1
|
Nicholson AA, Lieberman JM, Hosseini-Kamkar N, Eckstrand K, Rabellino D, Kearney B, Steyrl D, Narikuzhy S, Densmore M, Théberge J, Hosseiny F, Lanius RA. Exploring the impact of biological sex on intrinsic connectivity networks in PTSD: A data-driven approach. Prog Neuropsychopharmacol Biol Psychiatry 2024:111180. [PMID: 39447688 DOI: 10.1016/j.pnpbp.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Sex as a biological variable (SABV) may help to account for the differential development and expression of post-traumatic stress disorder (PTSD) symptoms among trauma-exposed males and females. Here, we investigate the impact of SABV on PTSD-related neural alterations in resting-state functional connectivity (rsFC) within three core intrinsic connectivity networks (ICNs): the salience network (SN), central executive network (CEN), and default mode network (DMN). METHODS Using an independent component analysis (ICA), we compared rsFC of the SN, CEN, and DMN between males and females, with and without PTSD (n = 47 females with PTSD, n = 34 males with PTSD, n = 36 healthy control females, n = 20 healthy control males) via full factorial ANCOVAs. Additionally, linear regression analyses were conducted with clinical variables (i.e., PTSD and depression symptoms, childhood trauma scores) in order to determine intrinsic network connectivity characteristics specific to SABV. Furthermore, we utilized machine learning classification models to predict the biological sex and PTSD diagnosis of individual participants based on intrinsic network activity patterns. RESULTS Our findings revealed differential network connectivity patterns based on SABV and PTSD diagnosis. Males with PTSD exhibited increased intra-SN (i.e., SN-anterior insula) rsFC and increased DMN-right superior parietal lobule/precuneus/superior occipital gyrus rsFC as compared to females with PTSD. There were also differential network connectivity patterns for comparisons between the PTSD and healthy control groups for males and females, separately. We did not observe significant correlations between clinical measures of interest and brain region clusters which displayed significant between group differences as a function of biological sex, thus further reinforcing that SABV analyses are likely not confounded by these variables. Furthermore, machine learning classification models accurately predicted biological sex and PTSD diagnosis among novel/unseen participants based on ICN activation patterns. CONCLUSION This study reveals groundbreaking insights surrounding the impact of SABV on PTSD-related ICN alterations using data-driven methods. Our discoveries contribute to further defining neurobiological markers of PTSD among females and males and may offer guidance for differential sex-related treatment needs.
Collapse
Affiliation(s)
- Andrew A Nicholson
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | - Jonathan M Lieberman
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Niki Hosseini-Kamkar
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Kristen Eckstrand
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela Rabellino
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada
| | - Breanne Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sandhya Narikuzhy
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Healthcare, London, Ontario, Canada
| | - Fardous Hosseiny
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Ruth A Lanius
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Roeckner AR. Voice Hearing in Trauma-Related Psychopathology: Continued Exploration of Posttraumatic Stress Disorder Heterogeneity in Functional Neuroimaging Research. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:973-974. [PMID: 39370231 DOI: 10.1016/j.bpsc.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
3
|
Wang CY, Jiang SY, Liao SM, Tian-Liu, Wu QS, Pan HQ, Wei-Nie, Zhang WH, Pan BX, Liu WZ. Dimethyl fumarate ameliorates chronic stress-induced anxiety-like behaviors by decreasing neuroinflammation and neuronal activity in the amygdala. Int Immunopharmacol 2024; 137:112414. [PMID: 38897132 DOI: 10.1016/j.intimp.2024.112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1β. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1β signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1β signaling pathway and alleviating hyperactivity of BLA neurons.
Collapse
Affiliation(s)
- Chun-Yan Wang
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Si-Ying Jiang
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shuang-Mei Liao
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tian-Liu
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi-Sheng Wu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Wei-Nie
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Wen-Hua Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China; Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Wei-Zhu Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; Department of Pathology, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Telesheva K, Savenkova V, Morozova I, Ochneva A, Zeltser A, Andreyuk D, Reznik A, Mukhin V, Melkonyan G, Lytkina K, Mitrofanov A, Morozova A. Potential Neurophysiological Markers of Combat-Related Post-Traumatic Stress Disorder: A Cross-Sectional Diagnostic Study. CONSORTIUM PSYCHIATRICUM 2024; 5:31-44. [PMID: 39072002 PMCID: PMC11272305 DOI: 10.17816/cp15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Studies suggest that the components of brain-evoked potentials (EPs) may serve as biomarkers of the post-traumatic stress disorder (PTSD) caused by participation in combat operations; however, to date, research remains fragmented, with no studies that have attempted to combine different paradigms. In addition, the mismatch negativity component has not been studied in a Russian sample of veterans with PTSD. AIM To identify objective neurophysiological markers of combat-related PTSD using the method of auditory-evoked potentials in active and passive listening paradigms. METHODS The study included a recording of auditory EPs in an oddball paradigm in three settings: 1) directed attention to auditory stimuli, 2) passive listening while viewing a neutral video sequence, and 3) viewing a video sequence associated with a traumatic event. Combatants diagnosed with PTSD (18 people) were compared with mentally healthy civilian volunteers (22 people). RESULTS An increase in the latency period of the early components of auditory EP (N100 and P200), an increase in the amplitude of the P200 component to a deviant stimulus, and a decrease to a standard one in the active listening paradigm were established in the PTSD group. There were no significant differences in the parameters of the P300 component. The characteristics of mismatch negativity in the passive paradigm were revealed: an increase in the phenomenon amplitude, both when shown a video sequence associated with a traumatic event and when shown a neutral video sequence. A binary logistic regression model constructed using the selected parameters showed that the identified characteristics can potentially be considered as diagnostic markers of PTSD in combatants, as the classification accuracy stood at 87% (sensitivity - 81%, specificity - 91%). CONCLUSION Potential neurophysiological markers of PTSD are the following: the amplitude and latency of early components of auditory EPs in the paradigm of directed attention to stimuli and the amplitude of mismatch negativity during passive attention.
Collapse
|
5
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
6
|
Wang X, Zhao K, Yao L, Fonzo GA, Satterthwaite TD, Rekik I, Zhang Y. Delineating Transdiagnostic Subtypes in Neurodevelopmental Disorders via Contrastive Graph Machine Learning of Brain Connectivity Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582790. [PMID: 38496573 PMCID: PMC10942316 DOI: 10.1101/2024.02.29.582790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Neurodevelopmental disorders, such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), are characterized by comorbidity and heterogeneity. Identifying distinct subtypes within these disorders can illuminate the underlying neurobiological and clinical characteristics, paving the way for more tailored treatments. We adopted a novel transdiagnostic approach across ADHD and ASD, using cutting-edge contrastive graph machine learning to determine subtypes based on brain network connectivity as revealed by resting-state functional magnetic resonance imaging. Our approach identified two generalizable subtypes characterized by robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the somatomotor network. These subtypes exhibited pronounced differences in major cognitive and behavioural measures. We further demonstrated the generalizability of these subtypes using data collected from independent study sites. Our data-driven approach provides a novel solution for parsing biological heterogeneity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xuesong Wang
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Lina Yao
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
- School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Islem Rekik
- BASIRA Lab, Imperial-X and Department of Computing, Imperial College London, London, UK
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
7
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- R01 MH105535 NIMH NIH HHS
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- P41 EB015922 NIBIB NIH HHS
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- R01 AG064955 NIA NIH HHS
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- K01 MH118428 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 MH105355 NIMH NIH HHS
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002171 RRD VA
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- I01 CX002097 CSRD VA
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- I01 CX001246 CSRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 MH043454 NIMH NIH HHS
- I01 RX002170 RRD VA
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R61 NS120249 NINDS NIH HHS
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
8
|
Danböck SK, Duek O, Ben-Zion Z, Korem N, Amen SL, Kelmendi B, Wilhelm FH, Levy I, Harpaz-Rotem I. Effects of a dissociative drug on fronto-limbic resting-state functional connectivity in individuals with posttraumatic stress disorder: a randomized controlled pilot study. Psychopharmacology (Berl) 2024; 241:243-252. [PMID: 37872291 PMCID: PMC10806226 DOI: 10.1007/s00213-023-06479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
RATIONALE A subanesthetic dose of ketamine, a non-competitive N-methyl-D-aspartate glutamate receptor (NMDAR) antagonist, elicits dissociation in individuals with posttraumatic stress disorder (PTSD), who also often suffer from chronic dissociative symptoms in daily life. These debilitating symptoms have not only been linked to worse PTSD trajectories, but also to increased resting-state functional connectivity (RSFC) between medial prefrontal cortex (mPFC) and amygdala, supporting the conceptualization of dissociation as emotion overmodulation. Yet, as studies were observational, causal evidence is lacking. OBJECTIVES The present randomized controlled pilot study examines the effect of ketamine, a dissociative drug, on RSFC between mPFC subregions and amygdala in individuals with PTSD. METHODS Twenty-six individuals with PTSD received either ketamine (0.5mg/kg; n = 12) or the control drug midazolam (0.045mg/kg; n = 14) during functional magnetic resonance imaging (fMRI). RSFC between amygdala and mPFC subregions, i.e., ventromedial PFC (vmPFC), dorsomedial PFC (dmPFC) and anterior-medial PFC (amPFC), was assessed at baseline and during intravenous drug infusion. RESULTS Contrary to pre-registered predictions, ketamine did not promote a greater increase in RSFC between amygdala and mPFC subregions from baseline to infusion compared to midazolam. Instead, ketamine elicited a stronger transient decrease in vmPFC-amygdala RSFC compared to midazolam. CONCLUSIONS A dissociative drug did not increase fronto-limbic RSFC in individuals with PTSD. These preliminary experimental findings contrast with prior correlative findings and call for further exploration and, potentially, a more differentiated view on the neurobiological underpinning of dissociative phenomena in PTSD.
Collapse
Affiliation(s)
- Sarah K Danböck
- Department of Psychology, Paris Lodron University of Salzburg, Salzburg, Austria.
