1
|
Kong CH, Lee JW, Jeon M, Kang WC, Kim MS, Park K, Bae HJ, Park SJ, Jung SY, Kim SN, Kleinfelter B, Kim JW, Ryu JH. D-Pinitol mitigates post-traumatic stress disorder-like behaviors induced by single prolonged stress in mice through mineralocorticoid receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110990. [PMID: 38467326 DOI: 10.1016/j.pnpbp.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240, United States of America
| | - Ji-Woon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee Univeristy, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
3
|
Hu Y, Chen H, Li X, Larsen RJ, Sutton BP, Gao W, McElwain NL. Associations between infant amygdala functional connectivity and social engagement following a stressor: A preliminary investigation. Dev Sci 2024; 27:e13418. [PMID: 37340633 PMCID: PMC10730773 DOI: 10.1111/desc.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Functional architecture of the infant brain, especially functional connectivity (FC) within the amygdala network and between the amygdala and other networks (i.e., default-mode [DMN] and salience [SAL] networks), provides a neural basis for infant socioemotional functioning. Yet, little is known about the extent to which early within- and between-network amygdala FC are related to infant stress recovery across the first year of life. In this study, we examined associations between amygdala FC (i.e., within-network amygdala connectivity, and between-network amygdala connectivity with the DMN and SAL) at 3 months and infant recovery from a mild social stressor at 3, 6 and 9 months. At 3 months, thirty-five infants (13 girls) underwent resting-state functional magnetic resonance imaging during natural sleep. Infants and their mothers completed the still-face paradigm at 3, 6, and 9 months, and infant stress recovery was assessed at each time point as the proportion of infant social engagement during the reunion episode. Bivariate correlations indicated that greater positive within-network amygdala FC and greater positive amygdala-SAL FC, but not amygdala-DMN FC, at 3 months predicted lower levels of stress recovery at 3 and 6 months, but were nonsignificant at 9 months. These findings provide preliminary evidence that early functional synchronization within the amygdala network, as well as segregation between the amygdala and the SAL, may contribute to infant stress recovery in the context of infant-mother interaction.
Collapse
Affiliation(s)
- Yannan Hu
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Haitao Chen
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Xiaomei Li
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ryan J. Larsen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bradley P. Sutton
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Nancy L. McElwain
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Henze GI, Konzok J, Kudielka BM, Wüst S, Nichols TE, Kreuzpointner L. Associations between cortisol stress responses and limbic volume and thickness in young adults: An exploratory study. Eur J Neurosci 2023; 58:3962-3980. [PMID: 37806665 DOI: 10.1111/ejn.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
The investigation of the relationship between neural measures of limbic structures and hypothalamic pituitary adrenal axis responses to acute stress exposure in healthy young adults has so far focused in particular on task-based and resting state functional connectivity studies. Thus, the present study examined the association between limbic volume and thickness measures and acute cortisol responses to the psychosocial stress paradigm ScanSTRESS. Using Permutation Analysis of Linear Models controlling for sex, age and total brain volume, the associations between (sex-specific) cortisol increases and human connectome project style anatomical variables of limbic structures (i.e. volume and thickness) were investigated in 66 healthy and young (18-33 years) subjects (35 men, 31 women taking oral contraceptives). In addition, exploratory (sex-specific) bivariate correlations between cortisol increases and structural measures were conducted. The present data provide interesting new insights into the involvement of striato-limbic structures in psychosocial stress processing, suggesting that acute cortisol stress responses are also associated with mere structural measures of the human brain. Thus, our preliminary findings suggest that not only situation- and context-dependent reactions of the limbic system (i.e. blood oxygenation level-dependent reactions) are related to acute (sex-specific) cortisol stress responses but also basal and somewhat more constant structural measures. Our study hereby paves the way for further analyses in this context and highlights the relevance of the topic.
Collapse
Affiliation(s)
- Gina-Isabelle Henze
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | | | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Chen L, Wang Y, Wu Z, Shan Y, Li T, Hung SC, Xing L, Zhu H, Wang L, Lin W, Li G. Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants. Nat Commun 2023; 14:3727. [PMID: 37349301 PMCID: PMC10287661 DOI: 10.1038/s41467-023-38974-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Brain subcortical structures are paramount in many cognitive functions and their aberrations during infancy are predisposed to various neurodevelopmental and neuropsychiatric disorders, making it highly essential to characterize the early subcortical normative growth patterns. This study investigates the volumetric development and surface area expansion of six subcortical structures and their associations with Mullen scales of early learning by leveraging 513 high-resolution longitudinal MRI scans within the first two postnatal years. Results show that (1) each subcortical structure (except for the amygdala with an approximately linear increase) undergoes rapid nonlinear volumetric growth after birth, which slows down at a structure-specific age with bilaterally similar developmental patterns; (2) Subcortical local area expansion reveals structure-specific and spatiotemporally heterogeneous patterns; (3) Positive associations between thalamus and both receptive and expressive languages and between caudate and putamen and fine motor are revealed. This study advances our understanding of the dynamic early subcortical developmental patterns.
Collapse
Affiliation(s)
- Liangjun Chen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Ya Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Tengfei Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Sheng-Che Hung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Lei Xing
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, 116 Manning Rd, Chapel Hill, NC, 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Shan Q, Yu X, Tian Y. Adolescent social isolation shifts the balance of decision-making strategy from goal-directed action to habitual response in adulthood via suppressing the excitatory neurotransmission onto the direct pathway of the dorsomedial striatum. Cereb Cortex 2023; 33:1595-1609. [PMID: 35524719 DOI: 10.1093/cercor/bhac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Adverse experience, such as social isolation, during adolescence is one of the major causes of neuropsychiatric disorders that extend from adolescence into adulthood, such as substance addiction, obsessive-compulsive disorder, and eating disorders leading to obesity. A common behavioral feature of these neuropsychiatric disorders is a shift in the balance of decision-making strategy from goal-directed action to habitual response. This study has verified that adolescent social isolation directly shifts the balance of decision-making strategy from goal-directed action to habitual response, and that it cannot be reversed by simple regrouping. This study has further revealed that adolescent social isolation induces a suppression in the excitatory neurotransmission onto the direct-pathway medium spiny neurons of the dorsomedial striatum (DMS), and that chemogenetically compensating this suppression effect shifts the balance of decision-making strategy from habitual response back to goal-directed action. These findings suggest that the plasticity in the DMS causes the shift in the balance of decision-making strategy, which would potentially help to develop a general therapy to treat the various neuropsychiatric disorders caused by adolescent social isolation. Such a study is especially necessary under the circumstances that social distancing and lockdown have caused during times of world-wide, society-wide pandemic.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Troshev D, Bannikova A, Blokhin V, Kolacheva A, Pronina T, Ugrumov M. Striatal Neurons Partially Expressing a Dopaminergic Phenotype: Functional Significance and Regulation. Int J Mol Sci 2022; 23:ijms231911054. [PMID: 36232359 PMCID: PMC9570204 DOI: 10.3390/ijms231911054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of striatal neurons expressing dopamine-synthesizing enzymes, researchers have attempted to identify their phenotype and functional significance. In this study, it was shown that in transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase (TH) gene promoter, (i) there are striatal neurons expressing only TH, only aromatic L-amino acid decarboxylase (AADC), or both enzymes of dopamine synthesis; (ii) striatal neurons expressing dopamine-synthesizing enzymes are not dopaminergic since they lack a dopamine transporter; (iii) monoenzymatic neurons expressing individual complementary dopamine-synthesizing enzymes produce this neurotransmitter in cooperation; (iv) striatal nerve fibers containing only TH, only AADC, or both enzymes project into the lateral ventricles, providing delivery pathways for L-3,4-dihydroxyphenylalanine and dopamine to the cerebrospinal fluid; and (v) striatal GFP neurons express receptor genes for various signaling molecules, i.e., classical neurotransmitters, neuropeptides, and steroids, indicating fine regulation of these neurons. Based on our data, it is assumed that the synthesis of dopamine by striatal neurons is a compensatory response to the death of nigral dopaminergic neurons in Parkinson’s disease, which opens broad prospects for the development of a fundamentally novel antiparkinsonian therapy.
