1
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Vahdat Z, Gambrell O, Singh A. Characterizing the role of autaptic feedback in enhancing precision of neuronal firing times. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561207. [PMID: 37873216 PMCID: PMC10592613 DOI: 10.1101/2023.10.06.561207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In a chemical synapse, information flow occurs via the release of neurotransmitters from a presynaptic neuron that triggers an Action potential (AP) in the postsynaptic neuron. At its core, this occurs via the postsynaptic membrane potential integrating neurotransmitter-induced synaptic currents, and AP generation occurs when potential reaches a critical threshold. This manuscript investigates feedback implementation via an autapse, where the axon from the postsynaptic neuron forms an inhibitory synapse onto itself. Using a stochastic model of neuronal synaptic transmission, we formulate AP generation as a first-passage time problem and derive expressions for both the mean and noise of AP-firing times. Our analytical results supported by stochastic simulations identify parameter regimes where autaptic feedback transmission enhances the precision of AP firing times consistent with experimental data. These noise attenuating regimes are intuitively based on two orthogonal mechanisms - either expanding the time window to integrate noisy upstream signals; or by linearizing the mean voltage increase over time. Interestingly, we find regimes for noise amplification that specifically occur when the inhibitory synapse has a low probability of release for synaptic vesicles. In summary, this work explores feedback modulation of the stochastic dynamics of autaptic neurotransmission and reveals its function of creating more regular AP firing patterns.
Collapse
Affiliation(s)
- Zahra Vahdat
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE USA 19716
| | - Oliver Gambrell
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE USA 19716
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA 19716
| |
Collapse
|
3
|
Conn KA, Alexander S, Burne THJ, Kesby JP. Antagonism of D2 receptors via raclopride ameliorates amphetamine-induced associative learning deficits in male mice. Behav Brain Res 2023; 454:114649. [PMID: 37643667 DOI: 10.1016/j.bbr.2023.114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Dopamine levels in the dorsomedial striatum (DMS) are highly dynamic and are thought to underly the encoding of action-outcome associations. Although it is known that amphetamine disrupts the learning that is required for goal-directed action, the role of D1 and D2 receptors in this process has not been established. In this study, we examined the role of D1 and D2 receptor antagonists on learning in response to amphetamine. We used the outcome-specific devaluation task to examine goal-directed action in male C57BL6/J mice treated systemically with either a D1 antagonist (SCH-23990; 0.01 mg/kg) or a D2 antagonist (raclopride; 0.5 mg/kg) and then administered amphetamine (1 mg/kg). The mice were injected repeatedly throughout the instrumental training phase of the task to assess the impact on the learning of action-outcomes, and the subsequent choice test assessing performance of goal-directed action was conducted drug free. Effects of chronic drug administration on locomotor behaviour was assessed before and after the choice test. Treatment during learning with either amphetamine, or the D1 or D2 antagonists, impaired the subsequent performance of goal-directed action. The amphetamine-induced impairment in goal-directed action was reversed in mice treated with raclopride, but not when treated with SCH-23990. By contrast, amphetamine-induced hyperactivity was reversed in mice treated with SCH-23990, but not in mice treated with raclopride. Taken together, these data support the role of a balance of dopamine receptor signalling after amphetamine treatment. While overall D1 receptor availability is necessary to promote learning, in a state of elevated dopamine, modifying D2 receptor function can ameliorate learning deficits.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia.
| |
Collapse
|
4
|
Conn KA, Zou S, Das J, Alexander S, Burne TH, Kesby JP. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice. Neuropharmacology 2023; 234:109550. [PMID: 37085011 DOI: 10.1016/j.neuropharm.2023.109550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
5
|
Quinpirole ameliorates nigral dopaminergic neuron damage in Parkinson's disease mouse model through activating GHS-R1a/D 2R heterodimers. Acta Pharmacol Sin 2023:10.1038/s41401-023-01063-0. [PMID: 36899113 PMCID: PMC10374575 DOI: 10.1038/s41401-023-01063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a) is an important G protein-coupled receptor (GPCR) that regulates a variety of functions by binding to ghrelin. It has been shown that the dimerization of GHS-R1a with other receptors also affects ingestion, energy metabolism, learning and memory. Dopamine type 2 receptor (D2R) is a GPCR mainly distributed in the ventral tegmental area (VTA), substantia nigra (SN), striatum and other brain regions. In this study we investigated the existence and function of GHS-R1a/D2R heterodimers in nigral dopaminergic neurons in Parkinson's disease (PD) models in vitro and in vivo. By conducting immunofluorescence staining, FRET and BRET analyses, we confirmed that GHS-R1a and D2R could form heterodimers in PC-12 cells and in the nigral dopaminergic neurons of wild-type mice. This process was inhibited by MPP+ or MPTP treatment. Application of QNP (10 μM) alone significantly increased the viability of MPP+-treated PC-12 cells, and administration of quinpirole (QNP, 1 mg/kg, i.p. once before and twice after MPTP injection) significantly alleviated motor deficits in MPTP-induced PD mice model; the beneficial effects of QNP were abolished by GHS-R1a knockdown. We revealed that the GHS-R1a/D2R heterodimers could increase the protein levels of tyrosine hydroxylase in the SN of MPTP-induced PD mice model through the cAMP response element binding protein (CREB) signaling pathway, ultimately promoting dopamine synthesis and release. These results demonstrate a protective role for GHS-R1a/D2R heterodimers in dopaminergic neurons, providing evidence for the involvement of GHS-R1a in PD pathogenesis independent of ghrelin.