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| | - Or Duek
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of The Negev, Be'er-Sheva, Israel
| | - Ziv Ben-Zion
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Departments of Comparative Medicine and Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
| | - Nachshon Korem
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Shelley L Amen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Ben Kelmendi
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Frank H Wilhelm
- Department of Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, Clinical Neurosciences Division, National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
10
|
Haris EM, Bryant RA, Williamson T, Korgaonkar MS. Functional connectivity of amygdala subnuclei in PTSD: a narrative review. Mol Psychiatry 2023; 28:3581-3594. [PMID: 37845498 PMCID: PMC10730419 DOI: 10.1038/s41380-023-02291-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
While the amygdala is often implicated in the neurobiology of posttraumatic stress disorder (PTSD), the pattern of results remains mixed. One reason for this may be the heterogeneity of amygdala subnuclei and their functional connections. This review used PRISMA guidelines to synthesize research exploring the functional connectivity of three primary amygdala subnuclei, basolateral (BLA), centromedial (CMA), and superficial nuclei (SFA), in PTSD (N = 331) relative to trauma-exposed (N = 155) and non-trauma-exposed controls (N = 210). Although studies were limited (N = 11), preliminary evidence suggests that in PTSD compared to trauma-exposed controls, the BLA shows greater connectivity with the dorsal anterior cingulate, an area involved in salience detection. In PTSD compared to non-trauma-exposed controls, the BLA shows greater connectivity with the middle frontal gyrus, an area involved in attention. No other connections were replicated across studies. A secondary aim of this review was to outline the limitations of this field to better shape future research. Importantly, the results from this review indicate the need to consider potential mediators of amygdala subnuclei connectivity, such as trauma type and sex, when conducting such studies. They also highlight the need to be aware of the limited inferences we can make with such small samples that investigate small subcortical structures on low field strength magnetic resonance imaging scanners. Collectively, this review demonstrates the importance of exploring the differential connectivity of amygdala subnuclei to understand the pathophysiology of PTSD and stresses the need for future research to harness the strength of ultra-high field imaging to gain a more sensitive picture of the neural connectivity underlying PTSD.
Collapse
Affiliation(s)
- Elizabeth M Haris
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Thomas Williamson
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
- Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia.
- Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Gil-Paterna P, Furmark T. Imaging the cerebellum in post-traumatic stress and anxiety disorders: a mini-review. Front Syst Neurosci 2023; 17:1197350. [PMID: 37645454 PMCID: PMC10460913 DOI: 10.3389/fnsys.2023.1197350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most prevalent psychiatric conditions worldwide sharing many clinical manifestations and, most likely, neural mechanisms as suggested by neuroimaging research. While the so-called fear circuitry and traditional limbic structures of the brain, particularly the amygdala, have been extensively studied in sufferers of these disorders, the cerebellum has been relatively underexplored. The aim of this paper was to present a mini-review of functional (task-activity or resting-state connectivity) and structural (gray matter volume) results on the cerebellum as reported in magnetic resonance imaging studies of patients with PTSD or anxiety disorders (49 selected studies in 1,494 patients). While mixed results were noted overall, e.g., regarding the direction of effects and anatomical localization, cerebellar structures like the vermis seem to be highly involved. Still, the neurofunctional and structural alterations reported for the cerebellum in excessive anxiety and trauma are complex, and in need of further evaluation.
Collapse
|
12
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
13
|
Machorrinho J, Marmeleira J, Veiga G, Santos GD. Feel-Own-Move: a psychomotor therapy program for victims of intimate partner violence living in shelter homes. Feasibility and effects on mental health, bodily dissociation, and quality of life. Front Psychol 2023; 14:1154385. [PMID: 37484072 PMCID: PMC10359431 DOI: 10.3389/fpsyg.2023.1154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intimate partner violence (IPV) is a worldwide concern, impacting victims' mental health, physical health, and quality of life. High rates of posttraumatic stress disorder (PTSD), depression, anxiety, bodily dissociation, and somatic symptoms have been found in victims of IPV, with an important impact on the chronicity of impairments and on the outcomes of psychological interventions. Therapeutic interventions available in shelter homes for victims are scarce in addressing their body-mind needs therefore asking for better empirical research. Thus, the aim of this study was to evaluate the feasibility and effects of Feel-Own-Move (FOM), an 8-week psychomotor therapy program for victims of IPV, on their mental health, levels of bodily dissociation, and general quality of life. Methods A within-subject repeated measures design was used to evaluate the intervention effects, and feasibility results were analyzed. Results Seventeen women completed the program (mean age 42.8 years, range 21-64). Results showed a significant decrease in levels of bodily dissociation, with FOM having a large effect size. The intervention also had a large effect size at increasing the environment domain of quality of life, although no statistically significant differences were found. FOM ended with excellent rates of reach, adherence, acceptability, and satisfaction. A positive retention rate was also found. Discussion In conclusion, FOM seems to be a feasible psychomotor therapy intervention for female victims of IPV living in shelters. Importantly, this program showed to be effective in reducing bodily dissociation among participants, which is suggested to prospectively contribute to their mental health and quality of life.
Collapse
Affiliation(s)
- Joana Machorrinho
- Comprehensive Health Research Center, Universidade de Évora, Évora, Portugal
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
| | - José Marmeleira
- Comprehensive Health Research Center, Universidade de Évora, Évora, Portugal
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
| | - Guida Veiga
- Comprehensive Health Research Center, Universidade de Évora, Évora, Portugal
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
| | - Graça Duarte Santos
- Comprehensive Health Research Center, Universidade de Évora, Évora, Portugal
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal
| |
Collapse
|
14
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
15
|
Cassady M, Baslet G. Dissociation in patients with epilepsy and functional seizures: A narrative review of the literature. Seizure 2023; 110:220-230. [PMID: 37433243 DOI: 10.1016/j.seizure.2023.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Dissociation is a "disruption of the usually integrated functions of consciousness, memory, identity or perception of the environment" according to DSM-5. It is commonly seen in psychiatric disorders including primary dissociative disorders, post-traumatic stress disorder, depression, and panic disorder. Dissociative phenomena are also described in the context of substance intoxication, sleep deprivation and medical illnesses including traumatic brain injury, migraines, and epilepsy. Patients with epilepsy have higher rates of dissociative experiences as measured on the Dissociative Experiences Scale compared to healthy controls. Ictal symptoms, especially in focal epilepsy of temporal lobe origin, may include dissociative-like experiences such as déjà vu/jamais vu, depersonalization, derealization and what has been described as a "dreamy state". These descriptions are common in the setting of seizures that originate from mesial temporal lobe epilepsy and may involve the amygdala and hippocampus. Other ictal dissociative phenomena include autoscopy and out of body experiences, which are thought to be due to disruptions in networks responsible for the integration of one's own body and extra-personal space and involve the temporoparietal junction and posterior insula. In this narrative review, we will summarize the updated literature on dissociative experiences in epilepsy, as well as dissociative experiences in functional seizures. Using a case example, we will review the differential diagnosis of dissociative symptoms. We will also review neurobiological underpinnings of dissociative symptoms across different diagnostic entities and discuss how ictal symptoms may shed light on the neurobiology of complex mental processes including the subjective nature of consciousness and self-identity.
Collapse
Affiliation(s)
- Maureen Cassady
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gaston Baslet
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Mertens YL, Manthey A, Sierk A, de Jong P, Walter H, Daniels JK. A pharmacological challenge paradigm to assess neural signatures of script-elicited acute dissociation in women with post-traumatic stress disorder. BJPsych Open 2023; 9:e78. [PMID: 37128866 PMCID: PMC10228236 DOI: 10.1192/bjo.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND There is limited experimentally controlled neuroimaging research available that could explain how dissociative states occur and which neurobiological changes are involved in acute post-traumatic dissociation. AIMS To test the causal hypothesis that acute dissociation is triggered bottom-up by a selective noradrenergic-mediated increase in amygdala activation during the processing of autobiographical trauma memories. METHOD Women with post-traumatic stress disorder (n = 47) and a history of interpersonal childhood trauma underwent a within-participant, placebo-controlled pharmacological challenge paradigm (4.0 mg reboxetine versus placebo) employing script-driven imagery (traumatic versus neutral autobiographical memory recall). Script-elicited brain activation patterns (measured via functional magnetic resonance imagery) were analysed by means of whole-brain analyses and a pre-registered region of interest (i.e. amygdala). RESULTS Self-reported acute dissociation increased significantly during trauma (versus neutral) recall but did not differ between pharmacological conditions. The pharmacological manipulation was also unsuccessful in eliciting increased amygdala activation following script-driven imagery in the reboxetine (versus placebo) condition. In the reboxetine condition, trauma retrieval resulted in similar activation patterns as in the placebo condition (e.g. elevated brain activation in the middle occipital gyrus and supramarginal gyrus), albeit with different peaks. CONCLUSIONS Current (null) findings cast doubt on the suggested role of the amygdala in subserving dissociative processing of trauma memories. Alternative pharmacological manipulation approaches (e.g. ketamine) and analysis techniques (e.g. event-related independent component analysis) might provide better insight into the spatiotemporal dynamics and network shifts involved in dissociative experiences and autobiographical trauma memory recall.