Collapse
|
8
|
Bonapersona, Born FJ, Bakvis P, Branje S, Elzinga B, Evers A, van Eysden M, Fernandez G, Habets PC, Hartman CA, Hermans EJ, Meeus W, van Middendorp H, Nelemans S, Oei NY, Oldehinkel AJ, Roelofs K, de Rooij SR, Smeets T, Tollenaar MS, Joëls M, Vinkers CH. The STRESS-NL database: A resource for human acute stress studies across the Netherlands. Psychoneuroendocrinology 2022; 141:105735. [PMID: 35447495 DOI: 10.1016/j.psyneuen.2022.105735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Stress initiates a cascade of (neuro)biological, physiological, and behavioral changes, allowing us to respond to a challenging environment. The human response to acute stress can be studied in detail in controlled settings, usually in a laboratory environment. To this end, many studies employ acute stress paradigms to probe stress-related outcomes in healthy and patient populations. Though valuable, these studies in themselves often have relatively limited sample sizes. We established a data-sharing and collaborative interdisciplinary initiative, the STRESS-NL database, which combines (neuro)biological, physiological, and behavioral data across many acute stress studies in order to accelerate our understanding of the human acute stress response in health and disease (www.stressdatabase.eu). Researchers in the stress field from 12 Dutch research groups of 6 Dutch universities created a database to achieve an accurate inventory of (neuro)biological, physiological, and behavioral data from laboratory-based human studies that used acute stress tests. Currently, the STRESS-NL database consists of information on 5529 individual participants (2281 females and 3348 males, age range 6-99 years, mean age 27.7 ± 16 years) stemming from 57 experiments described in 42 independent studies. Studies often did not use the same stress paradigm; outcomes were different and measured at different time points. All studies currently included in the database assessed cortisol levels before, during and after experimental stress, but cortisol measurement will not be a strict requirement for future study inclusion. Here, we report on the creation of the STRESS-NL database and infrastructure to illustrate the potential of accumulating and combining existing data to allow meta-analytical, proof-of-principle analyses. The STRESS-NL database creates a framework that enables human stress research to take new avenues in explorative and hypothesis-driven data analyses with high statistical power. Future steps could be to incorporate new studies beyond the borders of the Netherlands; or build similar databases for experimental stress studies in rodents. In our view, there are major scientific benefits in initiating and maintaining such international efforts.
Collapse
Affiliation(s)
- Bonapersona
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University,Utrecht, The Netherlands
| | - F J Born
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University,Utrecht, The Netherlands; Charité University, Berlin,Germany
| | - P Bakvis
- Clinical Psychology unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University,The Netherlands; SEIN, Epilepsy Institute in the Netherlands,Heemstede,The Netherlands
| | - S Branje
- Department of Youth & Family, Utrecht University,Utrecht,The Netherlands
| | - B Elzinga
- Clinical Psychology unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University,The Netherlands
| | - Awm Evers
- Health, Medical & Neuropsychology unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - M van Eysden
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University,Utrecht, The Netherlands
| | - G Fernandez
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center,Nijmegen,The Netherlands
| | - P C Habets
- Amsterdam UMC location Vrije Universiteit Amsterdam, Psychiatry,DeBoelelaan 1117, Amsterdam,The Netherlands; Amsterdam Neurosciences, Mood, Anxiety, Psychosis, Stress, and Sleep (MAPSS),Amsterdam, The Netherlands
| | - C A Hartman
- Department of Psychiatry and Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen,Groningen,The Netherlands
| | - E J Hermans
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center,Nijmegen,The Netherlands
| | - W Meeus
- Department of Youth & Family, Utrecht University,Utrecht,The Netherlands
| | - H van Middendorp
- Health, Medical & Neuropsychology unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - S Nelemans
- Department of Youth & Family, Utrecht University,Utrecht,The Netherlands
| | - N Y Oei
- Amsterdam Brain and Cognition (ABC), University of Amsterdam,Amsterdam,The Netherlands; Department of Developmental Psychology, Addiction Development and Psychopathology(ADAPT)-Lab, University of Amsterdam, Amsterdam, The Netherlands, University of Amsterdam,Amsterdam,The Netherlands
| | - A J Oldehinkel
- Department of Psychiatry and Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen,Groningen,The Netherlands
| | - K Roelofs
- Radboud University Nijmegen: Donders Institute for Brain Cognition and Behaviour and Behavioural Science Institute
| | - S R de Rooij
- Department of Epidemiology and Data Science, University of Amsterdam, Amsterdam UMC,Amsterdam,The Netherlands
| | - T Smeets
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg School of Social and Behavioral Sciences, Tilburg University,Tilburg,The Netherlands
| | - M S Tollenaar
- Clinical Psychology unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University,The Netherlands
| | - M Joëls
- University of Groningen, University Medical Center Groningen,Groningen,The Netherlands
| | - C H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Psychiatry,DeBoelelaan 1117, Amsterdam,The Netherlands; Amsterdam Neurosciences, Mood, Anxiety, Psychosis, Stress, and Sleep (MAPSS),Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Luo L, Yang T, Zheng X, Zhang X, Gao S, Li Y, Stamatakis EA, Sahakian B, Becker B, Lin Q, Kendrick KM. Altered centromedial amygdala functional connectivity in adults is associated with childhood emotional abuse and predicts levels of depression and anxiety. J Affect Disord 2022; 303:148-154. [PMID: 35157948 DOI: 10.1016/j.jad.2022.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Childhood maltreatment is significantly associated with greater occurrence of mental disorders in adulthood such as depression and anxiety. As a key node of the limbic system, the amygdala is engaged in emotional processing and regulation and is dysfunctional in many psychiatric disorders. The present study aimed at exploring the association between childhood maltreatment and amygdala-based functional networks and their potential contributions to depression and anxiety. METHODS Totally 90 Chinese healthy volunteers participated in a resting-state fMRI experiment. Levels of childhood maltreatment experience were assessed using the Childhood Trauma Questionnaire (CTQ-SF) as well as levels of depression and anxiety. Associations between CTQ-SF scores and bilateral amygdala gray matter volume and resting-state functional connectivity (RSFC) of the amygdala and selected regions of interest were analyzed using multiple regression analyses with sex and age as covariates. A subsequent moderation analysis was performed to identify whether associations were predictive of depression and anxiety levels. RESULTS Childhood maltreatment was significantly negatively associated with RSFC between left amygdala and anterior insula. Further sub-region analyses revealed that this negative association only occurred for the left centromedial amygdala subregion, which subsequently moderated the relationship between levels of childhood emotional abuse and depression / anxiety. LIMITATIONS No psychiatric patients were involved and specific neural associations with different childhood maltreatment subtypes need to be examined in future studies. CONCLUSION The present findings provide evidence for altered RSFC of centromedial amygdala and the anterior insula associated with childhood maltreatment and which moderate levels of depression and anxiety in adulthood.
Collapse
Affiliation(s)
- Lizhu Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China; Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Ting Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoxiao Zheng
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xindi Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yunge Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiyuan Lin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
10
|
Konzok J, Henze GI, Peter H, Giglberger M, Bärtl C, Massau C, Kärgel C, Schiffer B, Eisenbarth H, Wüst S, Kudielka BM. Externalizing behavior in healthy young adults is associated with lower cortisol responses to acute stress and altered neural activation in the dorsal striatum. Psychophysiology 2021; 58:e13936. [PMID: 34482554 DOI: 10.1111/psyp.13936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
The externalizing spectrum is characterized by disinhibition, impulsivity, antisocial-aggressive behavior as well as substance (mis)use. Studies in forensic samples and mentally impaired children suggested that higher rates of externalization are linked to lower cortisol stress responses and altered affect-related neural activation. In this fMRI-study, we investigated whether externalizing behavior in healthy participants is likewise associated with altered cortisol responses and neural activity to stress. Following a quasi-experimental approach, we tested healthy participants (N = 61, 31 males) from the higher versus lower range of the non-clinical variation in externalization (31 participants with high externalization) as assessed by the subscales disinhibition and meanness of the Triarchic-Psychopathy-Measure. All participants were exposed to ScanSTRESS, a standardized psychosocial stress paradigm for scanner environments. In both groups, ScanSTRESS induced a significant rise in cortisol levels with the high externalization group showing significantly lower cortisol responses to stress than the low externalization group. This was mainly driven by males. Further, individual increases in cortisol predicted neural response differences between externalization groups, indicating more activation in the dorsal striatum in low externalization. This was primarily driven by females. In contrast, post-hoc analysis showed that hypothalamic-pituitary-adrenal axis hyporeactivity in males was associated with prefrontal and hippocampal activation. Our data substantiate that individuals from the general population high on externalization, show reduced cortisol stress responses. Furthermore, dorsal striatum activity as part of the mesolimbic system, known to be sensitive to environmental adversity, seems to play a role in externalization-specific cortisol stress responses. Beyond that, a modulating influence of gender was disclosed.
