1
|
Wacker D, Filizola M. Can Targeting the Sodium Site via Water Molecules Lead to the Development of Safer Opioids? ACS CENTRAL SCIENCE 2024; 10:1436-1438. [PMID: 39220703 PMCID: PMC11363340 DOI: 10.1021/acscentsci.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Daniel Wacker
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United
States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United
States
| |
Collapse
|
2
|
Yuan Y, Xu T, Huang Y, Shi J. Strategies for developing μ opioid receptor agonists with reduced adverse effects. Bioorg Chem 2024; 149:107507. [PMID: 38850778 DOI: 10.1016/j.bioorg.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel μ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.
Collapse
Affiliation(s)
- Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu Huang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
3
|
Bernhard SM, Han J, Che T. GPCR-G protein selectivity revealed by structural pharmacology. FEBS J 2024; 291:2784-2791. [PMID: 38151714 PMCID: PMC11209754 DOI: 10.1111/febs.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Receptor-G protein promiscuity is frequently observed in class A G protein-coupled receptors (GPCRs). In particular, GPCRs can couple with G proteins from different families (Gαs, Gαq/11, Gαi/o, and Gα12/13) or the same family subtypes. The molecular basis underlying the selectivity/promiscuity is not fully revealed. We recently reported the structures of kappa opioid receptor (KOR) in complex with the Gi/o family subtypes [Gαi1, GαoA, Gαz, and Gustducin (Gαg)] determined by cryo-electron microscopy (cryo-EM). The structural analysis, in combination with pharmacological studies, provides insights into Gi/o subtype selectivity. Given the conserved sequence identity and activation mechanism between different G protein families, the findings within Gi/o subtypes could be likely extended to other families. Understanding the KOR-Gi/o or GPCR-G protein selectivity will facilitate the development of more precise therapeutics targeting a specific G protein subtype.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Cryoelectron Microscopy
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/genetics
- Protein Binding
- Animals
- Protein Conformation
- Models, Molecular
Collapse
Affiliation(s)
- Sarah M. Bernhard
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Jianming Han
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Shen S, Wu C, Lin G, Yang X, Zhou Y, Zhao C, Miao Z, Tian X, Wang K, Yang Z, Liu Z, Guo N, Li Y, Xia A, Zhou P, Liu J, Yan W, Ke B, Yang S, Shao Z. Structure-based identification of a G protein-biased allosteric modulator of cannabinoid receptor CB1. Proc Natl Acad Sci U S A 2024; 121:e2321532121. [PMID: 38830102 PMCID: PMC11181136 DOI: 10.1073/pnas.2321532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and β-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.
Collapse
Affiliation(s)
- Siyuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Guifeng Lin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xin Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yangli Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Zhiyu Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Nihong Guo
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Yueshan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Anjie Xia
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Pei Zhou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Jingming Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu610212, Sichuan, China
| |
Collapse
|
5
|
Kise R, Inoue A. GPCR signaling bias: an emerging framework for opioid drug development. J Biochem 2024; 175:367-376. [PMID: 38308136 DOI: 10.1093/jb/mvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Biased signaling, also known as functional selectivity, has emerged as an important concept in drug development targeting G-protein-coupled receptors (GPCRs). Drugs that provoke biased signaling are expected to offer an opportunity for enhanced therapeutic effectiveness with minimized side effects. Opioid analgesics, whilst exerting potent pain-relieving effects, have become a social problem owing to their serious side effects. For the development of safer pain medications, there has been extensive exploration of agonists with a distinct balance of G-protein and β-arrestin (βarr) signaling. Recently, several approaches based on protein-protein interactions have been developed to precisely evaluate individual signal pathways, paving the way for the comprehensive analysis of biased signals. In this review, we describe an overview of bias signaling in opioid receptors, especially the μ-opioid receptor (MOR), and how to evaluate signaling bias in the GPCR field. We also discuss future directions for rational drug development through the integration of diverse signal datasets.