Collapse
|
6
|
Nawaratne V, McLaughlin SP, Mayer FP, Gichi Z, Mastriano A, Carvelli L. Prolonged Amphetamine Exposures Increase the Endogenous Human Dopamine Receptors 2 at the Cellular Membrane in Cells Lacking the Dopamine Transporter. Front Cell Neurosci 2021; 15:681539. [PMID: 34512264 PMCID: PMC8427050 DOI: 10.3389/fncel.2021.681539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
The dopamine 2 receptors (D2R) are G-protein coupled receptors expressed both in pre- and post-synaptic terminals that play an important role in mediating the physiological and behavioral effects of amphetamine (Amph). Previous studies have indicated that the effects of Amph at the D2R mainly rely on the ability of Amph to robustly increase extracellular dopamine through the dopamine transporter (DAT). This implies that the effects of Amph on D2R require the neurotransmitter dopamine. However, because of its lipophilic nature, Amph can cross the cellular membrane and thus potentially affect D2R expression independently of dopamine and DAT, e.g., in post-synaptic terminals. Here we used an in vitro system to study whether Amph affects total expression, cellular distribution, and function of the human D2R (hD2R), endogenously expressed in HEK293 cells. By performing Western blot experiments, we found that prolonged treatments with 1 or 50 μM Amph cause a significant decrease of the endogenous hD2R in cells transfected with human DAT (hDAT). On the other hand, in cells lacking expression of DAT, quantification of the hD2R-mediated changes in cAMP, biotinylation assays, Western blots and imaging experiments demonstrated an increase of hD2R at the cellular membrane after 15-h treatments with Amph. Moreover, imaging data suggested that barbadin, a specific inhibitor of the βarrestin-βadaptin interaction, blocked the Amph-induced increase of hD2R. Taken together our data suggest that prolonged exposures to Amph decrease or increase the endogenous hD2R at the cellular membrane in HEK293 cells expressing or lacking hDAT, respectively. Considering that this drug is often consumed for prolonged periods, during which tolerance develops, our data suggest that even in absence of DAT or dopamine, Amph can still alter D2R distribution and function.
Collapse
Affiliation(s)
- Vindhya Nawaratne
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Sean P. McLaughlin
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Felix P. Mayer
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Zayna Gichi
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Alyssa Mastriano
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
7
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
8
|
Keegan BM, Dreitzler AL, Sexton T, Beveridge TJR, Smith HR, Miller MD, Blough BE, Porrino LJ, Childers SR, Howlett AC. Chronic phenmetrazine treatment promotes D 2 dopaminergic and α2-adrenergic receptor desensitization and alters phosphorylation of signaling proteins and local cerebral glucose metabolism in the rat brain. Brain Res 2021; 1761:147387. [PMID: 33631209 PMCID: PMC8552242 DOI: 10.1016/j.brainres.2021.147387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Phenmetrazine (PHEN) is a putative treatment for cocaine and psychostimulant recidivism; however, neurochemical changes underlying its activity have not been fully elucidated. We sought to characterize brain homeostatic adaptations to chronic PHEN, specifically on functional brain activity (local cerebral glucose utilization), G-Protein Coupled Receptor-stimulated G-protein activation, and phosphorylation of ERK1/2Thr202/Tyr204, GSK3βTyr216, and DARPP-32Thr34. Male Sprague-Dawley rats were implanted with sub-cutaneous minipumps delivering either saline (vehicle), acute (2-day) or chronic (14-day) low dose (25 mg/kg/day) or high dose (50 mg/kg/day) PHEN. Acute administration of high dose PHEN increased local cerebral glucose utilization measured by 2-[14C]-deoxyglucose uptake in basal ganglia and motor-related regions of the rat brain. However, chronically treated animals developed tolerance to these effects. To identify the neurochemical changes associated with PHEN's activity, we performed [35S]GTPγS binding assays on unfixed and immunohistochemistry on fixed coronal brain sections. Chronic PHEN treatment dose-dependently attenuated D2 dopamine and α2-adrenergic, but not 5-HT1A, receptor-mediated G-protein activation. Two distinct patterns of effects on pERK1/2 and pDARPP-32 were observed: 1) chronic low dose PHEN decreased pERK1/2, and also significantly increased pDARPP-32 levels in some regions; 2) acute and chronic PHEN increased pERK1/2, but chronic high dose PHEN treatment tended to decrease pDARPP-32. Chronic low dose, but not high dose, PHEN significantly reduced pGSK3β levels in several regions. Our study provides definitive evidence that extended length PHEN dosage schedules elicit distinct modes of neuronal acclimatization in cellular signaling. These pharmacodynamic modifications should be considered in drug development for chronic use.
