 genotype, contributing to sex-specific differences in fear extinction and high anxiety sensitivity of individuals bearing the ancestral NPSR1 I107 variant.
Collapse
Affiliation(s)
- Xabier Bengoetxea
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Goedecke
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jasmin Remmes
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Blaesse
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Grosch
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jörg Lesting
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
17
|
Effect of Neuropeptide S Administration on Ultrasonic Vocalizations and Behaviour in Rats with Low vs. High Exploratory Activity. Pharmaceuticals (Basel) 2021; 14:ph14060524. [PMID: 34070724 PMCID: PMC8229755 DOI: 10.3390/ph14060524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide S (NPS) is a peptide neurotransmitter that in animal studies promotes wakefulness and arousal with simultaneous anxiety reduction, in some inconsistency with results in humans. We examined the effect of NPS on rat ultrasonic vocalizations (USV) as an index of affective state and on behaviour in novel environments in rats with persistent inter-individual differences in exploratory activity. Adult male Wistar rats were categorised as of high (HE) or low (LE) exploratory activity and NPS was administered intracerebroventricularly (i.c.v.) at a dose of 1.0 nmol/5 µL, after which USVs were recorded in the home-cage and a novel standard housing cage, and behaviour evaluated in exploration/anxiety tests. NPS induced a massive production of long and short 22 kHz USVs in the home cage that continued later in the novel environment; no effect on 50 kHz USVs were found. In LE-rats, the long 22 kHz calls were emitted at lower frequencies and were louder. The effects of NPS on behaviour appeared novelty- and test-dependent. NPS had an anxiolytic-like effect in LE-rats only in the elevated zero-maze, whereas in HE-rats, locomotor activity in the zero-maze and in a novel standard cage was increased. Thus NPS appears as a psychostimulant peptide but with a complex effect on dimensions of affect.
Collapse
|
18
|
Si W, Liu X, Pape HC, Reinscheid RK. Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention. Pharmaceuticals (Basel) 2021; 14:489. [PMID: 34065431 PMCID: PMC8160819 DOI: 10.3390/ph14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.
Collapse
Affiliation(s)
- Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
| | - Rainer K. Reinscheid
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, 07747 Jena, Germany
| |
Collapse
|
19
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
20
|
Reinscheid RK, Mafessoni F, Lüttjohann A, Jüngling K, Pape HC, Schulz S. Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides 2021; 138:170506. [PMID: 33556445 DOI: 10.1016/j.peptides.2021.170506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
The neuropeptide S (NPS) system plays an important role in fear and fear memory processing but has also been associated with allergic and inflammatory diseases. Genes for NPS and its receptor NPSR1 are found in all tetrapods. Compared to non-human primates, several non-synonymous single-nucleotide polymorphisms (SNPs) occur in both human genes that collectively result in functional attenuation, suggesting adaptive mechanisms in a human context. To investigate historic and geographic origins of these hypomorphic mutations and explore genetic signs of selection, we analyzed ancient genomes and worldwide genotype frequencies of four prototypic SNPs in the NPS system. Neandertal and Denisovan genomes contain exclusively ancestral alleles for NPSR1 while all derived alleles occur in ancient genomes of anatomically modern humans, indicating that they arose in modern Homo sapiens. Worldwide genotype frequencies for three hypomorphic NPSR1 SNPs show significant regional homogeneity but follow a gradient towards increasing derived allele frequencies that supports an out-of-Africa scenario. Increased density of high-frequency polymorphisms around the three NPSR1 loci suggests weak or possibly balancing selection. A hypomorphic mutation in the NPS precursor, however, was detected at high frequency in Eurasian Neandertal genomes and shows genetic signatures indicating that it was introgressed into the human gene pool, particularly in Southern Europe, by interbreeding with Neandertals. We discuss potential evolutionary scenarios including behavior and immune-based natural selection.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany; Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany.
| | | | - Annika Lüttjohann
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
21
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X, Zhu Y, Song Y, Chen H, Ma T, Zhao R, Jiang H, Zhang B, Feng C, Yuan Y, Gan X, Li Y, Zeng H, Liu Q, Zhang Y, Shao F, Hao S, Zhang H, Xu X, Liu X, Wang D, Zhu M, Zhang G, Zhao W, Qiu Q, He S, Wang W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021; 184:1362-1376.e18. [PMID: 33545087 DOI: 10.1016/j.cell.2021.01.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.