Collapse
Affiliation(s)
- Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
8
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Malcolm NJ, Palkovic B, Sprague DJ, Calkins MM, Lanham JK, Halberstadt AL, Stucke AG, McCorvy JD. Mu-opioid receptor selective superagonists produce prolonged respiratory depression. iScience 2023; 26:107121. [PMID: 37416459 PMCID: PMC10320493 DOI: 10.1016/j.isci.2023.107121] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Synthetic opioids are increasingly challenging to combat the opioid epidemic and act primarily at opioid receptors, chiefly the G protein-coupled receptor (GPCR) μ-opioid receptor (MOR), which signals through G protein-dependent and β-arrestin pathways. Using a bioluminescence resonance energy transfer (BRET) system, we investigate GPCR-signaling profiles by synthetic nitazenes, which are known to cause overdose and death due to respiratory depression. We show that isotonitazene and its metabolite, N-desethyl isotonitazene, are very potent MOR-selective superagonists, surpassing both DAMGO G protein and β-arrestin recruitment activity, which are properties distinct from other conventional opioids. Both isotonitazene and N-desethyl isotonitazene show high potency in mouse analgesia tail-flick assays, but N-desethyl isotonitazene shows longer-lasting respiratory depression compared to fentanyl. Overall, our results suggest that potent MOR-selective superagonists may be a pharmacological property predictive of prolonged respiratory depression resulting in fatal consequences and should be examined for future opioid analgesics.
Collapse
Affiliation(s)
- Nicholas J. Malcolm
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J. Sprague
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K. Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92108, USA
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Qu Q, Huang W, Aydin D, Paggi JM, Seven AB, Wang H, Chakraborty S, Che T, DiBerto JF, Robertson MJ, Inoue A, Suomivuori CM, Roth BL, Majumdar S, Dror RO, Kobilka BK, Skiniotis G. Insights into distinct signaling profiles of the µOR activated by diverse agonists. Nat Chem Biol 2023; 19:423-430. [PMID: 36411392 PMCID: PMC11098091 DOI: 10.1038/s41589-022-01208-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
Abstract
Drugs targeting the μ-opioid receptor (μOR) are the most effective analgesics available but are also associated with fatal respiratory depression through a pathway that remains unclear. Here we investigated the mechanistic basis of action of lofentanil (LFT) and mitragynine pseudoindoxyl (MP), two μOR agonists with different safety profiles. LFT, one of the most lethal opioids, and MP, a kratom plant derivative with reduced respiratory depression in animal studies, exhibited markedly different efficacy profiles for G protein subtype activation and β-arrestin recruitment. Cryo-EM structures of μOR-Gi1 complex with MP (2.5 Å) and LFT (3.2 Å) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and β-arrestins bind. These observations highlight how drugs engaging different parts of the μOR orthosteric pocket can lead to distinct signaling outcomes.
Collapse
Affiliation(s)
- Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Shanghai Stomatological Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Aydin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Carl-Mikael Suomivuori
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, Robertson MJ, Madasu MK, El Daibani A, Varga BR, Zhang T, Ruiz C, Liu S, Xu J, Appourchaux K, Slocum ST, Eans SO, Cameron MD, Al-Hasani R, Pan YX, Roth BL, McLaughlin JP, Skiniotis G, Katritch V, Kobilka BK, Majumdar S. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature 2023; 613:767-774. [PMID: 36450356 PMCID: PMC10328120 DOI: 10.1038/s41586-022-05588-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.
Collapse
MESH Headings
- Animals
- Mice
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Arrestins/metabolism
- Cryoelectron Microscopy
- Fentanyl/analogs & derivatives
- Fentanyl/chemistry
- Fentanyl/metabolism
- Ligands
- Morphinans/chemistry
- Morphinans/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Binding Sites
- Nociception
- Drug Design
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Tiffany Zhang
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claudia Ruiz
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | | | - Ream Al-Hasani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
12
|
McPherson KB, Ingram SL. Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front Syst Neurosci 2022; 16:963812. [PMID: 36045708 PMCID: PMC9421147 DOI: 10.3389/fnsys.2022.963812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.
Collapse
Affiliation(s)
- Kylie B. McPherson
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Susan L. Ingram
| |
Collapse
|
13
|
Fullerton EF, Karom MC, Streicher JM, Young LJ, Murphy AZ. Age-Induced Changes in µ-Opioid Receptor Signaling in the Midbrain Periaqueductal Gray of Male and Female Rats. J Neurosci 2022; 42:6232-6242. [PMID: 35790399 PMCID: PMC9374133 DOI: 10.1523/jneurosci.0355-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENT Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
14
|
Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. Structure-Based Evolution of G Protein-Biased μ-Opioid Receptor Agonists. Angew Chem Int Ed Engl 2022; 61:e202200269. [PMID: 35385593 PMCID: PMC9322534 DOI: 10.1002/anie.202200269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 01/14/2023]
Abstract
The μ-opioid receptor (μOR) is the major target for opioid analgesics. Activation of μOR initiates signaling through G protein pathways as well as through β-arrestin recruitment. μOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased μOR agonist. Here we report the cryoEM structure of PZM21 bound μOR in complex with Gi protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced Gi protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to μOR in complex with Gi protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce β-arrestin recruitment by the μOR, and hold promise for developing next-generation analgesics with fewer adverse effects.