Collapse
Affiliation(s)
- Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - Hannah Peter
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Marina Giglberger
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Christoph Bärtl
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Claudia Massau
- Division of Forensic Psychiatry, LWL-University Hospital, Ruhr University, Bochum, Germany
| | - Christian Kärgel
- Division of Forensic Psychiatry, LWL-University Hospital, Ruhr University, Bochum, Germany
| | - Boris Schiffer
- Division of Forensic Psychiatry, LWL-University Hospital, Ruhr University, Bochum, Germany
| | - Hedwig Eisenbarth
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
11
|
Dolfen N, Veldman MP, Gann MA, von Leupoldt A, Puts NAJ, Edden RAE, Mikkelsen M, Swinnen S, Schwabe L, Albouy G, King BR. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun Biol 2021; 4:1033. [PMID: 34475515 PMCID: PMC8413374 DOI: 10.1038/s42003-021-02535-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.
Collapse
Affiliation(s)
- Nina Dolfen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mareike A Gann
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| | - Bradley R King
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Henze GI, Konzok J, Kreuzpointner L, Bärtl C, Giglberger M, Peter H, Streit F, Kudielka BM, Kirsch P, Wüst S. Sex-Specific Interaction Between Cortisol and Striato-Limbic Responses to Psychosocial Stress. Soc Cogn Affect Neurosci 2021; 16:972-984. [PMID: 33961049 PMCID: PMC8421693 DOI: 10.1093/scan/nsab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Although women and men differ in psychological and endocrine stress responses as well as in the prevalence rates of stress-related disorders, knowledge on sex differences regarding stress regulation in the brain is scarce. Therefore, we performed an in-depth analysis of data from 67 healthy participants (31 women, taking oral contraceptives), who were exposed to the ScanSTRESS paradigm in a functional magnetic resonance imaging study. Changes in cortisol, affect, heart rate and neural activation in response to psychosocial stress were examined in women and men as well as potential sex-specific interactions between stress response domains. Stress exposure led to significant cortisol increases, with men exhibiting higher levels than women. Depending on sex, cortisol elevations were differently associated with stress-related responses in striato-limbic structures: higher increases were associated with activations in men but with deactivations in women. Regarding affect or heart rate responses, no sex differences emerged. Although women and men differ in their overall stress reactivity, our findings do not support the idea of distinct neural networks as the base of this difference. Instead, we found differential stress reactions for women and men in identical structures. We propose considering quantitative predictors such as sex-specific cortisol increases when exploring neural response differences of women and men.
Collapse
Affiliation(s)
| | - Julian Konzok
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - Christoph Bärtl
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Marina Giglberger
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Hannah Peter
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wüst
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
15
|
Kalafatakis K, Russell GM, Ferguson SG, Grabski M, Harmer CJ, Munafò MR, Marchant N, Wilson A, Brooks JC, Thakrar J, Murphy P, Thai NJ, Lightman SL. Glucocorticoid ultradian rhythmicity differentially regulates mood and resting state networks in the human brain: A randomised controlled clinical trial. Psychoneuroendocrinology 2021; 124:105096. [PMID: 33296841 PMCID: PMC7895801 DOI: 10.1016/j.psyneuen.2020.105096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022]
Abstract
Adrenal glucocorticoid secretion into the systematic circulation is characterised by a complex rhythm, composed of the diurnal variation, formed by changes in pulse amplitude of an underlying ultradian rhythm of short duration hormonal pulses. To elucidate the potential neurobiological significance of glucocorticoid pulsatility in man, we have conducted a randomised, double-blind, placebo-controlled, three-way crossover clinical trial on 15 healthy volunteers, investigating the impact of different glucocorticoid rhythms on measures of mood and neural activity under resting conditions by recruiting functional neuroimaging, computerised behavioural tests and ecological momentary assessments. Endogenous glucocorticoid biosynthesis was pharmacologically suppressed, and plasma levels of corticosteroid restored by hydrocortisone replacement in three different regimes, either mimicking the normal ultradian and circadian profile of the hormone, or retaining the normal circadian but abolishing the ultradian rhythm of the hormone, or by our current best oral replacement regime which results in a suboptimal circadian and ultradian rhythm. Our results indicate that changes in the temporal mode of glucocorticoid replacement impact (i) the morning levels of self-perceived vigour, fatigue and concentration, (ii) the diurnal pattern of mood variation, (iii) the within-network functional connectivity of various large-scale resting state networks of the human brain, (iv) the functional connectivity of the default-mode, salience and executive control networks with glucocorticoid-sensitive nodes of the corticolimbic system, and (v) the functional relationship between mood variation and underlying neural networks. The findings indicate that the pattern of the ultradian glucocorticoid rhythm could affect cognitive psychophysiology under non-stressful conditions and opens new pathways for our understanding on the neuropsychological effects of cortisol pulsatility with relevance to the goal of optimising glucocorticoid replacement strategies.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom.
| | - Georgina M Russell
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Stuart G Ferguson
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Meryem Grabski
- Clinical Psychopharmacology Unit, Division of Psychology and Language Sciences, University College London, WC1E 6BT London, United Kingdom; MRC Integrative Epidemiology Unit, School of Psychological Science, University of Bristol, BS8 1TU Bristol, United Kingdom
| | - Catherine J Harmer
- Department of Psychiatry, Oxford University and Oxford Health NHS Foundation Trust, OX3 7JX Oxford, United Kingdom
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, School of Psychological Science, University of Bristol, BS8 1TU Bristol, United Kingdom
| | - Nicola Marchant
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Aileen Wilson
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Jonathan C Brooks
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Jamini Thakrar
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Patrick Murphy
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| | - Ngoc J Thai
- Clinical Research and Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, BS2 8DX Bristol, United Kingdom
| | - Stafford L Lightman
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, BS1 3NY Bristol, United Kingdom; Royal Bristol Infirmary, University Hospitals Bristol NHS Foundation Trust, BS2 8HW Bristol, United Kingdom
| |
Collapse
|
16
|
Zerbes G, Kausche FM, Schwabe L. Stress-induced cortisol modulates the control of memory retrieval towards the dorsal striatum. Eur J Neurosci 2020; 55:2699-2713. [PMID: 32805746 DOI: 10.1111/ejn.14942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Stress can modulate the recruitment of multiple memory systems during learning, favouring dorsal striatal "habit" learning over hippocampal "cognitive" learning. Here, we tested whether stress may also bias the engagement of "cognitive" and "habit" systems during retrieval and thereby affect the nature of remembering. To this end, participants first performed a probabilistic classification learning task that can be solved by both the "cognitive" and the "habit" system. Twenty-four hours later, participants underwent either a stress manipulation or a non-stressful control procedure before they completed a retention test for the previously learned task in the MRI scanner. During this retention test, stress-induced cortisol levels were linked to a relative bias towards behavioural strategies indicative for the "habit" system. At the neural level, stress led to increased dorsal striatal activity during retrieval. Elevated cortisol levels were directly correlated with increased activity in the dorsal striatum and further linked to reduced functional connectivity between the hippocampus and the amygdala, which is assumed to orchestrate the stress-related shift from "cognitive" to "habitual" control. Together, our data suggest that stress may bias the contributions of multiple memory systems also at retrieval, in a manner that promotes dorsal striatal "habit" processes and most likely driven by cortisol.