Collapse
Affiliation(s)
- Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiang Hu
- Grandomics Biosciences, Beijing 102200, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Youan Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Tiantian Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qun Liu
- BGI-Qingdao, Qingdao 266555, China
| | | | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | - He Zhang
- BGI-Qingdao, Qingdao 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Min Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
22
|
Schiele MA, Herzog K, Kollert L, Schartner C, Leehr EJ, Böhnlein J, Repple J, Rosenkranz K, Lonsdorf TB, Dannlowski U, Zwanzger P, Reif A, Pauli P, Deckert J, Domschke K. Extending the vulnerability-stress model of mental disorders: three-dimensional NPSR1 × environment × coping interaction study in anxiety. Br J Psychiatry 2020; 217:645-650. [PMID: 32321595 PMCID: PMC7589989 DOI: 10.1192/bjp.2020.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The general understanding of the 'vulnerability-stress model' of mental disorders neglects the modifying impact of resilience-increasing factors such as coping ability. AIMS Probing a conceptual framework integrating both adverse events and coping factors in an extended 'vulnerability-stress-coping model' of mental disorders, the effects of functional neuropeptide S receptor gene (NPSR1) variation (G), early adversity (E) and coping factors (C) on anxiety were addressed in a three-dimensional G × E × C model. METHOD In two independent samples of healthy probands (discovery: n = 1403; replication: n = 630), the interaction of NPSR1 rs324981, childhood trauma (Childhood Trauma Questionnaire, CTQ) and general self-efficacy as a measure of coping ability (General Self-Efficacy Scale, GSE) on trait anxiety (State-Trait Anxiety Inventory) was investigated via hierarchical multiple regression analyses. RESULTS In both samples, trait anxiety differed as a function of NPSR1 genotype, CTQ and GSE score (discovery: β = 0.129, P = 3.938 × 10-8; replication: β = 0.102, P = 0.020). In A allele carriers, the relationship between childhood trauma and anxiety was moderated by general self-efficacy: higher self-efficacy and childhood trauma resulted in low anxiety scores, and lower self-efficacy and childhood trauma in higher anxiety levels. In turn, TT homozygotes displayed increased anxiety as a function of childhood adversity unaffected by general self-efficacy. CONCLUSIONS Functional NPSR1 variation and childhood trauma are suggested as prime moderators in the vulnerability-stress model of anxiety, further modified by the protective effect of self-efficacy. This G × E × C approach - introducing coping as an additional dimension further shaping a G × E risk constellation, thus suggesting a three-dimensional 'vulnerability-stress-coping model' of mental disorders - might inform targeted preventive or therapeutic interventions strengthening coping ability to promote resilient functioning.
Collapse
Affiliation(s)
- Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Herzog
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), and Center of Mental Health, Julius-Maximilians-Universität Würzburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - Christoph Schartner
- Department of Physiology University of California San Francisco, USA; and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - Elisabeth J. Leehr
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Joscha Böhnlein
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Karoline Rosenkranz
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Tina B. Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Peter Zwanzger
- kbo-Inn-Salzach-Klinikum; and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Frankfurt, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy) and Center of Mental Health, Julius-Maximilians-Universität Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, and Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Katharina Domschke.
| |
Collapse
|
23
|
Kolodziejczyk MH, Faesel N, Koch M, Fendt M. Sociability and extinction of conditioned social fear is affected in neuropeptide S receptor-deficient mice. Behav Brain Res 2020; 393:112782. [DOI: 10.1016/j.bbr.2020.112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/16/2023]
|
24
|
Siminski N, Böhme S, Zeller JBM, Becker MPI, Bruchmann M, Hofmann D, Breuer F, Mühlberger A, Schiele MA, Weber H, Schartner C, Deckert J, Pauli P, Reif A, Domschke K, Straube T, Herrmann MJ. BNST and amygdala activation to threat: Effects of temporal predictability and threat mode. Behav Brain Res 2020; 396:112883. [PMID: 32860830 DOI: 10.1016/j.bbr.2020.112883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Recent animal and human studies highlight the uncertainty about the onset of an aversive event as a crucial factor for the involvement of the centromedial amygdala (CM) and bed nucleus of the stria terminalis (BNST) activity. However, studies investigating temporally predictable or unpredictable threat anticipation and confrontation processes are rare. Furthermore, the few existing fMRI studies analyzing temporally predictable and unpredictable threat processes used small sample sizes or limited fMRI paradigms. Therefore, we measured functional brain activity in 109 predominantly female healthy participants during a temporally predictable-unpredictable threat paradigm, which aimed to solve limited aspects of recent studies. Results showed higher BNST activity compared to the CM during the cue indicating that the upcoming confrontation is aversive relative to the cue indicating an upcoming neutral confrontation. Both the CM and BNST showed higher activity during the confrontation with unpredictable and aversive stimuli, but the reaction to aversive confrontation relative to neutral confrontation was stronger in the CM compared to the BNST. Additional modulation analyses by NPSR1 rs324981 genotype revealed higher BNST activity relative to the CM in unpredictable anticipation relative to predictable anticipation in T-carriers compared to AA carriers. Our results indicate that during the confrontation with aversive or neutral stimuli, temporal unpredictability modulates CM and BNST activity. Further, there is a differential activity concerning threat processing, as BNST is more involved when focussing on fear-related anticipation processes and CM is more involved when focussing on threat confrontation.
Collapse
Affiliation(s)
- N Siminski
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - S Böhme
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany; Department of Clinical Psychology and Psychotherapy, University of Erlangen, Erlangen, Germany
| | - J B M Zeller
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M P I Becker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - D Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - F Breuer
- Fraunhofer Institute for Integrated Circuits (IIS), Development Center for X-ray Technology (EZRT), Wuerzburg, Germany
| | - A Mühlberger
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - M A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Weber
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - C Schartner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Deckert
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - P Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - K Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuro Modulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M J Herrmann
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
25
|
Schwarzmeier H, Leehr EJ, Böhnlein J, Seeger FR, Roesmann K, Gathmann B, Herrmann MJ, Siminski N, Junghöfer M, Straube T, Grotegerd D, Dannlowski U. Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach. Int J Methods Psychiatr Res 2020; 29:e1812. [PMID: 31814209 PMCID: PMC7301283 DOI: 10.1002/mpr.1812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. METHODS One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. RESULTS N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. DISCUSSION This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).