Collapse
Affiliation(s)
- Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Hetzer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Present address: Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. Strukturbasierte Entwicklung von G‐Protein bevorzugenden μ‐Opioidrezeptor Agonisten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haoqing Wang
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Florian Hetzer
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
- Derzeitige Adresse: Shanghai Stomatological Hospital Institutes of Biomedical Sciences Fudan University Shanghai 200032 China
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Harald Hübner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology Department of Structural Biology Stanford University School of Medicine Stanford, CA USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, CA USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| |
Collapse
|
16
|
Toussaint AB, Foster W, Jones JM, Kaufmann S, Wachira M, Hughes R, Bongiovanni AR, Famularo ST, Dunham BP, Schwark R, Karbalaei R, Dressler C, Bavley CC, Fried NT, Wimmer ME, Abdus-Saboor I. Chronic paternal morphine exposure increases sensitivity to morphine-derived pain relief in male progeny. SCIENCE ADVANCES 2022; 8:eabk2425. [PMID: 35171664 PMCID: PMC8849295 DOI: 10.1126/sciadv.abk2425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a "rat pain scale" with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine's pain-relieving effects in male offspring.
Collapse
Affiliation(s)
- Andre B. Toussaint
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - William Foster
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jessica M. Jones
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel Kaufmann
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Meghan Wachira
- Department of Biology, Rutgers Camden University, Camden, NJ, USA
| | - Robert Hughes
- Department of Biology, Rutgers Camden University, Camden, NJ, USA
| | - Angela R. Bongiovanni
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Sydney T. Famularo
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Benjamin P. Dunham
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Ryan Schwark
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Reza Karbalaei
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Carmen Dressler
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Charlotte C. Bavley
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Nathan T. Fried
- Department of Biology, Rutgers Camden University, Camden, NJ, USA
| | - Mathieu E. Wimmer
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA
- Corresponding author.
| |
Collapse
|
17
|
Bouchet CA, McPherson KB, Li MH, Traynor JR, Ingram SL. Mice Expressing Regulators of G protein Signaling-insensitive Gαo Define Roles of μ Opioid Receptor G αo and G αi Subunit Coupling in Inhibition of Presynaptic GABA Release. Mol Pharmacol 2021; 100:217-223. [PMID: 34135098 DOI: 10.1124/molpharm.121.000249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate signaling by G protein-coupled receptors. Using a knock-in transgenic mouse model with a mutation in Gαo that does not bind RGS proteins (RGS-insensitive), we determined the effect of RGS proteins on presynaptic μ opioid receptor (MOR)-mediated inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). The MOR agonists [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and met-enkephalin (ME) inhibited evoked inhibitory postsynaptic currents (eIPSCs) in the RGS-insensitive mice compared with wild-type (WT) littermates, respectively. Fentanyl inhibited eIPSCs similarly in both WT and RGS-insensitive mice. There were no differences in opioid agonist inhibition of spontaneous GABA release between the genotypes. To further probe the mechanism underlying these differences between opioid inhibition of evoked and spontaneous GABA release, specific myristoylated Gα peptide inhibitors for Gαo1 and Gαi1-3 that block receptor-G protein interactions were used to test the preference of agonists for MOR-Gα complexes. The Gαo1 inhibitor reduced DAMGO inhibition of eIPSCs, but Gαi1-3 inhibitors had no effect. Both Gαo1 and Gαi1-3 inhibitors separately reduced fentanyl inhibition of eIPSCs but had no effects on ME inhibition. Gαi1-3 inhibitors blocked the inhibitory effects of ME and fentanyl on miniature postsynaptic current (mIPSC) frequency, but both Gαo1 and Gαi1-3 inhibitors were needed to block the effects of DAMGO. Finally, baclofen-mediated inhibition of GABA release is unaffected in the RGS-insensitive mice and in the presence of Gαo1 and Gαi1-3 inhibitor peptides, suggesting that GABAB receptor coupling to G proteins in vlPAG presynaptic terminals is different than MOR coupling. SIGNIFICANCE STATEMENT: Presynaptic μ opioid receptors (MORs) in the ventrolateral periaqueductal gray are critical for opioid analgesia and are negatively regulated by RGS proteins. These data in RGS-insensitive mice provide evidence that MOR agonists differ in preference for Gαo versus Gαi and regulation by RGS proteins in presynaptic terminals, providing a mechanism for functional selectivity between agonists. The results further define important differences in MOR and GABAB receptor coupling to G proteins that could be exploited for new pain therapies.
