1
|
Uzungil V, Luza S, Opazo CM, Mees I, Li S, Ang CS, Williamson NA, Bush AI, Hannan AJ, Renoir T. Phosphoproteomics implicates glutamatergic and dopaminergic signalling in the antidepressant-like properties of the iron chelator deferiprone. Neuropharmacology 2024; 246:109837. [PMID: 38184274 DOI: 10.1016/j.neuropharm.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Lai CW, Chang CH. Pharmacological activation of the amygdala, but not single prolonged footshock-induced acute stress, interferes with cue-induced motivation toward food rewards in rats. Front Behav Neurosci 2023; 17:1252868. [PMID: 37781505 PMCID: PMC10538645 DOI: 10.3389/fnbeh.2023.1252868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
In the face of threats, animals adapt their behaviors to cope with the situation. Under such circumstances, irrelevant behaviors are usually suppressed. In this study, we examined whether food-seeking motivation would decrease under activation of the amygdala, an important nucleus in the regulation of stress response in the central nervous system, or after a physical acute stress session. In Experiment 1, we pharmacologically activated the basolateral nucleus (BLA) or the central nucleus of the amygdala (CeA) before a cue-induced reinstatement test in rats. Our results showed that activation of the BLA or the CeA abolished cue-induced motivation toward food rewards, while locomotor activity and free food intake were not affected. In Experiments 2 and 3, we further assessed anxiety and despair levels, as well as cue-induced reinstatement, after a single prolonged footshock-induced acute stress in rats. Behaviorally, acute stress did not affect anxiety level, despair level, or cue-induced motivation toward food rewards. Physiologically, there was no difference in cellular activities of the amygdala immediately after acute stress. To conclude, our results suggested that pharmacological activation of the amygdala decreased cue-induced motivation toward food reward. However, physiological acute stress did not immediately interfere with the negative emotions, motivation, or amygdala activities of the animals.
Collapse
Affiliation(s)
- Chien-Wen Lai
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Salin A, Dugast E, Lardeux V, Solinas M, Belujon P. The amygdala-ventral pallidum pathway contributes to a hypodopaminergic state in the ventral tegmental area during protracted abstinence from chronic cocaine. Br J Pharmacol 2023; 180:1819-1831. [PMID: 36645812 DOI: 10.1111/bph.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Incubation of craving, the progressive increase in drug seeking over the first weeks of abstinence, is associated with temporal changes during abstinence in the activity of several structures involved in drug-seeking behaviour. Decreases of dopamine (DA) release and DA neuronal activity (hypodopaminergic state) have been reported in the ventral tegmental area (VTA) during cocaine abstinence, but the mechanisms underlying these neuroadaptations are not well understood. We investigated the potential involvement of a VTA inhibiting circuit (basolateral amygdala [BLA]-ventral pallidum [VP] pathway) in the hypodopaminergic state associated with abstinence from chronic cocaine. EXPERIMENTAL APPROACH In a model of cocaine self-administration, we performed in vivo electrophysiological recordings of DA VTA neurons and BLA neurons from anaesthetised rats during early and protracted abstinence and evaluated the involvement of the BLA-VP pathway using a pharmacological approach. KEY RESULTS We found significant decreases in VTA DA population activity and significant increases in BLA activity after protracted but not after short-term abstinence from chronic cocaine. The decrease in VTA DA activity was restored by pharmacological inhibition of the activity of either the BLA or the VP, suggesting that these regions exert a negative influence on DA activity. CONCLUSION AND IMPLICATIONS Our study sheds new lights on neuroadaptations occurring during incubation of craving leading to relapse. In particular, we describe the involvement of the BLA-VP pathway in cocaine-induced decreases of DA activity in the VTA. This study adds important information about the specific brain network dysfunctions underlying hypodopaminergic activity during abstinence.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- Université de Rennes, Institut Numecan INRAE, INSERM, Rennes, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
4
|
Sabaroedin K, Tiego J, Fornito A. Circuit-Based Approaches to Understanding Corticostriatothalamic Dysfunction Across the Psychosis Continuum. Biol Psychiatry 2023; 93:113-124. [PMID: 36253195 DOI: 10.1016/j.biopsych.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms. A particular challenge is that CST circuits have undergone considerable evolutionary modification across mammals, complicating comparisons across species. Here, we consider preclinical models of CST dysfunction in psychosis and evaluate the degree to which they are supported by evidence from human resting-state functional magnetic resonance imaging studies conducted across the psychosis continuum, ranging from subclinical schizotypy to established schizophrenia. In partial support of some preclinical models, human studies indicate that dorsal CST and hippocampal-striatal functional dysconnectivity are apparent across the psychosis spectrum and may represent a vulnerability marker for psychosis. In contrast, midbrain dysfunction may emerge when symptoms warrant clinical assistance and may thus be a trigger for illness onset. The major difference between clinical and preclinical findings is the strong involvement of the dorsal CST in the former, consistent with an increasing prominence of this circuitry in the primate brain. We close by underscoring the need for high-resolution characterization of phenotypic heterogeneity in psychosis to develop a refined understanding of how the dysfunction of specific circuit elements gives rise to distinct symptom profiles.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Ahmad S, Rafiq H, Khan A, Tikmani P, Batool Z, Tabassum S, Arain F, Siddiqi S, Khaliq S, Amin F, Wasim M, Haider S. Ameliorative effects of half-dose saffron and chamomile combination on Psycho-endocrinological changes in a diabetic murine model. PLoS One 2022; 17:e0276236. [PMID: 36302045 PMCID: PMC9612524 DOI: 10.1371/journal.pone.0276236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetes mellitus is a chronic metabolic disorder with an increasing prevalence worldwide. Reduction in blood insulin level alters brain function by inducing oxidative stress with changes in dopamine and norepinephrine neurotransmission, ultimately leading to neuropsychological symptoms. The efficacy of currently available psychotropic drugs is not satisfactory. Therefore, this study was conducted to explore the beneficial effects of a combination of the natural herbs, saffron and chamomile, in treating diabetes and its resultant neuropsychological effects using a rodent model of diabetes mellitus. METHOD The rats were randomly divided in to eight groups (n = 10), healthy control (HC), diabetic control (DC) and six groups of diabetic rats treated with various concentrations and combinations of saffron and chamomile. Diabetic treatment groups individually received methanolic extract and water decoction of chamomile (30 mg/kg) and saffron (10mg/kg) and their combined half doses (saffron 5mg/kg and chamomile 15mg/kg) for two weeks. Open field test (OFT) and forced swim test (FST) were used to measure the anxiolytic and antidepressant effects of herbs, respectively. Finally, biochemical, and neurochemical estimations were made. RESULTS The present study suggests the therapeutic effects of herbs especially in co-administrated decoction, against diabetes with improved antioxidant profile and enhanced levels of dopamine and norepinephrine. Anxiolytic and antidepressant effects were evident with improvements in the OFT and FST. Examination of the cortex of the diabetic group revealed cellular damage and tangle formation, which indicates advanced stages of dementia. CONCLUSION This study shows that the use of a combination of saffron and chamomile improves diabetes control and reduces its related psychiatric effects.