Collapse
Affiliation(s)
- Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | | | - Joscha Böhnlein
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Fabian Reinhard Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Kati Roesmann
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
| | - Martin J. Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Markus Junghöfer
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
26
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
28
|
Bas‐Hoogendam JM, van Steenbergen H, Blackford JU, Tissier RLM, van der Wee NJA, Westenberg PM. Impaired neural habituation to neutral faces in families genetically enriched for social anxiety disorder. Depress Anxiety 2019; 36:1143-1153. [PMID: 31600020 PMCID: PMC6916167 DOI: 10.1002/da.22962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is an incapacitating disorder running in families. Previous work associated social fearfulness with a failure to habituate, but the habituation response to neutral faces has, as of yet, not been investigated in patients with SAD and their family members concurrently. Here, we examined whether impaired habituation to neutral faces is a putative neurobiological endophenotype of SAD by using data from the multiplex and multigenerational Leiden Family Lab study on SAD. METHODS Participants (n = 110; age, 9.2 - 61.5 years) performed a habituation paradigm involving neutral faces, as these are strong social stimuli with an ambiguous meaning. We used functional magnetic resonance imaging data to investigate whether brain activation related to habituation was associated with the level of social anxiety within the families. Furthermore, the heritability of the neural habituation response was estimated. RESULTS Our data revealed a relationship between impaired habituation to neutral faces and social anxiety in the right hippocampus and right amygdala. In addition, our data indicated that this habituation response displayed moderate - to-moderately high heritability in the right hippocampus. CONCLUSION The present results provide support for altered habituation as a candidate SAD endophenotype; impaired neural habitation cosegregrated with the disorder within families and was heritable. These findings shed light on the genetic susceptibility to SAD.
Collapse
Affiliation(s)
- Janna M. Bas‐Hoogendam
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Henk van Steenbergen
- Leiden Institute for Brain and CognitionLeidenThe Netherlands,Cognitive Psychology Unit, Institute of PsychologyUniversity of LeidenLeidenThe Netherlands
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennessee,Department of Veterans Affairs Medical CenterResearch Service, Research and DevelopmentNashvilleTennessee
| | - Renaud L. M. Tissier
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands
| | - Nic J. A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| |
Collapse
|
29
|
Neurobiology of the major psychoses: a translational perspective on brain structure and function-the FOR2107 consortium. Eur Arch Psychiatry Clin Neurosci 2019; 269:949-962. [PMID: 30267149 DOI: 10.1007/s00406-018-0943-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Genetic (G) and environmental (E) factors are involved in the etiology and course of the major psychoses (MP), i.e. major depressive disorder (MDD), bipolar disorder (BD), schizoaffective disorder (SZA) and schizophrenia (SZ). The neurobiological correlates by which these predispositions exert their influence on brain structure, function and course of illness are poorly understood. In the FOR2107 consortium, animal models and humans are investigated. A human cohort of MP patients, healthy subjects at genetic and/or environmental risk, and control subjects (N = 2500) has been established. Participants are followed up after 2 years and twice underwent extensive deep phenotyping (MR imaging, clinical course, neuropsychology, personality, risk/protective factors, biomaterials: blood, stool, urine, hair, saliva). Methods for data reduction, quality assurance for longitudinal MRI data, and (deep) machine learning techniques are employed. In the parallelised animal cluster, genetic risk was introduced by a rodent model (Cacna1c deficiency) and its interactions with environmental risk and protective factors are studied. The animals are deeply phenotyped regarding cognition, emotion, and social function, paralleling the variables assessed in humans. A set of innovative experimental projects connect and integrate data from the human and animal parts, investigating the role of microRNA, neuroplasticity, immune signatures, (epi-)genetics and gene expression. Biomaterial from humans and animals are analyzed in parallel. The FOR2107 consortium will delineate pathophysiological entities with common neurobiological underpinnings ("biotypes") and pave the way for an etiologic understanding of the MP, potentially leading to their prevention, the prediction of individual disease courses, and novel therapies in the future.
Collapse
|
30
|
Gechter J, Liebscher C, Geiger MJ, Wittmann A, Schlagenhauf F, Lueken U, Wittchen HU, Pfleiderer B, Arolt V, Kircher T, Straube B, Deckert J, Weber H, Herrmann MJ, Reif A, Domschke K, Ströhle A. Association of NPSR1 gene variation and neural activity in patients with panic disorder and agoraphobia and healthy controls. Neuroimage Clin 2019; 24:102029. [PMID: 31734525 PMCID: PMC6854061 DOI: 10.1016/j.nicl.2019.102029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/06/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The neurobiological mechanisms behind panic disorder with agoraphobia (PD/AG) are not completely explored. The functional A/T single nucleotide polymorphism (SNP) rs324981 in the neuropeptide S receptor gene (NPSR1) has repeatedly been associated with panic disorder and might partly drive function respectively dysfunction of the neural "fear network". We aimed to investigate whether the NPSR1 T risk allele was associated with malfunctioning in a fronto-limbic network during the anticipation and perception of agoraphobia-specific stimuli. METHOD 121 patients with PD/AG and 77 healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) using the disorder specific "Westphal-Paradigm". It consists of neutral and agoraphobia-specific pictures, half of the pictures were cued to induce anticipatory anxiety. RESULTS Risk allele carriers showed significantly higher amygdala activation during the perception of agoraphobia-specific stimuli than A/A homozygotes. A linear group x genotype interaction during the perception of agoraphobia-specific stimuli showed a strong trend towards significance. Patients with the one or two T alleles displayed the highest and HC with the A/A genotype the lowest activation in the inferior orbitofrontal cortex (iOFC). DISCUSSION The study demonstrates an association of the NPSR1rs324981 genotype and the perception of agoraphobia-specific stimuli. These results support the assumption of a fronto-limbic dysfunction as an intermediate phenotype of PD/AG.