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Kylie B McPherson
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Ming-Hua Li
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - John R Traynor
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Susan L Ingram
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| |
Collapse
|
18
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
19
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Senese NB, Kandasamy R, Kochan KE, Traynor JR. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front Mol Neurosci 2020; 13:5. [PMID: 32038168 PMCID: PMC6992652 DOI: 10.3389/fnmol.2020.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and βγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.
Collapse
Affiliation(s)
- Nicolas B Senese
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychiatry, Chicago, IL, United States
| | - Ram Kandasamy
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Kelsey E Kochan
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Nuclear Receptor Nr4a1 Regulates Striatal Striosome Development and Dopamine D 1 Receptor Signaling. eNeuro 2019; 6:ENEURO.0305-19.2019. [PMID: 31541002 PMCID: PMC6787343 DOI: 10.1523/eneuro.0305-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The GABAergic medium-size spiny neuron (MSN), the striatal output neuron, may be classified into striosome, also known as patch, and matrix, based on neurochemical differences between the two compartments. At this time, little is known regarding the regulation of the development of the two compartments. Nr4a1, primarily described as a nuclear receptor/immediate early gene involved in the homeostasis of the dopaminergic system, is a striosomal marker. Using Nr4a1-overexpressing and Nr4a1-null mice, we sought to determine whether Nr4a1 is necessary and/or sufficient for striosome development. We report that in vivo and in vitro, Nr4a1 and Oprm1 mRNA levels are correlated. In the absence of Nr4a, there is a decrease in the percentage of striatal surface area occupied by striosomes. Alterations in Nr4a1 expression leads to dysregulation of multiple mRNAs of members of the dopamine receptor D1 signal transduction system. Constitutive overexpression of Nr4a1 decreases both the induction of phosphorylation of ERK after a single cocaine exposure and locomotor sensitization following chronic cocaine exposure. Nr4a1 overexpression increases MSN excitability but reduces MSN long-term potentiation. In the resting state, type 5 adenylyl cyclase (AC5) activity is normal, but the ability of AC5 to be activated by Drd1 G-protein-coupled receptor inputs is decreased. Our results support a role for Nr4a1 in determination of striatal patch/matrix structure and in regulation of dopaminoceptive neuronal function.
Collapse
|
22
|
Alugubelly N, Mohammad AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL. Proteomic and transcriptional profiling of rat amygdala following social play. Behav Brain Res 2019; 376:112210. [PMID: 31493430 DOI: 10.1016/j.bbr.2019.112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammad
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, KY, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, KY, USA; KBRIN Bioinformatics Core, University of Louisville, KY, USA.
| | - Russell L Carr
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
23
|
Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels. J Neurosci 2018; 38:8737-8744. [PMID: 30150362 DOI: 10.1523/jneurosci.0516-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins negatively modulate presynaptic μ-opioid receptor inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). Paradoxically, we find that G-protein-coupled receptor (GPCR) activation of G-protein-gated inwardly rectifying K+ channels (GIRKs) in the vlPAG is reduced in an agonist- and receptor-dependent manner in transgenic knock-in mice of either sex expressing mutant RGS-insensitive Gαo proteins. μ-Opioid receptor agonist activation of GIRK currents was reduced for DAMGO and fentanyl but not for [Met5]-enkephalin acetate salt hydrate (ME) in the RGS-insensitive heterozygous (Het) mice compared with wild-type mice. The GABAB agonist baclofen-induced GIRK currents were also reduced in the Het mice. We confirmed the role of Gαo proteins in μ-opioid receptor and GABAB receptor signaling pathways in wild-type mice using myristoylated peptide inhibitors of Gαo1 and Gαi1-3 The results using these inhibitors indicate that receptor activation of GIRK channels is dependent on the preference of the agonist-stimulated receptor for Gαo versus that for Gαi. DAMGO and fentanyl-mediated GIRK currents were reduced in the presence of the Gαo1 inhibitor, but not the Gαi1-3 inhibitors. In contrast, the Gαo1 peptide inhibitor did not affect ME activation of GIRK currents, which is consistent with results in the Het mice, but the Gαi1-3 inhibitors significantly reduced ME-mediated GIRK currents. Finally, the reduction in GIRK activation in the Het mice plays a role in opioid- and baclofen-mediated spinal antinociception, but not supraspinal antinociception. Thus, our studies indicate that RGS proteins have multiple mechanisms of modulating GPCR signaling that produce negative and positive regulation of signaling depending on the effector.SIGNIFICANCE STATEMENT Regulators of G-protein signaling (RGS) proteins positively modulate GPCR coupling to GIRKs, and this coupling is critical for opioid- and baclofen-mediated spinal antinociception, whereas μ-opioid receptor-mediated supraspinal antinociception depends on presynaptic inhibition that is negatively regulated by RGS proteins. The identification of these opposite roles for RGS proteins has implications for signaling via other GPCRs.