Collapse
Affiliation(s)
- Saara Ahmad
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
- * E-mail: ,
| | - Hamna Rafiq
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Asra Khan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Prashant Tikmani
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Zehra Batool
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Dubai, United Arab Emirates
| | - Fazal Arain
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Salman Siddiqi
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Science, Arts and Technology, Karachi, Pakistan
| | - Faiq Amin
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Wasim
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Saida Haider
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Clueless about cues: the impact of reward-paired cues on decision making under uncertainty. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Danielsson K, Lagström O, Ericson M, Söderpalm B, Adermark L. Subregion-specific effects on striatal neurotransmission and dopamine-signaling by acute and repeated amphetamine exposure. Neuropharmacology 2021; 194:108638. [PMID: 34116108 DOI: 10.1016/j.neuropharm.2021.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Repeated administration of psychostimulants, such as amphetamine, is associated with a progressive increased sensitivity to some of the drug's effects, but tolerance towards others. We hypothesized that these adaptations in part could be linked to differential effects by amphetamine on dopaminergic signaling in striatal subregions. To test this theory, acute and long-lasting changes in dopaminergic neurotransmission were assessed in the nucleus accumbens (nAc) and the dorsomedial striatum (DMS) following amphetamine exposure in Wistar rats. By means of in vivo microdialysis, dopamine release induced by local administration of amphetamine was monitored in nAc and DMS of amphetamine naïve rats, and in rats subjected to five days of systemic amphetamine administration (2.0 mg/kg/day) followed by two weeks of withdrawal. In parallel, ex vivo electrophysiology was conducted to outline the effect of acute and repeated amphetamine exposure on striatal neurotransmission. The data shows that amphetamine increases dopamine in a concentration-dependent and subregion-specific manner. Furthermore, repeated administration of amphetamine followed by abstinence resulted in a selective decrease in baseline dopamine in the nAc, and a potentiation of the relative dopamine elevation after systemic amphetamine in the same area. Ex vivo electrophysiology demonstrated decreased excitatory neurotransmission in brain slices from amphetamine-treated animals, and a nAc selective shift in the responsiveness to the dopamine D2-receptor agonist quinpirole. These selective effects on dopamine signaling seen in striatal subregions after repeated drug exposure may partially explain why tolerance develops to the rewarding effects, but not towards the psychosis inducing properties of amphetamine.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oona Lagström
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Sweden.
| |
Collapse
|
8
|
Cao G, Meng G, Zhu L, Zhu J, Dong N, Zhou X, Zhang S, Zhang Y. Susceptibility to chronic immobilization stress-induced depressive-like behaviour in middle-aged female mice and accompanying changes in dopamine D1 and GABA A receptors in related brain regions. Behav Brain Funct 2021; 17:2. [PMID: 33863350 PMCID: PMC8052654 DOI: 10.1186/s12993-021-00175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/12/2021] [Indexed: 03/12/2023] Open
Abstract
Background Middle-aged females, especially perimenopausal females, are vulnerable to depression, but the potential mechanism remains unclear. Dopaminergic and GABAergic system dysfunction is involved in the pathophysiology of depression. In the current study, we used 2-month-old and 11-month-old C57BL/6 mice as young and middle-aged mice, respectively. Chronic immobilization stress (CIS) was used to induce depressive-like behaviour, and the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess these behaviours. We then measured the mRNA levels of dopamine receptor D1 (DRD1) and the GABAA receptors GABRA1, GABRB2 and GABRG2 in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Results We found that immobility time in the FST was significantly increased in the middle-aged mice compared with the middle-aged control mice and the young mice. In addition, the preference for sucrose water was reduced in the middle-aged mice compared with the middle-aged control mice. However, CIS did not induce obvious changes in the performance of the young mice in our behavioural tests. Moreover, the middle-aged mice exhibited equal immobility times as the young mice in the absence of stress. Decreases in the mRNA levels of DRD1, GABRA1, and GABRB2 but not GABRG2 were found in the NAc and PFC in the middle-aged mice in the absence of stress. Further decreases in the mRNA levels of DRD1 in the NAc and GABRG2 in the NAc and PFC were found in the middle-aged mice subjected to CIS. Conclusions Our results suggested that ageing could not directly induce depression in the absence of stress. However, ageing could induce susceptibility to depression in middle-aged mice in the presence of stress. CIS-induced decreases in DRD1 and GABRG2 levels might be involved in the increase in susceptibility to depression in this context.