Collapse
Affiliation(s)
- Yoki L. Mertens
- Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, Groningen, The Netherlands
| | - Antje Manthey
- Charité University Clinic Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health), Berlin, Germany
| | - Anika Sierk
- Charité University Clinic Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health), Berlin, Germany
| | - Peter de Jong
- Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, Groningen, The Netherlands
| | - Henrik Walter
- Charité University Clinic Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health), Berlin, Germany
| | - Judith K. Daniels
- Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Wolf EJ, Hawn SE, Sullivan DR, Miller MW, Sanborn V, Brown E, Neale Z, Fein-Schaffer D, Zhao X, Logue MW, Fortier CB, McGlinchey RE, Milberg WP. Neurobiological and genetic correlates of the dissociative subtype of posttraumatic stress disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:409-427. [PMID: 37023279 PMCID: PMC10286858 DOI: 10.1037/abn0000795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Approximately 10%-30% of individuals with posttraumatic stress disorder (PTSD) exhibit a dissociative subtype of the condition defined by symptoms of depersonalization and derealization. This study examined the psychometric evidence for the dissociative subtype of PTSD in a sample of young, primarily male post-9/11-era Veterans (n = 374 at baseline and n = 163 at follow-up) and evaluated its biological correlates with respect to resting state functional connectivity (default mode network [DMN]; n = 275), brain morphology (hippocampal subfield volume and cortical thickness; n = 280), neurocognitive functioning (n = 337), and genetic variation (n = 193). Multivariate analyses of PTSD and dissociation items suggested a class structure was superior to dimensional and hybrid ones, with 7.5% of the sample comprising the dissociative class; this group showed stability over 1.5 years. Covarying for age, sex, and PTSD severity, linear regression models revealed that derealization/depersonalization severity was associated with: decreased DMN connectivity between bilateral posterior cingulate cortex and right isthmus (p = .015; adjusted-p [padj] = .097); increased bilateral whole hippocampal, hippocampal head, and molecular layer head volume (p = .010-.034; padj = .032-.053); worse self-monitoring (p = .018; padj = .079); and a candidate genetic variant (rs263232) in the adenylyl cyclase 8 gene (p = .026), previously associated with dissociation. Results converged on biological structures and systems implicated in sensory integration, the neural representation of spatial awareness, and stress-related spatial learning and memory, suggesting possible mechanisms underlying the dissociative subtype of PTSD. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Sage E. Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Danielle R. Sullivan
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Victoria Sanborn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
| | - Emma Brown
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
| | - Zoe Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | | | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health Boston, MA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Chaposhloo M, Nicholson AA, Becker S, McKinnon MC, Lanius R, Shaw SB. Altered Resting-State functional connectivity in the anterior and posterior hippocampus in Post-traumatic stress disorder: The central role of the anterior hippocampus. Neuroimage Clin 2023; 38:103417. [PMID: 37148709 PMCID: PMC10193024 DOI: 10.1016/j.nicl.2023.103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Post-traumatic stress disorder can be viewed as a memory disorder, with trauma-related flashbacks being a core symptom. Given the central role of the hippocampus in autobiographical memory, surprisingly, there is mixed evidence concerning altered hippocampal functional connectivity in PTSD. We shed light on this discrepancy by considering the distinct roles of the anterior versus posterior hippocampus and examine how this distinction may map onto whole-brain resting-state functional connectivity patterns among those with and without PTSD. METHODS We first assessed whole-brain between-group differences in the functional connectivity profiles of the anterior and posterior hippocampus within a publicly available data set of resting-state fMRI data from 31 male Vietnam war veterans diagnosed with PTSD (mean age = 67.6 years, sd = 2.3) and 29 age-matched combat-exposed male controls (age = 69.1 years, sd = 3.5). Next, the connectivity patterns of each subject within the PTSD group were correlated with their PTSD symptom scores. Finally, the between-group differences in whole-brain functional connectivity profiles discovered for the anterior and posterior hippocampal seeds were used to prescribe post-hoc ROIs, which were then used to perform ROI-to-ROI functional connectivity and graph-theoretic analyses. RESULTS The PTSD group showed increased functional connectivity of the anterior hippocampus with affective brain regions (anterior/posterior insula, orbitofrontal cortex, temporal pole) and decreased functional connectivity of the anterior/posterior hippocampus with regions involved in processing bodily self-consciousness (supramarginal gyrus). Notably, decreased anterior hippocampus connectivity with the posterior cingulate cortex/precuneus was associated with increased PTSD symptom severity. The left anterior hippocampus also emerged as a central locus of abnormal functional connectivity, with graph-theoretic measures suggestive of a more central hub-like role for this region in those with PTSD compared to trauma-exposed controls. CONCLUSIONS Our results highlight that the anterior hippocampus plays a critical role in the neurocircuitry underlying PTSD and underscore the importance of the differential roles of hippocampal sub-regions in serving as biomarkers of PTSD. Future studies should investigate whether the differential patterns of functional connectivity stemming from hippocampal sub-regions is observed in PTSD populations other than older war veterans.
Collapse
Affiliation(s)
- Mohammad Chaposhloo
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew A Nicholson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Atlas Institute for Veterans and Families, Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, Ontario, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Ruth Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh Bhaskar Shaw
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada.
| |
Collapse
|
19
|
Jo Y, Choi H. Factor Structure and Clinical Correlates of The Dissociative Symptoms Scale (DSS) Korean Version Among Community Sample With Adverse Childhood Experiences. J Trauma Dissociation 2023; 24:380-394. [PMID: 36809920 DOI: 10.1080/15299732.2023.2181474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This study examined the factor structure and psychometric properties of the Dissociative Symptoms Scale (DSS) among the Korean community adult population with adverse childhood experiences (ACE). Data were drawn from community sample data sets collected from an online panel investigating the impact of ACE and ultimately consisted of data from a total of 1304 participants. A confirmatory factor analysis revealed a bi-factor model with a general factor and four sub-factors such as depersonalization/derealization, gaps in awareness and memory, sensory misperceptions, and cognitive behavioral reexperiencing, which are the four factors that correspond to the original DSS. The DSS showed good internal consistency as well as convergent validity with clinical correlates such as posttraumatic stress disorder, somatoform dissociation, and emotion dysregulation. The high-risk group with more ACE was associated with increased DSS. These findings support the multidimensionality of dissociation and the validity of Korean DSS scores in a general population sample.
Collapse
Affiliation(s)
- Yoonhyoung Jo
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| | - Hyunjung Choi
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
20
|
Shaw SB, Nicholson AA, Ros T, Harricharan S, Terpou B, Densmore M, Theberge J, Frewen P, Lanius RA. Increased top-down control of emotions during symptom provocation working memory tasks following a RCT of alpha-down neurofeedback in PTSD. Neuroimage Clin 2023; 37:103313. [PMID: 36669352 PMCID: PMC9868881 DOI: 10.1016/j.nicl.2023.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) has been found to be associated with emotion under-modulation from the prefrontal cortex and a breakdown of the top-down control of cognition and emotion. Novel adjunct therapies such as neurofeedback (NFB) have been shown to normalize aberrant neural circuits that underlie PTSD psychopathology at rest. However, little evidence exists for NFB-linked neural improvements under emotionally relevant cognitive load. The current study sought to address this gap by examining the effects of alpha-down NFB in the context of an emotional n-back task. METHODS We conducted a 20-week double-blind randomized, sham-controlled trial of alpha-down NFB and collected neuroimaging data before and after the NFB protocol. Participants performed an emotional 1-back and 2-back working memory task, with interleaved trauma-neutral and trauma-relevant cues in the fMRI scanner. Data from 35 participants with a primary diagnosis of PTSD were analyzed in this study (n = 18 in the experimental group undergoing alpha-down NFB, n = 17 in the sham-control group). RESULTS Firstly, within-group analyses showed clinically significant reductions in PTSD symptom severity scores at the post-intervention timepoint and 3-month follow-up for the experimental group, and not for the sham-control group. The neuroimaging analyses revealed that alpha-down NFB enhanced engagement of top-down cognitive and emotional control centers, such as the dorsolateral prefrontal cortex (dlPFC), and improved integration of the anterior and posterior parts of the default mode network (DMN). Finally, our results also indicate that increased alpha-down NFB performance correlated with increased activity in brain regions involved in top-down control and bodily consciousness/embodied processing of self (TPJ and posterior insula). CONCLUSION This is the first study to provide mechanistic insights into how NFB may normalize dysfunctional brain activity and connectivity in PTSD under cognitive load with simultaneous symptom provocation, adding to a growing body of evidence supporting the therapeutic neuromodulatory effects of NFB. This preliminary study highlights the benefits of alpha-down NFB training as an adjunctive therapy for PTSD and warrants further investigation into its therapeutic effects on cognitive and emotion control in those with PTSD.
Collapse
Affiliation(s)
- Saurabh Bhaskar Shaw
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada; Homewood Research Institute (HRI), Guelph, Ontario, Canada.
| | - Andrew A Nicholson
- School of Psychology, University of Ottawa, Canada; Atlas Institute for Veterans and Families, Royal Ottawa Hospital, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Sherain Harricharan
- Homewood Research Institute (HRI), Guelph, Ontario, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Braeden Terpou
- Homewood Research Institute (HRI), Guelph, Ontario, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Theberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Healthcare, London, Ontario, Canada
| | - Paul Frewen
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Homewood Research Institute (HRI), Guelph, Ontario, Canada; St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Smith DM, Terhune DB. Pedunculopontine-induced cortical decoupling as the neurophysiological locus of dissociation. Psychol Rev 2023; 130:183-210. [PMID: 35084921 PMCID: PMC10511303 DOI: 10.1037/rev0000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mounting evidence suggests an association between aberrant sleep phenomena and dissociative experiences. However, no wake-sleep boundary theory provides a compelling explanation of dissociation or specifies its physiological substrates. We present a theoretical account of dissociation that integrates theories and empirical results from multiple lines of research concerning the domain of dissociation and the regulation of rapid eye movement (REM) sleep. This theory posits that individual differences in the circuitry governing the REM sleep promoting Pedunculopontine Nucleus and Laterodorsal Tegmental Nucleus determine the degree of similarity in the cortical connectivity profiles of wakefulness and REM sleep. We propose that a latent trait characterized by elevated dissociative experiences emerges from the decoupling of frontal executive regions due to a REM sleep-like aminergic/cholinergic balance. The Pedunculopontine-Induced Cortical Decoupling Account of Dissociation (PICDAD) suggests multiple fruitful lines of inquiry and provides novel insights. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Derek M. Smith
- Department of Psychology, Northwestern University
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
22
|
Nanni-Zepeda M, Alizadeh S, Chand T, Kasties V, Fan Y, van der Meer J, Herrmann L, Vester JC, Schulz M, Naschold B, Walter M. Trait anxiety is related to Nx4's efficacy on stress-induced changes in amygdala-centered resting state functional connectivity: a placebo-controlled cross-over trial in mildly to moderately stressed healthy volunteers. BMC Neurosci 2022; 23:68. [PMID: 36434512 PMCID: PMC9694608 DOI: 10.1186/s12868-022-00754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The multicomponent drug Neurexan (Nx4) was shown to reduce the neural stress network activation. We now investigated its effects on stress-induced resting state functional connectivity (RSFC) in dependence of trait anxiety (TA), an acknowledged vulnerability factor for stress-induced psychopathologies. METHODS Nx4 was tested in a randomized placebo-controlled crossover trial. Resting state fMRI scans were performed before and after a psychosocial stress task and exploratively analyzed for amygdala centered RSFC. Effects of Nx4 on stress-induced RSFC changes were evaluated and correlated to TA levels. A subgroup analysis based on TA scores was performed. RESULTS Multiple linear regression analysis revealed a significant correlation between TA and Nx4 effect on stress-induced RSFC changes between right amygdala and pregenual anterior cingulate cortex (pgACC) and ventro-medial prefrontal cortex (vmPFC). For participants with above average TA, a significant amelioration of the stress-induced RSFC changes was observed. CONCLUSIONS The data add evidence to the hypothesis that Nx4's clinical efficacy is based on a dampened activation of the neural stress network, with a greater neural response in subjects with anxious personality traits. Further studies assessing clinically relevant outcome measures in parallel to fMRI are encouraged to evaluate the real-world benefit of Nx4. Trial registration NCT02602275.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Sarah Alizadeh
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Tara Chand
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Vanessa Kasties
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Yan Fan
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany
| | - Johan van der Meer
- grid.509540.d0000 0004 6880 3010Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Luisa Herrmann
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Johannes C. Vester
- idv Data Analysis and Study Planning, Tassilostraße 6, 82131 Gauting, Germany
| | - Myron Schulz
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Britta Naschold
- grid.476093.f0000 0004 0629 2294Biologische Heilmittel Heel GmbH, Dr.-Reckeweg-Str. 2-4, 76532 Baden-Baden, Germany
| | - Martin Walter
- grid.275559.90000 0000 8517 6224Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| |
Collapse
|
23
|
An Experimental Study of Subliminal Self-Face Processing in Depersonalization-Derealization Disorder. Brain Sci 2022; 12:brainsci12121598. [PMID: 36552058 PMCID: PMC9775423 DOI: 10.3390/brainsci12121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The self-perception or self-experience of patients with depersonalization/derealization disorder (DPD) is altered, leading to a profound disruption in self-awareness. The main aim of the study is to explore the characteristics of subliminal self-face processing in DPD patients. To our knowledge, this is the first experimental study that has measured and evaluated subliminal self-processing in DPD. To better understand this, we examined the ability of patients with DPD and healthy controls (HC) to identify pictures of faces using an experimental paradigm of breaking continuous flash suppression. There were 23 DPD outpatients from Beijing Anding Hospital, Capital Medical University and 23 matched HC who participated in this experiment. The time needed for a face to break into awareness was taken as the measure of participants' subliminal processing of that face. The results indicated that there were significant differences between the DPD patients and HC in subliminal reaction times to different faces. Under experimental conditions, the average reaction response of self-face recognition in the HC group was significantly faster than for a famous face. However, this difference was not observed in DPD patients, which means that DPD patients did not show the processing advantage of their own faces as did the HC. The results suggest a deficit in subliminal self-face processing in DPD.