Collapse
|
24
|
DNMT1 mediated promoter methylation of GNAO1 in hepatoma carcinoma cells. Gene 2018; 665:67-73. [DOI: 10.1016/j.gene.2018.04.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
|
25
|
Dripps IJ, Boyer BT, Neubig RR, Rice KC, Traynor JR, Jutkiewicz EM. Role of signalling molecules in behaviours mediated by the δ opioid receptor agonist SNC80. Br J Pharmacol 2018; 175:891-901. [PMID: 29278419 DOI: 10.1111/bph.14131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/08/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE GPCRs exist in multiple conformations that can engage distinct signalling mechanisms which in turn may lead to diverse behavioural outputs. In rodent models, activation of the δ opioid receptor (δ-receptor) has been shown to elicit antihyperalgesia, antidepressant-like effects and convulsions. We recently showed that these δ-receptor-mediated behaviours are differentially regulated by the GTPase-activating protein regulator of G protein signalling 4 (RGS4), which facilitates termination of G protein signalling. To further evaluate the signalling mechanisms underlying δ-receptor-mediated antihyperalgesia, antidepressant-like effects and convulsions, we observed how changes in Gαo or arrestin proteins in vivo affected behaviours elicited by the δ-receptor agonist SNC80 in mice. EXPERIMENTAL APPROACH Transgenic mice with altered expression of various signalling molecules were used in the current studies. Antihyperalgesia was measured in a nitroglycerin-induced thermal hyperalgesia assay. Antidepressant-like effects were evaluated in the forced swim test. Mice were also observed for convulsive activity following SNC80 treatment. KEY RESULTS In Gαo RGS-insensitive heterozygous knock-in mice, the potency of SNC80 to produce antihyperalgesia and antidepressant-like effects was enhanced with no change in SNC80-induced convulsions. Conversely, in Gαo heterozygous knockout mice, SNC80-induced antihyperalgesia was abolished while antidepressant-like effects and convulsions were unaltered. No changes in SNC80-induced behaviours were observed in arrestin 3 knockout mice. SNC80-induced convulsions were potentiated in arrestin 2 knockout mice. CONCLUSIONS AND IMPLICATIONS Taken together, these findings suggest that different signalling molecules may underlie the convulsive effects of the δ-receptor relative to its antihyperalgesic and antidepressant-like effects.
Collapse
Affiliation(s)
- Isaac J Dripps
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brett T Boyer
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, North Bethesda, MD, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Lamberts JT, Rosenthal LD, Jutkiewicz EM, Traynor JR. Role of the guanine nucleotide binding protein, Gα o, in the development of morphine tolerance and dependence. Psychopharmacology (Berl) 2018; 235:71-82. [PMID: 28971229 PMCID: PMC5819733 DOI: 10.1007/s00213-017-4742-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The use of morphine and other opioids for chronic pain is limited by the development of analgesic tolerance and physical dependence. Morphine produces its effects by activating the μ opioid receptor, which couples to Gαi/o-containing heterotrimeric G proteins. Evidence suggests that the antinociceptive effects of morphine are mediated by Gαo. However, the role of Gαo in the development of morphine tolerance and dependence is unknown. OBJECTIVE The objective of the study is to evaluate the contribution of Gαo to the development of morphine tolerance and dependence in mice. METHODS 129S6 mice lacking one copy of the Gαo gene (Gαo +/-) were administered morphine acutely or chronically. Mice were examined for tolerance to the antinociceptive action of morphine using the 52 °C hot plate as the nociceptive stimulus and for dependence by evaluating the severity of naltrexone-precipitated withdrawal. Wild-type littermates of the Gαo +/- mice were used as controls. Changes in μ receptor number and function were determined in midbrain and hindbrain homogenates using radioligand binding and μ agonist-stimulated [35S]GTPγS binding, respectively. RESULTS Following either acute or chronic morphine treatment, all mice developed antinociceptive tolerance and physical dependence, regardless of genotype. With chronic morphine treatment, Gαo +/- mice developed tolerance faster and displayed more severe naltrexone-precipitated withdrawal in some behaviors than did wild-type littermates. Morphine tolerance was not associated with changes in μ receptor number or function in brain homogenates from either wild-type or Gαo +/- mice. CONCLUSIONS These data suggest that the guanine nucleotide binding protein Gαo offers some protection against the development of morphine tolerance and dependence.