Collapse
Affiliation(s)
- Guofen Cao
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Gaili Meng
- Northwest Women and Children Hospital, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Nan Dong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaolan Zhou
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Sumei Zhang
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Yongai Zhang
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Laksmidewi AAAP, Soejitno A. Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. J Neural Transm (Vienna) 2021; 128:615-630. [PMID: 33712975 PMCID: PMC8105194 DOI: 10.1007/s00702-021-02326-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 01/11/2023]
Abstract
Endocannabinoid system (ECS) has been identified ever since cannabinoid, an active substance of Cannabis, was known to interact with endogenous cannabinoid (endocannabinoid/eCB) receptors. It later turned out that eCB was more intricate than previously thought. It has a pervasive role and exerts a multitude of cellular signaling mechanisms, regulating various physiological neurotransmission pathways in the human brain, including the dopaminergic (DA) system. eCB roles toward DA system were robust, clearly delineated, and reproducible with respect to physiological as well as pathological neurochemical and neurobehavioral manifestations of DA system, particularly those involving the nigrostriatal and mesocorticolimbic pathways. The eCB–DA system regulates the basics in the Maslow’s pyramid of hierarchy of needs required for individual survival such as food and sexual activity for reproductive purpose to those of higher needs in the pyramid, including self-actualization behaviors leading to achievement and reward (e.g., academic- and/or work-related performance and achievements). It is, thus, interesting to specifically discuss the eCB–DA system, not only on the molecular level, but also its tremendous potential to be developed as a future therapeutic strategy for various neuropsychiatric problems, including obesity, drug addiction and withdrawal, pathological hypersexuality, or low motivation behaviors.
Collapse
Affiliation(s)
- A A A Putri Laksmidewi
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia.
| | - Andreas Soejitno
- Neurobehavioral and Cognitive Division, Neurology Department, Faculty of Medicine, Udayana University/Sanglah Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
10
|
Goldstein Ferber S, Weller A, Yadid G, Friedman A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico-Striatal Loop That Are Implicated in Major Depression. Int J Mol Sci 2021; 22:1867. [PMID: 33668515 PMCID: PMC7918043 DOI: 10.3390/ijms22041867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Aron Weller
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2020; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Salin A, Lardeux V, Solinas M, Belujon P. Protracted Abstinence From Extended Cocaine Self-Administration Is Associated With Hypodopaminergic Activity in the VTA but Not in the SNc. Int J Neuropsychopharmacol 2020; 24:499-504. [PMID: 33305794 PMCID: PMC8278795 DOI: 10.1093/ijnp/pyaa096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The chronic relapsing nature of cocaine addiction suggests that chronic cocaine exposure produces persistent neuroadaptations that may be temporally and regionally dynamic in brain areas such as the dopaminergic (DA) system. We have previously shown altered metabolism of DA-target structures, the ventral and dorsal striatum, between early and late abstinence. However, specific changes within the midbrain DA system were not investigated. Here, we investigated potential time- and region-specific changes of activity in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) in rats that had extended or limited access to cocaine and later underwent a period of abstinence. We found that DA activity is decreased only in the VTA in rats with extended access to cocaine, with no changes in SNc DA activity. These changes in VTA DA activity may participate in the negative emotional state and the incubation of drug seeking that occur during abstinence from cocaine.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France,Correspondence: Pauline Belujon, PhD, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Université de Poitiers, Pôle Biologie Santé, Bâtiment B36,1, rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France (; )
| |
Collapse
|
13
|
Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatry 2020; 11:613. [PMID: 32719622 PMCID: PMC7350524 DOI: 10.3389/fpsyt.2020.00613] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the dopamine system is central to many models of the pathophysiology of psychosis in schizophrenia. However, emerging evidence suggests that this dysregulation is driven by the disruption of upstream circuits that provide afferent control of midbrain dopamine neurons. Furthermore, stress can profoundly disrupt this regulatory circuit, particularly when it is presented at critical vulnerable prepubertal time points. This review will discuss the dopamine system and the circuits that regulate it, focusing on the hippocampus, medial prefrontal cortex, thalamic nuclei, and medial septum, and the impact of stress. A greater understanding of the regulation of the dopamine system and its disruption in schizophrenia may provide a more complete neurobiological framework to interpret clinical findings and develop novel treatments.
Collapse
Affiliation(s)
- Susan F. Sonnenschein
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Bray B, Clement KA, Bachmeier D, Weber MA, Forster GL. Corticosterone in the ventral hippocampus differentially alters accumbal dopamine output in drug-naïve and amphetamine-withdrawn rats. Neuropharmacology 2020; 165:107924. [PMID: 31881169 DOI: 10.1016/j.neuropharm.2019.107924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Dysregulation in glucocorticoid stress and accumbal dopamine reward systems can alter reward salience to increase motivational drive in control conditions while contributing to relapse during drug withdrawal. Amphetamine withdrawal is associated with dysphoria and stress hypersensitivity that may be mediated, in part, by enhanced stress-induced corticosterone observed in the ventral hippocampus. Electrical stimulation of the ventral hippocampus enhances accumbal shell dopamine release, establishing a functional connection between these two regions. However, the effects of ventral hippocampal corticosterone on this system are unknown. To address this, a stress-relevant concentration of corticosterone (0.24ng/0.5 μL) or vehicle were infused into the ventral hippocampus of urethane-anesthetized adult male rats in control and amphetamine withdrawn conditions. Accumbal dopamine output was assessed with in vivo chronoamperometry. Corticosterone infused into the ventral hippocampus rapidly enhanced accumbal dopamine output in control conditions, but produced a biphasic reduction of accumbal dopamine output in amphetamine withdrawal. Selectively blocking glucocorticoid-, mineralocorticoid-, or cytosolic receptors prevented the effects of corticosterone. Overall, these results suggest that the ability of corticosterone to alter accumbal dopamine output requires cooperative activation of mineralocorticoid and glucocorticoid receptors in the cytosol, which is dysregulated during amphetamine withdrawal. These findings implicate ventral hippocampal corticosterone in playing an important role in driving neural systems involved in positive stress coping mechanisms in healthy conditions, whereas dysregulation of this system may contribute to relapse during withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Kaci A Clement
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Dana Bachmeier
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Matthew A Weber
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA, 52242, USA.