Collapse
Affiliation(s)
- Gundula Zerbes
- Department of Cognitive Psychology, Institute for Psychology, Universität Hamburg, Hamburg, Germany
| | - Franziska M Kausche
- Department of Cognitive Psychology, Institute for Psychology, Universität Hamburg, Hamburg, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute for Psychology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Beckerman M, van Berkel SR, Mesman J, Huffmeijer R, Alink LRA. Are Negative Parental Attributions Predicted by Situational Stress?: From a Theoretical Assumption Toward an Experimental Answer. CHILD MALTREATMENT 2020; 25:352-362. [PMID: 31594397 PMCID: PMC7370638 DOI: 10.1177/1077559519879760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In an experimental within-subjects research design, we studied the theoretical assumption that stress predicts negative parental attributions, which until now was mainly studied using cross-sectional study designs. During home visits to 105 families, mothers and fathers were subjected to two experimental conditions and two control conditions. In the experimental conditions, parents completed the Parental Attributions of Child behavior Task (PACT, a computerized attribution task) under two different stressful conditions (i.e., cognitive load and white noise); in the control conditions, the PACT was completed without additional stressors. Furthermore, parents completed questionnaires about existing risk factors (i.e., partner-related stress, parenting stress, and abuse risk). There were no main effects of induced stress on attributions for fathers and mothers, but we found that a combination of induced situational stress (cognitive load) and high risk resulted in the most negative parental attributions in mothers. The discussion focuses on intensity and origin of stressors, comparison between mother and father attributions, implications for interventions, and possible future research directions.
Collapse
Affiliation(s)
- Marieke Beckerman
- Institute of Education and Child Studies, Leiden University, the Netherlands
| | | | - Judi Mesman
- Institute of Education and Child Studies, Leiden University, the Netherlands
| | - Rens Huffmeijer
- Institute of Education and Child Studies, Leiden University, the Netherlands
| | - Lenneke R. A. Alink
- Institute of Education and Child Studies, Leiden University, the Netherlands
| |
Collapse
|
18
|
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr Rev 2020; 41:bnaa002. [PMID: 32060528 PMCID: PMC7240781 DOI: 10.1210/endrev/bnaa002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew T Birnie
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
19
|
Zhang W, Llera A, Hashemi MM, Kaldewaij R, Koch SBJ, Beckmann CF, Klumpers F, Roelofs K. Discriminating stress from rest based on resting-state connectivity of the human brain: A supervised machine learning study. Hum Brain Mapp 2020; 41:3089-3099. [PMID: 32293072 PMCID: PMC7336146 DOI: 10.1002/hbm.25000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 01/25/2023] Open
Abstract
Acute stress induces large-scale neural reorganization with relevance to stress-related psychopathology. Here, we applied a novel supervised machine learning method, combining the strengths of a priori theoretical insights with a data-driven approach, to identify which connectivity changes are most prominently associated with a state of acute stress and individual differences therein. Resting-state functional magnetic resonance imaging scans were taken from 334 healthy participants (79 females) before and after a formal stress induction. For each individual scan, mean time-series were extracted from 46 functional parcels of three major brain networks previously shown to be potentially sensitive to stress effects (default mode network (DMN), salience network (SN), and executive control networks). A data-driven approach was then used to obtain discriminative spatial linear filters that classified the pre- and post-stress scans. To assess potential relevance for understanding individual differences, probability of classification using the most discriminative filters was linked to individual cortisol stress responses. Our model correctly classified pre- versus post-stress states with highly significant accuracy (above 75%; leave-one-out validation relative to chance performance). Discrimination between pre- and post-stress states was mainly based on connectivity changes in regions from the SN and DMN, including the dorsal anterior cingulate cortex, amygdala, posterior cingulate cortex, and precuneus. Interestingly, the probability of classification using these connectivity changes were associated with individual cortisol increases. Our results confirm the involvement of DMN and SN using a data-driven approach, and specifically single out key regions that might receive additional attention in future studies for their relevance also for individual differences.
Collapse
Affiliation(s)
- Wei Zhang
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Alberto Llera
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Mahur M Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Reinoud Kaldewaij
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands.,Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, UK
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.,Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| |
Collapse
|
20
|
Fede SJ, Abrahao KP, Cortes CR, Grodin EN, Schwandt ML, George DT, Diazgranados N, Ramchandani VA, Lovinger DM, Momenan R. Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS One 2020; 15:e0224906. [PMID: 32214339 PMCID: PMC7098584 DOI: 10.1371/journal.pone.0224906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the harm caused by binge drinking, the neural mechanisms leading to risky and disinhibited intoxication-related behaviors are not well understood. Evidence suggests that the globus pallidus externus (GPe), a substructure within the basal ganglia, participates in inhibitory control processes, as examined in stop-signaling tasks. In fact, studies in rodents have revealed that alcohol can change GPe activity by decreasing neuronal firing rates, suggesting that the GPe may have a central role in explaining impulsive behaviors and failures of inhibition that occur during binge drinking. In this study, twenty-five healthy volunteers underwent intravenous alcohol infusion to achieve a blood alcohol level of 0.08 g/dl, which is equivalent to a binge drinking episode. A resting state functional magnetic resonance imaging scan was collected prior to the infusion and at binge-level exposure. Functional connectivity analysis was used to investigate the association between alcohol-induced changes in GPe connectivity, drinking behaviors, and impulsivity traits. We found that individuals with greater number of drinks or heavy drinking days in the recent past had greater alcohol-induced deficits in GPe connectivity, particularly to the striatum. Our data also indicated an association between impulsivity and alcohol-induced deficits in GPe-frontal/precentral connectivity. Moreover, alcohol induced changes in GPe-amygdala circuitry suggested greater vulnerabilities to stress-related drinking in some individuals. Taken together, these findings suggest that alcohol may interact with impulsive personality traits and drinking patterns to drive alterations in GPe circuitry associated with behavioral inhibition, possibly indicating a neural mechanism by which binge drinking could lead to impulsive behaviors.
Collapse
Affiliation(s)
- Samantha J. Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karina P. Abrahao
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erica N. Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David T. George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Langer K, Moser D, Otto T, Wolf OT, Kumsta R. Cortisol modulates the engagement of multiple memory systems: Exploration of a common NR3C2 polymorphism. Psychoneuroendocrinology 2019; 107:133-140. [PMID: 31128569 DOI: 10.1016/j.psyneuen.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Exposure to acute stress has been shown to result in a shift from declarative toward non-declarative learning, presumably mediated by brain mineralocorticoid receptors (MRs). In this study, we aimed to replicate and extend these findings by investigating the role of stress-associated cortisol secretion on learning behavior. Furthermore, we explored the influence of a well-characterized common single nucleotide polymorphism of the MR gene (rs2070951; minor allele frequency: 49.3%) previously shown to influence MR expression and HPA axis activity. Healthy males (n = 74) were exposed to the Trier Social Stress Test or a control condition prior to performing a probabilistic classification task (Weather Prediction Task). The use of a non-declarative learning strategy continuously increased over the course of the learning task after stress exposure, but leveled in the control condition. The shift toward a non-declarative strategy in the stress group was associated with better learning performance. Higher pre-stress cortisol levels favored the adoption of a non-declarative learning strategy. rs2070951 C/C-carriers in contrast to G-allele carriers exhibited a larger secretion of cortisol under stress. Furthermore, control participants homozygous for the C-allele adopted a non-declarative learning strategy less often than stressed participants, whereas the choice of strategy was independent of stress in G-allele carriers. The failure to switch strategies resulted in poorer performance, suggesting a beneficial effect of stress in dependence of MR variation. Consistent with previous findings, the results provide further support for cortisol as a driving force in coordinating the competition between multiple memory systems under stress.