Collapse
|
24
|
Leite L, Esper NB, Junior JRML, Lara DR, Buchweitz A. An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood. Sci Rep 2022; 12:9558. [PMID: 35688847 PMCID: PMC9187646 DOI: 10.1038/s41598-022-13395-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
We carried out an exploratory study aimed at identifying differences in resting-state functional connectivity for the amygdala and its subregions, right and left basolateral, centromedial and superficial nuclei, in patients with Posttraumatic Stress Disorder (PTSD), relative to controls. The study included 10 participants with PTSD following trauma in adulthood (9 females), and 10 controls (9 females). The results suggest PTSD was associated with a decreased (negative) functional connectivity between the superficial amygdala and posterior brain regions relative to controls. The differences were observed between right superficial amygdala and right fusiform gyrus, and between left superficial amygdala and left lingual and left middle occipital gyri. The results suggest that among PTSD patients, the worse the PTSD symptoms, the lower the connectivity. The results corroborate the fMRI literature that shows PTSD is associated with weaker amygdala functional connectivity with areas of the brain involved in sensory and perceptual processes. The results also suggest that though the patients traumatic experience occured in adulthood, the presence of early traumatic experiences were associated with negative connectivity between the centromedial amygdala and sensory and perceptual regions. We argue that the understanding of the mechanisms of PTSD symptoms, its behaviors and the effects on quality of life of patients may benefit from the investigation of brain function that underpins sensory and perceptual symptoms associated with the disorder.
Collapse
Affiliation(s)
- Leticia Leite
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| | - Nathalia Bianchini Esper
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - José Roberto M Lopes Junior
- School of Psychology and Health, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | | | - Augusto Buchweitz
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
- Department of Psychology, University of Connecticut, Stamford, 06269-1020, United States of America.
| |
Collapse
|
25
|
Mukherjee P, Vilgis V, Rhoads S, Chahal R, Fassbender C, Leibenluft E, Dixon JF, Pakyurek M, van den Bos W, Hinshaw SP, Guyer AE, Schweitzer JB. Associations of Irritability With Functional Connectivity of Amygdala and Nucleus Accumbens in Adolescents and Young Adults With ADHD. J Atten Disord 2022; 26:1040-1050. [PMID: 34724835 PMCID: PMC8957582 DOI: 10.1177/10870547211057074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Irritability is a common characteristic in ADHD. We examined whether dysfunction in neural connections supporting threat and reward processing was related to irritability in adolescents and young adults with ADHD. METHOD We used resting-state fMRI to assess connectivity of amygdala and nucleus accumbens seeds in those with ADHD (n = 34) and an age- and gender-matched typically-developing comparison group (n = 34). RESULTS In those with ADHD, irritability was associated with atypical functional connectivity of both seed regions. Amygdala seeds showed greater connectivity with right inferior frontal gyrus and caudate/putamen, and less connectivity with precuneus. Nucleus accumbens seeds showed altered connectivity with middle temporal gyrus and precuneus. CONCLUSION The irritability-ADHD presentation is associated with atypical functional connectivity of reward and threat processing regions with cognitive control and emotion processing regions. These patterns provide novel evidence for irritability-associated neural underpinnings in adolescents and young adults with ADHD. The findings suggest cognitive and behavioral treatments that address response to reward, including omission of an expected reward and irritability, may be beneficial for ADHD.
Collapse
Affiliation(s)
| | | | - Shawn Rhoads
- University of California, Davis, CA, USA,Georgetown University, Washington, DC, USA
| | - Rajpreet Chahal
- University of California, Davis, CA, USA,Stanford University, Palo Alto, CA, USA
| | | | - Ellen Leibenluft
- The National Institutes of Mental Health, United States Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | - Stephen P. Hinshaw
- University of California, Berkeley, CA, USA,University of California, San Francisco, USA
| | | | | |
Collapse
|
26
|
Machorrinho J, Veiga G, Santos G, Marmeleira J. Embodiment-related risk factors for Posttraumatic Stress, Anxiety and Depression in female victims of intimate partner violence. J Trauma Dissociation 2022; 23:212-228. [PMID: 34651566 DOI: 10.1080/15299732.2021.1989109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/15/2021] [Indexed: 10/20/2022]
Abstract
A central notion in the field of embodiment is that body sensorimotor processes and body mental representations influence emotion, cognition and behavior. By affecting the body, intimate partner violence (IPV) can leave victims with a fragile self, and significant physical and mental health problems. In this study, we aim to examine embodiment-related variables and mental health of female victims of IPV, as well as the impact of embodiment on mental health. A total of 38 female victims of IPV (mean age 40.3 ± 10.9 years) were recruited from shelters and the community. The study assessed the levels of Posttraumatic Stress Disorder (PTSD), Anxiety and Depression, and abilities of Movement Imagery, Interoceptive Accuracy, Interoceptive Sensibility, Body Ownership and Bodily Dissociation. Univariate, bivariate and binary regression analysis were used. PTSD, Anxiety and Depression were highly prevalent among our sample, alongside with altered values of body ownership and interoception. All three mental health disorders were significantly correlated with interoceptive self-regulation, interoceptive trusting, and bodily dissociation. For this group of women, each unit rise in the bodily dissociation scale increased two and six times the risk for developing Depression and Anxiety, respectively. The embodiment of female victims of IPV is altered, and higher bodily dissociation can be a risk factor for the development of mental health problems. Restoration of embodiment-related functions could be important for the victims to overcome the negative effects of violent relationships.
Collapse
Affiliation(s)
- Joana Machorrinho
- Departamento De Desporto E Saúde, Escola De Saúde E Desenvolvimento Humano, Universidade De Évora, Évora, Portugal
| | - Guida Veiga
- Departamento De Desporto E Saúde, Escola De Saúde E Desenvolvimento Humano, Universidade De Évora, Évora, Portugal
| | - Graça Santos
- Comprehensive Health Research Centre (CHRC), Universidade De Évora, Évora, Portugal
| | - José Marmeleira
- Department of Psychology, University of Évora, Evora, Portugal
| |
Collapse
|
27
|
McIntosh R, Lobo JD, Carvalho N, Ironson G. Learning to forget: Hippocampal-amygdala connectivity partially mediates the effect of sexual trauma severity on verbal recall in older women undiagnosed with posttraumatic stress disorder. J Trauma Stress 2022; 35:631-643. [PMID: 35156236 PMCID: PMC11021133 DOI: 10.1002/jts.22778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Verbal learning deficits are common among sexually traumatized women who have not been formally diagnosed with posttraumatic stress disorder (PTSD). Aberrant resting-state functional connectivity (rsFC) of the amygdala and hippocampus are implicated in PTSD and verbal memory impairment. We tested rsFC between bilateral dentate gyrus (DG) and both centromedial (CM) and basolateral (BL) nuclei of the amygdala as statistical mediators for the effect of sexual trauma-related symptom severity on delayed verbal recall performance in 63 older women (age: 60-85 years) undiagnosed with PTSD. Participant data were drawn from the NKI-Rockland Study. Individuals completed a 10-min resting-state scan, Rey Auditory Verbal Learning Test (RAVLT), and the Sexual Abuse Trauma Index (SATI) from the Trauma Symptom Checklist. Z-scores indicating rsFC of DG with BL and CM amygdala seeds were evaluated in two separate mediation models. Higher SATI scores were associated with lower RAVLT after controlling for age, β = -.23, 95% CI [.48, .03], p = .039. This effect was negated upon adding a negative path from SATI to rsFC of left DG and right CM, β = -.29, 95% CI [-.52, -.02], p = .022, and a positive path from that seed pair to RAVLT List A recall, β = .28, 95% CI [.03, 0.48], p = .015. Chi-square fit indices supported partial mediation by this seed pair, p = .762. In the absence of PTSD sexual trauma symptoms partially relate to verbal learning deficits as a function of aberrant rsFC between left hippocampus DG and right amygdala CM nuclei.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Nicole Carvalho
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Gail Ironson
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
28
|
Blades R, Becerra S, Jordan S, Eusebio B, Heatwole M, Iovine J, Mahdavi K, Mamoun M, Nicodemus N, Packham H, Spivak N, Kuhn T. The Role of the Insula in Classical and Dissociative PTSD: A Double Case Study. Neurocase 2022; 28:140-148. [PMID: 35452340 DOI: 10.1080/13554794.2021.1978502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two service members were diagnosed with PTSD due to military trauma exposure. One presented with the classical manifestation; the other presented with the dissociative subtype. A statistical map revealed anterior localization of insula connectivity in the classical PTSD patient and posterior localization in the dissociative PTSD patient. These differences suggest that dissociative PTSD may be identified, understood, and treated as a disorder related to increased posterior insula connectivity. This double case study provides preliminary evidence for a concrete neuroanatomical discrepancy between insula function in classical and dissociative PTSD that may help explain the emergence of different coping strategies.