Collapse
Affiliation(s)
- Jennifer T Lamberts
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
- College of Pharmacy, Ferris State University, Big Rapids, MI, 49307, USA
| | - Lisa D Rosenthal
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
27
|
Harland AA, Bender AM, Griggs NW, Gao C, Anand JP, Pogozheva ID, Traynor JR, Jutkiewicz EM, Mosberg HI. Effects of N-Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands. J Med Chem 2016; 59:4985-98. [PMID: 27148755 PMCID: PMC4885601 DOI: 10.1021/acs.jmedchem.6b00308] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.
Collapse
Affiliation(s)
- Aubrie A Harland
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aaron M Bender
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas W Griggs
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chao Gao
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jessica P Anand
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Emily M Jutkiewicz
- Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Interdepartmental Program in Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Harland AA, Yeomans L, Griggs NW, Anand JP, Pogozheva ID, Jutkiewicz EM, Traynor JR, Mosberg HI. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities. J Med Chem 2015; 58:8952-69. [PMID: 26524472 DOI: 10.1021/acs.jmedchem.5b01270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.
Collapse
Affiliation(s)
- Aubrie A Harland
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Larisa Yeomans
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas W Griggs
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jessica P Anand
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Irina D Pogozheva
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Emily M Jutkiewicz
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Interdepartmental Program in Medicinal Chemistry, ‡Department of Medicinal Chemistry, College of Pharmacy, and §Department of Pharmacology, Medical School, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Neubig RR. RGS-Insensitive G Proteins as In Vivo Probes of RGS Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:13-30. [PMID: 26123300 DOI: 10.1016/bs.pmbts.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine nucleotide-binding proteins of the inhibitory (Gi/o) class play critical physiological roles and the receptors that activate them are important therapeutic targets (e.g., mu opioid, serotonin 5HT1a, etc.). Gi/o proteins are negatively regulated by regulator of G protein signaling (RGS) proteins. The redundant actions of the 20 different RGS family members have made it difficult to establish their overall physiological role. A unique G protein mutation (G184S in Gαi/o) prevents RGS binding to the Gα subunit and blocks all RGS action at that particular Gα subunit. The robust phenotypes of mice expressing these RGS-insensitive (RGSi) mutant G proteins illustrate the profound action of RGS proteins in cardiovascular, metabolic, and central nervous system functions. Specifically, the enhanced Gαi2 signaling through the RGSi Gαi2(G184S) mutant knock-in mice shows protection against cardiac ischemia/reperfusion injury and potentiation of serotonin-mediated antidepressant actions. In contrast, the RGSi Gαo mutant knock-in produces enhanced mu-opioid receptor-mediated analgesia but also a seizure phenotype. These genetic models provide novel insights into potential therapeutic strategies related to RGS protein inhibitors and/or G protein subtype-biased agonists at particular GPCRs.
Collapse
Affiliation(s)
- Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
30
|
Zhang X, Bao L, Li S. Opioid receptor trafficking and interaction in nociceptors. Br J Pharmacol 2014; 172:364-74. [PMID: 24611685 DOI: 10.1111/bph.12653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- X Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, China
| | | | | |
Collapse
|
31
|
Antonio T, Childers SR, Rothman RB, Dersch CM, King C, Kuehne M, Bornmann WG, Eshleman AJ, Janowsky A, Simon ER, Reith MEA, Alper K. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation. PLoS One 2013; 8:e77262. [PMID: 24204784 PMCID: PMC3818563 DOI: 10.1371/journal.pone.0077262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/31/2013] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. METHODS Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([(35)S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. RESULTS AND SIGNIFICANCE In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [(35)S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35)S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35)S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and further justify the search for alternative targets of iboga alkaloids.