Collapse
Affiliation(s)
- Katja Langer
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Tobias Otto
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany.
| |
Collapse
|
22
|
Zoladz PR, Duffy TJ, Mosley BE, Fiely MK, Nagle HE, Scharf AR, Brown CM, Earley MB, Rorabaugh BR, Dailey AM. Interactive influence of sex, stressor timing, and the BclI glucocorticoid receptor polymorphism on stress-induced alterations of long-term memory. Brain Cogn 2019; 133:72-83. [DOI: 10.1016/j.bandc.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
23
|
Zu M, Wang A, Bai T, Xie W, Guan J, Tian Y, Wang K. Resting-State Functional Connectivity Between Centromedial Amygdala and Insula as Related to Somatic Symptoms in Depressed Patients: A Preliminary Study. Psychosom Med 2019; 81:434-440. [PMID: 31008903 DOI: 10.1097/psy.0000000000000697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Somatic symptoms are prevalent in patients with depression. The centromedial amygdala (CMA) is a key brain region that mediates autonomic and somatic responses. Abnormal function in the CMA may contribute to the development of somatic symptoms in depressed patients. METHODS We compared the resting-state functional connectivity (RSFC) based on the seed of the left and right CMA between 37 patients with depression and 30 healthy controls. The severity of depressive and somatic symptoms was assessed using the Hamilton Depression Rating Scale (HDRS) and the 15-item somatic symptom severity scale of the Patient Health Questionnaire (PHQ-15). Correlation analysis was performed to investigate the relationship between the RSFC and clinical variables (HDRS and PHQ-15) in depressed patients. RESULTS Compared with healthy controls, patients with depression exhibited decreased RSFC between the CMA and insula, and superior temporal gyrus. In addition, functional connectivity between the left CMA and left insula was negatively correlated with PHQ-15 (r = -0.348, p = .037) in depressed patients. No significant relation was found between the RSFC and HDRS in depressed patients. CONCLUSIONS Functional connectivity between the CMA and insula is reduced in depressive patients, which is associated with the severity of somatic symptoms. Our findings may provide a potential neural substrate to interpret the co-occurrence of depression with somatic symptoms.
Collapse
Affiliation(s)
- Meidan Zu
- From the Department of Neurology (Zu, Bai, Tian, K. Wang), the First Affiliated Hospital of Anhui Medical University; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (Zu, Bai, Tian, K. Wang); Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (Zu, Bai, Tian, K. Wang); Anhui Mental Health Center (A. Wang, Xie, Guan); National Clinical Research Center for Mental Disorders (Tian), China; and Department of Medical Psychology (K. Wang), the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Molendijk ML, de Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav Brain Res 2019; 364:1-10. [DOI: 10.1016/j.bbr.2019.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
25
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
26
|
Deuter CE, Wingenfeld K, Schultebraucks K, Otte C, Kuehl LK. Influence of glucocorticoid and mineralocorticoid receptor stimulation on task switching. Horm Behav 2019; 109:18-24. [PMID: 30684522 DOI: 10.1016/j.yhbeh.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The influence of stress on executive functions has been demonstrated in numerous studies and is potentially mediated by the stress-induced cortisol release. Yet, the impact of cortisol on cognitive flexibility and task switching in particular remains equivocal. In this study, we investigated the influence of pharmacological glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) stimulation, two corticosteroid receptor types known to be responsible for cortisol effects on the brain. We conducted two experiments, each with 80 healthy participants (40 women and 40 men), and tested the effect of the unspecific MR/GR agonist hydrocortisone (Experiment I) and the more specific MR agonist fludrocortisone (Experiment II) on switch costs and task rule congruency in a bivalent, cued task switching paradigm. The results did not confirm our hypotheses; we found no significant effects of our manipulations on task switching capacity, although general switching and congruency effects were observed. We discuss the absence of MR/GR-mediated effects and propose alternative mechanisms that could explain stress induced effects on task switching.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katharina Schultebraucks
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany; New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Christian Otte
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Linn K Kuehl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
27
|
Zhang W, Hashemi MM, Kaldewaij R, Koch SBJ, Beckmann C, Klumpers F, Roelofs K. Acute stress alters the 'default' brain processing. Neuroimage 2019; 189:870-877. [PMID: 30703518 DOI: 10.1016/j.neuroimage.2019.01.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 11/15/2022] Open
Abstract
Active adaptation to acute stress is essential for coping with daily life challenges. The stress hormone cortisol, as well as large scale re-allocations of brain resources have been implicated in this adaptation. Stress-induced shifts between large-scale brain networks, including salience (SN), central executive (CEN) and default mode networks (DMN), have however been demonstrated mainly under task-conditions. It remains unclear whether such network shifts also occur in the absence of ongoing task-demands, and most critically, whether these network shifts are predictive of individual variation in the magnitude of cortisol stress-responses. In a sample of 335 healthy participants, we investigated stress-induced functional connectivity changes (delta-FC) of the SN, CEN and DMN, using resting-state fMRI data acquired before and after a socially evaluated cold-pressor test and a mental arithmetic task. To investigate which network changes are associated with acute stress, we evaluated the association between cortisol increase and delta-FC of each network. Stress-induced cortisol increase was associated with increased connectivity within the SN, but with decreased coupling of DMN at both local (within network) and global (synchronization with brain regions also outside the network) levels. These findings indicate that acute stress prompts immediate connectivity changes in large-scale resting-state networks, including the SN and DMN in the absence of explicit ongoing task-demands. Most interestingly, this brain reorganization is coupled with individuals' cortisol stress-responsiveness. These results suggest that the observed stress-induced network reorganization might function as a neural mechanism determining individual stress reactivity and, therefore, it could serve as a promising marker for future studies on stress resilience and vulnerability.
Collapse
Affiliation(s)
- Wei Zhang
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands.
| | - Mahur M Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Reinoud Kaldewaij
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Christian Beckmann
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands; Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, UK
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Chang J, Yu R. Alternations in functional connectivity of amygdalar subregions under acute social stress. Neurobiol Stress 2018; 9:264-270. [PMID: 30450390 PMCID: PMC6234264 DOI: 10.1016/j.ynstr.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
Abstract
The amygdala has long been considered a vital region involved in acute and chronic stress responses. Extensive evidences from animal and human studies suggest that the functional connectivity of amygdalar subnuclei (basolateral amygdala (BLA), centromedial amygdala (CMA) and superficial amygdala (SFA)) undergo specific alterations in stress-related psychopathology. However, whether and how intrinsic functional connectivity within the amygdalar subcomponents is differently altered in the aftermath of an acute stressor remains unknown. In the present study, using a within-subject design, we examined the impact of acute psychological social stress on the functional connectivity of amygdalar subregions at rest. Results showed that stress mainly affected the connectivity pattern of CMA. In particular, in the stress condition compared with the control, the connectivity of CMA to left posterior cingulate cortex and right thalamus was decreased under stress, while the connectivity of CMA to left caudate connectivity was increased at rest post-stressor. The findings suggest that healthy individuals may adapt to threatening surroundings by reducing threatening information input, and shifting to well-learned procedural behaviors.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
29
|
Mifsud KR, Reul JMHM. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018; 21:389-402. [PMID: 29614900 DOI: 10.1080/10253890.2018.1456526] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Successful coping with stressful events involves adaptive and cognitive processes in the brain that make the individual more resilient to similar stressors in the future. Stressful events result in the secretion of glucocorticoids (GCs) from the adrenal glands into the blood stream. Early work proved instrumental for developing the concept that these hormones act in the brain to coordinate physiological and behavioral responses to stress through binding to two different GC-binding receptors. Once activated these receptors translocate to the nucleus where they act on target genes to facilitate (or sometimes inhibit) transcription. There are two types of receptors in the brain, the mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). This review summarizes recent work which provides new insights regarding the genomic action of these receptors, both under baseline conditions and following exposure to acute stress. This work is discussed alongside the extensive studies undertaken in this field previously and new, and exciting "big data" studies which have generated a wealth of relevant data. The consequence of these new insights will challenge existing assumptions about the role of MRs and GRs and pave the way for the implementation of novel and improved methodologies to identify the role these corticosteroid receptors have in stress-related behavioral adaptation.
Collapse
Affiliation(s)
- Karen R Mifsud
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| | - Johannes M H M Reul
- a Neuro-Epigenetics Research Group, Bristol Medical School , University of Bristol , Bristol , UK
| |
Collapse
|
30
|
Beckerman M, van Berkel SR, Mesman J, Alink LRA. Negative parental attributions mediate associations between risk factors and dysfunctional parenting: A replication and extension. CHILD ABUSE & NEGLECT 2018; 81:249-258. [PMID: 29763859 DOI: 10.1016/j.chiabu.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 05/26/2023]
Abstract
The primary goal of the current study was to replicate our previous study in which was found that negative maternal attributions mediate the association between parenting stress and harsh and abusive discipline. In addition, we investigated this association in fathers, and added observational parenting data. During two home visits mothers and fathers were observed with their children (age 1.5-6.0 years), filled in questionnaires, and completed the Parental Attributions of Child behavior Task (PACT; a computerized attribution task). Similar to our previous study, negative parental attributions mediated the relation between parenting stress and self-reported harsh and abusive parenting for both mothers and fathers. For mothers, this mediation effect was also found in the relation between parenting stress and lower levels of observed supportive parenting in a challenging disciplinary task. In addition, the relation of partner-related stress and abuse risk with harsh, abusive, and (low) supportive parenting were also mediated by maternal negative attributions. When parenting stress, partner-related stress, and abuse risk were studied in one model, only parenting stress remained significant. Results are discussed in terms of the importance of targeting parental attributions for prevention and intervention purposes in families experiencing stress.