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Anatomy and Brain Health Research Centre, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
15
|
Robison A, Thakkar K, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry 2020; 87:204-214. [PMID: 31733788 PMCID: PMC6946864 DOI: 10.1016/j.biopsych.2019.09.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023]
Abstract
Schizophrenia has been studied from the perspective of cognitive or reward-related impairments, yet it cannot be wholly related to one or the other process and their corresponding neural circuits. We posit a comprehensive circuit-based model proposing that dysfunctional interactions between the brain's cognitive and reward circuits underlie schizophrenia. The model is underpinned by how the relationship between glutamatergic and dopaminergic dysfunction in schizophrenia drives interactions between cognition and reward circuits. We argue that this interaction is synergistic: that is, deficits of cognition and reward processing interact, and this interaction is a core feature of schizophrenia. In adopting this position, we undertake a focused review of animal physiology and human clinical data, and in proposing this synergistic model, we highlight dopaminergic afferents from the ventral tegmental area to nucleus accumbens (mesolimbic circuit) and frontal cortex (mesocortical circuit). We then expand on the role of glutamatergic inputs to these dopamine circuits and dopaminergic modulation of critical excitatory pathways with attention given to the role of glutamatergic hippocampal outputs onto nucleus accumbens. Finally, we present evidence for how in schizophrenia, dysfunction in the mesolimbic and mesocortical circuits and their corresponding glutamatergic inputs gives rise to clinical and cognitive phenotypes and is associated with positive and negative symptom dimensions. The synthesis attempted here provides an impetus for a conceptual shift that links cognitive and motivational aspects of schizophrenia and that can lead to treatment approaches that seek to harmonize network interactions between the brain's cognition and reward circuits with ameliorative effects in each behavioral domain.
Collapse
Affiliation(s)
| | - Katharine Thakkar
- Dept. of Psychology, Michigan State University,Division of Psychiatry and Behavioral Medicine, Michigan State University
| | | |
Collapse
|
16
|
Bortz DM, Gazo KL, Grace AA. The medial septum enhances reversal learning via opposing actions on ventral tegmental area and substantia nigra dopamine neurons. Neuropsychopharmacology 2019; 44:2186-2194. [PMID: 31261368 PMCID: PMC6898642 DOI: 10.1038/s41386-019-0453-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Cognitive flexibility deficits are one of the most pervasive symptoms across psychiatric disorders, making continued investigation of the circuitry underlying this function a top priority. Medial septum (MS) lesions lead to perseverative, inflexible-type behavior; however, a role for this region in cognitive flexibility circuitry has never been examined. We activated the MS (DREADDs) and measured performance in a T-maze spatial reversal learning task in male Sprague-Dawley rats. Systemic activation of the MS (CNO) significantly decreased both trials to perform a reversal and entries into the previously baited arm. Intra-ventral subiculum CNO enhanced reversal learning in the same manner as systemic CNO and also significantly increased ventral tegmental area and decreased substantia nigra dopamine neuron population activity. Finally, co-injection of the D1 antagonist SCH23390 with CNO prevented the enhanced reversal learning performance seen in the previous two experiments. Taken together, these data suggest a key role for the MS in cognitive flexibility, and suggest that MS-mediated changes in midbrain dopamine neuron population activity could be one mechanism by which this occurs.
Collapse
Affiliation(s)
- D M Bortz
- Department of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - K L Gazo
- Department of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Grace
- Department of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2019; 379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Depression, the most prevalent psychiatric disorder, is characterized by increased negative affect (i.e. depressed mood) and reduced positive affect (i.e. anhedonia). Stress is a risk factor for depression in humans, and animal models of chronic stress are typically used to study neurobehavioral alterations relevant to depression. Common behavioral outcomes in rodent models of chronic stress include anhedonia, social dysfunction and behavioral despair. For example, chronically stressed rodents exhibit reduced reward preference, as measured by a loss of preference for sucrose solutions and time spent interacting with a novel conspecific, while also exhibiting less time struggling against inescapable stressors (e.g. forced swim, tail suspension). In both humans and rodents, anhedonia is associated with dysfunction of the dopamine (DA) system. Unlike traditional antidepressants, which are limited by inadequate efficacy and delayed therapeutic response, acute ketamine administration rapidly alleviates depressive symptoms in humans and reverses stress-induced changes in animal models. These effects are partially mediated via actions on the DA system. This review summarizes the clinical effects of ketamine, the neurobiological underpinnings of depression with a focus on DA dysfunction, as well as antidepressant effects of ketamine on depression-related endophenotypes (i.e. anhedonia, despair) and ventral tegmental area (VTA) activity in rodent models of repeated stress. Moreover, we discuss evidence regarding sex differences in ketamine's antidepressant effects, wherein females appear to be more sensitive to lower dose ketamine, as well as novel findings suggesting that ketamine has prophylactic effects with regard to protection against the neurobehavioral impact of future stressors.