Collapse
Affiliation(s)
- Bradley M Keegan
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Annie L Dreitzler
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Tammy Sexton
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Hilary R Smith
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Mack D Miller
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Linda J Porrino
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Steven R Childers
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
McCaffrey TA, St Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D, Battison E, Nigg JT. Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics 2020; 13:160. [PMID: 33115496 PMCID: PMC7594430 DOI: 10.1186/s12920-020-00808-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background A variety of DNA-based methods have been applied to identify genetic markers of attention deficit hyperactivity disorder (ADHD), but the connection to RNA-based gene expression has not been fully exploited. Methods Using well defined cohorts of discordant, monozygotic twins from the Michigan State University Twin Registry, and case-controlled ADHD cases in adolescents, the present studies utilized advanced single molecule RNA sequencing to identify expressed changes in whole blood RNA in ADHD. Multiple analytical strategies were employed to narrow differentially expressed RNA targets to a small set of potential biomarkers of ADHD.
Results RNA markers common to both the discordant twin study and case-controlled subjects further narrowed the putative targets, some of which had been previously associated with ADHD at the DNA level. The potential role of several differentially expressed genes, including ABCB5, RGS2, GAK, GIT1 and 3 members of the galactose metabolism pathway (GALE, GALT, GALK1) are substantiated by prior associations to ADHD and by established mechanistic connections to molecular pathways relevant to ADHD and behavioral control. Conclusions The convergence of DNA, RNA, and metabolic data suggests these may be promising targets for diagnostics and therapeutics in ADHD.
Collapse
Affiliation(s)
- Timothy A McCaffrey
- Division of Genomic Medicine, Department of Medicine, The George Washington University, 2300 Eye St., Washington, DC, 20037, USA. .,The St. Laurent Institute, Vancouver, WA, USA.
| | | | - Dmitry Shtokalo
- The St. Laurent Institute, Vancouver, WA, USA.,A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia.,AcademGene, LLC, Novosibirsk, Russia
| | - Denis Antonets
- A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia.,AcademGene, LLC, Novosibirsk, Russia
| | | | | | | | - Joel T Nigg
- Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
11
|
Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020; 443:131-139. [PMID: 32730947 DOI: 10.1016/j.neuroscience.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
The brain opioid system plays an important role in cocaine reward. Altered signaling in the opioid system by chronic cocaine exposure contributes to cocaine-seeking and taking behavior. The current study investigated concurrent changes in the gene expression of multiple components in rat brain opioid system following cocaine self-administration. Animals were limited to 40 infusions (1.5 mg/kg/infusion) within 6 h per day for five consecutive days. We then examined the mRNA levels of opioid receptors including mu (Oprm), delta (Oprd), and kappa (Oprk), and their endogenous opioid peptide precursors including proopiomelanocortin (Pomc), proenkephalin (Penk), prodynorphin (Pdyn) in the dorsal striatum (CPu) and the prefrontal cortex (PFC) 18 h after the last cocaine infusion. We found that cocaine self-administration significantly increased the mRNA levels of Oprm and Oprd in both the CPu and PFC, but had no effect on Oprk mRNA levels in either brain region. Moreover, cocaine had a greater influence on the mRNA levels of opioid peptide precursors in rat CPu than in the PFC. In the CPu, cocaine self-administration significantly increased the mRNA levels of Penk and Pdyn and abolished the mRNA levels of Pomc. In the PFC, cocaine self-administration only increased Pdyn mRNA levels without changing the mRNA levels of Pomc and Penk. These data suggest that cocaine self-administration influences the expression of multiple genes in the brain opioid system, and the concurrent changes in these targets may underlie cocaine-induced reward and habitual drug-seeking behavior.