Collapse
Affiliation(s)
- Marieke Beckerman
- Institute of Education and Child Studies, Leiden University, The Netherlands.
| | - Sheila R van Berkel
- Institute of Education and Child Studies, Leiden University, The Netherlands
| | - Judi Mesman
- Institute of Education and Child Studies, Leiden University, The Netherlands
| | - Lenneke R A Alink
- Institute of Education and Child Studies, Leiden University, The Netherlands
| |
Collapse
|
31
|
Supporting Parent Caregivers of Children with Life-Limiting Illness. CHILDREN-BASEL 2018; 5:children5070085. [PMID: 29949926 PMCID: PMC6069074 DOI: 10.3390/children5070085] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022]
Abstract
The well-being of parents is essential to the well-being of children with life-limiting illness. Parents are vulnerable to a range of negative financial, physical, and psychosocial issues due to caregiving tasks and other stressors related to the illness of their child. Pediatric palliative care practitioners provide good care to children by supporting their parents in decision-making and difficult conversations, by managing pain and other symptoms in the ill child, and by addressing parent and family needs for care coordination, respite, bereavement, and social and emotional support. No matter the design or setting of a pediatric palliative care team, practitioners can seek to provide for parent needs by referral or intervention by the care team.
Collapse
|
32
|
Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc Natl Acad Sci U S A 2018; 115:E4091-E4100. [PMID: 29632168 DOI: 10.1073/pnas.1714239115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids (GCs) are secreted in an ultradian, pulsatile pattern that emerges from delays in the feedforward-feedback interaction between the anterior pituitary and adrenal glands. Dynamic oscillations of GCs are critical for normal cognitive and metabolic function in the rat and have been shown to modulate the pattern of GC-sensitive gene expression, modify synaptic activity, and maintain stress responsiveness. In man, current cortisol replacement therapy does not reproduce physiological hormone pulses and is associated with psychopathological symptoms, especially apathy and attenuated motivation in engaging with daily activities. In this work, we tested the hypothesis that the pattern of GC dynamics in the brain is of crucial importance for regulating cognitive and behavioral processes. We provide evidence that exactly the same dose of cortisol administered in different patterns alters the neural processing underlying the response to emotional stimulation, the accuracy in recognition and attentional bias toward/away from emotional faces, the quality of sleep, and the working memory performance of healthy male volunteers. These data indicate that the pattern of the GC rhythm differentially impacts human cognition and behavior under physiological, nonstressful conditions and has major implications for the improvement of cortisol replacement therapy.
Collapse
|
33
|
Wirz L, Bogdanov M, Schwabe L. Habits under stress: mechanistic insights across different types of learning. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
35
|
Vogel S, Schwabe L. Tell me what to do: Stress facilitates stimulus-response learning by instruction. Neurobiol Learn Mem 2018; 151:43-52. [PMID: 29614376 DOI: 10.1016/j.nlm.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
Learning by explicit instruction is a highly efficient way to instantaneously learn new behaviors and to overcome potentially harmful learning by trial-and-error. Despite the importance of instructed learning for education, influences on the efficacy of an instruction are currently unknown. Decades of research, however, showed that stress is a powerful modulator of learning and memory, including the acquisition of stimulus-response (S-R) associations. Moreover, brain areas critical for instructed learning are a major target of hormones and neurotransmitters released during stress. Thus, we investigated here whether acute stress affects instructed S-R learning and whether this effect differs for trial-and-error learning. To this end, healthy participants underwent a stressor (Socially Evaluated Cold Pressor Test) or a control manipulation before learning arbitrary S-R associations. For half of the stimuli, participants were explicitly instructed about the correct association, whereas the remaining associations had to be learned by trial-and-error. As expected, the instruction resulted in better performance and enhanced explicit rule knowledge compared to trial-and-error learning. Stress further boosted the beneficial effect of an explicit instruction on learning performance, while leaving trial-and-error learning unchanged. These beneficial effects of stress were directly correlated with the activity of the autonomic nervous system and the concentration of cortisol. Moreover, acute stress could override the detrimental effect of high trait anxiety levels on instructed S-R learning performance. Our findings indicate that acute stress may facilitate learning from instruction, which may represent a highly efficient way to learn how to act, without the necessity of own experience, that helps to save cognitive resources during a stressful encounter.
Collapse
Affiliation(s)
- Susanne Vogel
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany.
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany.
| |
Collapse
|
36
|
Anticipatory prefrontal cortex activity underlies stress-induced changes in Pavlovian fear conditioning. Neuroimage 2018; 174:237-247. [PMID: 29555429 DOI: 10.1016/j.neuroimage.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive stress exposure often leads to emotional dysfunction, characterized by disruptions in healthy emotional learning, expression, and regulation processes. A prefrontal cortex (PFC)-amygdala circuit appears to underlie these important emotional processes. However, limited human neuroimaging research has investigated whether these brain regions underlie the altered emotional function that develops with stress. Therefore, the present study used functional magnetic resonance imaging (fMRI) to investigate stress-induced changes in PFC-amygdala function during Pavlovian fear conditioning. Participants completed a variant of the Montreal Imaging Stress Task (MIST) followed (25 min later) by a Pavlovian fear conditioning task during fMRI. Self-reported stress to the MIST was used to identify three stress-reactivity groups (Low, Medium, and High). Psychophysiological, behavioral, and fMRI signal responses were compared between the three stress-reactivity groups during fear conditioning. Fear learning, indexed via participant expectation of the unconditioned stimulus during conditioning, increased with stress reactivity. Further, the High stress-reactivity group demonstrated greater autonomic arousal (i.e., skin conductance response, SCR) to both conditioned and unconditioned stimuli compared to the Low and Medium stress-reactivity groups. Finally, the High stress group did not regulate the emotional response to threat. More specifically, the High stress-reactivity group did not show a negative relationship between conditioned and unconditioned SCRs. Stress-induced changes in these emotional processes paralleled changes in dorsolateral, dorsomedial, and ventromedial PFC function. These findings demonstrate that acute stress facilitates fear learning, enhances autonomic arousal, and impairs emotion regulation, and suggests these stress-induced changes in emotional function are mediated by the PFC.
Collapse
|
37
|
A Haplotype Associated with Enhanced Mineralocorticoid Receptor Expression Facilitates the Stress-Induced Shift from "Cognitive" to "Habit" Learning. eNeuro 2017; 4:eN-NWR-0359-17. [PMID: 29147678 PMCID: PMC5687596 DOI: 10.1523/eneuro.0359-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Stress induces a shift from hippocampus-dependent "cognitive" toward dorsal striatum-dependent "habit" memory. However, not all individuals are susceptible to this shift under stress. Based on pharmacological studies indicating a critical role of the mineralocorticoid receptor (MR) in the stress-induced bias toward dorsal striatal learning, we hypothesized that MR gene variants contribute to these individual differences. In two experiments, healthy participants were genotyped, exposed to a stressor or control manipulation and performed a learning task that can be solved using hippocampal or dorsal striatal systems, while electroencephalography (EEG; Experiment I) or functional magnetic resonance imaging (fMRI; Experiment II) measurements were taken. Stress led to a shift from hippocampal to dorsal striatal learning which was more pronounced in homo- and heterozygous carriers of a six single nucleotide polymorphisms (SNPs)-comprising haplotype containing the alleles of two MR SNPs associated with increased MR expression and transactivational activity (MR-2G/C C [rs2070951], MR-I180V A [rs5522]). This stress-induced shift toward habit memory was paralleled by an increased feedback-related negativity (FRN), which may reflect striatal processing, and increased caudate activation. Carriers of the MR haplotype showed a reduced P3a, an event-related potential thought to indicate cognitive processing, and reduced hippocampal activity after stress. Moreover, stress resulted in reduced amygdala-hippocampus connectivity and the decrease in amygdala connectivity to the parahippocampal cortex was particularly pronounced in MR haplotype carriers. Our findings indicate that genetic variants associated with enhanced MR expression facilitate a stress-induced shift from hippocampal toward dorsal striatal learning, most likely via impaired hippocampal processing and reduced amygdala-hippocampus cross talk, allowing the dorsal striatum to guide behavior under stress.