Collapse
|
18
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
19
|
Ferland JMN, Hynes TJ, Hounjet CD, Lindenbach D, Vonder Haar C, Adams WK, Phillips AG, Winstanley CA. Prior Exposure to Salient Win-Paired Cues in a Rat Gambling Task Increases Sensitivity to Cocaine Self-Administration and Suppresses Dopamine Efflux in Nucleus Accumbens: Support for the Reward Deficiency Hypothesis of Addiction. J Neurosci 2019; 39:1842-1854. [PMID: 30626700 PMCID: PMC6407298 DOI: 10.1523/jneurosci.3477-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Rats trained to perform a version of the rat gambling task (rGT) in which salient audiovisual cues accompany reward delivery, similar to commercial gambling products, show greater preference for risky options. Given previous demonstrations that probabilistic reinforcement schedules can enhance psychostimulant-induced increases in accumbal DA and locomotor activity, we theorized that performing this cued task could perpetuate a proaddiction phenotype. Significantly more rats developed a preference for the risky options in the cued versus uncued rGT at baseline, and this bias was further exacerbated by cocaine self-administration, whereas the choice pattern of optimal decision-makers was unaffected. The addition of reward-paired cues therefore increased the proportion of rats exhibiting a maladaptive cognitive response to cocaine self-administration. Risky choice was not associated with responding for conditioned reinforcement or a marker of goal/sign-tracking, suggesting that reward-concurrent cues precipitate maladaptive choice via a unique mechanism unrelated to simple approach toward, or responding for, conditioned stimuli. Although "protected" from any resulting decision-making impairment, optimal decision-makers trained on the cued rGT nevertheless self-administered more cocaine than those trained on the uncued task. Collectively, these data suggest that repeated engagement with heavily cued probabilistic reward schedules can drive addiction vulnerability through multiple behavioral mechanisms. Rats trained on the cued rGT also exhibited blunted locomotor sensitization and lower basal accumbal DA levels, yet greater cocaine-induced increases in accumbal DA efflux. Gambling in the presence of salient cues may therefore result in an adaptive downregulation of the mesolimbic DA system, rendering individuals more sensitive to the deleterious effects of taking cocaine.SIGNIFICANCE STATEMENT Impaired cost/benefit decision making, exemplified by preference for the risky, disadvantageous options on the Iowa Gambling Task, is associated with greater risk of relapse and treatment failure in substance use disorder. Understanding factors that enhance preference for risk may help elucidate the neurobiological mechanisms underlying maladaptive decision making in addiction, thereby improving treatment outcomes. Problem gambling is also highly comorbid with substance use disorder, and many commercial gambling products incorporate salient win-paired cues. Here we show that adding reward-concurrent cues to a rat analog of the IGT precipitates a hypodopaminergic state, characterized by blunted accumbal DA efflux and attenuated locomotor sensitization, which may contribute to the enhanced responsivity to uncertain rewards or the reinforcing effects of cocaine we observed.
Collapse
Affiliation(s)
| | | | | | - David Lindenbach
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
20
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
21
|
Rincón-Cortés M, Gagnon KG, Dollish HK, Grace AA. Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine. Neuropsychopharmacology 2018; 43:2418-2425. [PMID: 29959439 PMCID: PMC6180061 DOI: 10.1038/s41386-018-0123-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Psychostimulants such as amphetamine (AMPH) increase dopamine (DA) release from ventral tegmental area (VTA) neurons, which is associated with their acute reinforcing actions. This positive state is followed by a negative affective state during the withdrawal period each time the drug is taken (i.e., opponent process theory). AMPH withdrawal is accompanied by symptoms of anxiety and depression, which are associated with DA system dysfunction in humans and animal models. Most studies have focused on the negative affective state after withdrawal from chronic drug administration; yet, this negative state appears even after a drug is taken for the first time in both humans and rodents. In rats, withdrawal from a single dose of AMPH (2 mg/kg) increases forced swim test immobility and decreases the number of spontaneously active VTA DA neurons up to 48 h post-withdrawal. In the current study, acute AMPH withdrawal was found to increase anxiety-like behavior in the elevated plus maze (EPM), reduce social cage time in the three-chambered social approach test (SAT), and attenuate VTA population activity. The effects of diazepam, a drug commonly used to treat anxiety disorders, were tested on anxiety-like and social behavior as well as VTA DA neuron activity following acute AMPH withdrawal. A single (5 mg/kg) dose of diazepam circumvented the neurobehavioral effects induced by acute AMPH withdrawal, as demonstrated by increased open arm time and social cage time as well as normalized VTA DA activity comparable to controls, suggesting that these neurobehavioral effects of acute AMPH withdrawal reflect an anxiety-like state.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15217, USA. .,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15217, USA.
| | - Kimberly G. Gagnon
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA
| | - Hannah K. Dollish
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA
| | - Anthony A. Grace
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA ,0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15217 USA ,0000 0004 1936 9000grid.21925.3dDepartment of Psychology, University of Pittsburgh, Pittsburgh, PA 15217 USA
| |
Collapse
|
22
|
Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia. Proc Natl Acad Sci U S A 2018; 115:E10167-E10176. [PMID: 30297411 DOI: 10.1073/pnas.1809298115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Distinguishing between meaningful and meaningless sensory information is fundamental to forming accurate representations of the world. Dopamine is thought to play a central role in processing the meaningful information content of observations, which motivates an agent to update their beliefs about the environment. However, direct evidence for dopamine's role in human belief updating is lacking. We addressed this question in healthy volunteers who performed a model-based fMRI task designed to separate the neural processing of meaningful and meaningless sensory information. We modeled participant behavior using a normative Bayesian observer model and used the magnitude of the model-derived belief update following an observation to quantify its meaningful information content. We also acquired PET imaging measures of dopamine function in the same subjects. We show that the magnitude of belief updates about task structure (meaningful information), but not pure sensory surprise (meaningless information), are encoded in midbrain and ventral striatum activity. Using PET we show that the neural encoding of meaningful information is negatively related to dopamine-2/3 receptor availability in the midbrain and dexamphetamine-induced dopamine release capacity in the striatum. Trial-by-trial analysis of task performance indicated that subclinical paranoid ideation is negatively related to behavioral sensitivity to observations carrying meaningful information about the task structure. The findings provide direct evidence implicating dopamine in model-based belief updating in humans and have implications for understating the pathophysiology of psychotic disorders where dopamine function is disrupted.