Collapse
|
12
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
14
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
15
|
Thibeault KC, Kutlu MG, Sanders C, Calipari ES. Cell-type and projection-specific dopaminergic encoding of aversive stimuli in addiction. Brain Res 2019; 1713:1-15. [PMID: 30580012 PMCID: PMC6506354 DOI: 10.1016/j.brainres.2018.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/02/2023]
Abstract
Drug addiction is a major public health concern across the world for which there are limited treatment options. In order to develop new therapies to correct the behavioral deficits that result from repeated drug use, we need to understand the neural circuit dysfunction that underlies the pathophysiology of the disorder. Because the initial reinforcing effects of drugs are dependent on increases in dopamine in reward-related brain regions such as the mesolimbic dopamine pathway, a large focus of addiction research has centered on the dysregulation of this system and its control of positive reinforcement and motivation. However, in addition to the processing of positive, rewarding stimuli, there are clear deficits in the encoding and valuation of information about potential negative outcomes and how they control decision making and motivation. Further, aversive stimuli can motivate or suppress behavior depending on the context in which they are encountered. We propose a model where rewarding and aversive information guides the execution of specific motivated actions through mesocortical and mesolimbic dopamine acting on D1- and D2- receptor containing neuronal populations. Volitional drug exposure alters the processing of rewarding and aversive stimuli through remodeling of these dopaminergic circuits, causing maladaptive drug seeking, self-administration in the face of negative consequences, and drug craving. Together, this review discusses the dysfunction of the circuits controlling different types of aversive learning as well as how these guide specific discrete behaviors, and provides a conceptual framework for how they should be considered in preclinical addiction models.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Munir Gunes Kutlu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christina Sanders
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, Hashemi P, Herborg F, Rickhag M, Chen H, Gether U, Wallace MT, Galli A. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest 2019; 129:3407-3419. [PMID: 31094705 DOI: 10.1172/jci127411] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The precise regulation of synaptic dopamine (DA) content by the dopamine transporter (DAT) ensures the phasic nature of the DA signal, which underlies the ability of DA to encode reward prediction error, thereby driving motivation, attention, and behavioral learning. Disruptions to the DA system are implicated in a number of neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD) and, more recently, Autism Spectrum Disorder (ASD). An ASD-associated de novo mutation in the SLC6A3 gene resulting in a threonine to methionine substitution at site 356 (DAT T356M) was recently identified and has been shown to drive persistent reverse transport of DA (i.e. anomalous DA efflux) in transfected cells and to drive hyperlocomotion in Drosophila melanogaster. A corresponding mutation in the leucine transporter, a DAT-homologous transporter, promotes an outward-facing transporter conformation upon substrate binding, a conformation possibly underlying anomalous dopamine efflux. Here we investigated in vivo the impact of this ASD-associated mutation on DA signaling and ASD-associated behaviors. We found that mice homozygous for this mutation display impaired striatal DA neurotransmission and altered DA-dependent behaviors that correspond with some of the behavioral phenotypes observed in ASD.
Collapse
Affiliation(s)
| | - Jenny I Aguilar
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heinrich Jg Matthies
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fiona E Harrison
- Vanderbilt University Brain Institute, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kyle E Bundschuh
- Vanderbilt University Brain Institute, Nashville, Tennessee, USA
| | - Alyssa West
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hao Chen
- DRI Biosciences Corp., Frederick, Maryland, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, Tennessee, USA.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Zestos AG, Carpenter C, Kim Y, Low MJ, Kennedy RT, Gnegy ME. Ruboxistaurin Reduces Cocaine-Stimulated Increases in Extracellular Dopamine by Modifying Dopamine-Autoreceptor Activity. ACS Chem Neurosci 2019; 10:1960-1969. [PMID: 30384585 DOI: 10.1021/acschemneuro.8b00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cocaine is a highly abused drug, and cocaine addiction affects millions of individuals worldwide. Cocaine blocks normal uptake function at the dopamine transporter (DAT), thus increasing extracellular dopamine. Currently, no chemical therapies are available to treat cocaine abuse. Previous works showed that the selective inhibitors of protein kinase Cβ (PKCβ), enzastaurin and ruboxistaurin, attenuate dopamine overflow and locomotion stimulated by another psychostimulant drug, amphetamine. We now test if ruboxistaurin similarly affects cocaine action. Perfusion of 1 μM ruboxistaurin directly into the core of the nucleus accumbens via retrodialysis reduced cocaine-stimulated increases in dopamine overflow, measured using microdialysis sampling, with simultaneous reductions in locomotor behavior. Because cocaine activity is highly regulated by dopamine autoreceptors, we examined whether ruboxistaurin was acting at the level of the D2 autoreceptor. Perfusion of 5 μM raclopride, a selective D2-like receptor antagonist, before addition of ruboxistaurin, abrogated the effect of ruboxistaurin on cocaine-stimulated dopamine overflow and hyperlocomotion. Further, ruboxistaurin was inactive against cocaine-stimulated locomotor activity in mice with a genetic deletion in D2 receptors as compared to wild-type mice. In contrast, blockade or deletion of dopamine D2 receptors did not abolish the attenuating effect of ruboxistaurin on amphetamine-stimulated activities. Therefore, the inhibition of PKCβ reduces dopamine overflow and locomotor activity stimulated by both cocaine and amphetamine, but the mechanism of action differs for each stimulant. These data suggest that inhibition of PKCβ would serve as a target to reduce the abuse of either amphetamine or cocaine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry and Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | | | | | | | | | | |
Collapse
|
18
|
Xin W, Schuebel KE, Jair KW, Cimbro R, De Biase LM, Goldman D, Bonci A. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology 2019; 44:344-355. [PMID: 30054584 PMCID: PMC6300565 DOI: 10.1038/s41386-018-0151-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
Abstract
Astrocytes are ubiquitous CNS cells that support tissue homeostasis through ion buffering, neurotransmitter recycling, and regulation of CNS vasculature. Yet, despite the essential functional roles they fill, very little is known about the physiology of astrocytes in the ventral midbrain, a region that houses dopamine-releasing neurons and is critical for reward learning and motivated behaviors. Here, using a combination of whole-transcriptome sequencing, histology, slice electrophysiology, and calcium imaging, we performed the first functional and molecular profiling of ventral midbrain astrocytes and observed numerous differences between these cells and their telencephalic counterparts, both in their gene expression profile and in their physiological properties. Ventral midbrain astrocytes have very low membrane resistance and inward-rectifying potassium channel-mediated current, and are extensively coupled to surrounding oligodendrocytes through gap junctions. They exhibit calcium responses to glutamate but are relatively insensitive to norepinephrine. In addition, their calcium activity can be dynamically modulated by dopamine D2 receptor signaling. Taken together, these data indicate that ventral midbrain astrocytes are physiologically distinct from astrocytes in cortex and hippocampus. This work provides new insights into the extent of functional astrocyte heterogeneity within the adult brain and establishes the foundation for examining the impact of regional astrocyte differences on dopamine neuron function and susceptibility to degeneration.