Collapse
Affiliation(s)
- Johanna Gechter
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Carolin Liebscher
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Maximilian J Geiger
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Wittmann
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Florian Schlagenhauf
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, Medical Faculty - University of Muenster, and University Hospital Muenster, Muenster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy & Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy & Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, Marburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Heike Weber
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Ströhle
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
31
|
Redlich R, Schneider I, Kerkenberg N, Opel N, Bauhaus J, Enneking V, Repple J, Leehr EJ, Grotegerd D, Kähler C, Förster K, Dohm K, Meinert S, Hahn T, Kugel H, Schwarte K, Schettler C, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Hohoff C, Dannlowski U. The role of BDNF methylation and Val 66 Met in amygdala reactivity during emotion processing. Hum Brain Mapp 2019; 41:594-604. [PMID: 31617281 PMCID: PMC7268057 DOI: 10.1002/hbm.24825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene have been associated with psychiatric disorders in humans and with differences in amygdala BDNF mRNA levels in rodents. This human study aimed to investigate the relationship between the functional BDNF-Val66 Met polymorphism, its surrounding DNA methylation in BDNF exon IX, amygdala reactivity to emotional faces, and personality traits. Healthy controls (HC, n = 189) underwent functional MRI during an emotional face-matching task. Harm avoidance, novelty seeking and reward dependence were measured using the Tridimensional Personality Questionnaire (TPQ). Individual BDNF methylation profiles were ascertained and associated with several BDNF single nucleotide polymorphisms surrounding the BDNF-Val66 Met, amygdala reactivity, novelty seeking and harm avoidance. Higher BDNF methylation was associated with higher amygdala reactivity (x = 34, y = 0, z = -26, t(166) = 3.00, TFCE = 42.39, p(FWE) = .045), whereby the BDNF-Val66 Met genotype per se did not show any significant association with brain function. Furthermore, novelty seeking was negatively associated with BDNF methylation (r = -.19, p = .015) and amygdala reactivity (r = -.17, p = .028), while harm avoidance showed a trend for a positive association with BDNF methylation (r = .14, p = .066). The study provides first insights into the relationship among BDNF methylation, BDNF genotype, amygdala reactivity and personality traits in humans, highlighting the multidimensional relations among genetics, epigenetics, and neuronal functions. The present study suggests a possible involvement of epigenetic BDNF modifications in psychiatric disorders and related brain functions, whereby high BDNF methylation might reduce BDNF mRNA expression and upregulate amygdala reactivity.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ilona Schneider
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonas Bauhaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Claas Kähler
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Kathrin Schwarte
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Domschke
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
32
|
Relapse of drunk driving and association with traffic accidents, alcohol-related problems and biomarkers of impulsivity. Acta Neuropsychiatr 2019; 31:84-92. [PMID: 30472966 DOI: 10.1017/neu.2018.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Individual biological predispositions should play a role in risky driving behaviour. Platelet monoamine oxidase (MAO) activity, dopamine transporter gene (DAT1) and neuropeptide S receptor 1 (NPSR1) gene polymorphisms have been identified as markers of impulsivity, alcohol use and excessive risk-taking. We aimed to find out how this knowledge on neurobiology of impulsivity applies to drunk driving and traffic behaviour in general. METHODS We have longitudinally examined the behaviour of drunk drivers (n = 203) and controls (n = 211) in traffic, in association with their alcohol-related problems, personality measures and the three biomarkers. We analysed differences between the subjects based on whether they had committed driving while impaired by alcohol (DWI) violation in a 10-year time period after recruitment or not and investigated further, what kind of predictive value do the different biomarkers have in committing DWI and other traffic violations and accidents. RESULTS The original drunk drivers group had lower platelet MAO activity but further DWI was not significantly associated with this measure. Being a NPSR1 T-allele carrier contributed to the risk of repeatedly committing DWI. DAT1 9R carriers in contrast were involved in more traffic accidents by their own fault (active accidents), compared to 10R homozygotes in the whole sample. All groups with DWI also had significantly more alcohol-related problems and higher scores in maladaptive impulsivity compared to controls without DWI. CONCLUSIONS Established biological markers of alcohol use and impulsivity can be reliably associated with everyday traffic behaviour and help in contributing to the understanding of the need for more personalized prevention activities.
Collapse
|
33
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
34
|
Baykan H, Baykan Ö, Esen EC, Kara H, Hişmioğullari AA, Karlidere T. Relationship between panic disorder and plasma neuropeptide-S level. ARCH CLIN PSYCHIAT 2018. [DOI: 10.1590/0101-60830000000163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Imaging neuropeptide effects on human brain function. Cell Tissue Res 2018; 375:279-286. [PMID: 30069597 DOI: 10.1007/s00441-018-2899-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain. However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging (fMRI) and primarily focus on OT's sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological mechanisms of mental disorders.