Collapse
|
23
|
Elias D, Kleber HD. Minding the brain: the role of pharmacotherapy in substance-use disorder treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 29302226 PMCID: PMC5741112 DOI: 10.31887/dcns.2017.19.3/hkleber] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With its medicalization as a brain-based disease, addiction has come to be regarded as amenable to biomedical treatment approaches, most commonly pharmacotherapy. Various vulnerabilities are recognized to contribute to maladaptive substance use, and have been linked to diverse neurobiological alterations that may be targeted with pharmacotherapy: withdrawal, craving and cue reactivity, and aberrant reward processing are the most significant. Here, we summarize current thinking regarding pharmacotherapy for substance-use disorders, grouping medications by the type of vulnerability they propose to address and providing insight into their neurobiological mechanisms. We also examine the limitations of the brain-based disease model in addiction treatment, especially as these shortcomings pertain to the place of pharmacotherapy in recovery. We conclude by sketching a framework whereby medications might be integrated fruitfully with other interventions, such as behavioral, existential, or peer-based treatments, targeting aspects of addiction beyond neurobiological deficits.
Collapse
Affiliation(s)
- Dakwar Elias
- New York State Psychiatric Institute, Columbia University Medical Center, New York, New York, USA
| | - Herbert D Kleber
- New York State Psychiatric institute, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
24
|
Gill KM, Miller SA, Grace AA. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophr Res 2018; 195:343-352. [PMID: 28927551 PMCID: PMC5854517 DOI: 10.1016/j.schres.2017.08.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Abstract
The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning.
Collapse
Affiliation(s)
- Kathryn M Gill
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA.
| | - Sarah A Miller
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| | - Anthony A Grace
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| |
Collapse
|
25
|
Abstract
SummaryKetamine, a synthetic derivative of phencyclidine, is a commonly misused party drug that is restricted in high-income countries because of its addictive potential. Ketamine is also used as an anaesthetic in human and veterinary medicine. In the 1990s, research using ketamine to study the pathophysiology of schizophrenia was terminated owing to ethical concerns. Recently, controversy surrounding the drug has returned, as researchers have demonstrated that intravenous ketamine infusion has a rapid antidepressant effect and have therefore proposed ketamine as a novel antidepressant. This article debates the question of ketamine as an antidepressant, considering the drug's addictive potential, ethical concerns about prescribing a hallucinogen, the evidence base and motives behind ketamine trials.
Collapse
|
26
|
Zhang ZB, Xu TY, You DY, Yi S, Liu Q, Li HJ, Gu JY. The interactive effects of ketamine and ethanol on dopamine expression in the ventral tegmental area of rats. Neuropsychiatr Dis Treat 2018; 14:2105-2114. [PMID: 30154658 PMCID: PMC6108338 DOI: 10.2147/ndt.s163449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A number of studies have demonstrated the significant and rapid antidepressant effects of ketamine, which is also known as a neurotoxic and illicit drug. Ketamine and alcohol are increasingly used together in clubs by teenagers and young adults. Previous studies have proven that chronic ketamine consumption induces a delayed and persistent activation of the dopamine (DA) system. However, the rewarding properties of recreational ketamine abuse remain unclear, and the underlying mechanisms of the effects on the DA system after administration of ketamine with ethanol are yet to be explored. METHODS Here, we evaluated the effects of two different doses of ketamine (30 mg/kg and 60 mg/kg) with and without ethanol (0.3156 g/kg) on DA concentration in the rat's ventral tegmental area (VTA), a vital region in the reward and motivation system. We explored the effects of the combined drug treatment on the expression profiling of the DA metabolism genes, tyrosine hydroxylase, dopa decarboxylase, vesicular monoamine transporter 2, and synaptosomal-associated protein 25, as well as protein expression level of brain-derived neurotrophic factor in the rat's VTA. RESULTS We found that administration of ketamine with ethanol led to a significant increase of DA in the VTA associated with differential regulation of mRNA levels of the four DA metabolism genes and protein levels of brain-derived neurotrophic factor. Moreover, the rewarding properties of coadministration of ketamine and ethanol were related to dopaminergic neuron activation in the VTA. CONCLUSION These results indicated the possibility that combined drug treatment might positively affect the mesencephalic DA reward system.
Collapse
Affiliation(s)
- Zhi-Bi Zhang
- Biomedical Engineering Center, Kunming Medical University, Kunming, People's Republic of China
| | - Tian-Yong Xu
- Experiment Center for Medical Science Research, Kunming, People's Republic of China
| | - Ding-Yun You
- Department of Science and Technology, Kunming Medical University, Kunming, People's Republic of China
| | - Shuai Yi
- School of Forensic Medicine, Kunming Medical University, Kunming, People's Republic of China,
| | - Qing Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, People's Republic of China,
| | - Huifang-Jie Li
- School of Forensic Medicine, Kunming Medical University, Kunming, People's Republic of China,
| | - Jin-Yun Gu
- Zhanyi Branch of Qujing Public Security Bureau, Qujing, People's Republic of China,
| |
Collapse
|
27
|
Zhang MQ, Li R, Wang YQ, Huang ZL. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments. Neural Plast 2017; 2017:5870735. [PMID: 29181202 PMCID: PMC5664320 DOI: 10.1155/2017/5870735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022] Open
Abstract
Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient's quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Belujon P, Grace AA. Dopamine System Dysregulation in Major Depressive Disorders. Int J Neuropsychopharmacol 2017; 20:1036-1046. [PMID: 29106542 PMCID: PMC5716179 DOI: 10.1093/ijnp/pyx056] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Anhedonia is considered a core feature of major depressive disorder, and the dopamine system plays a pivotal role in the hedonic deficits described in this disorder. Dopaminergic activity is complex and under the regulation of multiple brain structures, including the ventral subiculum of the hippocampus and the basolateral amygdala. Whereas basic and clinical studies demonstrate deficits of the dopaminergic system in depression, the origin of these deficits likely lies in dysregulation of its regulatory afferent circuits. This review explores the current information regarding the afferent modulation of the dopaminergic system and its relevance to major depressive disorder, as well as some of the system-level effects of novel antidepressants such as agomelatine and ketamine.