Collapse
|
38
|
Maran T, Sachse P, Martini M, Weber B, Pinggera J, Zuggal S, Furtner M. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information. Front Behav Neurosci 2017; 11:206. [PMID: 29170634 PMCID: PMC5684831 DOI: 10.3389/fnbeh.2017.00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based "cognitive" system in favor of a striatum-based "habit" system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations.
Collapse
Affiliation(s)
- Thomas Maran
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Educational Sciences and Research, Alps-Adria University of Klagenfurt, Klagenfurt, Austria
| | - Pierre Sachse
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Markus Martini
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara Weber
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Pinggera
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Stefan Zuggal
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Marco Furtner
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Entrepreneurship, University of Liechtenstein, Vaduz, Liechtenstein
| |
Collapse
|
39
|
Fullana MA, Zhu X, Alonso P, Cardoner N, Real E, López-Solà C, Segalàs C, Subirà M, Galfalvy H, Menchón JM, Simpson HB, Marsh R, Soriano-Mas C. Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive-compulsive disorder. J Psychiatry Neurosci 2017; 42. [PMID: 28632120 PMCID: PMC5662459 DOI: 10.1503/jpn.160215] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT), including exposure and ritual prevention, is a first-line treatment for obsessive-compulsive disorder (OCD), but few reliable predictors of CBT outcome have been identified. Based on research in animal models, we hypothesized that individual differences in basolateral amygdala-ventromedial prefrontal cortex (BLA-vmPFC) communication would predict CBT outcome in patients with OCD. METHODS We investigated whether BLA-vmPFC resting-state functional connectivity (rs-fc) predicts CBT outcome in patients with OCD. We assessed BLA-vmPFC rs-fc in patients with OCD on a stable dose of a selective serotonin reuptake inhibitor who then received CBT and in healthy control participants. RESULTS We included 73 patients with OCD and 84 healthy controls in our study. Decreased BLA-vmPFC rs-fc predicted a better CBT outcome in patients with OCD and was also detected in those with OCD compared with healthy participants. Additional analyses revealed that decreased BLA-vmPFC rs-fc uniquely characterized the patients with OCD who responded to CBT. LIMITATIONS We used a sample of convenience, and all patients were receiving pharmacological treatment for OCD. CONCLUSION In this large sample of patients with OCD, BLA-vmPFC functional connectivity predicted CBT outcome. These results suggest that future research should investigate the potential of BLA-vmPFC pathways to inform treatment selection for CBT across patients with OCD and anxiety disorders.
Collapse
Affiliation(s)
- Miquel A. Fullana
- Correspondence to: M.A. Fullana, Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Passeig Marítim, 25/29, 08003 Barcelona, Spain;
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Caparelli EC, Ross TJ, Gu H, Liang X, Stein EA, Yang Y. Graph theory reveals amygdala modules consistent with its anatomical subdivisions. Sci Rep 2017; 7:14392. [PMID: 29089582 PMCID: PMC5663902 DOI: 10.1038/s41598-017-14613-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Similarities on the cellular and neurochemical composition of the amygdaloid subnuclei suggests their clustering into subunits that exhibit unique functional organization. The topological principle of community structure has been used to identify functional subnetworks in neuroimaging data that reflect the brain effective organization. Here we used modularity to investigate the organization of the amygdala using resting state functional magnetic resonance imaging (rsfMRI) data. Our goal was to determine whether such topological organization would reliably reflect the known neurobiology of individual amygdaloid nuclei, allowing for human imaging studies to accurately reflect the underlying neurobiology. Modularity analysis identified amygdaloid elements consistent with the main anatomical subdivisions of the amygdala that embody distinct functional and structural properties. Additionally, functional connectivity pathways of these subunits and their correlation with task-induced amygdala activation revealed distinct functional profiles consistent with the neurobiology of the amygdala nuclei. These modularity findings corroborate the structure–function relationship between amygdala anatomical substructures, supporting the use of network analysis techniques to generate biologically meaningful partitions of brain structures.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Xia Liang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.,Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Joëls M, de Kloet ER. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. J Endocrinol 2017. [PMID: 28634266 DOI: 10.1530/joe-16-0660] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In 1968, Bruce McEwen discovered that 3H-corticosterone administered to adrenalectomised rats is retained in neurons of hippocampus rather than those of hypothalamus. This discovery signalled the expansion of endocrinology into the science of higher brain regions. With this in mind, our contribution highlights the saga of the brain mineralocorticoid receptor (MR) in three episodes. First, the precloning era dominated by the conundrum of two types of corticosterone-binding receptors in the brain, which led to the identification of the high-affinity corticosterone receptor as the 'promiscuous' MR cloned in 1987 by Jeff Arriza and Ron Evans in addition to the classical glucocorticoid receptor (GR). Then, the post-cloning period aimed to disentangle the function of the brain MR from that of the closely related GR on different levels of biological complexity. Finally, the synthesis section that highlights the two faces of brain MR: Salt and Stress. 'Salt' refers to the regulation of salt appetite, and reciprocal arousal, motivation and reward, by a network of aldosterone-selective MR-expressing neurons projecting from nucleus tractus solitarii (NTS) and circumventricular organs. 'Stress' is about the limbic-forebrain nuclear and membrane MRs, which act as a switch in the selection of the best response to cope with a stressor. For this purpose, activation of the limbic MR promotes selective attention, memory retrieval and the appraisal process, while driving emotional expressions of fear and aggression. Subsequently, rising glucocorticoid concentrations activate GRs in limbic-forebrain circuitry underlying executive functions and memory storage, which contribute in balance with MR-mediated actions to homeostasis, excitability and behavioural adaptation.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center, Groningen, The Netherlands
| | - E Ronald de Kloet
- Division of EndocrinologyDepartment of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Forster SE, Finn PR, Brown JW. Neural responses to negative outcomes predict success in community-based substance use treatment. Addiction 2017; 112:884-896. [PMID: 28029198 PMCID: PMC5382058 DOI: 10.1111/add.13734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Patterns of brain activation have demonstrated promise as prognostic indicators in substance dependent individuals (SDIs) but have not yet been explored in SDIs typical of community-based treatment settings. DESIGN Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes. SETTING Community-based substance use programs in Bloomington, Indiana, USA. PARTICIPANTS Twenty-three SDIs (17 male, aged 18-43 years) in an intensive outpatient or residential treatment program; abstinent 1-4 weeks at baseline. MEASUREMENTS Event-related brain response, BART performance and self-report scores at treatment onset, substance use outcome measure (based on days of use). FINDINGS Using voxel-level predictive modeling and leave-one-out cross-validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) at baseline successfully predicted greater substance use during the 3-month study interval (P ≤ 0.006, cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to negative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback (r(23) = -0.544, P = 0.007; r(23) = -0.588, P = 0.003). A model including Amyg/aHipp activation, faster reward-seeking after negative feedback and significant self-report scores accounted for 45% of the variance in substance use outcomes in our sample. CONCLUSIONS An elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based treatment.
Collapse
Affiliation(s)
- Sarah E. Forster
- Indiana University, Department of Psychological and Brain Sciences,VA Pittsburgh Healthcare System,University of Pittsburgh, Department of Psychiatry
| | - Peter R. Finn
- Indiana University, Department of Psychological and Brain Sciences
| | - Joshua W. Brown
- Indiana University, Department of Psychological and Brain Sciences
| |
Collapse
|
43
|
Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor. Neuropsychopharmacology 2017; 42:1262-1271. [PMID: 27876790 PMCID: PMC5437884 DOI: 10.1038/npp.2016.262] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022]
Abstract
Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.