Collapse
Affiliation(s)
- Robin Blades
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Sergio Becerra
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Sheldon Jordan
- Neurological Associates - The Interventional Group, Los Angeles, California, USA.,Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | | | | | - Jessica Iovine
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Kennedy Mahdavi
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | | | - Natalie Nicodemus
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Hannah Packham
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Norman Spivak
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
A Pilot Randomized Controlled Trial of Goal Management Training in Canadian Military Members, Veterans, and Public Safety Personnel Experiencing Post-Traumatic Stress Symptoms. Brain Sci 2022; 12:brainsci12030377. [PMID: 35326333 PMCID: PMC8946598 DOI: 10.3390/brainsci12030377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric illness that disproportionately affects military personnel, veterans, and public safety personnel (PSP). Evidence demonstrates that PTSD is significantly associated with difficulties with emotion regulation (ER) and difficulties with cognitive functioning, including difficulties with attention, working memory, and executive functioning. A wide body of evidence suggests a dynamic interplay among cognitive dysfunction, difficulties with ER, and symptoms of PTSD, where numerous studies have identified overlapping patterns of alterations in activation among neuroanatomical regions and neural circuitry. Little work has examined interventions that may target these symptoms collectively. The primary objective of this pilot randomized controlled trial (RCT) with a parallel experimental design was to assess the effectiveness of goal management training (GMT), a cognitive remediation intervention, in reducing difficulties with cognitive functioning, and to determine its effects on PTSD symptoms and symptoms associated with PTSD, including difficulties with ER, dissociation, and functioning among military personnel, veterans, and PSP. Forty-two military personnel, veterans, and PSP between the ages of 18 and 70 with symptoms of PTSD were recruited across Ontario, Canada between October 2017 and August 2019. Participants were randomized to either the waitlist (WL) (n = 18) or the GMT (n = 22) condition. Participants in both conditions received self-report measures and a comprehensive neuropsychological assessment at baseline, post-intervention, and 3-month follow-up. Following their completion of the 3-month follow-up, participants in the WL condition were given the opportunity to participate in GMT. Assessors and participants were blind to intervention allocation during the initial assessment. A series of 2 (time) × 2 (group) ANOVAs were conducted to assess the differences between the WL and GMT conditions from pre- to post-intervention for the self-report and neuropsychological measures. The results demonstrated significant improvements in measures of executive functioning (e.g., verbal fluency, planning, impulsivity, cognitive shifting, and discrimination of targets) and trending improvements in short-term declarative memory for participants in the GMT condition. Participants in the GMT condition also demonstrated significant improvements from pre- to post-testing in measures of subjective cognition, functioning, PTSD symptom severity, difficulties with ER, dissociative symptom severity, and depression and anxiety symptoms. No adverse effects were reported as a result of participating in GMT. The results of this pilot RCT show promise that GMT may be a useful intervention to improve symptoms of cognitive dysfunction, symptoms of PTSD, and symptoms associated with PTSD within military personnel, veterans, and PSP. Future work is needed to address the small sample size and the durability of these findings.
Collapse
|
30
|
Blithikioti C, Nuño L, Guell X, Pascual-Diaz S, Gual A, Balcells-Olivero Μ, Miquel L. The cerebellum and psychological trauma: A systematic review of neuroimaging studies. Neurobiol Stress 2022; 17:100429. [PMID: 35146077 PMCID: PMC8801754 DOI: 10.1016/j.ynstr.2022.100429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Psychological trauma is highly prevalent among psychiatric disorders, however, the relationship between trauma, neurobiology and psychopathology is not yet fully understood. The cerebellum has been recognized as a crucial structure for cognition and emotion, however, it has been relatively ignored in the literature of psychological trauma, as it is not considered as part of the traditional fear neuro-circuitry. The aim of this review is to investigate how psychological trauma affects the cerebellum and to make conclusive remarks on whether the cerebellum forms part of the trauma-affected brain circuitry. A total of 267 unique records were screened and 39 studies were included in the review. Structural cerebellar alterations and aberrant cerebellar activity and connectivity in trauma-exposed individuals were consistently reported across studies. Early-onset of adverse experiences was associated with cerebellar alterations in trauma-exposed individuals. Several studies reported alterations in connectivity between the cerebellum and nodes of large-brain networks, which are implicated in several psychiatric disorders, including the default mode network, the salience network and the central executive network. Also, trauma-exposed individuals showed altered resting state and task based cerebellar connectivity with cortical and subcortical structures that are involved in emotion and fear regulation. Our preferred interpretation of the results is through the lens of the Universal Cerebellar Transform, the hypothesis that the cerebellum, given its homogeneous cytoarchitecture, performs a common computation for motor, cognitive and emotional functions. Therefore, trauma-induced alterations in this computation might set the ground for a variety of psychiatric symptoms.
Collapse
Affiliation(s)
- C. Blithikioti
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L. Nuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - X. Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S. Pascual-Diaz
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A. Gual
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Μ. Balcells-Olivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - L. Miquel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| |
Collapse
|
31
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
32
|
Kritikos M, Clouston SAP, Huang C, Pellecchia AC, Mejia-Santiago S, Carr MA, Kotov R, Lucchini RG, Gandy SE, Bromet EJ, Luft BJ. Cortical complexity in world trade center responders with chronic posttraumatic stress disorder. Transl Psychiatry 2021; 11:597. [PMID: 34815383 PMCID: PMC8611009 DOI: 10.1038/s41398-021-01719-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Approximately 23% of World Trade Center (WTC) responders are experiencing chronic posttraumatic stress disorder (PTSD) associated with their exposures at the WTC following the terrorist attacks of 9/11/2001, which has been demonstrated to be a risk factor for cognitive impairment raising concerns regarding their brain health. Cortical complexity, as measured by analyzing Fractal Dimension (FD) from T1 MRI brain images, has been reported to be reduced in a variety of psychiatric and neurological conditions. In this report, we hypothesized that FD would be also reduced in a case-control sample of 99 WTC responders as a result of WTC-related PTSD. The results of our surface-based morphometry cluster analysis found alterations in vertex clusters of complexity in WTC responders with PTSD, with marked reductions in regions within the frontal, parietal, and temporal cortices, in addition to whole-brain absolute bilateral and unilateral complexity. Furthermore, region of interest analysis identified that the magnitude of changes in regional FD severity was associated with increased PTSD symptoms (reexperiencing, avoidance, hyperarousal, negative affect) severity. This study confirms prior findings on FD and psychiatric disorders and extends our understanding of FD associations with posttraumatic symptom severity. The complex and traumatic experiences that led to WTC-related PTSD were associated with reductions in cortical complexity. Future work is needed to determine whether reduced cortical complexity arose prior to, or concurrently with, onset of PTSD.
Collapse
Affiliation(s)
- Minos Kritikos
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Sean A P Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Chuan Huang
- Department of Radiology, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Alison C Pellecchia
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stephanie Mejia-Santiago
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Melissa A Carr
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, USA
| | - Samuel E Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Gao J, Yang X, Chen X, Liu R, Wang P, Meng F, Li Z, Zhou Y. Resting-state functional connectivity of the amygdala subregions in unmedicated patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Psychiatry Neurosci 2021; 46:E628-E638. [PMID: 34785511 PMCID: PMC8598242 DOI: 10.1503/jpn.210084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT) is considered an effective first-line treatment for obsessive-compulsive disorder (OCD). However, the neural basis of CBT for OCD has not yet been elucidated. The role of the amygdala in OCD and its functional coupling with the cerebral cortex have received increasing attention, and may provide new understanding of the neural basis of CBT for OCD. METHODS We acquired baseline resting-state functional MRI (fMRI) scans from 45 unmedicated patients with OCD and 40 healthy controls; we then acquired another wave of resting-state fMRI scans from the patients with OCD after 12 weeks of CBT. We performed seed-based resting-state functional connectivity analyses of the amygdala subregions to examine changes in patients with OCD as a result of CBT. RESULTS Compared to healthy controls, patients with OCD showed significantly increased resting-state functional connectivity at baseline between the left basolateral amygdala and the right middle frontal gyrus, and between the superficial amygdala and the right cuneus. In patients with OCD who responded to CBT, we found decreased resting-state functional connectivity after CBT between the amygdala subregions and the visual association cortices and increased resting-state functional connectivity between the amygdala subregions and the right inferior parietal lobe. Furthermore, these changes in resting-state functional connectivity were positively associated with changes in scores on the compulsion or obsession subscales of the Yale-Brown Obsessive-Compulsive Scale. LIMITATIONS Because of the lack of a second scan for healthy controls after 12 weeks, our results may have been confounded by other variables. CONCLUSION Our findings yield insights into the pathophysiology of OCD; they also reveal the potential neural changes elicited by CBT, and thus have implications for guiding effective treatment strategies with CBT for OCD.