Collapse
Affiliation(s)
- Wendy Xin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Kornel E. Schuebel
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Kam-wing Jair
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Raffaello Cimbro
- 0000 0001 2171 9311grid.21107.35Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224 USA
| | - Lindsay M. De Biase
- 0000 0001 2297 5165grid.94365.3dIntramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224 USA
| | - David Goldman
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC, USA. .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization. Proc Natl Acad Sci U S A 2018; 115:E9479-E9488. [PMID: 30228121 PMCID: PMC6176583 DOI: 10.1073/pnas.1807788115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D2R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse's sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.
Collapse
|
20
|
Runegaard AH, Sørensen AT, Fitzpatrick CM, Jørgensen SH, Petersen AV, Hansen NW, Weikop P, Andreasen JT, Mikkelsen JD, Perrier JF, Woldbye D, Rickhag M, Wortwein G, Gether U. Locomotor- and Reward-Enhancing Effects of Cocaine Are Differentially Regulated by Chemogenetic Stimulation of Gi-Signaling in Dopaminergic Neurons. eNeuro 2018; 5:ENEURO.0345-17.2018. [PMID: 29938215 PMCID: PMC6011418 DOI: 10.1523/eneuro.0345-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.
Collapse
Affiliation(s)
- Annika H. Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Andreas T. Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ciarán M. Fitzpatrick
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Søren H. Jørgensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Anders V. Petersen
- Neuronal Signaling Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Nikolaj W. Hansen
- Neuronal Signaling Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Jesper T. Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, DK-2100, Denmark
| | - Jean-Francois Perrier
- Neuronal Signaling Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - David Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Gitta Wortwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
21
|
Chen R, McIntosh S, Hemby SE, Sun H, Sexton T, Martin TJ, Childers SR. High and low doses of cocaine intake are differentially regulated by dopamine D2 receptors in the ventral tegmental area and the nucleus accumbens. Neurosci Lett 2018; 671:133-139. [PMID: 29454035 DOI: 10.1016/j.neulet.2018.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) in the ventral tegmental area (VTA) and the nucleus accumbens (NAc) are associated with vulnerability to addiction; however, whether D2Rs in these two brain regions play differential roles in regulation of drug intake is unknown. Here, we compared the effect of decreased mRNA level of Drd2 in each region on cocaine self-administration in a dose-response function. Drd2 mRNA levels in rat VTA or NAc were knocked down by bilateral microinjection of lentivirus coding shRNAs against rat Drd2 or scrambled shRNA. Drd2 knockdown was persistent and stable between 20 and 90 days after lentiviral infection. Animals were trained to self-administer cocaine 20 days after Drd2 shRNA treatment. Compared to scrambled shRNA treated rats, Drd2 knockdown in the VTA increased cocaine self-administration at all tested doses (0.02-0.56 mg/kg/infusion) producing an upward shift (both the ascending and descending limb) in the dose-response curve of cocaine self-administration. In contrast, intra-NAc knockdown increased cocaine self-administration only on the ascending limb of the dose-response curve (0.02-0.07 mg/kg/infusion). These data suggest that D2Rs in the VTA, not in the NAc, regulate high-dose cocaine intake. The present study not only demonstrates that low levels of D2Rs in either region increase low doses of cocaine intake, but also reveals for the first time their dissociable roles in limiting high doses of cocaine self-administration.
Collapse
Affiliation(s)
- R Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Center for Molecular Signaling, Wake Forest University, Winston Salem, NC 27109, United States.