Collapse
Affiliation(s)
- Pauline Belujon
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace),Correspondence: Pauline Belujon, PhD, University of Poitiers, Laboratory of Experimental and Clinical Neurosciences, 1 rue Georges Bonnet, 86073 Poitiers, France ()
| | - Anthony A Grace
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace)
| |
Collapse
|
29
|
Rincón-Cortés M, Grace AA. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine. Int J Neuropsychopharmacol 2017; 20:823-832. [PMID: 28591782 PMCID: PMC5632304 DOI: 10.1093/ijnp/pyx048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress. METHODS The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested. RESULTS Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats. CONCLUSIONS These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence: Millie Rincón-Cortés, PhD, Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260 ()
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Commons KG, Cholanians AB, Babb JA, Ehlinger DG. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem Neurosci 2017; 8:955-960. [PMID: 28287253 PMCID: PMC5518600 DOI: 10.1021/acschemneuro.7b00042] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The forced swim test (FST) measures coping strategy to an acute inescapable stress and thus provides unique insight into the neural limb of the stress response. Stress, particularly chronic stress, is a contributing factor to depression in humans and depression is associated with altered response to stress. In addition, drugs that are effective antidepressants in humans typically promote active coping strategy in the FST. As a consequence, passive coping in the FST has become loosely equated with depression and is often referred to as "depression-like" behavior. This terminology oversimplifies complex biology and misrepresents both the utility and limitations of the FST. The FST provides little construct- or face-validity to support an interpretation as "depression-like" behavior. While stress coping and the FST are arguably relevant to depression, there are likely many factors that can influence stress coping strategy. Importantly, there are other neuropsychiatric disorders characterized by altered responses to stress and difficulty in adapting to change. One of these is autism spectrum disorder (ASD), and several mouse genetic models of ASD exhibit altered stress-coping strategies in the FST. Here we review evidence that argues a more thoughtful consideration of the FST, and more precise terminology, would benefit the study of stress and disorders characterized by altered response to stress, which include but are not limited to depression.
Collapse
Affiliation(s)
- Kathryn G. Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Aram B. Cholanians
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jessica A. Babb
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel G. Ehlinger
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital and Department of Anesthesia, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Slattery DA, Cryan JF. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology (Berl) 2017; 234:1451-1465. [PMID: 28224183 DOI: 10.1007/s00213-017-4552-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Despite substantial research efforts the aetiology of major depressive disorder (MDD) remains poorly understood, which is due in part to the heterogeneity of the disorder and the complexity of designing appropriate animal models. However, in the last few decades, a focus on the development of novel stress-based paradigms and a focus on using hedonic/anhedonic behaviour have led to renewed optimism in the use of animal models to assess aspects of MDD. OBJECTIVES Therefore, in this review article, dedicated to Athina Markou, we summarise the use of stress-based animal models for studying MDD in rodents and how reward-related readouts can be used to validate/assess the model and/or treatment. RESULTS We reveal the use and limitations of chronic stress paradigms, which we split into non-social (i.e. chronic mild stress), social (i.e. chronic social defeat) and drug-withdrawal paradigms for studying MDD and detail numerous reward-related readouts that are employed in preclinical research. Finally, we finish with a section regarding important factors to consider when using animal models. CONCLUSIONS One of the most consistent findings following chronic stress exposure in rodents is a disruption of the brain reward system, which can be easily assessed using sucrose, social interaction, food, drug of abuse or intracranial self-stimulation as a readout. Probing the underlying causes of such alterations is providing a greater understanding of the potential systems and processes that are disrupted in MDD.
Collapse
Affiliation(s)
- D A Slattery
- Laboratory of Translational Psychiatry, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany.
| | - J F Cryan
- APC Microbiome Institute, Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Moreines JL, Owrutsky ZL, Grace AA. Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology 2017; 42:904-913. [PMID: 27813530 PMCID: PMC5312072 DOI: 10.1038/npp.2016.249] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022]
Abstract
Emerging evidence supports a role for dopamine in major depressive disorder (MDD). We recently reported fewer spontaneously active ventral tegmental area (VTA) dopamine neurons (ie, reduced dopamine neuron population activity) in the chronic mild stress (CMS) rodent model of MDD. In this study, we examined the role of two brain regions that have been implicated in MDD in humans, the infralimbic prefrontal cortex (ILPFC)-that is, rodent homolog of Brodmann area 25 (BA25), and the lateral habenula (LHb) in the CMS-induced attenuation of dopamine neuron activity. The impact of activating the ILPFC or LHb was evaluated using single-unit extracellular recordings of identified VTA dopamine neurons. The involvement of each region in dopamine neuron attenuation following 5-7 weeks of CMS was then evaluated by selective inactivation. Activation of either ILPFC or LHb in normal rats potently suppressed dopamine neuron population activity, but in unique patterns. ILPFC activation selectively inhibited dopamine neurons in medial VTA, which were most impacted by CMS. Conversely, LHb activation selectively inhibited dopamine neurons in lateral VTA, which were unaffected by CMS. Moreover, only ILPFC inactivation restored dopamine neuron population activity to normal levels following CMS; LHb inactivation had no restorative effect. These data suggest that, in the CMS model of MDD, the ILPFC is the primary driver of diminished dopamine neuron responses. These findings support a neural substrate for ILPFC/BA25 linking affective and motivational circuitry dysfunction in MDD.