Collapse
|
36
|
Avinun R, Nevo A, Knodt AR, Elliott ML, Hariri AR. Replication in Imaging Genetics: The Case of Threat-Related Amygdala Reactivity. Biol Psychiatry 2018; 84:148-159. [PMID: 29279201 PMCID: PMC5955809 DOI: 10.1016/j.biopsych.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Low replication rates are a concern in most, if not all, scientific disciplines. In psychiatric genetics specifically, targeting intermediate brain phenotypes, which are more closely associated with putative genetic effects, was touted as a strategy leading to increased power and replicability. In the current study, we attempted to replicate previously published associations between single nucleotide polymorphisms and threat-related amygdala reactivity, which represents a robust brain phenotype not only implicated in the pathophysiology of multiple disorders, but also used as a biomarker of future risk. METHODS We conducted a literature search for published associations between single nucleotide polymorphisms and threat-related amygdala reactivity and found 37 unique findings. Our replication sample consisted of 1117 young adult volunteers (629 women, mean age 19.72 ± 1.25 years) for whom both genetic and functional magnetic resonance imaging data were available. RESULTS Of the 37 unique associations identified, only three replicated as previously reported. When exploratory analyses were conducted with different model parameters compared to the original findings, significant associations were identified for 28 additional studies: eight of these were for a different contrast/laterality; five for a different gender and/or race/ethnicity; and 15 in the opposite direction and for a different contrast, laterality, gender, and/or race/ethnicity. No significant associations, regardless of model parameters, were detected for six studies. Notably, none of the significant associations survived correction for multiple comparisons. CONCLUSIONS We discuss these patterns of poor replication with regard to the general strategy of targeting intermediate brain phenotypes in genetic association studies and the growing importance of advancing the replicability of imaging genetics findings.
Collapse
Affiliation(s)
- Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.
| | - Adam Nevo
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Annchen R. Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Maxwell L. Elliott
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Nees F, Witt SH, Flor H. Neurogenetic Approaches to Stress and Fear in Humans as Pathophysiological Mechanisms for Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:810-820. [PMID: 29454655 DOI: 10.1016/j.biopsych.2017.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
In this review article, genetic variation associated with brain responses related to acute and chronic stress reactivity and fear learning in humans is presented as an important mechanism underlying posttraumatic stress disorder. We report that genes related to the regulation of the hypothalamic-pituitary-adrenal axis, as well as genes that modulate serotonergic, dopaminergic, and neuropeptidergic functions or plasticity, play a role in this context. The strong overlap of the genetic targets involved in stress and fear learning suggests that a dimensional and mechanistic model of the development of posttraumatic stress disorder based on these constructs is promising. Genome-wide genetic analyses on fear and stress mechanisms are scarce. So far, reliable replication is still lacking for most of the molecular genetic findings, and the proportion of explained variance is rather small. Further analysis of neurogenetic stress and fear learning needs to integrate data from animal and human studies.
Collapse
Affiliation(s)
- Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| |
Collapse
|
38
|
Schneider I, Kugel H, Redlich R, Grotegerd D, Bürger C, Bürkner PC, Opel N, Dohm K, Zaremba D, Meinert S, Schröder N, Straßburg AM, Schwarte K, Schettler C, Ambrée O, Rust S, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Dannlowski U, Hohoff C. Association of Serotonin Transporter Gene AluJb Methylation with Major Depression, Amygdala Responsiveness, 5-HTTLPR/rs25531 Polymorphism, and Stress. Neuropsychopharmacology 2018; 43:1308-1316. [PMID: 29114103 PMCID: PMC5916353 DOI: 10.1038/npp.2017.273] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
DNA methylation profiles of the serotonin transporter gene (SLC6A4) have been shown to alter SLC6A4 expression, drive antidepressant treatment response and modify brain functions. This study investigated whether methylation of an AluJb element in the SLC6A4 promotor was associated with major depressive disorder (MDD), amygdala reactivity to emotional faces, 5-HTTLPR/rs25531 polymorphism, and recent stress. MDD patients (n=122) and healthy controls (HC, n=176) underwent fMRI during an emotional face-matching task. Individual SLC6A4 AluJb methylation profiles were ascertained and associated with MDD, amygdala reactivity, 5-HTTLPR/rs25531, and stress. SLC6A4 AluJb methylation was significantly lower in MDD compared to HC and in stressed compared to less stressed participants. Lower AluJb methylation was particularly found in 5-HTTLPR/rs25531 risk allele carriers under stress and correlated with less depressive episodes. fMRI analysis revealed a significant interaction of AluJb methylation and diagnosis in the amygdala, with MDD patients showing lower AluJb methylation associated with decreased amygdala reactivity. While no joint effect of AluJb methylation and 5-HTTLPR/rs25531 existed, risk allele carriers showed significantly increased bilateral amygdala activation. These findings suggest a role of SLC6A4 AluJb methylation in MDD, amygdala reactivity, and stress reaction, partly interwoven with 5-HTTLPR/rs25531 effects. Patients with low methylation in conjunction with a shorter MDD history and decreased amygdala reactivity might feature a more stress-adaptive epigenetic process, maybe via theoretically possible endogenous antidepressant-like effects. In contrast, patients with higher methylation might possibly suffer from impaired epigenetic adaption to chronic stress. Further, the 5-HTTLPR/rs25531 association with amygdala activation was confirmed in our large sample.