Collapse
MESH Headings
- Animals
- Autoradiography
- Bridged-Ring Compounds/pharmacology
- CHO Cells
- Cricetulus
- Dose-Response Relationship, Drug
- Female
- Gene Expression
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- HEK293 Cells
- Humans
- Ibogaine/analogs & derivatives
- Ibogaine/pharmacology
- Organ Specificity
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Substance Withdrawal Syndrome/prevention & control
- Thalamus/drug effects
- Thalamus/metabolism
Collapse
Affiliation(s)
- Tamara Antonio
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Steven R. Childers
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Richard B. Rothman
- Translational Pharmacology Research Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, United States of America
| | - Christina M. Dersch
- Translational Pharmacology Research Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, United States of America
| | - Christine King
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Martin Kuehne
- Department of Chemistry, University of Vermont, Burlington, Vermont, United States of America
| | - William G. Bornmann
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Amy J. Eshleman
- Research Service, VA Medical Center, and Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Aaron Janowsky
- Research Service, VA Medical Center, and Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Eric R. Simon
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Kenneth Alper
- Department of Psychiatry, New York University School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
32
|
Abstract
GNAO1 (guanine nucleotide-binding protein, α-activating activity polypeptide O) is a member of the subunit family of Gα proteins, which are molecular switchers controlling signal transductions and whose deregulation can promote oncogenesis. HCC (hepatocellular carcinoma) is one of the malignant tumours around the world, which summons novel biomarkers or targets for effective diagnosis and treatments. The present study was aimed to investigate the expression of GNAO1 in HCC patient tissues and the possible mechanisms by which it took effects. The expression of GNAO1 was detected by IHC (immunohistochemistry) and real-time qPCR (quantitative PCR). Cell proliferation test and cell senescence test were then performed to explore the role of GNAO1 in the occurrence and development of HCC. It was revealed that the level of GNAO1 was comparably less in HCC tissues than in the adjacent tissues. Furthermore, down-regulation of GNAO1 increased cell proliferation, while suppressing the senescence of HCC cells. In conclusion, our findings revealed and confirmed the importance of GNAO1 in HCC, indicating that GNAO1 is a potential biomarker as well as a promising therapeutic target for HCC.
Collapse
|
33
|
Differential control of opioid antinociception to thermal stimuli in a knock-in mouse expressing regulator of G-protein signaling-insensitive Gαo protein. J Neurosci 2013; 33:4369-77. [PMID: 23467353 DOI: 10.1523/jneurosci.5470-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulator of G-protein signaling (RGS) proteins classically function as negative modulators of G-protein-coupled receptor signaling. In vitro, RGS proteins have been shown to inhibit signaling by agonists at the μ-opioid receptor, including morphine. The goal of the present study was to evaluate the contribution of endogenous RGS proteins to the antinociceptive effects of morphine and other opioid agonists. To do this, a knock-in mouse that expresses an RGS-insensitive (RGSi) mutant Gαo protein, Gαo(G184S) (Gαo RGSi), was evaluated for morphine or methadone antinociception in response to noxious thermal stimuli. Mice expressing Gαo RGSi subunits exhibited a naltrexone-sensitive enhancement of baseline latency in both the hot-plate and warm-water tail-withdrawal tests. In the hot-plate test, a measure of supraspinal nociception, morphine antinociception was increased, and this was associated with an increased ability of opioids to inhibit presynaptic GABA neurotransmission in the periaqueductal gray. In contrast, antinociception produced by either morphine or methadone was reduced in the tail-withdrawal test, a measure of spinal nociception. In whole-brain and spinal cord homogenates from mice expressing Gαo RGSi subunits, there was a small loss of Gαo expression and an accompanying decrease in basal G-protein activity. Our results strongly support a role for RGS proteins as negative regulators of opioid supraspinal antinociception and also reveal a potential novel function of RGS proteins as positive regulators of opioid spinal antinociceptive pathways.