Collapse
Affiliation(s)
- Jared L Moreines
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA,Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA, Tel: 412 624 7332, Fax: 412 624 9198, E-mail:
| | - Zoe L Owrutsky
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. Mol Psychiatry 2017; 22:76-81. [PMID: 27090301 PMCID: PMC5435123 DOI: 10.1038/mp.2016.39] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
Repeated drug consumption may progress to problematic use by triggering neuroplastic adaptations that attenuate sensitivity to natural rewards while increasing reactivity to craving and drug cues. Converging evidence suggests a single sub-anesthetic dose of the N-methyl-D-aspartate receptor antagonist ketamine may work to correct these neuroadaptations and restore motivation for non-drug rewards. Using an established laboratory model aimed at evaluating behavioral shifts in the salience of cocaine now vs money later, we found that ketamine, as compared to the control, significantly decreased cocaine self-administration by 67% relative to baseline at greater than 24 h post-infusion, the most robust reduction observed to date in human cocaine users and the first to involve mechanisms other than stimulant or dopamine agonist effects. These findings signal new directions in medication development for substance use disorders.
Collapse
|
34
|
Zimmerman EC, Grace AA. The Nucleus Reuniens of the Midline Thalamus Gates Prefrontal-Hippocampal Modulation of Ventral Tegmental Area Dopamine Neuron Activity. J Neurosci 2016; 36:8977-84. [PMID: 27559178 PMCID: PMC4995308 DOI: 10.1523/jneurosci.1402-16.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The circuitry mediating top-down control of dopamine (DA) neurons in the ventral tegmental area (VTA) is exceedingly complex. Characterizing these networks will be critical to our understanding of fundamental behaviors, such as motivation and reward processing, as well as several disease states. Previous work suggests that the medial prefrontal cortex (mPFC) exerts a profound influence on VTA DA neuron firing. Recently, our group reported that inhibition of the infralimbic subdivision of the medial prefrontal cortex (ilPFC) increases the proportion of VTA DA neurons that are spontaneously active (i.e., "population activity") and that this effect depends on activity in the ventral subiculum of the hippocampus (vSub). However, there is no direct projection from the mPFC to the vSub. Anatomical evidence suggests that communication between the two structures is mediated by the nucleus reuniens of the midline thalamus (RE). Here, we used in vivo electrophysiological and behavioral approaches in rats to explore the role of the RE in the circuitry governing VTA DA neuron firing. We show that pharmacological stimulation of the RE enhances VTA DA neuron population activity and amphetamine-induced hyperlocomotion, a behavioral indicator of an over-responsive DA system. Furthermore, the effect of RE stimulation on population activity is prevented if vSub is also inhibited. Finally, pharmacological inhibition of ilPFC enhances VTA DA neuron population activity, but this effect does not occur if RE is also inhibited. These findings suggest that disruption of ilPFC-RE-vSub communication could lead to a dysregulated, hyperdopaminergic state, and may play a role in psychiatric disorders. SIGNIFICANCE STATEMENT Dopamine (DA) neurons in the ventral tegmental area (VTA) are involved in a variety of fundamental brain functions. To understand the neurobiological basis for these functions it is essential to identify regions controlling DA neuron activity. The medial prefrontal cortex (mPFC) is emerging as a key regulator of DA neuron activity, but the circuitry by which it exerts its influence remains poorly described. Here, we show that the nucleus reuniens of the midline thalamus gates mPFC control of VTA DA neuron firing by the hippocampus. These data identify a unique role for this corticothalamic-hippocampal circuit, and suggest that dysfunction in these regions likely influences the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eric C Zimmerman
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
35
|
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17:524-32. [PMID: 27256556 PMCID: PMC5166560 DOI: 10.1038/nrn.2016.57] [Citation(s) in RCA: 699] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dopamine system is unique among the brain's modulatory systems in that it has discrete projections to specific brain regions involved in motor behaviour, cognition and emotion. Dopamine neurons exhibit several activity patterns - including tonic and phasic firing - that are determined by a combination of endogenous pacemaker conductances and regulation by multiple afferent systems. Emerging evidence suggests that disruptions in these regulatory systems may underlie the pathophysiology of several psychiatric disorders, including schizophrenia and depression.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
36
|
Amiri S, Alijanpour S, Tirgar F, Haj-Mirzaian A, Amini-Khoei H, Rahimi-Balaei M, Rastegar M, Ghaderi M, Ghazi-Khansari M, Zarrindast MR. NMDA receptors are involved in the antidepressant-like effects of capsaicin following amphetamine withdrawal in male mice. Neuroscience 2016; 329:122-33. [DOI: 10.1016/j.neuroscience.2016.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 01/27/2023]
|
37
|
Dakwar E, Nunes EV. New Directions in Medication-Facilitated Behavioral Treatment for Substance Use Disorders. Curr Psychiatry Rep 2016; 18:64. [PMID: 27222138 DOI: 10.1007/s11920-016-0703-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A promising approach to addressing substance use disorders is to integrate pharmacotherapy with a behavioral treatment with which synergy is possible. In this review, we focus on recent research suggesting that this approach may be effective for cocaine and cannabis use disorders, both of which currently lack efficacious medications. We summarize potential targets of pharmacotherapy of particular relevance to combined medication-behavioral treatment and examine preliminary evidence of clinical efficacy. Common to these promising medications is a hypothesized mechanism of action predicated on reversing drug-related neural adaptations, such as high reactivity to stress or drug cues, that might undermine fruitful engagement with behavioral treatment. We also review emerging medications, such as certain glutamatergic and serotonergic agents, which may be feasibly integrated with existing treatments. We conclude with an outline of future directions for research.
Collapse
Affiliation(s)
- Elias Dakwar
- Division on Substance Abuse, Department of Psychiatry, New York State Psychiatric Institute, College of Physicians and Surgeons at Columbia University Medical Center, New York, NY, USA.
| | - Edward V Nunes
- Division on Substance Abuse, Department of Psychiatry, New York State Psychiatric Institute, College of Physicians and Surgeons at Columbia University Medical Center, New York, NY, USA
| |
Collapse
|