Collapse
Affiliation(s)
- Ilona Schneider
- Department of Psychiatry, University of Münster, Münster, Germany,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christian Bürger
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nina Schröder
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Kathrin Schwarte
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Oliver Ambrée
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Stephan Rust
- Department of Pediatrics, University of Münster, Münster, Germany
| | - Katharina Domschke
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Münster, Germany,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, Münster 48149 Germany, Tel: +49-251-8357122, Fax: +49-251-8357123, E-mail:
| |
Collapse
|
39
|
Domschke K, Akhrif A, Romanos M, Bajer C, Mainusch M, Winkelmann J, Zimmer C, Neufang S. Neuropeptide S Receptor Gene Variation Differentially Modulates Fronto-Limbic Effective Connectivity in Childhood and Adolescence. Cereb Cortex 2018; 27:554-566. [PMID: 26503268 DOI: 10.1093/cercor/bhv259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide S (NPS) system contributes to the pathogenesis of anxiety. The more active T allele of the functional rs324981 variant in the neuropeptide S receptor gene (NPSR1) is associated with panic disorder (PD) and distorted cortico-limbic activity during emotion processing in healthy adults and PD patients. This study investigated the influence of NPSR1 genotype on fronto-limbic effective connectivity within the developing brain. Sixty healthy subjects (8-21 years) were examined using an emotional go-nogo task and fMRI. Fronto-limbic connectivity was determined using Dynamic Causal Modeling. In A allele carriers, connectivity between the right middle frontal gyrus (MFG) and the right amygdala was higher in older (≥14 years) than that in younger (<14 years) probands, whereas TT homozygotes ≥14 years showed a reduction of fronto-limbic connectivity between the MFG and both the amygdala and the insula. Fronto-limbic connectivity varied between NPSR1 genotypes in the developing brain suggesting a risk-increasing effect of the NPSR1T allele for anxiety-related traits via impaired top-down control of limbic structures emerging during adolescence. Provided robust replication in longitudinal studies, these findings may constitute valuable biomarkers for early targeted prevention of anxiety disorders.
Collapse
Affiliation(s)
| | - Atae Akhrif
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Christina Bajer
- Department of Diagnostical and Interventional Neuroradiology.,Department of Neurology and
| | - Margrit Mainusch
- Department of Diagnostical and Interventional Neuroradiology.,Department of Neurology and
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Zimmer
- Department of Diagnostical and Interventional Neuroradiology
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
40
|
Kubrak OI, Lushchak OV, Zandawala M, Nässel DR. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol 2017; 6:rsob.160152. [PMID: 27810969 PMCID: PMC5133436 DOI: 10.1098/rsob.160152] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems.
Collapse
Affiliation(s)
- Olga I Kubrak
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Oleh V Lushchak
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
41
|
Opel N, Redlich R, Grotegerd D, Dohm K, Zaremba D, Meinert S, Bürger C, Plümpe L, Alferink J, Heindel W, Kugel H, Zwanzger P, Arolt V, Dannlowski U. Prefrontal brain responsiveness to negative stimuli distinguishes familial risk for major depression from acute disorder. J Psychiatry Neurosci 2017; 42:343-352. [PMID: 28606245 PMCID: PMC5573576 DOI: 10.1503/jpn.160198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Identifying reliable trait markers of familial risk for major depressive disorder (MDD) is a challenge in translational psychiatric research. In individuals with acute MDD, dysfunctional connectivity patterns of prefrontal areas have been shown repeatedly. However, it has been unclear in which neuronal networks functional alterations in individuals at familial risk for MDD might be present and to what extent they resemble findings previously reported in those with acute MDD. METHODS We investigated differences in blood oxygen level-dependent (BOLD) response of the medial orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to aversive stimuli between acute MDD and familial risk for the disorder in healthy first-degree relatives of acutely depressed patients with MDD (HC-FH+), healthy age- and sex-matched controls without any family history of depression (HC-FH-), and acutely depressed patients with MDD with (MDD-FH+) and without a family history of depression (MDD-FH-) during a frequently used emotional face-matching paradigm. Analyses of task-specific network connectivity were conducted in terms of psychophysiological interactions (PPI). RESULTS The present analysis included a total of 100 participants: 25 HC-FH+, 25 HC-FH-, 25 MDD-FH+ and 25 MDD-FH-. Patients with MDD exhibited significantly increased activation in the medial OFC to negative stimuli irrespective of familial risk status, whereas healthy participants at familial risk and patients with MDD alike showed significant hypoactivation in the DLPFC compared with healthy participants without familial risk. The PPI analyses revealed significantly enhanced task-specific coupling between the medial OFC and differing cortical areas in individuals with acute MDD and those with familial risk for the disorder. LIMITATIONS The main limitation of our study is its cross-sectional design. CONCLUSION Whereas hypoactivation during negative emotion processing in the DLPFC appears as a common feature in both healthy high-risk individuals and acutely depressed patients, activation patterns of the medial OFC and its underlying connectivity seem to distinguish familial risk from acute disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Udo Dannlowski
- Correspondence to: U. Dannlowski, Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany;
| |
Collapse
|
42
|
Roncacè V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: Functional implications for effects of NPS on wakefulness and mood. Neuropharmacology 2017; 126:292-317. [PMID: 28655610 DOI: 10.1016/j.neuropharm.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptide S (NPS) is a peptide recently recognized to be present in the CNS, and believed to play a role in vigilance and mood control, as behavioral studies have shown it promotes arousal and has an anxiolytic effect. Although NPS precursor is found in very few neurons, NPS positive fibers are present throughout the brain stem. Given the behavioral actions of this peptide and the wide innervation pattern, we examined the cellular effects of NPS within two brain stem nuclei known to play a critical role in anxiety and arousal: the dorsal raphe (DR) and laterodorsal tegmentum (LDT). In mouse brain slices, NPS increased cytoplasmic levels of calcium in DR and LDT cells. Calcium rises were independent of action potential generation, reduced by low extracellular levels of calcium, attenuated by IP3 - and ryanodine (RyR)-dependent intracellular calcium store depletion, and eliminated by the receptor (NPSR) selective antagonist, SHA 68. NPS also exerted an effect on the membrane of DR and LDT cells inducing inward and outward currents, which were driven by an increase in conductance, and eliminated by SHA 68. Membrane actions of NPS were found to be dependent on store-mediated calcium as depletion of IP3 and RyR stores eliminated NPS-induced currents. Finally, NPS also had actions on synaptic events, suggesting facilitation of glutamatergic and GABAergic presynaptic transmission. When taken together, actions of NPS influenced the excitability of DR and LDT neurons, which could play a role in the anxiolytic and arousal-promoting effects of this peptide.