| | - S McIntosh
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - S E Hemby
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - H Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - T Sexton
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - T J Martin
- Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| | - S R Childers
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States
| |
Collapse
|
22
|
Melchior JR, Jones SR. Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 2017; 85:93-104. [PMID: 28942046 PMCID: PMC5698100 DOI: 10.1016/j.mcn.2017.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023] Open
Abstract
Dopamine signaling encodes reward learning and motivated behavior through modulation of synaptic signaling in the nucleus accumbens, and aberrations in these processes are thought to underlie obsessive behaviors associated with alcohol abuse. The nucleus accumbens is divided into core and shell sub-regions with overlapping but also divergent contributions to behavior. Here we optogenetically targeted dopamine projections to the accumbens allowing us to isolate stimulation of dopamine terminals ex vivo. We applied 5 pulse (phasic) light stimulations to probe intrinsic differences in dopamine release parameters across regions. Also, we exposed animals to 4weeks of chronic intermittent ethanol vapor and measured phasic release. We found that initial release probability, uptake rate and autoreceptor inhibition were greater in the accumbens core compared to the shell, yet the shell showed greater phasic release ratios. Following chronic ethanol, uptake rates were increased in the core but not the shell, suggesting region-specific neuronal adaptations. Conversely, kappa opioid receptor function was upregulated in both regions to a similar extent, suggesting a local mechanism of kappa opioid receptor regulation that is generalized across the nucleus accumbens. These data suggest that dopamine axons in the nucleus accumbens core and shell display differences in intrinsic release parameters, and that ethanol-induced adaptations to dopamine neuron terminal fields may not be homogeneous. Also, chronic ethanol exposure induces an upregulation in kappa opioid receptor function, providing a mechanism for potential over-inhibition of accumbens dopamine signaling which may negatively impact downstream synaptic function and ultimately bias choice towards previously reinforced alcohol use behaviors.
Collapse
Affiliation(s)
- James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
23
|
Eldeeb K, Leone-Kabler S, Howlett AC. Mouse Neuroblastoma CB 1 Cannabinoid Receptor-Stimulated [ 35S]GTPɣS Binding: Total and Antibody-Targeted Gα Protein-Specific Scintillation Proximity Assays. Methods Enzymol 2017; 593:1-21. [PMID: 28750799 PMCID: PMC6535336 DOI: 10.1016/bs.mie.2017.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are important regulators of cellular signaling functions and therefore are a major target for drug discovery. The CB1 cannabinoid receptor is among the most highly expressed GPCRs in neurons, where it regulates many differentiated neuronal functions. One model system for studying the biochemistry of neuronal responses is the use of neuroblastoma cells originating from the C1300 tumor in the A/J mouse, including cloned cell lines NS20, N2A, N18TG2, N4TG1, and N1E-115, and various immortalized hybrids of neurons with N18TG2 cells. GPCR signal transduction is mediated through interaction with multiple types and subtypes of G proteins that transduce the receptor stimulus to effectors. The [35S]GTPɣS assay provides a valuable pharmacological method to evaluate efficacy and potency in the first step in GPCR signaling. Here, we present detailed protocols for the [35S]GTPɣS-binding assay to measure the total G protein binding and the antibody-targeted scintillation proximity assay to measure specific Gα proteins in neuroblastoma cell membrane preparations. This chapter presents step-by-step methods from cell culture, membrane preparation, assay procedures, and data analysis.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Wake Forest School of Medicine, Winston-Salem, NC, United States; Campbell University School of Osteopathic Medicine, Lillington, NC, United States; AL-Azhar Faculty of Medicine, New Damietta, Egypt.
| | | | - Allyn C Howlett
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
24
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Heightened Dopaminergic Response to Amphetamine at the D 3 Dopamine Receptor in Methamphetamine Users. Neuropsychopharmacology 2016; 41:2994-3002. [PMID: 27353309 PMCID: PMC5101546 DOI: 10.1038/npp.2016.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
Abstract
Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D3 receptor levels in stimulant users prompting the view that D3 antagonism may help prevent relapse. Here we tested whether a 'blunted' response to amphetamine in methamphetamine (MA) users extends to D3-rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D3-preferring probe [11C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [11C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D3-rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported 'drug wanting'. We did not observe a 'blunted' dopamine response to amphetamine in D2-rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [11C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal 'D3-areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction.
Collapse
|
26
|
Ding ZM, Ingraham CM, Rodd ZA, McBride WJ. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats. Neuropharmacology 2016; 109:41-48. [PMID: 27260326 PMCID: PMC4970907 DOI: 10.1016/j.neuropharm.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Cynthia M Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Koo JW, Labonté B, Engmann O, Calipari ES, Juarez B, Lorsch Z, Walsh JJ, Friedman AK, Yorgason JT, Han MH, Nestler EJ. Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress-Induced Depressive Behaviors. Biol Psychiatry 2016; 80:469-478. [PMID: 26858215 PMCID: PMC4909591 DOI: 10.1016/j.biopsych.2015.12.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous work has shown that chronic social defeat stress (CSDS) induces increased phasic firing of ventral tegmental area (VTA) dopamine (DA) neurons that project to the nucleus accumbens (NAc) selectively in mice that are susceptible to the deleterious effects of the stress. In addition, acute optogenetic phasic stimulation of these neurons promotes susceptibility in animals exposed to acute defeat stress. These findings are paradoxical, as increased DA signaling in NAc normally promotes motivation and reward, and the influence of chronic phasic VTA firing in the face of chronic stress is unknown. METHODS We used CSDS with repeated optogenetic activation and pharmacologic manipulations of the mesolimbic VTA-NAc pathway to examine the role of brain-derived neurotrophic factor (BDNF) and DA signaling in depressive-like behaviors. We measured BDNF protein expression and DA release in this model. RESULTS Pharmacologic blockade of BDNF-tyrosine receptor kinase B (TrkB) signaling, but not DA signaling, in NAc prevented CSDS-induced behavioral abnormalities. Chronic optogenetic phasic stimulation of the VTA-NAc circuit during CSDS exacerbated the defeat-induced behavioral symptoms, and these aggravated symptoms were also normalized by BDNF-TrkB blockade in NAc. The aggravated behavioral deficits induced by phasic stimulation of the VTA-NAc pathway were blocked as well by local knockdown of BDNF in VTA. CONCLUSIONS These findings show that BDNF-TrkB signaling, rather than DA signaling, in the VTA-NAc circuit is crucial for facilitating depressive-like outcomes after CSDS and they establish BDNF-TrkB signaling as a pathologic mechanism during periods of chronic stress.