Collapse
|
34
|
Li L, Xu Z, Chen L, Suo X, Fu S, Wang S, Lui S, Huang X, Li L, Li SJ, Biswal BB, Gong Q. Dysconnectivity of the amygdala and dorsal anterior cingulate cortex in drug-naive post-traumatic stress disorder. Eur Neuropsychopharmacol 2021; 52:84-93. [PMID: 34311210 DOI: 10.1016/j.euroneuro.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Convergent studies have highlighted the amygdala-based and dorsal anterior cingulate cortex (dACC)-based circuit or network dysfunction in post-traumatic stress disorder (PTSD). However, previous studies are often complicated by various traumatic types, psychiatric comorbidities, chronic illness duration, and medication effect on brain function. Besides, little is known whether the functional integration with amygdala-dACC interaction disrupted or not in PTSD. Here, we investigated effective connectivity (EC) between the amygdala-dACC and rest of the cortex by applying psycho-physiological interaction (PPI) approach to resting-state functional magnetic resonance imaging data of 63 drug-naive PTSD patients and 74 matched trauma-exposed non-PTSD controls. Pearson correlation analysis was performed between EC values extracted from regions with between-group difference and clinical profiles in PTSD patients. We observed distinct amygdala-dACC interaction pattern between PTSD group and the control group, which is composed primarily by positive EC in the former and negative in the latter. In addition, compared with non-PTSD controls, PTSD patients showed increased EC between amygdala-dACC and the prefrontal cortex, left inferior parietal lobule, and bilateral ventral occipital cortex, and decreased EC between amygdala-dACC and the left fusiform gyrus. The EC increase between amygdala-dACC and the right middle frontal gyrus was negatively correlated with the clinician-administered PTSD scale scores in PTSD patients. Aberrent communication between amgydala-dACC and brain regions involved in central executive network and visual systems might be associated with the pathophysiology of PTSD. Further, these findings suggested that dysconnectivity of the amygdala and dACC could be adapted as a relatively early course diagnostic biomarker of PTSD.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Zhan Xu
- Department of Biophysics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Imaging Physics, Univ of Texas M D Anderson Cancer Center, Houston, TX 77054, United States
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark 07101, NJ, United States; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Evaluating symptom endorsement typographies of trauma-exposed veterans on the Personality Assessment Inventory (PAI): A latent profile analysis. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-019-00486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Bao W, Gao Y, Cao L, Li H, Liu J, Liang K, Hu X, Zhang L, Hu X, Gong Q, Huang X. Alterations in large-scale functional networks in adult posttraumatic stress disorder: A systematic review and meta-analysis of resting-state functional connectivity studies. Neurosci Biobehav Rev 2021; 131:1027-1036. [PMID: 34688728 DOI: 10.1016/j.neubiorev.2021.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with dysfunction in large-scale brain functional networks, as revealed by resting-state functional connectivity studies. However, it remains unclear which networks have been most consistently affected and, more importantly, what role disease and trauma may play in the disrupted functional networks. We performed a systematic review of studies exploring network alterations using seed-based functional connectivity analysis, comparing individuals with PTSD to controls in general as well as trauma-exposed or nonexposed controls specifically, and quantitative meta-analysis was conducted when the number of studies was appropriately high. We found that hypoconnectivity within the default-mode network (DMN) as well as between the affective network (AN) and DMN were specifically associated with traumatic experience. Additionally, hyperconnectivity between the AN and somatomotor network (SMN) and between the DMN and SMN were specifically related to PTSD. Our results emphasize the effect of trauma itself on alterations in intrinsic brain networks and highlight disease-associated network alterations, which may help us better understand the neural mechanisms of trauma and PTSD.
Collapse
Affiliation(s)
- Weijie Bao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Roeckner AR, Oliver KI, Lebois LAM, van Rooij SJH, Stevens JS. Neural contributors to trauma resilience: a review of longitudinal neuroimaging studies. Transl Psychiatry 2021; 11:508. [PMID: 34611129 PMCID: PMC8492865 DOI: 10.1038/s41398-021-01633-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Resilience in the face of major life stressors is changeable over time and with experience. Accordingly, differing sets of neurobiological factors may contribute to an adaptive stress response before, during, and after the stressor. Longitudinal studies are therefore particularly effective in answering questions about the determinants of resilience. Here we provide an overview of the rapidly-growing body of longitudinal neuroimaging research on stress resilience. Despite lingering gaps and limitations, these studies are beginning to reveal individual differences in neural circuit structure and function that appear protective against the emergence of future psychopathology following a major life stressor. Here we outline a neural circuit model of resilience to trauma. Specifically, pre-trauma biomarkers of resilience show that an ability to modulate activity within threat and salience networks predicts fewer stress-related symptoms. In contrast, early post-trauma biomarkers of subsequent resilience or recovery show a more complex pattern, spanning a number of major circuits including attention and cognitive control networks as well as primary sensory cortices. This novel synthesis suggests stress resilience may be scaffolded by stable individual differences in the processing of threat cues, and further buttressed by post-trauma adaptations to the stressor that encompass multiple mechanisms and circuits. More attention and resources supporting this work will inform the targets and timing of mechanistic resilience-boosting interventions.
Collapse
Affiliation(s)
- Alyssa R. Roeckner
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Katelyn I. Oliver
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Lauren A. M. Lebois
- grid.240206.20000 0000 8795 072XDivision of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Sanne J. H. van Rooij
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Jennifer S. Stevens
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
38
|
Wang Z, Zhu H, Yuan M, Li Y, Qiu C, Ren Z, Yuan C, Lui S, Gong Q, Zhang W. The resting-state functional connectivity of amygdala subregions associated with post-traumatic stress symptom and sleep quality in trauma survivors. Eur Arch Psychiatry Clin Neurosci 2021; 271:1053-1064. [PMID: 32052123 DOI: 10.1007/s00406-020-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023]
Abstract
Neuroimaging findings suggest that the amygdala plays a primary role in both the psychopathology of posttraumatic stress disorder (PTSD) and poor sleep quality, which are common in trauma survivors. However, the neural mechanisms of these two problems in trauma survivors associated with amygdala remain unclear. In the current study, we aimed to explore the role of functional connectivity of amygdala subregions in both PTSD symptoms and poor sleep quality. A total of 94 trauma-exposed subjects were scanned on a 3T MR system using resting-state functional magnetic resonance imaging. Both Pittsburgh Sleep Quality Index and Clinician-Administered PTSD Scale scores were negatively correlated with the resting-state functional connectivity between the left basolateral amygdala-left medial prefrontal cortex and the right basolateral amygdala-right medial prefrontal cortex. Our findings suggest a shared amygdala subregional neural circuitry underlying the neuropathological mechanisms of PTSD symptoms and poor sleep quality in trauma survivors.
Collapse
Affiliation(s)
- Zuxing Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Center for Mental Healthy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengjia Ren
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Department of Clinical Psychology, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Cui Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Tian T, Young CB, Zhu Y, Xu J, He Y, Chen M, Hao L, Jiang M, Qiu J, Chen X, Qin S. Socioeconomic Disparities Affect Children's Amygdala-Prefrontal Circuitry via Stress Hormone Response. Biol Psychiatry 2021; 90:173-181. [PMID: 33832707 DOI: 10.1016/j.biopsych.2021.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The socioeconomic status (SES) of a family can affect almost all aspects of a child's life, including health and current and future achievement. The potential adverse effects of low SES on children's emotional development are thought to result from proximal factors such as stress. The underlying neurobiological mechanisms, however, remain elusive. METHODS The effect of SES on children's integrative cortisol secretion and its modulations on emotion-related brain systems and connectivity were examined in children aged 6 to 12 years. In study 1, we investigated the relationship between SES and cortisol secretion in 239 children. In study 2, using resting-state and task-dependent functional magnetic resonance imaging in a subsample of 50 children, we investigated how SES affects children's amygdala-prefrontal functional organization through cortisol secretion. RESULTS Children from lower SES exhibited lower cortisol secretion, considering basal cortisol, nocturnal cortisol activity during sleep, and cortisol awakening response, which mediated higher amygdala nuclei intrinsic functional connectivity with the medial and dorsolateral prefrontal cortex (PFC). Critically, these children also exhibited higher task-evoked ventromedial PFC activity through higher intrinsic connectivity of the centromedial amygdala with the medial PFC. They also exhibited higher functional coupling of the centromedial amygdala with the dorsolateral PFC when processing negative emotions. CONCLUSIONS This study demonstrates that SES shapes children's amygdala-prefrontal circuitry through stress-sensitive cortisol secretion, with the most prominent effect in the centromedial amygdala's functional coordination with the ventromedial and dorsolateral PFC involved in processing negative emotions. Our findings provide important insight into the neurobiological etiology underlying how socioeconomic disparities shape children's emotional development.
Collapse
Affiliation(s)
- Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Ying He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; College of Teacher Education, Southwest University, Chongqing, China
| | - Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Xu Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
40
|
Olivé I, Makris N, Densmore M, McKinnon MC, Lanius RA. Altered basal forebrain BOLD signal variability at rest in posttraumatic stress disorder: A potential candidate vulnerability mechanism for neurodegeneration in PTSD. Hum Brain Mapp 2021; 42:3561-3575. [PMID: 33960558 PMCID: PMC8249881 DOI: 10.1002/hbm.25454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with posttraumatic stress disorder (PTSD) are at increased risk for the development of various forms of dementia. Nevertheless, the neuropathological link between PTSD and neurodegeneration remains unclear. Degeneration of the human basal forebrain constitutes a pathological hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. In this seed-based resting-state (rs-)fMRI study identifying as outcome measure the temporal BOLD signal fluctuation magnitude, a seed-to-voxel analyses assessed temporal correlations between the average BOLD signal within a bilateral whole basal forebrain region-of-interest and each whole-brain voxel among individuals with PTSD (n = 65), its dissociative subtype (PTSD+DS) (n = 38) and healthy controls (n = 46). We found that compared both with the PTSD and healthy controls groups, the PTSD+DS group exhibited increased BOLD signal variability within two nuclei of the seed region, specifically in its extended amygdaloid region: the nucleus accumbens and the sublenticular extended amygdala. This finding is provocative, because it mimics staging models of neurodegenerative diseases reporting allocation of neuropathology in early disease stages circumscribed to the basal forebrain. Here, underlying candidate etiopathogenetic mechanisms are neurovascular uncoupling, decreased connectivity in local- and large-scale neural networks, or disrupted mesolimbic dopaminergic circuitry, acting indirectly upon the basal forebrain cholinergic pathways. These abnormalities may underpin reward-related deficits representing a putative link between persistent traumatic memory in PTSD and anterograde memory deficits in neurodegeneration. Observed alterations of the basal forebrain in the dissociative subtype of PTSD point towards the urgent need for further exploration of this region as a potential candidate vulnerability mechanism for neurodegeneration in PTSD.