Collapse
|
44
|
Beckerman M, van Berkel SR, Mesman J, Alink LRA. The role of negative parental attributions in the associations between daily stressors, maltreatment history, and harsh and abusive discipline. CHILD ABUSE & NEGLECT 2017; 64:109-116. [PMID: 28081496 DOI: 10.1016/j.chiabu.2016.12.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 05/13/2023]
Abstract
Negative parental attributions are related to parent and family stressors and are thought to be important predictors of subsequent disciplinary actions and, potentially, abusive parenting. We examined if negative parental attributions mediate the relation between daily stressors (i.e., low SES, parenting stress, partner-related stress) parents' own history of child maltreatment, and harsh and abusive parenting. Mothers (n=53) completed a computerized attribution task and reported on daily stressors, their own history of child maltreatment and their discipline strategies. Mothers' negative parental attributions mediated the association between parenting stress (but not the other stressors) and harsh and abusive discipline. These finding implicate that interventions to decrease (the risk of) child abuse should not only focus on reducing abuse-related stressors, but also target negative parental attributions.
Collapse
Affiliation(s)
- Marieke Beckerman
- Centre for Child and Family Studies, Leiden University, The Netherlands
| | | | - Judi Mesman
- Centre for Child and Family Studies, Leiden University, The Netherlands
| | - Lenneke R A Alink
- Centre for Child and Family Studies, Leiden University, The Netherlands.
| |
Collapse
|
45
|
A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory. J Neurosci 2017; 37:2149-2160. [PMID: 28115477 DOI: 10.1523/jneurosci.3507-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 11/21/2022] Open
Abstract
Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor (ADRA2B), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems.SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications for understanding mental disorders, such as post-traumatic stress disorder, little is known about the source of individual differences in the sensitivity for the stress-induced bias toward habit memory. We report here that a common genetic variation of the noradrenergic system, a known risk factor for post-traumatic stress disorder, modulates the stress-induced shift from cognitive to habit memory, most likely through altered crosstalk between the hippocampus and dorsal striatum with the amygdala, a key structure in emotional memory.
Collapse
|
46
|
Schwabe L. Memory under stress: from single systems to network changes. Eur J Neurosci 2016; 45:478-489. [PMID: 27862513 DOI: 10.1111/ejn.13478] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| |
Collapse
|
47
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
48
|
Hinkelmann K, Hellmann-Regen J, Wingenfeld K, Kuehl LK, Mews M, Fleischer J, Heuser I, Otte C. Mineralocorticoid receptor function in depressed patients and healthy individuals. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:183-8. [PMID: 27519144 DOI: 10.1016/j.pnpbp.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many studies have shown disturbed glucocorticoid receptor (GR) in depressed patients. In contrast, only few studies targeted mineralocorticoid receptor (MR) function with inconclusive results. We examined the effects of the MR antagonist spironolactone on cortisol secretion in depressed patients and healthy individuals. METHODS Forty-eight unmedicated depressed patients (mean age 41.6years) and 45 age- and sex-matched healthy participants (40.7years) received the MR antagonist spironolactone (300mg) or placebo with three days apart in a randomized, double-blind, within-subject cross-over design. We measured salivary cortisol before ingestion of study medication (baseline) as well as +60min, +90min, +120min, +150min and 180min after baseline. RESULTS Repeated-measures ANOVA for area under the curve (AUCg) cortisol revealed a treatment effect with higher cortisol after spironolactone and a treatment by group interaction. Post-hoc analyses revealed higher cortisol in depressed patients compared to healthy participants in the placebo condition. In the spironolactone condition, the cortisol levels were not significantly different. CONCLUSIONS Potentially, impaired MR or GR signaling could be responsible for higher cortisol levels in depressed patients in the placebo condition. However, after MR blockade that increased cortisol secretion across groups leading to higher GR occupation, we found no differences between depressed patients and healthy controls. Thus, our results argue for depression-associated alterations in MR signaling rather than disturbed GR-mediated feedback inhibition.
Collapse
Affiliation(s)
- Kim Hinkelmann
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany; Department of Psychosomatic Medicine, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany.
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Linn K Kuehl
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Marie Mews
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Juliane Fleischer
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Isabella Heuser
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
49
|
Wiersielis KR, Wicks B, Simko H, Cohen SR, Khantsis S, Baksh N, Waxler DE, Bangasser DA. Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology 2016; 73:204-216. [PMID: 27521739 PMCID: PMC5048569 DOI: 10.1016/j.psyneuen.2016.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023]
Abstract
Hypersecretion of corticotropin releasing factor (CRF) is linked to the pathophysiology of major depression and post-traumatic stress disorder, disorders that are more common in women than men. Notably, preclinical studies have identified sex differences in CRF receptors that can increase neuronal sensitivity to CRF in female compared to male rodents. These cellular sex differences suggest that CRF may regulate brain circuits and behavior differently in males and females. To test this idea, we first evaluated whether there were sex differences in anxiety-related behaviors induced by the central infusion of CRF. High doses of CRF increased self-grooming more in female than in male rats, and the magnitude of this effect in females was greater when they were in the proestrous phase of their estrous cycle (higher ovarian hormones) compared to the diestrous phase (lower ovarian hormones), which suggests that ovarian hormones potentiate this anxiogenic effect of CRF. Brain regions associated with CRF-evoked self-grooming were identified by correlating a marker of neuronal activation, cFOS, with time spent grooming. In the infralimbic region, which is implicated in regulating anxiety, the correlation for CRF-induced neuronal activation and grooming was positive in proestrous females, but negative for males and diestrous females, indicating that ovarian hormones altered this relationship between neuronal activation and behavior. Because CRF regulates a number of regions that work together to coordinate different aspects of responding to stress, we then examined more broadly whether CRF-activated functional connectivity networks differed between males and cycling females. Interestingly, hormonal status altered correlations for CRF-induced neuronal activation between a variety of brain regions, but the most striking differences were found when comparing proestrous females to males, particularly when comparing neuronal activation between prefrontal cortical and other forebrain regions. These results suggest that ovarian hormones alter the way brain regions work together in response to CRF, which could drive different strategies for coping with stress in males versus females. These sex differences in stress responses could also help explain female vulnerability to psychiatric disorders characterized by CRF hypersecretion.
Collapse
|
50
|
Hamstra DA, de Kloet ER, Tollenaar M, Verkuil B, Manai M, Putman P, Van der Does W. Mineralocorticoid receptor haplotype moderates the effects of oral contraceptives and menstrual cycle on emotional information processing. J Psychopharmacol 2016; 30:1054-61. [PMID: 27222270 DOI: 10.1177/0269881116647504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE The processing of emotional information is affected by menstrual cycle phase and by the use of oral contraceptives (OCs). The stress hormone cortisol is known to affect emotional information processing via the limbic mineralocorticoid receptor (MR). OBJECTIVES We investigated in an exploratory study whether the MR-genotype moderates the effect of both OC-use and menstrual cycle phase on emotional cognition. METHODS Healthy premenopausal volunteers (n=93) of West-European descent completed a battery of emotional cognition tests. Forty-nine participants were OC users and 44 naturally cycling, 21 of whom were tested in the early follicular (EF) and 23 in the mid-luteal (ML) phase of the menstrual cycle. RESULTS In MR-haplotype 1/3 carriers, ML women gambled more than EF women when their risk to lose was relatively small. In MR-haplotype 2, ML women gambled more than EF women, regardless of their odds of winning. OC-users with MR-haplotype 1/3 recognised fewer facial expressions than ML women with MR-haplotype 1/3. CONCLUSION MR-haplotype 1/3 carriers may be more sensitive to the influence of their female hormonal status. MR-haplotype 2 carriers showed more risky decision-making. As this may reflect optimistic expectations, this finding may support previous observations in female carriers of MR-haplotype 2 in a naturalistic cohort study.
Collapse
Affiliation(s)
- Danielle A Hamstra
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - E Ronald de Kloet
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Tollenaar
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Bart Verkuil
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Meriem Manai
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Peter Putman
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Willem Van der Does
- Institute of Psychology, Leiden University, Leiden, the Netherlands Leiden Institute of Brain and Cognition, Leiden University, Leiden, the Netherlands Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|