Collapse
Affiliation(s)
- Ja Wook Koo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Neural development and disease, Korea Brain Research Institute, Daegu 700-300, Republic of Korea
| | - Benoit Labonté
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivia Engmann
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S. Calipari
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Juarez
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary Lorsch
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica J. Walsh
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allyson K. Friedman
- Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan T. Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ming-Hu Han
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Pharmacology and Systems Therapeutics, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence to: Eric J. Nestler, MD., Ph.D., Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
28
|
Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J Chem Neuroanat 2016; 83-84:50-58. [PMID: 27585851 DOI: 10.1016/j.jchemneu.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Although best known as a selective estrogen receptor modulator (SERM), tamoxifen is a drug with a wide range of activities. Tamoxifen has demonstrated some efficacy has a therapeutic for bipolar mania and is believed to exert these effects through inhibition of protein kinase C (PKC). As the symptoms of amphetamine treatment in rodents are believed to mimic the symptoms of a manic episode, many of the preclinical studies for this indication have demonstrated that tamoxifen inhibits amphetamine action. The amphetamine-induced increase in extracellular dopamine which gives rise to the 'manic' effects is due to interaction of amphetamine with the dopamine transporter. We and others have demonstrated that PKC reduces amphetamine-induced reverse transport through the dopamine transporter. In this review, we will outline the actions of tamoxifen as a SERM and further detail another known action of tamoxifen-inhibition of PKC. We will summarize the literature showing how tamoxifen affects amphetamine action. Finally, we will present our hypothesis that tamoxifen, or an analog, could be used therapeutically to reduce amphetamine abuse in addition to treating mania.
Collapse
Affiliation(s)
- Sarah Mikelman
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Natalie Mardirossian
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Margaret E Gnegy
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States.
| |
Collapse
|
29
|
Luessen DJ, Hinshaw TP, Sun H, Howlett AC, Marrs G, McCool BA, Chen R. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology 2016; 110:297-307. [PMID: 27528587 DOI: 10.1016/j.neuropharm.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Tyler P Hinshaw
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
30
|
Salvatore MF, Calipari ES, Jones SR. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice. ACS Chem Neurosci 2016; 7:941-51. [PMID: 27124386 DOI: 10.1021/acschemneuro.6b00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department
of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Erin S. Calipari
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
31
|
Abstract
Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres.
Collapse
|
32
|
Sun H, Calipari ES, Beveridge TJR, Jones SR, Chen R. The brain gene expression profile of dopamine D2/D3 receptors and associated signaling proteins following amphetamine self-administration. Neuroscience 2015; 307:253-61. [PMID: 26321241 DOI: 10.1016/j.neuroscience.2015.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 01/11/2023]
Abstract
Persistent neuroadaptations following chronic psychostimulant exposure include reduced striatal dopamine D2 receptor (D2R) levels. The signaling of D2Rs is initiated by Gαi/o proteins and terminated by regulator of G protein signaling (RGS) proteins. The purpose of this study is to examine the association of the drug taking behavior and gene expression profile of D2/D3Rs, and their associated signaling proteins in the ventral tegmental area (VTA) and nucleus accumbens (NAc) using a rodent model of amphetamine (AMPH) self-administration. Rats were allowed to self-administer AMPH (0.187 mg/kg/infusion for a maximum of 40 injections in 6h daily sessions) for 5 days during which rats showed an escalated rate of AMPH intake across days. AMPH self-administration induced profound brain region-dependent alterations of the targeted genes. There was a positive correlation of the messenger ribonucleic acid (mRNA) levels of RGS10 between the VTA and the NAc in the control animals, which was abolished by AMPH self-administration. AMPH self-administration also produced a negative correlation of the mRNA levels of RGS7 and RGS19 between the two brain regions, which was not present in the control group. Furthermore, AMPH taking behavior was associated with changes in certain gene expression levels. The mRNA levels of RGS2 and RGS4 in both the VTA and NAc were positively correlated with the rate of AMPH intake. Additionally, the rate of AMPH intake was also positively correlated with RGS10 and negatively correlated with RGS17 and the short form of D2Rs mRNA level in the VTA. Although there were significant changes in the mRNA levels of RGS7 and RGS8 in the NAc, none of these measures were correlated with the rate of AMPH intake. The present study suggested that short-term AMPH self-administration produced pronounced changes in the VTA that were more associated with AMPH taking behavior than changes in the NAc.