Collapse
|
34
|
Gama KB, Quintans JSS, Antoniolli AR, Quintans-Júnior LJ, Santana WA, Branco A, Soares MBP, Villarreal CF. Evidence for the involvement of descending pain-inhibitory mechanisms in the antinociceptive effect of hecogenin acetate. JOURNAL OF NATURAL PRODUCTS 2013; 76:559-563. [PMID: 23437926 DOI: 10.1021/np3007342] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hecogenin is a sapogenin present in the leaves of species from the Agave genus, with a wide spectrum of reported pharmacological activities. The present study was undertaken to evaluate whether hecogenin acetate (1) has antinociceptive properties and to determine its mechanism of action. The nociceptive threshold was evaluated using the tail flick test in mice. Mice motor performance was evaluated in a Rotarod test. By using Fos expression as a marker of neural activation, the involvement of the periaqueductal gray in 1-induced antinociception was evaluated. Intraperitoneal administration of 1 (5-40 mg/kg) produced a dose-dependent increase in the tail flick latency time compared to vehicle-treated group (p < 0.01). Mice treated with 1 (40 mg/kg) did not show motor performance alterations. The antinociception of 1 (40 mg/kg) was prevented by naloxone (nonselective opioid receptor antagonist; 5 mg/kg), CTOP (μ-opioid receptor antagonist; 1 mg/kg), nor-BNI (κ-opioid receptor antagonist; 0.5 mg/kg), naltrindole (δ-opioid receptor antagonist; 3 mg/kg), or glibenclamide (ATP-sensitive K(+) channel blocker; 2 mg/kg). Systemic administration of 1 (5-40 mg/kg) increased the number of Fos positive cells in the periaqueductal gray. The present study has demonstrated for the first time that 1 produces consistent antinociception mediated by opioid receptors and endogenous analgesic mechanisms.
Collapse
Affiliation(s)
- Kelly Barbosa Gama
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, CEP 40170-290, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mosberg HI, Yeomans L, Harland AA, Bender AM, Sobczyk-Kojiro K, Anand JP, Clark MJ, Jutkiewicz EM, Traynor JR. Opioid peptidomimetics: leads for the design of bioavailable mixed efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands. J Med Chem 2013; 56:2139-49. [PMID: 23419026 DOI: 10.1021/jm400050y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a μ opioid receptor (MOR) agonist, δ opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood-brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance.
Collapse
Affiliation(s)
- Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
37
|
Valdizán EM, Díaz A, Pilar-Cuéllar F, Lantero A, Mostany R, Villar AV, Laorden ML, Hurlé MA. Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord μ-opioid receptors to Gαz protein subunits. Neuropharmacology 2011; 62:757-64. [PMID: 21903117 DOI: 10.1016/j.neuropharm.2011.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/03/2011] [Accepted: 08/19/2011] [Indexed: 11/30/2022]
Abstract
Sustained administration of opioid antagonists to rodents results in an enhanced antinociceptive response to agonists. We investigated the changes in spinal μ-opioid receptor signalling underlying this phenomenon. Rats received naltrexone (120 μg/h; 7 days) via osmotic minipumps. The antinociceptive response to the μ-agonist sufentanil was tested 24 h after naltrexone withdrawal. In spinal cord samples, we determined the interaction of μ-receptors with Gα proteins (agonist-stimulated [(35)S]GTPγS binding and immunoprecipitation of [(35)S]GTPγS-labelled Gα subunits) as well as μ-opioid receptor-dependent inhibition of the adenylyl cyclase (AC) activity. Chronic naltrexone treatment augmented DAMGO-stimulated [(35)S]GTPγS binding, potentiated the inhibitory effect of DAMGO on the AC/cAMP pathway, and increased the inverse agonist effect of naltrexone on cAMP accumulation. In control rats, the inhibitory effect of DAMGO on cAMP production was antagonized by pertussis toxin (PTX) whereas, after chronic naltrexone, the effect became resistant to the toxin, suggesting a coupling of μ-receptors to PTX-insensitive Gα(z) subunits. Immunoprecipitation assays confirmed the transduction switch from Gα(i/o) to Gα(z) proteins. The consequence was an enhancement of the antinociceptive response to sufentanil that, in consonance with the neurochemical data, was prevented by Gα(z)-antisense oligodeoxyribonucleotides but not by PTX. Such changes in opioid receptor signalling can be a double-edged sword. On the one hand, they may have potential applicability to the optimisation of the analgesic effects of opioid drugs for the control of pain. On the other hand, they represent an important homeostatic dysregulation of the endogenous opioid system that might account for undesirable effects in patients chronically treated with opioid antagonists. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Elsa M Valdizán
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Cantabria, Spain
| | | | | | | | | | | | | | | |
Collapse
|