Collapse
Affiliation(s)
- Vincenzo Roncacè
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Filip Souza Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Minella Zojicic
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
43
|
Liu X, Si W, Garau C, Jüngling K, Pape HC, Schulz S, Reinscheid RK. Neuropeptide S precursor knockout mice display memory and arousal deficits. Eur J Neurosci 2017; 46:1689-1700. [PMID: 28548278 DOI: 10.1111/ejn.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Activation of neuropeptide S (NPS) signaling has been found to produce arousal, wakefulness, anxiolytic-like behaviors, and enhanced memory formation. In order to further study physiological functions of the NPS system, we generated NPS precursor knockout mice by homologous recombination in embryonic stem cells. NPS-/- mice were viable, fertile, and anatomically normal, when compared to their wild-type and heterozygous littermates. The total number of NPS neurons-although no longer synthesizing the peptide - was not affected by the knockout, as analyzed in NPS-/- /NPSEGFP double transgenic mice. Analysis of behavioral phenotypes revealed significant deficits in exploratory activity in NPS-/- mice. NPS precursor knockout mice displayed attenuated arousal in the hole board test, visible as reduced total nose pokes and number of holes inspected, that was not confounded by increased repetitive or stereotypic behavior. Importantly, long-term memory was significantly impaired in NPS-/- mice in the inhibitory avoidance paradigm. NPS precursor knockout mice displayed mildly increased anxiety-like behaviors in three different tests measuring responses to stress and novelty. Interestingly, heterozygous littermates often presented behavioral deficits similar to NPS-/- mice or displayed intermediate phenotype. These observations may suggest limited ligand availability in critical neural circuits. Overall, phenotypical changes in NPS-/- mice are similar to those observed in NPS receptor knockout mice and support earlier findings that suggest major functions of the NPS system in arousal, regulation of anxiety and stress, and memory formation.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Department of Pharmaceutical Science, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kay Jüngling
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany.,Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
44
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
45
|
Streit F, Akdeniz C, Haddad L, Kumsta R, Entringer S, Frank J, Yim IS, Zänkert S, Witt SH, Kirsch P, Rietschel M, Wüst S. Sex-specific association between functional neuropeptide S receptor gene (NPSR1) variants and cortisol and central stress responses. Psychoneuroendocrinology 2017; 76:49-56. [PMID: 27883964 DOI: 10.1016/j.psyneuen.2016.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/01/2023]
Abstract
The brain neuropeptide S (NPS) system has recently generated substantial interest and may be of major relevance for central stress regulation. The NPS receptor (NPSR1) is highly expressed in the limbic system, exogenous NPS exerts pronounced anxiolytic and fear-attenuating effects in rodents and extensive close crosstalk between the NPS system and the hypothalamic-pituitary-adrenal (HPA) axis has been demonstrated. In humans, associations between NPSR1 variants and anxiety and panic disorder, as well as amygdala responsiveness to fear- relevant faces and prefrontal cortex activity in a fear conditioning paradigm have been reported. Moreover, a NPSR1 sequence variant was found to be associated with cortisol stress responses in males. Here, we performed a haplotype-based analysis covering three functional NPSR1 single nucleotide polymorphisms in the promoter (rs2530547), in exon 3 (rs324981) and exon 6 (rs727162) in 277 healthy subjects who were exposed to the Trier Social Stress Test (TSST). A significant sex-specific association with salivary cortisol responses to acute psychosocial stress was detected for the common TTC haplotype 2 (frequency of about 20%). In an additional study using an imaging genetics approach, 65 healthy subjects were exposed to a stress paradigm for scanner environments (“ScanSTRESS”). We found a significant and, again, sex-specific interaction between rs324981 (whose minor T-allele is harbored by haplotype 2) and the neural stress response in a cluster close to the parahippocampal gyrus (whole brain corrected). Moreover, as in the TSST sample, NPSR1 variation was associated with salivary cortisol responses (on a trend level) in a sex-specific way. In summary, our preliminary findings in two independent cohorts exposed to different stress paradigms suggest that the NPS system significantly influences acute stress responses and that sequence variation in NPSR1 may contribute to sex differences in stress regulation.