Collapse
Affiliation(s)
- H Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - E S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - T J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - S R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
33
|
de Jong JW, Roelofs TJM, Mol FMU, Hillen AEJ, Meijboom KE, Luijendijk MCM, van der Eerden HAM, Garner KM, Vanderschuren LJMJ, Adan RAH. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation. Neuropsychopharmacology 2015; 40:2085-95. [PMID: 25735756 PMCID: PMC4613606 DOI: 10.1038/npp.2015.60] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans. Moreover, knockout of the gene encoding the D2R receptor (Drd2) in dopamine neurons has been shown to enhance the locomotor response to cocaine in mice. Therefore, we here tested the hypothesis that decreasing D2R expression in the VTA of adult rats, using shRNA knockdown, promotes addiction-like behavior in rats responding for cocaine or palatable food. Rats with decreased VTA D2R expression showed markedly increased motivation for both sucrose and cocaine under a progressive ratio schedule of reinforcement, but the acquisition or maintenance of cocaine self-administration were not affected. They also displayed enhanced cocaine-induced locomotor activity, but no change in basal locomotion. This robust increase in incentive motivation was behaviorally specific, as we did not observe any differences in fixed ratio responding, extinction responding, reinstatement or conditioned suppression of cocaine, and sucrose seeking. We conclude that VTA D2R knockdown results in increased incentive motivation, but does not directly promote other aspects of addiction-like behavior.
Collapse
Affiliation(s)
- Johannes W de Jong
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theresia J M Roelofs
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frédérique M U Mol
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne E J Hillen
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina E Meijboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harrie A M van der Eerden
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keith M Garner
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, STR.4.205, Universiteitweg 100, 3584 CG Utrecht, The Netherlands, Tel: +887568517, E-mail:
| |
Collapse
|
34
|
Ferris MJ, Calipari ES, Rose JH, Siciliano CA, Sun H, Chen R, Jones SR. A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration. Neuropsychopharmacology 2015; 40:1826-36. [PMID: 25689882 PMCID: PMC4839519 DOI: 10.1038/npp.2015.45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 02/05/2023]
Abstract
There are ∼ 1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy.
Collapse
Affiliation(s)
- Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cody A Siciliano
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA, Tel: +1 336 716 5504, Fax: +1 336 716 8501, E-mail:
| |
Collapse
|
35
|
Morales AA, Kohno M, Robertson CL, Dean AC, Mandelkern MA, London ED. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users. Mol Psychiatry 2015; 20:764-71. [PMID: 25896164 PMCID: PMC4440838 DOI: 10.1038/mp.2015.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.
Collapse
Affiliation(s)
- Angelica A. Morales
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Chelsea L. Robertson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA
| | - Andy C. Dean
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| | - Mark A. Mandelkern
- Department of Physics, University of California Irvine, Irvine, CA,Veterans Administration of Greater Los Angeles Health System, Los Angeles CA
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA,Veterans Administration of Greater Los Angeles Health System, Los Angeles CA
| |
Collapse
|
36
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
37
|
Sharpe AL, Varela E, Bettinger L, Beckstead MJ. Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons. Int J Neuropsychopharmacol 2015; 18:pyu073. [PMID: 25522412 PMCID: PMC4376542 DOI: 10.1093/ijnp/pyu073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. METHODS Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. RESULTS In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015-0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. CONCLUSIONS Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (Dr Sharpe, L. Bettinger); Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Sharpe, E. Varela, and Dr Beckstead); Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Beckstead)
| | - Erika Varela
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (Dr Sharpe, L. Bettinger); Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Sharpe, E. Varela, and Dr Beckstead); Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Beckstead)
| | - Lynne Bettinger
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (Dr Sharpe, L. Bettinger); Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Sharpe, E. Varela, and Dr Beckstead); Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Beckstead)
| | - Michael J Beckstead
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (Dr Sharpe, L. Bettinger); Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Sharpe, E. Varela, and Dr Beckstead); Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas (Dr Beckstead).
| |
Collapse
|
38
|
Siciliano CA, Calipari ES, Ferris MJ, Jones SR. Adaptations of presynaptic dopamine terminals induced by psychostimulant self-administration. ACS Chem Neurosci 2015; 6:27-36. [PMID: 25491345 PMCID: PMC4304501 DOI: 10.1021/cn5002705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/04/2014] [Indexed: 12/27/2022] Open
Abstract
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction.
Collapse
Affiliation(s)
- Cody A. Siciliano
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Erin S. Calipari
- Fishberg
Department of Neuroscience, Icahn School
of Medicine at Mount Sinai, New
York, New York 10029, United States
| | - Mark J. Ferris
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
39
|
Calipari ES, Jones SR. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration. Neuropharmacology 2014; 82:1-10. [PMID: 24632529 DOI: 10.1016/j.neuropharm.2014.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|