Collapse
Affiliation(s)
- Isadora Olivé
- Faculty of Brain Sciences, Division of PsychiatryUniversity College of LondonLondonUnited Kingdom
| | - Nikos Makris
- Departments of Psychiatry and Neurology Services, Center for Neural Systems InvestigationCenter for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry Neuroimaging LaboratoryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Maria Densmore
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Margaret C. McKinnon
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
- Mood Disorders ProgramSt Joseph's HealthcareHamiltonOntarioCanada
| | - Ruth A. Lanius
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
- Department of NeurosciencesUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
41
|
Breukelaar IA, Bryant RA, Korgaonkar MS. The functional connectome in posttraumatic stress disorder. Neurobiol Stress 2021; 14:100321. [PMID: 33912628 PMCID: PMC8065342 DOI: 10.1016/j.ynstr.2021.100321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Previous fMRI studies of posttraumatic stress disorder (PTSD) have investigated region-specific alterations in intrinsic connectivity but connectome-wide changes in connectivity are yet to be characterized. Understanding the neurobiology of this is important to develop novel treatment interventions for PTSD. This study aims to identify connectome-wide disruptions in PTSD to provide a more comprehensive analysis of nseural networks in this disorder. METHODS A functional MRI scan was completed by 138 individuals (67 PTSD and 71 non-trauma-exposed healthy controls [HC]). For every individual, inter-regional intrinsic functional connectivity was estimated between 436 brain regions, comprising intra and inter-network connectivity of eight large-scale brain networks. Group-wise differences between PTSD and HC were investigated using network-based statistics at a family-wise error rate of p < 0.05. Significant network differences were then further investigated in 27 individuals with trauma exposure but no PTSD [TC]). RESULTS Compared to HC, PTSD displayed lower intrinsic functional connectivity in a network of 203 connections between 420 regions within and between mid-posterior default mode, central executive, limbic, visual and somatomotor regions. Additionally, PTSD displayed higher connectivity across a network of 50 connections from thalamic and limbic to sensory and default-mode regions. Connectivity in TC in both these networks was intermediate and significantly different to PTSD and HC. CONCLUSION A large-scale imbalance between hypoconnectivity of higher-order cortical networks and hyperconnectivity of emotional and arousal response systems seems to occur on a sliding scale from trauma exposure to clinical manifestation as PTSD. Novel interventions that target this systemic functional imbalance could provide potential mitigation of PTSD.
Collapse
Affiliation(s)
- Isabella A. Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Richard A. Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S. Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
43
|
Krause-Utz A, Frost R, Chatzaki E, Winter D, Schmahl C, Elzinga BM. Dissociation in Borderline Personality Disorder: Recent Experimental, Neurobiological Studies, and Implications for Future Research and Treatment. Curr Psychiatry Rep 2021; 23:37. [PMID: 33909198 PMCID: PMC8081699 DOI: 10.1007/s11920-021-01246-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The aim of this review article is to give an overview over recent experimental neurobiological research on dissociation in borderline personality disorder (BPD), in order to inform clinicians and to stimulate further research. First, we introduce basic definitions and models that conceptualize dissociation from a transdiagnostic perspective. Then, we discuss recent findings in BPD. RECENT FINDINGS Stress-related dissociation is a key symptom of BPD, closely linked to other core domains of the disorder (emotion dysregulation, identity disturbances, and interpersonal disturbances). The understanding of neurobiological correlates of dissociation across different psychiatric disorders (e.g., dissociative disorders, post-traumatic stress disorder) is steadily increasing. At the same time, studies explicitly focusing on dissociation in BPD are still scarce. There is evidence for adverse effects of dissociation on affective-cognitive functioning (e.g., interference inhibition), body perception, and psychotherapeutic treatment response in BPD. On the neural level, increased activity in frontal regions (e.g., inferior frontal gyrus) and temporal areas (e.g., inferior and superior temporal gyrus) during symptom provocation tasks and during resting state was observed, although findings are still diverse and need to be replicated. Conceptual differences and methodological differences in study designs and sample characteristics (e.g., comorbidities, trauma history) hinder a straightforward interpretation and comparison of studies. Given the potentially detrimental impact of dissociation in BPD, more research on the topic is strongly needed to deepen the understanding of this complex clinical condition.
Collapse
Affiliation(s)
- Annegret Krause-Utz
- Institute of Clinical Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands.
| | - Rachel Frost
- Department of Psychology, King's College London, Institute of Psychiatry Psychology & Neuroscience, London, UK
| | - Elianne Chatzaki
- Institute of Clinical Psychology, Leiden University, Leiden, The Netherlands
| | - Dorina Winter
- Pain and Psychotherapy Research Lab, University of Koblenz-Landau, Landau, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernet M Elzinga
- Institute of Clinical Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| |
Collapse
|
44
|
Jagger-Rickels A, Stumps A, Rothlein D, Park H, Fortenbaugh F, Zuberer A, Fonda JR, Fortier CB, DeGutis J, Milberg W, McGlinchey R, Esterman M. Impaired executive function exacerbates neural markers of posttraumatic stress disorder. Psychol Med 2021; 52:1-14. [PMID: 33879272 PMCID: PMC10202148 DOI: 10.1017/s0033291721000842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND A major obstacle in understanding and treating posttraumatic stress disorder (PTSD) is its clinical and neurobiological heterogeneity. To address this barrier, the field has become increasingly interested in identifying subtypes of PTSD based on dysfunction in neural networks alongside cognitive impairments that may underlie the development and maintenance of symptoms. The current study aimed to determine if subtypes of PTSD, based on normative-based cognitive dysfunction across multiple domains, have unique neural network signatures. METHODS In a sample of 271 veterans (90% male) that completed both neuropsychological testing and resting-state fMRI, two complementary, whole-brain functional connectivity analyses explored the link between brain functioning, PTSD symptoms, and cognition. RESULTS At the network level, PTSD symptom severity was associated with reduced negative coupling between the limbic network (LN) and frontal-parietal control network (FPCN), driven specifically by the dorsolateral prefrontal cortex and amygdala Hubs of Dysfunction. Further, this relationship was uniquely moderated by executive function (EF). Specifically, those with PTSD and impaired EF had the strongest marker of LN-FPCN dysregulation, while those with above-average EF did not exhibit PTSD-related dysregulation of these networks. CONCLUSION These results suggest that poor executive functioning, alongside LN-FPCN dysregulation, may represent a neurocognitive subtype of PTSD.
Collapse
Affiliation(s)
- Audreyana Jagger-Rickels
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
| | - Anna Stumps
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
| | - David Rothlein
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
| | - Hannah Park
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
| | - Francesca Fortenbaugh
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Agnieszka Zuberer
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Jennifer R. Fonda
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| | - Joseph DeGutis
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Education and Clinical Center (GRECC), VABoston Healthcare System, Boston, Massachusetts, USA
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Boston Attention and Learning Lab (BALAB), VA Boston Healthcare System, Boston, MA, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
45
|
Siegel CE, Laska EM, Lin Z, Xu M, Abu-Amara D, Jeffers MK, Qian M, Milton N, Flory JD, Hammamieh R, Daigle BJ, Gautam A, Dean KR, Reus VI, Wolkowitz OM, Mellon SH, Ressler KJ, Yehuda R, Wang K, Hood L, Doyle FJ, Jett M, Marmar CR. Utilization of machine learning for identifying symptom severity military-related PTSD subtypes and their biological correlates. Transl Psychiatry 2021; 11:227. [PMID: 33879773 PMCID: PMC8058082 DOI: 10.1038/s41398-021-01324-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
We sought to find clinical subtypes of posttraumatic stress disorder (PTSD) in veterans 6-10 years post-trauma exposure based on current symptom assessments and to examine whether blood biomarkers could differentiate them. Samples were males deployed to Iraq and Afghanistan studied by the PTSD Systems Biology Consortium: a discovery sample of 74 PTSD cases and 71 healthy controls (HC), and a validation sample of 26 PTSD cases and 36 HC. A machine learning method, random forests (RF), in conjunction with a clustering method, partitioning around medoids, were used to identify subtypes derived from 16 self-report and clinician assessment scales, including the clinician-administered PTSD scale for DSM-IV (CAPS). Two subtypes were identified, designated S1 and S2, differing on mean current CAPS total scores: S2 = 75.6 (sd 14.6) and S1 = 54.3 (sd 6.6). S2 had greater symptom severity scores than both S1 and HC on all scale items. The mean first principal component score derived from clinical summary scales was three times higher in S2 than in S1. Distinct RFs were grown to classify S1 and S2 vs. HCs and vs. each other on multi-omic blood markers feature classes of current medical comorbidities, neurocognitive functioning, demographics, pre-military trauma, and psychiatric history. Among these classes, in each RF intergroup comparison of S1, S2, and HC, multi-omic biomarkers yielded the highest AUC-ROCs (0.819-0.922); other classes added little to further discrimination of the subtypes. Among the top five biomarkers in each of these RFs were methylation, micro RNA, and lactate markers, suggesting their biological role in symptom severity.
Collapse
Affiliation(s)
- Carole E Siegel
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
| | - Eugene M Laska
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziqiang Lin
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Mu Xu
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Duna Abu-Amara
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Michelle K Jeffers
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Meng Qian
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicholas Milton
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Janine D Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rasha Hammamieh
- Military Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Bernie J Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN, USA
| | - Aarti Gautam
- Military Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kelsey R Dean
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Victor I Reus
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, CA, USA
| | | | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Marti Jett
- Military Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Charles R Marmar
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
46
|
Harricharan S, McKinnon MC, Lanius RA. How Processing of Sensory Information From the Internal and External Worlds Shape the Perception and Engagement With the World in the Aftermath of Trauma: Implications for PTSD. Front Neurosci 2021; 15:625490. [PMID: 33935627 PMCID: PMC8085307 DOI: 10.3389/fnins.2021.625490] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is triggered by an individual experiencing or witnessing a traumatic event, often precipitating persistent flashbacks and severe anxiety that are associated with a fearful and hypervigilant presentation. Approximately 14–30% of traumatized individuals present with the dissociative subtype of PTSD, which is often associated with repeated or childhood trauma. This presentation includes symptoms of depersonalization and derealization, where individuals may feel as if the world or self is “dream-like” and not real and/or describe “out-of-body” experiences. Here, we review putative neural alterations that may underlie how sensations are experienced among traumatized individuals with PTSD and its dissociative subtype, including those from the outside world (e.g., touch, auditory, and visual sensations) and the internal world of the body (e.g., visceral sensations, physical sensations associated with feeling states). We postulate that alterations in the neural pathways important for the processing of sensations originating in the outer and inner worlds may have cascading effects on the performance of higher-order cognitive functions, including emotion regulation, social cognition, and goal-oriented action, thereby shaping the perception of and engagement with the world. Finally, we introduce a theoretical neurobiological framework to account for altered sensory processing among traumatized individuals with and without the dissociative subtype of PTSD.