Collapse
Affiliation(s)
- Fabian Streit
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Ceren Akdeniz
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Leila Haddad
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Robert Kumsta
- Genetic Psychology, Faculty of Psychology, Ruhr- University Bochum, Germany
| | - Sonja Entringer
- Institute of Medical Psychology, Charité - University Medicine Berlin, Germany; Department of Pediatrics, University of California, Irvine, United States
| | - Josef Frank
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Ilona S Yim
- Department of Psychology and Social Behavior, University of California, Irvine, United States
| | - Sandra Zänkert
- Institute of Experimental Psychology, University of Regensburg, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Peter Kirsch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Stefan Wüst
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany; Institute of Experimental Psychology, University of Regensburg, Germany.
| |
Collapse
|
46
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
47
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Opel N, Dohm K, Zaremba D, Grögler A, Schwieren J, Suslow T, Ohrmann P, Bauer J, Krug A, Kircher T, Jansen A, Domschke K, Hohoff C, Zwitserlood P, Heinrichs M, Arolt V, Heindel W, Baune BT. Disadvantage of Social Sensitivity: Interaction of Oxytocin Receptor Genotype and Child Maltreatment on Brain Structure. Biol Psychiatry 2016; 80:398-405. [PMID: 26858213 DOI: 10.1016/j.biopsych.2015.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Oxytocin has received much attention as a prosocial and anxiolytic neuropeptide. In human studies, the G-allele of a common variant (rs53576) in the oxytocin receptor gene (OXTR) has been associated with protective properties such as reduced stress response and higher receptiveness for social support. In contrast, recent studies suggest a detrimental role of the rs53576 G-allele in the context of childhood maltreatment. To further elucidate the role of OXTR, gene by maltreatment interactions on brain structure and function were investigated. METHODS Three hundred nine healthy participants genotyped for OXTR rs53576 underwent structural as well as functional magnetic resonance imaging during a common emotional face-matching task. Childhood maltreatment was assessed with the Childhood Trauma Questionnaire (CTQ). Gray matter volumes were investigated by means of voxel-based morphometry across the entire brain. RESULTS Structural magnetic resonance imaging data revealed a strong interaction of rs53576 genotype and CTQ scores, mapping specifically to the bilateral ventral striatum. GG homozygotes but not A-allele carriers showed strong gray matter reduction with increasing CTQ scores. In turn, lower ventral striatum gray matter volumes were associated with lower reward dependence, a prosocial trait. Furthermore, the G-allele was associated with increased amygdala responsiveness to emotional facial expressions. CONCLUSIONS The findings suggest that the G-allele constitutes a vulnerability factor for specific alterations of limbic brain structure in individuals with adverse childhood experiences, complemented by increased limbic responsiveness to emotional interpersonal stimuli. While oxytocinergic signaling facilitates attachment and bonding in supportive social environments, this attunement for social cues may turn disadvantageous under early adverse conditions.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster; Department of Psychiatry, University of Marburg, Marburg.
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster
| | - Anne Grögler
- Department of Psychiatry, University of Münster, Münster
| | | | - Thomas Suslow
- Department of Psychosomatics and Psychotherapy, University of Leipzig, Leipzig
| | | | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg
| | | | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster
| | | | - Markus Heinrichs
- Department of Psychology, University Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
48
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
49
|
Sumner JA, Powers A, Jovanovic T, Koenen KC. Genetic influences on the neural and physiological bases of acute threat: A research domain criteria (RDoC) perspective. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:44-64. [PMID: 26377804 PMCID: PMC4715467 DOI: 10.1002/ajmg.b.32384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Abstract
The NIMH Research Domain Criteria (RDoC) initiative aims to describe key dimensional constructs underlying mental function across multiple units of analysis-from genes to observable behaviors-in order to better understand psychopathology. The acute threat ("fear") construct of the RDoC Negative Valence System has been studied extensively from a translational perspective, and is highly pertinent to numerous psychiatric conditions, including anxiety and trauma-related disorders. We examined genetic contributions to the construct of acute threat at two units of analysis within the RDoC framework: (1) neural circuits and (2) physiology. Specifically, we focused on genetic influences on activation patterns of frontolimbic neural circuitry and on startle, skin conductance, and heart rate responses. Research on the heritability of activation in threat-related frontolimbic neural circuitry is lacking, but physiological indicators of acute threat have been found to be moderately heritable (35-50%). Genetic studies of the neural circuitry and physiology of acute threat have almost exclusively relied on the candidate gene method and, as in the broader psychiatric genetics literature, most findings have failed to replicate. The most robust support has been demonstrated for associations between variation in the serotonin transporter (SLC6A4) and catechol-O-methyltransferase (COMT) genes with threat-related neural activation and physiological responses. However, unbiased genome-wide approaches using very large samples are needed for gene discovery, and these can be accomplished with collaborative consortium-based research efforts, such as those of the Psychiatric Genomics Consortium (PGC) and Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Center for Behavioral Cardiovascular Health, Columbia University Medical Center, New York, New York
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- The Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The present review aims to deliver a systematic overview of current developments and trends in (epi)genetics of anxiety and to identify upcoming challenges and opportunities. RECENT FINDINGS Genes related to peptide and hormone signaling have been suggested for anxiety-related phenotypes, e.g., the NPSR1 gene, which has been associated predominantly with panic disorder in women, and shown to interact with environmental factors and to influence psychometric, neurophysiological, and neuroimaging correlates of anxiety. Similar multi-level results have been reported for genetic and epigenetic variation in the OXTR gene, especially in social anxiety disorder (SAD), and for CRHR1 gene variation in women with panic disorder. Variants in RGS2 and ASIC1 genes were linked to panic disorder, with the latter also being implicated in SAD treatment response. Finally, monoaminergic 'risk' genes (SLC6A4, MAOA, HTR1A) were related to SAD, generalized anxiety disorder and women with panic disorder, anxiety traits and response to psychopharmacological and psychotherapeutic interventions. SUMMARY Converging evidence for potential genetic and epigenetic risk markers has been gathered and future studies call for independent replications and multi-level integration of dimensional approaches, environmental factors, and biological readouts, while considering sex-specific substratification. Particularly, epigenetic variation appears promising for disease course and treatment response predictions.
Collapse
|