Collapse
Affiliation(s)
- Sherain Harricharan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Homewood Research Institute, Guelph, ON, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Homewood Research Institute, Guelph, ON, Canada.,Mood Disorders Program, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ruth A Lanius
- Homewood Research Institute, Guelph, ON, Canada.,Department of Psychiatry, Western University, London, ON, Canada.,Department of Neuroscience, Western University, London, ON, Canada.,Imaging Division, Lawson Health Research Institute, London, ON, Canada.,The Brain and Mind Institute, London, ON, Canada
| |
Collapse
|
47
|
Gielkens EMJ, de Jongh A, Sobczak S, Rossi G, van Minnen A, Voorendonk EM, Rozendaal L, van Alphen SPJ. Comparing Intensive Trauma-Focused Treatment Outcome on PTSD Symptom Severity in Older and Younger Adults. J Clin Med 2021; 10:jcm10061246. [PMID: 33802898 PMCID: PMC8002665 DOI: 10.3390/jcm10061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To examine the treatment outcome of an intensive trauma-focused treatment program for post-traumatic stress disorder (PTSD) in older and younger adults. Methods: A non-randomized outcome study was conducted with 62 consecutively admitted older PTSD patients (60–78 years) and 62 younger PTSD patients (19–58 years), matched on gender and availability of follow-up data. Patients participated in an intensive eight-day trauma-focused treatment program consisting of eye movement desensitization and reprocessing (EMDR), prolonged exposure (PE), physical activity, and group psycho-education. PTSD symptom severity (Clinician-Administered PTSD Scale-5 (CAPS-5)) was assessed, at pre- and post-treatment, and for a subsample (n = 31 older; n = 31 younger patients) at six-month follow-up. Results: A repeated-measures ANCOVA (centered CAPS pre-treatment score as covariate) indicated a significant decrease in CAPS-5-scores from pre- to post-treatment for the total sample (partial η2 = 0.808). The treatment outcome was not significantly different across age groups (partial η2 = 0.002). There were no significant differences in treatment response across age groups for the follow-up subsample (pre- to post-treatment partial η2 < 0.001; post-treatment to follow-up partial η2 = 0.006), and the large decrease in CAPS-5 scores from pre- to post-treatment (partial η2 = 0.76) was maintained at follow-up (partial η2 = 0.003). Conclusion: The results suggest that intensive trauma-focused treatment is applicable for older adults with PTSD with a large within-effect size comparable to younger participants. Further research on age-related features is needed to examine whether these results can be replicated in the oldest-old (>80).
Collapse
Affiliation(s)
- Ellen M. J. Gielkens
- Clinical Center of Excellence for Older Adults with Personality Disorders, Mondriaan, 6419 PJ Heerlen-Maastricht, The Netherlands; (S.S.); (S.P.J.v.A.)
- Personality and Psychopathology Research Group (PEPS), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Correspondence:
| | - Ad de Jongh
- Psychotrauma Expertise Centre (PSYTREC), 3723 MB Bilthoven, The Netherlands; (A.d.J.); (A.v.M.); (E.M.V.); (L.R.)
- Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
- School of Health Sciences, Salford University, Manchester M6 6PU, UK
- Institute of Health and Society, University of Worcester, Worcester WR2 6AJ, UK
- School of Psychology, Queen’s University, 18-30 Malone Road, Belfast BT9 5 BN, UK
| | - Sjacko Sobczak
- Clinical Center of Excellence for Older Adults with Personality Disorders, Mondriaan, 6419 PJ Heerlen-Maastricht, The Netherlands; (S.S.); (S.P.J.v.A.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6226 NB Maastricht, The Netherlands
| | - Gina Rossi
- Personality and Psychopathology Research Group (PEPS), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
| | - Agnes van Minnen
- Psychotrauma Expertise Centre (PSYTREC), 3723 MB Bilthoven, The Netherlands; (A.d.J.); (A.v.M.); (E.M.V.); (L.R.)
- Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Eline M. Voorendonk
- Psychotrauma Expertise Centre (PSYTREC), 3723 MB Bilthoven, The Netherlands; (A.d.J.); (A.v.M.); (E.M.V.); (L.R.)
- Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Linda Rozendaal
- Psychotrauma Expertise Centre (PSYTREC), 3723 MB Bilthoven, The Netherlands; (A.d.J.); (A.v.M.); (E.M.V.); (L.R.)
| | - Sebastiaan P. J. van Alphen
- Clinical Center of Excellence for Older Adults with Personality Disorders, Mondriaan, 6419 PJ Heerlen-Maastricht, The Netherlands; (S.S.); (S.P.J.v.A.)
- Personality and Psychopathology Research Group (PEPS), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Department of Medical and Clinical Psychology, Tilburg University, 5037 AB Tilburg, The Netherlands
| |
Collapse
|
48
|
Gao W, Biswal B, Chen S, Wu X, Yuan J. Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. Neuroimage 2021; 232:117918. [PMID: 33652140 DOI: 10.1016/j.neuroimage.2021.117918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Emotional regulation is known to be associated with activity in the amygdala. The amygdala is an emotion-generative region that comprises of structurally and functionally distinct nuclei. However, little is known about the contributions of different frontal-amygdala sub-region pathways to emotion regulation. Here, we investigated how functional couplings between frontal regions and amygdala sub-regions are involved in different spontaneous emotion regulation processes by using an individual-difference approach and a generalized psycho-physiological interaction (gPPI) approach. Specifically, 50 healthy participants reported their dispositional use of spontaneous cognitive reappraisal and expressive suppression in daily life and their actual use of these two strategies during the performance of an emotional-picture watching task. Results showed that functional coupling between the orbitofrontal cortex (OFC) and the basolateral amygdala (BLA) was associated with higher scores of both dispositional and actual uses of reappraisal. Similarly, functional coupling between the dorsolateral prefrontal cortex (dlPFC) and the centromedial amygdala (CMA) was associated with higher scores of both dispositional and actual uses of suppression. Mediation analyses indicated that functional coupling of the right OFC-BLA partially mediated the association between reappraisal and emotional response, irrespective of whether reappraisal was measured by dispositional use (indirect effect(SE)=-0.2021 (0.0811), 95%CI(BC)= [-0.3851, -0.0655]) or actual use (indirect effect(SE)=-0.1951 (0.0796), 95%CI(BC)= [-0.3654, -0.0518])). These findings suggest that spontaneous reappraisal and suppression involve distinct frontal- amygdala functional couplings, and the modulation of BLA activity from OFC may be necessary for changing emotional response during spontaneous reappraisal.
Collapse
Affiliation(s)
- Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - ShengDong Chen
- School of Psychology, Qufu Normal University, Qufu, Shandong, China
| | - XinRan Wu
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - JiaJin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences and Department of Neurology and Neurological Sciences, Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
50
|
Lebois LAM, Li M, Baker JT, Wolff JD, Wang D, Lambros AM, Grinspoon E, Winternitz S, Ren J, Gönenç A, Gruber SA, Ressler KJ, Liu H, Kaufman ML. Large-Scale Functional Brain Network Architecture Changes Associated With Trauma-Related Dissociation. Am J Psychiatry 2021; 178:165-173. [PMID: 32972201 PMCID: PMC8030225 DOI: 10.1176/appi.ajp.2020.19060647] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Dissociative experiences commonly occur in response to trauma, and while their presence strongly affects treatment approaches in posttraumatic spectrum disorders, their etiology remains poorly understood and their phenomenology incompletely characterized. Methods to reliably assess the severity of dissociation symptoms, without relying solely on self-report, would have tremendous clinical utility. Brain-based measures have the potential to augment symptom reports, although it remains unclear whether brain-based measures of dissociation are sufficiently sensitive and robust to enable individual-level estimation of dissociation severity based on brain function. The authors sought to test the robustness and sensitivity of a brain-based measure of dissociation severity. METHODS An intrinsic network connectivity analysis was applied to functional MRI scans obtained from 65 women with histories of childhood abuse and current posttraumatic stress disorder (PTSD). The authors tested for continuous measures of trauma-related dissociation using the Multidimensional Inventory of Dissociation. Connectivity estimates were derived with a novel machine learning technique using individually defined homologous functional regions for each participant. RESULTS The models achieved moderate ability to estimate dissociation, after controlling for childhood trauma and PTSD severity. Connections that contributed the most to the estimation mainly involved the default mode and frontoparietal control networks. By contrast, all models performed at chance levels when using a conventional group-based network parcellation. CONCLUSIONS Trauma-related dissociative symptoms, distinct from PTSD and childhood trauma, can be estimated on the basis of network connectivity. Furthermore, between-network brain connectivity may provide an unbiased estimate of symptom severity, paving the way for more objective, clinically useful biomarkers of dissociation and advancing our understanding of its neural mechanisms.
Collapse
Affiliation(s)
- Lauren A M Lebois
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Meiling Li
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Justin T Baker
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Jonathan D Wolff
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Danhong Wang
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Ashley M Lambros
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Elizabeth Grinspoon
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Sherry Winternitz
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Jianxun Ren
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Atilla Gönenç
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Staci A Gruber
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Kerry J Ressler
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Hesheng Liu
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| | - Milissa L Kaufman
- McLean Hospital, Belmont, Mass. (Lebois, Baker, Wolff, Lambros, Grinspoon, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Harvard Medical School, Boston (Lebois, Baker, Winternitz, Gönenç, Gruber, Ressler, Kaufman); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass. (Li, Wang, Ren, Liu); Beijing Institute for Brain Disorders, Capital Medical University, Beijing (Liu); Department of Neuroscience, Medical University of South Carolina, Charleston (Liu)
| |
Collapse
|